CAPITULO I. INTRODUCCIÓN

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CAPITULO I. INTRODUCCIÓN"

Transcripción

1 CAPITULO I. INTRODUCCIÓN 1.1 Antecedentes. En el plan 90 o Modelo rígido de las Facultades de Ingeniería la materia de Algebra Lineal como tal no existía, pero si se abordaba de alguna manera en las diversas materias que se impartían, por ejemplo en Matemáticas II para Ingeniería en Electrónica y Comunicaciones o en Matemáticas III para Ingeniería Química. Cuando se impartía esta materia los maestros se apoyan en diversos autores, como el Francis Florey o Stanley I Grossman pero en ningún momento se elaboró un material específico que le pudiera servir de apoyo a los estudiantes. Hoy día la Experiencia Educativa se recomienda llevarla en el primer periodo o segundo y se supone que los chicos ya traen algunas nociones del bachillerato en cuanto a la resolución de sistemas de ecuaciones lineales, cálculo de determinantes y vectores, etc., con esta información el estudiante aborda sin mucho problema las primeras dos unidades: matrices y determinantes y resolución de sistemas de ecuaciones lineales, pero cuando llega a los temas fuertes del algebra lineal, como: espacios vectoriales, espacios con producto interno, transformaciones lineales y valores propios el estudiantes se pierde, ya que en estos temas se parte de una definición formal, que el estudiante debe aprender a usar para demostrar propiedades de estos objetos. Se ha detectado en algunas investigaciones que una de las dificultades del aprendizaje del álgebra lineal está en esta manera de proceder, ya que si un estudiante no comprende bien una definición entonces ese estudiante tendrá problemas para entender conceptos, resolver problemas y demostrar propiedades asociadas a esa definición ( Sierpinska, 1996, Dorier, 2002, etc.). Para su enseñanza en la actualidad existen infinidad de softwares (Derive, Mathematica, MatLab, MathCad, etc.) y calculadoras que ayudan a los estudiantes a resolver de una manera más rápida diversos cálculos algebraicos. Pero a pesar de esto los índices de aprobación en esta 1

2 experiencia no son muy halagadores, por esta razón se debe de buscar alternativas de apoyo tanto a estudiantes como maestros. 1.2 Justificación A partir de 1998 la Universidad Veracruzana empieza una reforma curricular buscando un nuevo modelo educativo que respondiera a la necesidad de actualizar su papel en el sistema de educación superior nacional, ya que se les reclama a las universidades mayor eficiencia y racionalidad y, al mismo tiempo calidad y pertinencia social en la educación que se imparte. (Jeny Beltran Casanova, propuesta del nuevo modelo educativo). Para responder a esta demanda en Agosto del 2004 entra en vigor un nuevo Modelo Educativo en el área técnica. Este nuevo modelo llamado MEIF (Modelo Educativo Integral y Flexible) está centrado en el estudiante, buscando su formación integral y armónica, a través de un aprendizaje (basado en competencias) permanente en los diversos ámbitos de su quehacer profesional y de su vida personal. Con la finalidad de formar alumnos autónomos y que el maestro sea ahora un facilitador del aprendizaje, se empieza a trabajar en el desarrollo de materiales que auxilien al estudiante a aprender por si solos, tal es el caso de la guía de ejercicios prácticos 1.3 Objetivo Hoy día las facultades del Área-Técnica está buscando el consolidarse como programas de calidad y para esto se debe acceder a nivel 1 de CIEES (Comités Interinstitucionales para la Evaluación de la Educación Superior) lo cual implica cumplir con una serie de indicadores, dentro de los cuales se encuentra la producción de materiales didácticos que apoyen al estudiante, razón por la cual el objetivo de este trabajo es: Elaborar una guía de ejercicios prácticos de Algebra Lineal que les sirva de apoyo a los estudiantes que cursen dicha materia. 2

3 1.4 Características y funciones esenciales Las funciones esenciales de esta guía de ejercicios prácticos son: 1. Servir de apoyo didáctico a los maestros que impartan dicha experiencia 2. Ser un apoyo de consulta para los estudiantes que estén cursando Algebra Lineal. 3. Servir de complemento a la bibliografía recomendada por el maestro. Sus características son: 1. Estar redactada en un lenguaje claro y sencillo (de estudiante a estudiante). 2. Indicar la resolución de ejercicios paso a paso. 3. Proporcionar un software libre que apoya la resolución de sistemas de ecuaciones lineales, graficación de la solución de sistemas de ecuaciones lineales 2x2 y 3x3, cálculo de determinantes, multiplicación matricial e inversa de una matriz, espacios vectoriales y espacios con producto interno. 4. Proporcionar una serie de ejercicios para resolver que sirven como una retroalimentación a los temas vistos. 3

4 CAPITULO II. MATRICES Y DETERMINANTES 2.1 Concepto de matriz Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853 En 1858, A. Cayley introduce la notación matricial como una forma abreviada de escribir un sistema de m ecuaciones lineales con n incógnitas. Una matriz A de m x n es un arreglo rectangular de números acomodados en m renglones (filas o hileras) y n columnas: El orden de la matriz anterior se indica cómo m x n. A menos que se indique lo contrario se considera que los elementos de una matriz son reales. La componente ij-ésima de A, denotado por a ij, es el número que aparece en el i-ésimo reglón y la j-ésima columna de A. Ocasionalmente, la matriz A se escribirá A= (a ij ). Las matrices se identifican mediante letras mayúsculas y los elementos con letras minúsculas. Si A es una matriz de m x n con m = n, entonces A recibe el nombre de matriz cuadrada. Una matriz de m x n en la que todas sus componentes son ceros se llama matriz cero. Los elementos de una matriz se pueden representar entre paréntesis o corchetes. EJEMPLO 1.- Matrices de diferentes ordenes. 1) 2) 3) 4) 4

5 5) EJEMPLO 2.- Componentes de una matriz. Hallar las componentes 1) a 12 ; 2) a 31 y 3) a 22 de: Solución: a 12 = 3 así de manera similar a 31 = 6 y a 22 = -4. EJERCICIOS PROPUESTOS Hallar las componentes 1) a 33 ; 2) a 13 y 3) a 11 de la siguiente matriz 2.2 Operaciones con matrices y sus propiedades Igualdad de Matrices Definición de la igualdad de matrices Dos matrices A=[a ij ] y B=[b ij ] son iguales si y solo si tienen el mismo orden (m x n) y a ij = b ij para 1 i m y 1 j n. EJEMPLO 3.- Igualdad de Matrices. 1) Encuentre los valores de a 11, a 12, a 21 y a 22 en la siguiente igualdad matricial. Solución: Dado que dos matrices son iguales sólo si sus elementos correspondientes son iguales, se concluye que a 11 = 5, a 12 =-6, a 21 =-1 a 22 =8. 2) Encuentre los valores de x, y, z y w para que las siguientes matrices sean iguales. 5

6 Son iguales si y solo si x + 3 = 0; y 2 = -10; z = -8; w -1 = 1 de donde x = -3; y = -8; z= -8; y w = 2. Suma de Matrices Definición de Suma de Matrices Si A= [a ij ] y B=[b ij ] son matrices de orden m x n, entonces sus suma es la matriz m x n definida como A+B= [a ij + b ij ]. Nota: La suma de dos matrices de órdenes diferentes no está definida. EJEMPLO 4.- Suma de Matrices 1) 2) 3) 4) L a suma de no está definida, porque no son del mismo orden. Software Matemática Es un conjunto de herramientas que le ayudarán a conseguir que le ayudarán a conseguir que el aprendizaje de las matemáticas resulte más fácil. Dicho software cuenta con una guía en flash que explica de manera breve lo que este puede hacer, como la de evaluar expresiones algebraicas, realiza representaciones de graficas tanto en 2D como 3D y resolución de ecuaciones, entre otras cosas. 6

7 EJEMPLO USANDO MATEMATICA Suma de matrices: 7

8 Multiplicación por Escalar Definición de Multiplicación Escalar Si A = [a ij ] es una matriz m x n y c es un escalar, entonces la multiplicación de la matriz por el escalar c es la matriz m x n definida por ca = [ca ij ]. Para representar el producto escalar (-1)A se usa A Si A y B son del mismo orden, entonces A B representa la suma de A y (-1)B. Es decir, la resta de matrices A B. EJEMPLO 5.- Multiplicación por un Escalar y Resta de Matrices. Para las matrices y Encontrar 1. 3 A 2. B 3. 3 A B. Solución:

9 Observación: A menudo es conveniente reescribir la multiplicación escalar ca factorizando c en todos los elementos de la matriz. Por ejemplo, a continuación se observa que el escalar ½ se ha factorizado. EJEMPLO USANDO MATEMATICA Multiplicación por escalar: Propiedades de la suma y multiplicación por un escalar Sean A, B y C matrices de orden m x n, k y m escalares cualquiera, entonces la suma y multiplicación por escalar cumplen con las siguientes propiedades: Propiedades para la suma 1. Propiedad cerradura A + B M mxn 2. Propiedad conmutativa A+ B = B + A 3. Propiedad asociativa A + (B + C) = (A + B) + C 4. Propiedad del elemento neutro. A + 0 = 0 + A = A 5. Propiedad del elemento inverso. A + (-A) = -A + A = 0 Propiedades para la multiplicación por escalar 1. Propiedad de cerradura ka M mxn 2. (km)a = k(ma) = m(ka) 3. Propiedad distributiva para la suma por escalar (k + m)a = ka + ka 4. Propiedad distributiva para la suma matricial k(a + B) = ka + kb 5. Sea 1A = A1 = 1 Multiplicación de Matrices La tercera operación básica es la multiplicación de matrices. A primera vista, la siguiente definición puede parecer inusual. Sin embargo, como se verá 9

10 después, esta definición del producto de dos matrices tiene muchas aplicaciones prácticas. Definición de Multiplicación de Matrices Si A =[a ij ] es una matriz m x n y B =[b ij ] es una matriz n x p, entonces el producto AB es una matriz m x p, dada por AB = [c ij ] Donde Esta definición significa que el elemento en el i-ésimo reglón y en el j-ésima columna del producto AB se obtiene al multiplicar los elementos del i-ésimo renglón de A por los elementos correspondientes de la j-ésima columna de B y luego los resultados se suman. Este proceso se ilustra con el siguiente ejemplo. Nota: Para que 2 matrices A y B se puedan multiplicar el número de columnas de A debe ser igual al número de filas de B. Encuentre el producto AB, donde Solución: Primero, observe que el producto AB está definido porque el orden de A es 3 x 2 y el de B es 2 x 2. Además, el producto AB será de orden 3 x 2 y es de la forma. Para determinar c 11 (el elemento en el primer renglón y en la primera columna del producto), se multiplica los elementos correspondientes en el primer renglón de A y en la primera columna de B. Es decir, Y así sucesivamente 10

11 Entonces matriz producto EJEMPLO 6.- Multiplicación de Matrices. 1) 2) 3) 4) 5) Observación: Nótese la diferencia entre los productos en los incisos 4) y 5) del ejemplo 6. En general, la multiplicación de matrices no es conmutativa. Es decir, casi nunca es cierto que el producto de AB sea igual al producto BA. EJEMPLO USANDO MATEMATICA 11

12 Multiplicación de dos matrices que tiene diferente orden. EJERCICIOS PROPUESTOS Efectué el cálculo indicado con 1) A+3B 2) 2A-B 3) 3B 4) Hallar una matriz C tal que sea la matriz cero de 3 x 2. Multiplica las siguientes matrices. 1) 2) 12

13 2.3 Aplicaciones de Matrices Aplicación de la multiplicación de matrices. EJEMPLO 7.- Análisis de precios de comestibles. Suponga que uno quiere comparar el costo total de ciertos comestibles. La siguiente tabla, que puede ser vista como una matriz, que da el costo en centavos de una libra de cada uno de los productos en tres supermercados. Si se compra 5 libras de carne, 3 lb de pan 10 lb, de papas, 4 lb de manzanas, y 2 lb de café, podemos representar las cantidades compradas por la matriz. El costo total está dado por el producto Veamos que el costo total en el supermercado 2 es 9 centavos más bajo que en el supermercado1 y 20 centavos menor que en el supermercado 3. En este caso las matrices, brindan una forma conveniente y resumida de enunciar y resolver el problema. La multiplicación matricial también es utilizable para obtener la potencia de una matriz cuyo proceso se ilustra con el ejemplo siguiente. EJEMPLO 8.- Para la matriz hallar 13

14 Y así sucesivamente. En general se puede decir que A A n n 1 A para EJEMPLO USANDO MATEMATICA Calcule, donde. Calcule, donde. EJERCICIOS PROPUESTOS 1) Calcule donde. 2) Calcule, donde. 3) Calcule, donde. 2.4 Tipos de Matrices. Hay algunas matrices que aparecen frecuentemente y que según sus características reciben nombres diferentes: Matriz Fila: Aquella matriz que tiene una sola fila, siendo su orden1 x n. EJEMPLO 9.- Matriz Columna: Aquella matriz que tiene una sola columna, siendo su orden m x 1. 14

15 EJEMPLO10.-. Matriz Traspuesta: Dada una matriz A, se llama traspuesta de A a la matriz que se obtiene cambiando ordenadamente las filas por las columnas. Se representa por A t ó A T. Si A= (a ij ) m n, su transpuesta es A t = (a ij ) nxm. EJEMPLO 11.- Hallar la transpuesta de la matriz Propiedades de la Matriz Transpuesta. Supóngase que A = (a ij ) es una matriz de n x m y que B = (b ij ) es una matriz de m x p. Entonces, i. ii. (AB) t = B t A t iii. Si A y B son de n x m, entonces (A + B) t = A t + B t. Matriz Nula: Si todos sus elementos son cero. También se denomina matriz cero y se denota por. EJEMPLO 12.- Matriz Simétrica: Es una matriz cuadrada que es igual a su traspuesta. A = A t, a ij = a ji. EJEMPLO 13.- son iguales. matrices observando que ambas Matriz Antisimétrica: Es una matriz cuadrada que es el negativo de su traspuesta. 15

16 A = -A t, a ij = -a ji Necesariamente a ii = 0. EJEMPLO 14.- Matriz Identidad: Es una matriz cuadrada que tiene todos sus elementos nulos excepto los de la diagonal principal que son iguales a 1. También se denomina matriz unidad. EJEMPLO 15.- Matriz Triangular: Es una matriz que tiene todos los elementos por encima o por debajo de la diagonal principal nulos, de acuerdo a esto se llama T. inferior ó T. superior respetivamente. EJEMPLO Triangular superior 2. Triangular inferior Matriz Normal: Una matriz es normal si conmuta (en la multiplicación) con su traspuesta. Las matrices simétricas, antisimétricas son necesariamente normales. EJEMPLO

17 EJEMPLO USANDO MATEMATICA Obtención de la transpuesta de una matriz de 3 x 2: EJERCICIOS PROPUESTOS Encuentre la transpuesta de las siguientes matrices: 1) 2) 3) Determine los números tales que sea simétrica. 17

18 4) Llena los espacios faltantes para que la matriz sea antisimétrica. 2.5 Inversa de una matriz Matriz Inversa: Decimos que una matriz cuadrada A tiene inversa denotada como A -1, si se verifica que A A -1 = A -1 A = I y cumple con las siguientes propiedades: i. Sean A y B matrices invertibles. Entonces si AB es invertible se cumple que (AB) -1 = B -1 A -1. ii. Si A es invertible, entonces A t también es invertible y (A t ) -1 = (A -1 ) t. NOTA: Para obtener una matriz inversa se manejan dos métodos: operaciones elementales y determinantes. Método de Operaciones Elementales. Para llevar a cabo este método se sigue el siguiente procedimiento: Paso 1. Escríbase la matriz aumentada (A I). Paso 2. Utilícese la reducción por renglones con el objetivo de reducir la matriz Paso 3. Decídase si A es invertible. a. Si A se puede reducir a la matriz identidad I, entonces A -1 será la matriz que aparece a la derecha de la barra vertical. b. Si la reducción por renglones de A lleva a un renglón de ceros a la izquierda de la barra vertical, entonces A no es invertible. Para llevar a cabo la reducción por renglones se tiene que utilizar las operaciones elementales de reglón que son. i. Multiplicar (o dividir) un reglón por (o entre) un número distinto de cero. 18

19 ii. Sumar el múltiplo de un renglón a otro reglón. iii. Intercambiar dos renglones. EJEMPLO 18.- Sea, calcúlese A -1 si existe. Primero se escribe la matriz aumentada. Y luego se efectúa la reducción por renglones: Como A se ha reducido a I, se tiene se factoriza a fin de facilitar los cálculos. Comprobación 19

20 PRECAUCIÓN. Como es muy fácil cometer errores numéricos al calcular A -1, es muy importante comprobar los cálculos asegurándose de que. EJEMPLO 19.- Sea. Calcule A -1, si existe. Solución: Así, Comprobación EJEMPLO 20.- Una matriz que no es invertible. Sea. Calcule A -1, si existe. Solución: Procediendo como en el ejemplo anterior se tiene 20

21 Hasta aquí puede llegarse. La matriz A no se puede reducir a la matriz identidad, por lo que se concluye que A no es invertible. EJEMPLOS USANDO MATEMATICA Inversa de una matriz de 3 x 3: Matriz que no tiene inversa: EJERCICIOS PROPUESTOS Calcular la inversa de las siguientes matrices: 1) 2) 3) 21

22 2.6 Determinante de una matriz. Se definirá el determinante de una matriz n x n como una función que le asigna a una matriz de orden n, un número real llamado el determinante de la matriz. Si A es una matriz de orden n, el determinante de la matriz A lo denotaremos por det(a) o también por A (las barras no significan valor absoluto). El determinante de una matriz de orden 2 esta dado por y para su calculo es el producto de los elementos de la diagonal principal menos el producto de la diagonal secunadaria, esto es EJEMPLO 21.-Hallar el valor de: EJEMPLO USANDO MATEMATICA Hallar el determinante de la matriz EJERCICIOS PROPUESTOS Hallar el valor de: 1) 2) 3) 22

23 2.7 Evaluación de una determinante 3 x 3 (regla de Sarrus). La regla de Sarrus permite calcular determinantes de orden 3 de una manera bastante fácil y sencilla recibe su nombre del matemático francés Pierre Frédéric Sarrus. Paso 1: Escriba la matriz A y enseguida las primeras dos columnas de A como se muestra a continuación. Paso 2: Calcule los productos indicados por las flechas. Los productos correspondientes a las flechas que se dirigen hacia abajo se toman con signo positivo, mientras los productos correspondientes a las flechas que se dirigen hacia arriba se toman con signo negativo. EJEMPLO 22.- Calcular el siguiente de terminante de orden 3. 1) 2) Nota: Esta regla solo aplica a determinantes de orden 3x3 23

24 EJEMPLO USANDO MATEMATICA Hallar el determinante de la matriz EJERCICIOS PROPUESTOS Encontrar el valor de los siguientes determinantes: 1) 2) 3) 2.8 Obtención de un determinante por Método de Cofactores. Cuando se requiere obtener el valor de un determinante de orden mayor a 3 se recomienda utilizar el método de cofactores o de propiedades de determinantes. Método de cofactores Para aplicar este método primero se definirán algunos conceptos previos: Una Submatriz a ij es la que se obtiene al eliminar la fila i y columna j de la matriz. 24

25 Por ejemplo dada la matriz su submatriz está dada por. El cofactor está dado por Por ejemplo el cofactor. esta dado por Para obtener el valor de un determinante por el método de cofactores se utiliza una expansión que puede ser por filas o por columnas y que consiste en la suma de los productos de los elementos de la fila o columna por sus correspondientes cofactores. EJEMPLO 23.- Hallar el determinante de utilizando el método de cofactores. Resolviendo por expansión en la primera fila: Donde Sustituyendo se tiene que EJEMPLO 24.- Hallar el determinante de la siguiente matriz, utilizando cofactores. Por expansión fila 4 25

26 Nota: para mayor facilidad en la aplicación de este método utilizar aquella fila o columna que tenga más elementos nulos. Ejemplo 25.- Hallar el determinante de la siguiente matriz Por expansión en columna 1 Donde El cual al ser calculado por expansión en fila 4 nos queda 26

27 Entonces EJEMPLOS USANDO MATEMATICA Calcular el determinante de. Calcular el determinante de. EJERCICIOS PROPUESTOS Hallar el determinante de las siguientes matrices: 1) 27

28 2) 3) 2.9 Propiedades de los determinantes. Algunas propiedades importantes que tienen los determinantes, y que se enuncian sin demostración, son: 1. Si una matriz tiene una línea (fila) o columna de ceros, el determinante vale cero. Esta propiedad es evidente, puesto que por definición de determinante, basta elegir dicha línea para desarrollar y el determinante será Si una matriz tiene dos filas (o columnas) iguales o proporcionales, su determinante es nulo. 3. Si intercambiamos dos filas (o columnas) de una matriz cuadrada, su determinante cambia de signo, por ejemplo: intercambiando la fila 3 con la 4 se tiene 4. Si multiplicamos todos los elementos de una fila (o columna) de un determinante por un número, el determinante queda multiplicado por ese número. Por ejemplo: 28

29 Sabemos que si multiplicamos la fila dos por 2 entonces. 5. El determinante de una matriz es igual al de su traspuesta, 6. El determinante de una matriz triangular superior es igual al producto de los elementos situados en la diagonal principal. 7. Si a una fila (o columna) de una matriz se le suma otra fila (o columna) multiplicada por un número, el determinante no cambia. Esta propiedad permite utilizar un método más sencillo para calcular determinantes de orden mayor que 3. Una estrategia a tener en cuenta en este caso de determinantes de orden 4 o superior, o incluso de orden 3 si la matriz es compleja, es el método de hacer ceros, puesto que el valor del determinante no varía al realizar a la matriz ciertas transformaciones elementales en filas (o columnas), como indica la propiedad 6 anterior, si bien hemos de ser cuidadosos al aplicar dicha propiedad. Así pues la mejor forma de calcular un determinante es hacer ceros en una fila o columna y desarrollar por dicha fila o columna, porque entonces sólo tendremos que calcular un cofactor. EJEMPLO 26.- Obtener el valor del determinante utilizando propiedades. Utilizando al 1 (de la posición ) como elemento pivote se tiene que: Multiplicando la fila 2 por -2 y sumándoselo a la fila 3 y que el cambio vaya a parar a la fila 3, al mismo tiempo multiplicando la fila 2 por -3 y sumárselo a la fila 4 y que el cambio valla a la fila 4, se obtiene 29

30 El cual se puede resolver por cofactores por expansión en la columna 1, resultando Donde Con lo que Como hemos dicho, hemos de tener especial cuidado al aplicar esta regla con determinantes, puesto que no podemos hacer las mismas operaciones que con las matrices, lo que puede confundir. EJEMPLO 27.- Si queremos calcular el determinante de Mediante la regla de Sarrus es: O bien haciendo ceros en la primera columna, multiplicando por -4 la fila uno y sumándole este resultado a la fila 3 se tiene Utilizando cofactores por expansión en la columna 1 se llega a Lo que es correcto. Sin embargo, si queremos hacer cero el 1 de la primera columna sería un error hacer -1 por la fila 3 y sumárselo a 4 por la fila 1, quedando 30

31 que al ser resultado por cofactores por expansión en la columna 1 queda como No obtenemos lo mismo, porque hemos multiplicado la fila sustituida por un número y eso altera el valor del determinante. Luego la fila a sustituir conviene no multiplicarla, como en el primer ejemplo, puesto que si no nos damos cuenta, podemos variar el valor del determinante. EJERCICIOS PROPUESTOS Utiliza propiedades de determinantes para encontrar el valor de: 1) 2) 3) 2.10 La inversa por determinantes Hay una estrecha relación entre la inversa de una matriz cuadrada y su determinante. De hecho se verifica que: Propiedad: Una matriz cuadrada A tiene inversa sí y solo sí A 0. 31

32 Además, en este caso, la matriz inversa de, denotada como de la manera: se calcula Donde denota la matriz adjunta de A, es decir, aquella que se obtiene al trasponer la matriz de cofactores. EJEMPLO 28.- Calcular, si es posible, la inversa de la matriz En primer lugar, y por tanto tiene inversa. Calculando ahora la matriz de cofactores Donde Con lo que y por lo tanto De donde 32

33 EJEMPLO 29.- Calcula la inversa de la matriz En primer lugar, y por lo tanto A tiene inversa. Calculando ahora la matriz del cofactores Donde Con lo que y por lo tanto De donde 33

34 EJEMPLO USANDO MATEMATICA EJERCICIOS PROPUESTOS Calcula si es posible la inversa de las siguientes matrices: 1) 2) 3) CAPITULO III. SISTEMAS DE ECUACIONES LINEALES 3.1 Introducción A Sistemas De Ecuaciones Lineales La mayoría de las preguntas que se presentan en ingeniería, física, matematicas, economía y otras ciencias se reducen al problema de resolver un problema lineal. Se denomina sistema de -ecuaciones lineales con -incognitas a un sistema de ecuaciones de la forma: 34

35 Los números son los coeficientes del sistema, y son los términos constantes. Si todos los términos constantes son cero, el sistema se llama homogéneo. Los sistemas lineales admiten una sencilla representación matricial. Así, podemos denotar siendo: Una solución (particular) de una ecuación es una sucesión de números que, cuando se sustituyen en las variables, produce una ecuación que es una identidad. El conjunto de todas las soluciones particulares se llama conjunto solución. Para describir todo el conjunto solución de una ecuación lineal, a menudo se utiliza una representación paramétrica. Un sistema de ecuaciones puede clasificarse según el número de soluciones de la siguiente manera: 35

36 Solucion De Un Sistema De Ecuaciones Lineales Tiene Una O Mas Soluciones No Tiene Solucion COMPATIBLE INCOMPATIBLE Solucion Unica Infinitas Soluciones DETERMINADO INDETERMINADO A manera de introducción examinaremos un sistema de la forma Cada ecuación puede representarse de forma grafica como una recta en el plano. La pareja ordenada será una solución del sistema si y solo si yace en ambas rectas. Por ejemplo, considérense los sistemas Soluciones: a) Este sistema tiene exactamente una solución, y. Esto se puede interpretar que en el punto (1,0) las rectas se intersecan. El punto verde en la grafica es el punto de intersección. 36

37 b) Este sistema no tiene solución ya que es imposible que la uma de dos números sea 2 y 1 a la vez, esto quiere decir que se trata de 2 rectas paralelas, o sea, nunca habrá punto de intersección. c) Este sistema tiene infinitas soluciones, o sea que se trata de dos rectas que están una sobre otra (coincidentes), es por eso que se encuentran infinitos puntos de unión. Por esta misma razón solo se ve una recta en lugar de dos. A continuación se presentan las 3 soluciones graficas de los incisos anteriores. a) b) c) Ya con una introducción de los sistemas de ecuaciones lineales, se profundiza en sus métodos de resolución. A continuación se explicara cada método y se verán algunos ejemplos para reforzar el entendimiento. 37

38 A excepción de los problemas que se verán en las aplicaciones, cada ejemplo se resolverá de dos formas: manual y por software. 4.2 Eliminación Gaussiana Este método de resolución de sistemas de ecuaciones admite una fácil programación, lo que permite resolver un sistema con la ayuda de la computadora. La idea del método consiste en aplicar a la matriz ampliada del sistema transformaciones elementales sobre las filas (no pueden realizarse transformaciones columna) obteniendo, de esta forma, sistemas equivalentes al dado pero cada vez más manejables. Mediante transformaciones, se consigue obtener un sistema equivalente al dado que tiene por matriz de los coeficientes una matriz escalonada. La notación quedara simplificada empleando matrices ampliadas para representar en todo momento a los sistemas lineales equivalentes que resultan tras las transformaciones. El algoritmo sería el siguiente: Sistema Matriz Ampliada Transformaciones Elementales Solución Sistema Equivalente Matriz Triangular Superior El funcionamiento del método se ilustra con los siguientes ejemplos: 38

39 EJEMPLO 27.- Resolver el sistema. Y nuestro problema es encontrar los valores de. Primero construimos nuestra matriz de coeficientes. Este método, también conocido como de eliminaciones sucesivas o método de escalonamiento comienza restando múltiplos de la primera ecuación (fila) a las restantes, con el fin de eliminar una incógnita, en este caso, la de las ultimas ecuaciones. Para ello: El coeficiente de en la primera ecuación se le llama pivote (en este caso el 2). En la mayoría de los casos es conveniente, por razones de cálculo, multiplicar nuestra primera ecuación por un numero que convierta a nuestro pivote en 1 ó también podemos cambiar nuestra fila por otra en la cual el primer número sea 1 (en este ejemplo lo dejaremos así). Para resolver nuestro sistema realizamos las siguientes operaciones (transformaciones elementales sobre filas): Sumamos a la segunda ecuación la primera multiplicada por -2. Sumamos a la tercera ecuación la primera multiplicada por 1. En el segundo paso, ignoramos la primera ecuación y aplicamos el proceso a las dos ecuaciones restantes, donde las incógnitas son y. En este caso, el pivote es -1 (coeficiente de en la segunda ecuación). Sumamos a la tercera ecuación la segunda multiplicada por 3. 39

40 Y llegamos al sistema equivalente: Ahora el proceso de eliminación esta completo. Hay un orden evidente para resolver este sistema: de la última ecuación obtenemos: Sustituyendo este resultado en la segunda ecuación obtenemos: Y por último, sustituyendo ambos resultados en la primera ecuación, se obtiene Resolviendo mediante software: Los resultados de la resolución manual y por software son iguales, p queda comprobado. Este proceso para obtener los valores de las incógnitas, se conoce con el nombre de sustitución regresiva. Es fácil entender cómo podemos extender la idea de la eliminación gaussiana a un sistema de -ecuaciones con - incógnitas: 40

41 I. En un primer paso, utilizamos múltiplos de la primera ecuación para anular todos los coeficientes bajo el primer pivote. II. A continuación, se anula la segunda columna bajo el segundo pivote, etc. III. La última columna contiene solo a la última de las incógnitas. IV. La sustitución regresiva conduce a la solución en sentido contrario, es decir, comenzando por la última incógnita hasta llegar a la primera. Veamos dos ejemplos más. EJEMPLO 28.- Resolver el sistema: Primero obtenemos matriz de coeficientes y la matriz ampliada del sistema. Procedemos a escalonar la matriz ampliada del sistema como lo hicimos en el ejercicio anterior: Sumamos a la segunda ecuación la primera multiplicada por -2. Sumamos a la tercera ecuación la primera multiplicada por -1. Así como lo hicimos en el ejemplo anterior, al terminar de convertir en ceros las posiciones debajo de nuestro pivote procedemos a cambiar éste, es decir, ignoramos a la primera ecuación y ocupamos como pivote a la segunda ecuación, en este caso el nuevo pivote es -1 (coeficiente de en la segunda ecuación). Continuamos con el último paso: Sumamos a la tercera ecuación la segunda multiplicada por

42 La presencia de la última fila de ceros indica que existían dos ecuaciones proporcionales en el último paso (la segunda y tercera ecuaciones son idénticas) por lo que puede ser eliminada del sistema equivalente: La sustitución regresiva, proporciona los valores: En este ejemplo existe una relación de dependencia entre las variables e. Si tomamos un valor cualquiera para, este determina otro para la. Existen infinitas soluciones en este caso, que podemos expresar de forma paramétrica como: Se dice que actúa como variable independiente y son variables dependientes. Estamos ante un sistema compatible indeterminado. Ahora se comprobara el resultado por el software: 42

43 Por lo tanto queda comprobado. EJEMPLO 29.- Resolver el sistema: Primero obtenemos la matriz de coeficientes y la matriz ampliada del sistema. Procedemos a escalonar la matriz ampliada del sistema como lo hicimos en los ejercicios anteriores: Sumamos a la segunda ecuación la primera multiplicada por

44 Sumamos a la tercera ecuación la primera multiplicada por -2. Así como lo hicimos en el ejemplo anterior, al terminar de convertir en ceros las posiciones debajo de nuestro pivote procedemos a cambiar éste, es decir, ignoramos a la primera ecuación y ocupamos como pivote a la segunda ecuación, en este caso el nuevo pivote es 1 (coeficiente de en la segunda ecuación). Continuamos con el último paso: Sumamos a la tercera ecuación la segunda multiplicada por -1. La última fila representa la ecuación: Lo que produce un sistema incompatible ya que: Por tanto no hay soluciones para nuestro sistema original. Comprobando por software que el sistema es incompatible: 44

45 A continuación se proponen algunos ejercicios para su resolución. Resuelva los sistemas dados por el método de eliminación Gaussiana y comprobar los resultados mediante el software. Ejercicio 1.- Ejercicio 2.- Ejercicio

46 3.3 Método de Gauss Jordan La eliminación de Gauss-Jordan o Método de Gauss-Jordan para resolver un sistema de ecuaciones lineales consiste en convertir la matriz aumentada en una matriz reducida por renglones y a partir de ésta interpretar directamente la solución del sistema. Este método utiliza las mismas técnicas de eliminación Gaussiana (incluyendo el pivoteo), pero con el objetivo de finalizar con una matriz de la siguiente forma: Para lograr esto, se usa la técnica del pivoteo con la única diferencia que el pivote se usa para hacer ceros hacia abajo y hacia arriba. Resolveremos el siguiente sistema lineal: EJEMPLO 30.- Resolver mediante el sistema de Gauss Jordan. Primero construimos nuestra matriz de coeficientes y nuestra matriz ampliada del sistema. Habitualmente, cuando los cálculos se realizan a mano, con objeto de reducir la cantidad de anotaciones, se realizan transformaciones elementales paralelamente a varias filas a la vez. Por otra parte, también es deseable evitar, en la medida de lo posible, la manipulación de fracciones. Haciendo las transformaciones de fila correspondientes: 46

47 Así, obtenemos nuestro sistema equivalente como sigue: Por tanto la solución del sistema es: Comprobando los resultados obtenidos: Por lo tanto, se han comprobado los resultados. EJEMPLO 31.- Resolver por el método de Gauss Jordan. Primero construimos nuestra matriz de coeficientes y nuestra matriz ampliada del sistema. 47

48 Haciendo las transformaciones de fila correspondientes: Sumamos a la segunda ecuación la primera multiplicada por -2. Sumamos a la tercera ecuación la primera multiplicada por -2. Sumamos a la cuarta ecuación la primera multiplicada por -1. Sumamos a la tercera ecuación la segunda multiplicada por. Sumamos a la cuarta ecuación la segunda multiplicada por. Sumamos a la cuarta ecuación la tercera multiplicada por

49 Al contener solo ceros, ignoramos la última ecuación y utilizamos como nuevo pivote a la tercera. Multiplicamos a la ecuación 3 por. Sumamos a la segunda la tercera multiplicada por 5. Sumamos a la primera ecuación la tercera multiplicada por -2. Multiplicamos a la segunda ecuación por. Sumamos a la primera la segunda ecuación multiplicada por -1. El sistema equivalente es el siguiente Hemos ignorado el último renglón que consta totalmente de ceros. Al despejar en cada ecuación la incógnita correspondiente a la entrada principal de cada renglón del sistema equivalente, obtenemos: Lo cual se puede expresar en forma paramétrica como: 49

50 Comprobando la solución: Por lo tanto, queda demostrado. A continuación se presentan algunos ejercicios para su resolución. Resolver los sistemas de ecuaciones lineales por el método de Gauss-Jordan y comprobar los resultados mediante el software. Ejercicio 1.- Ejercicio 2.- Ejercicio

51 3.4 Sistemas homogéneos Un sistema de ecuaciones lineales se dice que es homogéneo cuando todos sus términos independientes son nulos, es decir, es un sistema del tipo: También podemos escribir en forma matricial como: Un sistema como este (homogéneo) siempre tiene al menos una solución, a saber,. Generalmente esta solución cero se le llama solución trivial. Vemos que un sistema homogéneo es siempre consistente, pues siempre tiene la solución trivial. Como siempre es una solución, solamente hay dos posibilidades: la solución cero es la única solución ó hay un número infinito de soluciones además de la solución cero (las soluciones distintas de la solución cero se conocen como las soluciones no triviales). EJEMPLO 32.- Resolver el siguiente sistema, por el método de Gauss - Jordan: Primero construimos la matriz de coeficientes y la matriz ampliada del sistema. Ahora empezamos con las transformaciones: Sumamos a la segunda ecuación la primera multiplicada por 1. Sumamos a la tercera ecuación la primera multiplicada por

52 Multiplicamos a la ecuación 2 por. Sumamos a la tercera ecuación la primera multiplicada por 3. Multiplicamos a la tercera ecuación por. Sumamos a la segunda ecuación la tercera multiplicada por -1. Sumamos a la primera ecuación la tercera multiplicada por -3. Sumamos a la primera ecuación la segunda multiplicada por -2. Por lo tanto, la solución del sistema es Lo cual significa que el sistema homogéneo dado solo tiene la solución trivial. Comprobando con el software 52

53 La cual concuerda con nuestros resultados anteriores. EJEMPLO 33.- Resolver el siguiente sistema por el método de eliminación Gaussiana: sistema. Primero construimos la matriz de coeficientes y la matriz ampliada del Resolviendo: Intercambiamos la ecuación 1 y la ecuación 2. 53

54 Sumamos a la segunda ecuación la primera multiplicada por -2. Sumamos a la tercera ecuación la primera multiplicada por -3. Multiplicamos a la segunda ecuación por. Sumamos a la tercera ecuación la segunda multiplicada por 7. Multiplicamos a la tercera ecuación por. Con lo que resulta el sistema equivalente: Los pivotes se encuentran sobre las tres primeras columnas por lo que tomaremos como variables dependientes, resultando la única variable independiente. El sistema homogéneo es compatible; presenta infinitas soluciones (aparte de la solución cero) que podemos expresar, paramétricamente, como: Comprobando los resultados: 54

55 Por lo tanto queda comprobado. A continuación se presentan algunos ejercicios para su resolución. Resolver los sistemas de ecuaciones lineales homogeneos por el método de Gauss-Jordan o eliminación Gaussiana y comprobar los resultados mediante el software. Ejercicio 1.- Ejercicio 2.- Ejercicio

56 3.5 Matriz inversa La teoría general de matrices encuentra una de sus aplicaciones más inmediatas en la resolución de sistemas de ecuaciones lineales con múltiples incógnitas. Aunque posteriormente fue objeto de un extenso desarrollo teórico, este campo de las matemáticas surgió en realidad como un instrumento de cálculo para facilitar las operaciones algebraicas complejas. Un procedimiento rápido para la resolución de sistemas de ecuaciones lineales mediante matrices es el llamado método de la matriz inversa. Esta técnica consiste en multiplicar por la izquierda los dos miembros de la expresión matricial del sistema de ecuaciones por la matriz inversa de la de los coeficientes (si existe). De este modo: Cuando la matriz de los coeficientes no es invertible, el sistema no tiene solución (es incompatible). Consideremos un sistema de ecuaciones lineales con n incógnitas, cuya expresión general es la siguiente: Este sistema se puede escribir en forma matricial del siguiente modo:. La matriz se llama matriz del sistema, es de dimensión y sus elementos son los coeficientes de las incógnitas. La matriz es una matriz columna, de dimensión, formada por las incógnitas del sistema. Por último, la matriz es otra matriz columna, de dimensión, formada por los términos independientes. Es decir: Si el determinante de la matriz es distinto de cero, la matriz A tiene inversa ( ). Por lo tanto, podemos calcular la matriz de las incógnitas del siguiente modo: 56

57 Es decir, para calcular la matriz columna de las incógnitas ( ), multiplicamos la inversa de la matriz ( ) por la matriz columna de los términos independientes, obteniéndose otra matriz columna de la misma dimensión que. A continuación veremos el primer ejemplo: EJEMPLO 34.- Resuelve el siguiente sistema de ecuaciones mediante matriz inversa. Solución. Comprobamos en primer lugar, si la matriz A es invertible, es decir, si su determinante es distinto de cero y, en este caso calculamos su inversa. Calculando la determinante de A. Entonces la matriz es invertible Al comprobar que nuestra matriz es invertible, entonces se puede resolver por el método de la matriz inversa como sigue: Se junta la matriz con la matriz identidad para formar la matriz: Ahora aplicando operaciones elementales en los renglones, se intenta escribir esta matriz en la forma como sigue, este proceso se lleva a cabo con el método de Gauss - Jordan que vimos anteriormente: Se suma -2 veces la primera fila a la segunda fila. Se suma -3 veces la primera fila a la segunda fila. 57

58 Se multiplica veces la segunda fila. Se suma 3 veces la segunda fila a la tercera. Se multiplica veces la tercera fila. Se suma veces la tercera fila a la segunda. Se suma -5 veces la tercera fila a la primera. Se suma -2 veces la segunda fila a la primera. 58

59 Por consiguiente, la matriz Finalmente, tenemos que, entonces: Para obtener a multiplicamos la matriz por la primer fila de la matriz. Para obtener a multiplicamos la matriz por la segunda fila de la matriz. Para obtener a multiplicamos la matriz por la tercera fila de la matriz. Comprobamos los resultados con el software 59

60 EJEMPLO 34.- Resuelve el siguiente sistema de ecuaciones mediante matriz inversa. Solución. Comprobamos en primer lugar, si la matriz A es invertible, es decir, si su determinante es distinto de cero y, en este caso calculamos su inversa. Calculando la determinante de A. Entonces la matriz es invertible Al comprobar que nuestra matriz es invertible, entonces se puede resolver por el método de la matriz inversa como sigue: Se junta la matriz con la matriz identidad para formar la matriz: 60

61 Ahora aplicando operaciones elementales en los renglones, se intenta escribir esta matriz en la forma como sigue: Se suma la primera fila a la segunda: Se suma -2 veces la primera fila a la tercera: Se suma la segunda fila a la tercera: Se multiplica por a la tercera fila: Se suma -3 veces la tercera fila a la segunda: Se suma -3 veces la tercera fila a la primera: Se suma 2 veces la segunda fila a la primera: 61

62 Por consiguiente, la matriz Finalmente, tenemos que, entonces: Para resolver este producto haremos los siguientes pasos: Para obtener a multiplicamos la matriz por la primer fila de la matriz. Para obtener a multiplicamos la matriz por la segunda fila de la matriz. Para obtener a multiplicamos la matriz por la tercera fila de la matriz. Comprobando los resultados obtenidos: 62

63 Por lo tanto se han comprobado los resultados. Este método es importante, pero no es muy práctico para resolver un sistema de ecuaciones lineales. Es decir, representa más trabajo intentar determinar y luego multiplicar por que simplemente resolver el sistema por medio de eliminación Gaussiana con sustitución hacia atrás como lo vimos anteriormente. Sin embargo, una situación en la que se podría considerar una aplicación de este método seria como método de cómputo, cuando hubiera muchos sistemas de ecuaciones lineales, todos con la misma matriz de coeficientes. En este caso, podría determinarse una sola vez la matriz inversa y resolver luego cada sistema al calcular el producto. A continuación se demuestra esto con un ejemplo: 63

64 EJEMPLO 34.- Utilice una matriz inversa para resolver los siguientes sistemas: Solución: Como podemos ver los tres sistemas tienen la misma matriz de coeficientes y es la siguiente. Comprobamos en primer lugar, si la matriz es invertible, es decir, si su determinante es distinto de cero y, en este caso calculamos su inversa. Calculando la determinante de A. Entonces la matriz es invertible A continuación seguimos el proceso para obtener la matriz inversa como en los ejemplos anteriores. Se junta la matriz con la matriz identidad para formar la matriz: Ahora aplicando operaciones elementales en los renglones, se intenta escribir esta matriz en la forma como sigue: Se multiplica por a la primera fila. Se suma -3 veces la primera fila a la segunda. Se suma -2 veces la primera fila a la tercera. 64

65 Se multiplica veces la segunda fila. Se suma -1 veces la segunda fila a la tercera. Se multiplica -3 veces la tercera fila. Se suma veces la tercera fila a la segunda. Se suma veces la tercera fila a la primera. Se suma veces la segunda fila a la primera. 65

66 Por consiguiente, la matriz Una vez que calculamos la matriz inversa por el método de Gauss Jordan, tenemos que para resolver cada sistema se usa la multiplicación matricial como se muestra a continuación: a) La solución del primer sistema es: b) y La solución del segundo sistema es: y c) La solución del tercer sistema es: y Comprobando los resultados de los 3 sistemas a) 66

67 El primer sistema ha sido comprobado. b) 67

68 c) Y es en este tipo de situaciones en donde el método de la matriz inversa demuestra su utilidad y efectividad. 68

69 A continuación se presentan algunos ejercicios para su resolución. Resolver los sistemas de ecuaciones lineales por el método de matriz inversa y comprobar los resultados mediante el software. Ejercicio 1. Ejercicio 2. Ejercicio 3. Use una matriz inversa para resolver los sistemas de ecuaciones lineales dados. 3.6 Método de Cramer El método de Cramer sirve para resolver sistemas de ecuaciones lineales. Se aplica a sistemas que cumplan las dos condiciones siguientes: El número de ecuaciones es igual al número de incógnitas. El determinante de la matriz de los coeficientes es distinto de cero. Los pasos a seguir para calcular los sistemas de ecuaciones según la regla de Cramer son los siguientes: 1. Hallar la matriz ampliada asociada al sistema de ecuaciones, esto es (como ya lo habíamos visto): que la primera columna esté formada por las entradas de los coeficientes de la primera incógnita de las ecuaciones; que la segunda columna la formen las de la segunda incógnita, y así hasta llegar a la última columna, que estará constituida por las entradas de los términos independientes de las ecuaciones. 2. Calcular el determinante de A ( ). 3. Aplicar la regla de Cramer, que consiste en: 69

70 a. Ir sustituyendo la primera columna del por los términos independientes; b. Dividir el resultado de este determinante entre el para hallar el valor de la primera incógnita; c. Continuar sustituyendo los términos independientes en las distintas columnas para hallar el resto de las incógnitas. Considere el sistema de n ecuaciones en n incognitas: El cual puede ser escrito en la forma Supongamos que. Entonces el sistema tiene una única solución dada por. Podemos desarrollar un método para encontrar esta solución sin reducción de renglones y sin el cálculo de, estamos hablando de la regla de Cramer. A continuación veremos unos ejemplos explicados paso por paso. EJEMPLO 35.- Resolver el sistema lineal por la regla de Cramer. Construimos nuestra matriz de coeficientes. Obtenemos el valor del determinante de A (este tiene que ser diferente de 0 para continuar en caso contrario no se puede resolver por este método). 70

71 Ahora para resolver sustituimos la primera columna de la matriz de coeficientes por los valores de los términos independientes y obtenemos el valor del nuevo determinante: Para obtener el valor de dividimos el valor el determinante de entre el determinante de, esto es: Lo mismo se hace para obtener : Y así mismo para obtener : 71

72 Entonces la solución del sistema lineal es: Comprobando por software Con lo cual queda comprobado. EJEMPLO 36.- Resolver el siguiente sistema por la regla de Sarrus. Construimos nuestra matriz de coeficientes: 72

73 Obtenemos el valor del determinante de A (este tiene que ser diferente de 0 para continuar en caso contrario no se puede resolver por este método). La resolución de determinantes de 4x4 se vio en el capítulo 1. Ahora para resolver sustituimos la primera columna de la matriz de coeficientes por los valores de los términos independientes y obtenemos el valor del nuevo determinante: Para obtener el valor de dividimos el valor el determinante de entre el determinante de, esto es: Lo mismo se hace para obtener : 73

74 Igualmente para obtener : De la misma manera calculamos a : Finalmente las soluciones de nuestro sistema de ecuaciones son: Comprobando resultados: 74

75 Así queda comprobado. 75

76 3.7 Aplicaciones Las aplicaciones de los sistemas de ecuaciones lineales son muy diversas, por ejemplo podemos utilizarlos en el análisis de una red eléctrica, en un ajuste polinomial de curvas, en la química, en la economía y hasta en casos de nuestra vida cotidiana. Además de ser una herramienta de apoyo en el desarrollo de varias Experiencias Educativas del programa. A continuación se describirán las aplicaciones mencionadas en el párrafo anterior. Nota: todos los sistemas de los ejemplos de aplicaciones se resolverán por medio del software Matemáticas de Microsoft. ***Análisis de redes*** Las redes compuestas de ramificaciones y nodos se usan como modelos en campos tan variados como economía, análisis de tránsito vehicular e ingeniería eléctrica. En estos modelos se asume que el flujo total hacia un nodo es igual al flujo que sale de él. Dado que cada nodo en una red origina una ecuación lineal, el flujo se puede analizar a través de una red compuesta por varios nodos al resolver un sistema de ecuaciones lineales. Es posible observar como el tipo de análisis de redes presentado en los siguientes ejemplos puede usarse en problemas relacionados con el flujo de vehículos por las calles de una ciudad o con el flujo de agua a través de un sistema de irrigación. Esto se ejemplificara con los siguientes ejercicios. Ejemplo1. Establezca un sistema de ecuaciones lineales para representar la red mostrada en la siguiente figura y resuelva. 76

77 Cada una de los 5 nodos origina una ecuación lineal como se muestra a continuación: Reacomodando nuestro sistema, se tiene que: Analizando nuestro sistema vemos que está compuesto por 5 ecuaciones y 5 incognitas. A continuación se resuelve este sistema mediante el software: 77

78 La solución es paramétrica, en otras palabras, tiene infinitas soluciones. Dando un valor parametrico a, se tiene que Así dándole un valor a se pueden saber los valores de las otras incógnitas. Ejemplo 2.- En la siguiente figura se muestra el flujo de tráfico (en vehículos por hora) que circula por una red de calles. a) Resuelva el sistema para b) Encuentre el flujo vehicular cuando. c) Encuentre el flujo vehicular cuando. 78

79 Solución. Resolviendo el inciso (a). El primer paso es armar el sistema de ecuaciones lineales a partir de la figura, recordando que es una ecuación por nodo, este quedaría como sigue: Analizando nuestro sistema vemos que posee 4 ecuaciones y 4 incognitas, reacomodando términos se tiene que: Aplicando el software, se tiene 79

80 Soluciones: Nuevamente tenemos un sistema parametrico, el cual tiene a como variable independiente y a y como variables dependientes. Solo queda expresar la solución en forma parametrica, así que: Resolviendo el inciso (b). 80

81 En este inciso nos dan el valor es 0, al sustituirla en nuestras soluciones, tenemos que: de la variable independiente que en este caso La interpretación que le debemos dar al sigo negativo del resultado de es que la dirección de la flecha es en sentido opuesto, es decir, el flujo de carros es 100 pero en dirección inversa a la que tiene la flecha de. Resolviendo el inciso (c). Repitiendo lo que se hizo en el ejercicio anterior pero con un valor tiene que:, se ***Análisis de una red eléctrica*** Otro tipo de red a la cual suele aplicarse el análisis de redes es la red eléctrica. En un análisis de este sistema se usan dos propiedades de las redes eléctricas conocidas como leyes de Kirchhoff. 1. Toda la corriente que fluye hacia un nodo debe fluir hacia fuera de el. 2. La suma de los productos ( es la corriente y es la resistencia) alrededor de una trayectoria cerrada es igual a la tensión total en la trayectoria. En una red eléctrica, la corriente se mide en unidades Amperes, la resistencia en ohms y el producto de la corriente y la resistencia en unidades volt. En las baterías la corriente fluye hacia afuera de la terminal denotada por la línea más larga o del signo positivo al negativo. Ejemplo 1.- determine las corrientes e de la red eléctrica mostrada en la siguiente figura. 81

82 Trayectoria 1 Nodo 1 Nodo 2 Trayectoria 2 Solución. Al aplicar la primera ley de kirchhoff en el nodo 1 se tiene (la cual es la misma ecuación del nodo 2, así que se ocupa solo una). Al aplicar la segunda ley de kirchhoff a las 2 trayectorias se tiene que Por lo tanto, al juntar las ecuaciones de la primera y la segunda ley se tiene el siguiente sistema de tres ecuaciones con tres incognitas: A continuación se resuelve: 82

83 Las corrientes entonces son ampere, amperes e ampere. Ejemplo 2.- determine las corrientes e para la red de la siguiente figura. Solución. Al aplicar la primera ley de Kirchhoff a los cuatro nodos se tiene que Al aplicar la segunda ley de Kirchhoff a las tres trayectorias se tiene que Al juntar las ecuaciones obtenidas en la primera y segunda ley de Kirchhoff se obtiene un sistema de 7 ecuaciones y 6 incognitas. Se arma la matriz ampliada y se resuelve. 83

84 Resolviendo el sistema. ***Ajuste polinomial de curvas*** Ejemplo.- Determine el polinomio cuya grafica pasa por los puntos (1,4), (2,0) y (3,12). Solución: al sustituir y en e igualar los resultados con los valores respectivos de, se obtiene el siguiente sistema de ecuaciones lineales en las variables y. Así, se obtiene el sistema de tres ecuaciones con tres incógnitas como sigue A continuación se resuelve el sistema 84

85 Lo cual significa que el polinomio es: Graficando el polinomio en el mismo software tenemos: Ejemplo.- Encuentre un polinomio que se ajuste a los puntos (-2,3), (-1,5), (0,1), (1,4) y (2,10). Primero se construyen el polinomio con los datos dados, como se puede ver son cuatro puntos, entonces nuestro polinomio quedaría como sigue: 85

86 Y el sistema de ecuaciones correspondiente se obtendrá al sustituir cada pareja de datos, y es el siguiente: Igualando cada ecuación con su valor en y, se obtiene el sistema de 5 ecuaciones con 5 incógnitas como sigue. Insertamos el sistema en nuestro software. 86

87 Por lo tanto se obtiene los valores de los coeficientes del polinomio de cuarto grado se sustituye estos valores en la ecuación del polinomio y quedaría como sigue: Sacando como factor común para simplificar el polinomio: Obteniendo la grafica: 87

88 ***Procesos químicos*** Ejemplo.- Se necesitan tres ingredientes distintos y para producir una determinada sustancia. Pero deben disolverse primero en agua, antes de ponerlos a reaccionar para producir la sustancia. La solución que contiene con 1.5 gramos por centímetro cubico, combinada con la solución cuya concentración es de 3.6 y con la solución con 5.3 forman gramos de la sustancia. Si las proporciones de y en esas soluciones se cambian a 2.5, 4.3 y 2.4, respectivamente (permaneciendo iguales los volúmenes), se obtienen gramos de la sustancia. Por último, si las proporciones se cambian a 2.7, 5.5 y 3.2, respectivamente, se producen gramos de la sustancia. Cuáles son los volúmenes, en centímetros cúbicos, de las soluciones que contienen y? Solución. Sean y los centímetros cúbicos de volumen de las soluciones que contienen y. Entonces, en el primer caso es la masa de, es la masa de y es la masa de. Al sumarlas deben dar Así,. Este razonamiento se aplica para los demás casos. Entonces se tiene un sistema de 3 ecuaciones lineales y 3 incógnitas que se muestra a continuación. Se introduce el sistema al software 88

89 Por consiguiente, los volúmenes de correspondientes de las 3 soluciones que contienen y, son y. ***Balanceo de reacciones químicas*** Otra aplicación de los sistemas de ecuaciones lineales en química es el balanceo de reacciones químicas. Es preciso introducir coeficientes enteros frente a cada uno de los reactivos, para que la cantidad de átomos de cada elemento sea igual en ambos lados de la ecuación. Ejemplo 1. Balancea la siguiente reacción química. Se calcularan los coeficientes de y que balanceen la ecuación Solución. El número de átomos de un elemento debe ser el mismo en los dos lados de la expresión. Por ejemplo, en el caso del carbono vemos que del lado izquierdo existe 1 átomo de este elemento mientras que del lado derecho el número de átomos de carbono es solo 1, entonces se llega a la conclusión de que. Con este mismo razonamiento aplicado a todos los elementos, se llega al siguiente sistema de ecuaciones: 89

90 Reacomodando los términos tenemos que: Como se puede ver este sistema es un sistema homogéneo y las soluciones de este pueden ser la trivial o soluciones infinitas. Resolviendo el sistema con Matemáticas de Microsoft, se tiene que: Como se puede apreciar la solución del sistema es paramétrica (infinitas soluciones). La variable independiente es y las variables dependientes son. Poniendo los resultados en forma paramétrica: Ahora solo por ejemplificar supóngase que soluciones se obtiene que:, sustituyendo en las Reduciendo 90

91 Y nuestra reacción quedaría de la siguiente forma: Ejemplo 2.- Balancear la siguiente reacción química Quitamos los paréntesis haciendo el producto y asignamos un coeficiente entero a cada uno de los reactivos Obteniendo ecuación por elemento Para el (calcio): Para el (silicio): Para el (fosforo): Para el (carbono): Para el (oxigeno): La unión de todas las ecuaciones forma un sistema de 5 ecuaciones con 6 incognitas, el cual es el siguiente: Introduciendo el sistema al software tenemos que: 91

92 La solución es parametrica, el número de soluciones es infinito. ( ) es la variable independiente y y ( y respectivamente)son las variables dependientes. Hacemos que y tenemos que: Ahora damos un valor a el cual sea entero y de cómo resultados enteros en cada uno de nuestros coeficientes ya que no se pueden tener exponentes fraccionarios en una reacción, a razón de que no existen fracciones de átomos. En este caso seria cualquier múltiplo de 10. Al sustituir nuestros coeficientes en la reacción, quedaría como sigue: 92

93 ***Estática y equilibrio de pesos*** Calcule los pesos y para balancear las palancas de la figura. Solución. Para la solución de este problema recordaremos la ley de palanca de Arquímedes que nos dice: dos masas en una palanca se equilibran cuando sus pesos son inversamente proporcionales a sus distancias al punto de apoyo. Partiendo de este principio se tiene que: Para balancear las 2 palancas pequeñas, apegándose a la ley de arquimedes tenemos que para la palanca de la izquierda, y para la derecha. Para equilibrar la palanca principal, se necesita que. De este modo se llegara al siguiente sistema homogéneo de tres ecuaciones con cuatro incongnitas: Resolviendo el sistema por software se tiene: 93

94 Como se puede apreciar el sistema tiene infinitas soluciones (en forma paramétrica), esto quiere decir que hay infinidad de pesos que pueden equilibrar este sistema. Basándonos en un parámetro se tiene que: Igual que en el ejemplo anterior se le dará un valor a entonces: solo para ejemplificar, Ejemplo.- un cuadro de 2 kg de masa cuelga de dos cables que forman los ángulos que se muestran en la figura. Calcule los valores de las tensiones y. 94

95 Solución. Para resolver este problema debemos tomar en cuenta la 1era ley de equilibrio la cual nos dice: La suma algebraica de las fuerzas aplicadas a un cuerpo en una dirección cualquiera es igual a cero. También debemos tener en cuenta que cada fuerza tiene sus componentes una en y otra en. Dibujando los diagramas de cuerpo libre: Diagrama del cuadro Diagrama de las tensiones Para ocupar el valor del cuadro se tiene que convertir a fuerza, entonces: Haciendo la sumatoria de fuerzas del cuadro Descomponiendo las fuerzas de las tensiones en sus componentes. Haciendo la sumatoria de fuerzas del nodo de las tensiones en el eje x: 95

96 Haciendo la sumatoria de fuerzas del nodo de las tensiones en el eje y: Al juntar las dos ecuaciones obtenemos el sistema requerido. A continuación se resuelve el sistema con el software: ***Fracciones parciales*** Calcule las constantes y, tal que Solución. Se debe cumplir que Desarrollando 96

97 Agrupando Igualando términos Como no tenemos coeficientes de en el término de la izquierda entonces se obtiene que, luego vemos que para el termino independiente 1 del otro lado tenemos. Por consiguiente se obtiene un sistema de 2 ecuaciones con 2 incognitas: Al resolverlo se tiene Con este resultado nuestra fracción quedaría como Ejercicio.- Determinar la descomposición en fracciones parciales de Solución. Factorizamos el denominador 97

98 Colocamos cada factor obtenido de la siguiente forma Desarrollo el miembro de la izquierda Factorizando Igualando Resolviendo el sistema 98

99 Con este resultado nuestra fracción quedaría como: ***Igualdad de polinomios*** Ejemplo.- Calcule y tales que los polinomios y sean iguales. Solución. Los coeficientes de las potencias correspondientes de que: deben ser iguales, así Igualando términos tenemos el siguiente sistema: Reacomodando el sistema, podemos ver que es un sistema de 3 ecuaciones con tres incognitas, como sigue Resolviendo el sistema por software se tiene 99

100 Estos serian los valores para que los dos polinomios fueran iguales. A continuación se proponen una serie de ejercicios para ser resueltos manualmente por cualquier método antes visto y comprobados mediante el software Matematicas de Microsoft. Ejercicio 1.- por un acueducto fluye agua (en miles de metros cubicos por hora) como se muestra en la siguiente figura. a) Resuelva este sistema para el caudal de agua representado por. b) Encuentre el patrón de flujo de la red cuando. c) Encuentre el patrón de flujo de la red cuando y. Ejercicio 2.- El flujo de tráfico (en vehículos por hora) que circula por una red de calles se muestra en la figura siguiente. 100

101 a) Resuelva este sistema para. b) Encuentre el patrón de flujo vehicular cuando y. c) Encuentre el patrón de flujo vehicular cuando y. Ejercicio 3.- Determine el polinomio cuya grafica pasa por los puntos (2,5), (3,2) y (4,5) y bosqueje la grafica del polinomio. Ejercicio 4.- Determine el polinomio cuya grafica pasa por los puntos (2,4), (3,6) y (5,10) y bosqueje la grafica del polinomio. Ejercicio 5.- Determine el polinomio cuya grafica pasa por los puntos (2,5), (3,0) y (4,20) y bosqueje la grafica del polinomio. Ejercicio 6.- Determine las corrientes e. Trayectoria 1 Nodo 1 Nodo 2 Trayectoria 2 Ejercicio 7.- Determine las corrientes e. Los valores de y 101

102 Ejercicio 8.- Determine las corrientes e. Los valores de y Ejercicio 9.- un cuadro de 10 kg de masa cuelga de dos cables que forman los ángulos que se muestran en la figura. Calcule los valores de las tensiones y. Ejercicio 10.- Calcule los pesos y para balancear las palancas de la figura. 102

103 Ejercicio.- Calcule los pesos y para balancear las palancas de la figura. Ejercicio.- Calcule las constantes y de modo que Ejercicio.- Determinar la descomposición en fracciones parciales de Ejercicio.- Determinar la descomposición en fracciones parciales de A continuación unos ejercicios variados que necesitan la aplicación de sistemas. Ejercicio 11.- Una compañía de electrónica fabrica tres tipos de computadoras: Terio, Xtra y Cian. Para armar una Terio se necesitan 10 horas, otras 2 para probar sus componentes y dos horas mas para instalar sus programas. El tiempo requerido para la Xtra es 12 horas en su ensamblado, 2.5 para probarla y 2 horas para instalarla. La Cian, la mas sencilla de la línea, necesita 6 horas de armado, 1.5 horas de prueba y 1.5 horas de instlacion. Si la fabrica de esta compañía dispone de 1560 horas de trabajo por mes para armar, 340 horas 103

104 para probar y 320 horas para instalar. Cuántas PC de cada tipo puede producir en un mes? Ejercicio 12.- Una empresa internacional necesita, en promedio, cantidades fijas de yenes japoneses, libras inglesas y marcos alemanes durante cada viaje de negocios. Este año viajo 3 veces. La primera vez cambio un total de $2550 con las siguientes tasas: 100 yenes por dólar, 0.6 libras por dólar y 1.6 marcos por dólar. La segunda vez cambio $2840 en total con las tasas de 125 yenes, 0.5 libras y 1.2 marcos por dólar. La tercera vez, cambio un total de $2800 a 100 yenes, 0.6 libras y 1.2 marcos por dólar. Cuántos yenes, libras y marcos compro cada vez? Ejercicio 13.- Un padre desea distribuir sus bienes raíces, cuyo valor es $234000, entre sus cuatro hijas de la siguiente manera: de las propiedades deben dividirse por igual entre las hijas. Para el resto, cada hija debe recibir $3000 cada año hasta su vigésimo primer cumpleaños. Como entre ellas se llevan tres años, Cuántos recibiría cada una de los bienes de su padre? Qué edad tienen ahora esas hijas? Ejercicio 14.- El promedio de las temperaturas en las ciudades de Veracruz, Poza Rica y Xalapa, fue durante cierto dia de verano 30 C. En Poza Rica fue 6 grados mayor que el promedio de las temperaturas de las otras dos ciudades. En Xalapa fue 6 grados menos que la temperatura promedio en las otras 2 ciudades. Cuál fue la temperatura en cada ciudad? 104

105 CAPITULO IV. ESPACIOS VECTORIALES 4.1 Espacios Vectoriales Un espacio vectorial (o espacio lineal) es el objeto básico de estudio en el Algebra Lineal. A los elementos de los espacios vectoriales se les llama vectores. Sobre los vectores pueden realizarse dos operaciones: escalarse (multiplicarlos por un escalar) y sumarse. Estas dos operaciones se tienen que ceñir a un conjunto de axiomas que generalizan las propiedades comunes de las duplas de números reales así como de los vectores en el espacio Euclídeo. Un concepto importante es el de dimensión. Un espacio vectorial es un conjunto de objetos (llamados vectores) que pueden escalarse y sumarse. Históricamente, las primeras ideas que condujeron a los espacios vectoriales modernos se remontan al siglo XVII: geometría analítica, matrices y sistemas de ecuaciones lineales. La primera formulación moderna y axiomática se debe a Giuseppe Peano, a finales del siglo XIX. Los siguientes avances en la teoría de espacios vectoriales provienen del análisis funcional, principalmente de los espacios de funciones Historia de los espacios vectoriales Los espacios vectoriales se derivan de la geometría afín, a través de la introducción de coordenadas en el plano o el espacio tridimensional. 105

106 Los vectores se reconsideraron con la presentación de los números complejos de Argand y Hamilton y la creación de los cuaterniones por este último (Hamilton fue además el que inventó el nombre de vector). Son elementos de y ; el tratamiento mediante combinaciones lineales se remonta a Laguerre en 1867, quien también definió los sistemas de ecuaciones lineales. En 1857, Cayley introdujo la notación matricial, que permite una armonización y simplificación de las aplicaciones lineales. Casi al mismo tiempo, Grassmann estudió el cálculo baricéntrico iniciado por Möbius. Previó conjuntos de objetos abstractos dotados de operaciones. En su trabajo, los conceptos de independencia lineal y dimensión, así como de producto escalar están presentes. En realidad el trabajo de Grassmann de 1844 supera el marco de los espacios vectoriales, ya que teniendo en cuenta la multiplicación, también, lo llevó a lo que hoy en día se llaman álgebras. El matemático italiano Peano dio la primera definición moderna de espacios vectoriales y aplicaciones lineales en Un desarrollo importante de los espacios vectoriales se debe a la construcción de los espacios de funciones por Henri Lebesgue. Esto más tarde fue formalizado por Banach en su tesis doctoral de 1920 y por Hilbert Aplicaciones Los espacios vectoriales tienen aplicaciones en otras ramas de la matemática, la ciencia y la ingeniería. Se utilizan en métodos como las series de Fourier, que se utiliza en las rutinas modernas de compresión de imágenes y sonido, o proporcionan el marco para resolver ecuaciones en derivadas parciales. Además, los espacios vectoriales proporcionan una forma abstracta libre de coordenadas de tratar con objetos geométricos y físicos, tales como tensores, que a su vez permiten estudiar las propiedades locales de variedades mediante técnicas de linealización. 106

107 4.1.3 Definición La definición de un espacio vectorial requiere de un cuerpo de escalares K (como el cuerpo de los números reales o el cuerpo de los números complejos). Un espacio vectorial es un conjunto V (no vacío) a cuyos elementos se llaman vectores, dotado de dos operaciones: 1. Suma de vectores: cualquiera dos vectores v y w pueden sumarse para obtener un tercer vector v + w. 2. Producto de un vector por un escalar: cualquier vector v puede multiplicarse por un escalar que pertenece a. El producto se denota como. Que satisfacen las siguientes propiedades o axiomas ( son vectores arbitrarios de y son escalares, respectivamente): PROPIEDAD SIGNIFICADO Propiedades De La Suma 1.- Propiedad de cerradura es un elemento único de 2.- Propiedad conmutativa 3.- Propiedad asociativa 4.- Propiedad del elemento neutro aditivo 5.- Propiedad del inverso aditivo Propiedades De La Multiplicación Por Escalar 6.- Propiedad de cerradura 7.- Propiedad conmutativa para el producto por escalar 8.- Propiedad distributiva bajo la suma escalar 9.- Propiedad distributiva bajo la suma vectorial 10.- Propiedad del elemento identidad A continuación veremos algunos ejemplos: Ejemplo 53.- En el siguiente ejercicio demuestre que si, la suma definida como, y la multiplicación por escalar como 107

108 , es un espacio vectorial. Si no es un espacio vectorial di que propiedades no se cumplen. Probando propiedades de la suma. 1.- Propiedad de cerradura Sean y, entonces 2.- Propiedad conmutativa: 3.- Propiedad asociativa: 4.- Elemento neutro aditivo: Sea, entonces 5.- Elemento inverso aditivo: 108

109 Probando propiedades de la multiplicación escalar. 6.- Propiedad de cerradura 7.- Propiedad 8.- Propiedad distributiva bajo la suma escalar: 9.- Propiedad distributiva bajo la suma vectorial: 10.- Elemento identidad:, donde 1 es el número real 1. En conclusión el conjunto dado no es espacio vectorial ya que no cumplió con las propiedades 2, 4, 5 y

110 Ejemplo 54.- es el conjunto de todos los pares ordenados de números reales. La suma se define como, y la multiplicación escalar como. Determina si es un espacio vectorial. Probando propiedades de la suma 1.- Propiedad de cerradura Sean y, entonces 2.- Propiedad conmutativa: 3.- Propiedad asociativa: 4.- Elemento neutro aditivo: Sea, entonces 5.- Elemento inverso aditivo: 110

111 Probando propiedades de la multiplicación escalar. 6.- Propiedad de cerradura 7.- Propiedad 8.- Propiedad distributiva bajo la suma escalar: 9.- Propiedad distributiva bajo la suma vectorial: 10.- Elemento identidad:, donde 1 es el número real 1. En conclusión el conjunto dado no es espacio vectorial ya que no cumplió con las propiedades 2, 3, 4, 5 y

112 Ejemplo 55.- es el conjunto de todas las matrices con componentes reales. La suma es la suma habitual de matrices y la multiplicación escalar está definida por. Probando propiedades de la suma 1.- Propiedad de cerradura Sean y, entonces 2.- Propiedad conmutativa: 3.- Propiedad asociativa: 4.- Elemento neutro aditivo: Sea, entonces 5.- Elemento inverso aditivo: 112

113 Probando propiedades de la multiplicación escalar. 6.- Propiedad de cerradura 7.- Propiedad 8.- Propiedad distributiva bajo la suma escalar: 9.- Propiedad distributiva bajo la suma vectorial: 10.- Elemento identidad:, donde 1 es el número real

114 En conclusión el conjunto dado es espacio vectorial ya que cumplió con las 10 propiedades. Ejercicios propuestos. Comprobar si son espacios vectoriales. es el conjunto de todas las matrices definida por con componentes reales. La suma y la multiplicación escalar está definida por. es el conjunto de todas las matrices definida por con componentes reales. La suma y la multiplicación escalar está definida por. es el conjunto de todos los pares ordenador de números reales. La suma definida por y la multiplicación escalar está definida por. 4.2 Subespacios Vectoriales En muchos problemas, un espacio vectorial consta de un subconjunto adecuado de vectores de algún espacio vectorial mayor. En este caso, necesitaremos verificar solo dos de los diez axiomas de espacios vectoriales. El resto que darán satisfechos automáticamente. Un subespacio de un espacio vectorial es un subconjunto de que tiene 2 propiedades: 1. Es cerrado bajo la suma. 2. Es cerrado bajo el producto por escalar. 114

115 Las propiedades 1 y 2 garantizan que un subespacio de es en si mismo un espacio vectorial, bajo las operaciones de espacio vectorial ya definidas en. Asi, todo subespacio es un espacio vectorial. Recíprocamente, todo espacio vectorial es un subespacio. A continuación veremos algunos ejemplos: Ejemplo 56.- Determina si los siguientes conjuntos son Subespacios de los espacios dados. y de ó Nota: Para resolver este tipo de ejercicios primeramente se va a resolver para valores particulares (números), si se cumple se generaliza y si no, se concluye que no es un subconjunto. Esto se aplicara en el primer ejemplo. 1.- Por demostrar que es cerrado bajo la suma Sean y 2.- Por demostrar que es cerrado bajo el producto por escalar Sean y Como se cumplieron las dos condiciones diremos que de, pero se debe demostrar para cualquier vector. 1.- Por demostrar que es cerrado bajo la suma Sean y si es un subespacio 2.- Por demostrar que es cerrado bajo el producto por escalar Sean y Por lo tanto si es un subespacio vectorial de. Ejemplo 57.- Demostrar que el siguiente conjunto es un subespacio vectorial 115

116 1.- Por demostrar que es cerrado bajo la suma Sean y de ó Nota 1: Observa que, entonces para generar y, a y se le da cualquier valor y el valor resultante será el que tome. De esta misma forma se comprueba si y pertenecen a. Nota 2: Con una condición que falle el conjunto deja de ser un subespacio. Así que se detiene el proceso y queda de más demostrar la segunda propiedad. Ejemplo 58.- Determine si el siguiente subconjunto de de. es un subespacio Dándole valores cualquiera a las variables: Sean nuestra primera pareja de valores, obtenemos nuestra primera matriz: y la segunda (valores tomados al azar), tenemos que: 1.- por demostrar que es cerrado bajo la suma 2.- Por demostrar que es cerrado bajo el producto por escalar Tomamos a y un valor de escalar cualquiera en este caso, entonces: 116

117 Por lo tanto el subconjunto del ejercicio anterior si es un subespacio de Ejercicios propuestos. Demostrar que el siguiente conjunto es un subespacio vectorial de ó Demostrar que el siguiente conjunto es un subespacio vectorial de ó Determine si el siguiente subconjunto de es subespacio de. 4.3 Combinación Lineal Un vector de se dice que es combinación lineal de un conjunto de vectores si y solo si:, para algunos escalares, no todos cero. Ejemplo 59.- Determina si es combinación lineal de y. Nota: Para que dos vectores sean iguales deben tener el mismo número de componentes y estas deben ser iguales, por lo tanto: Sistema de ecuaciones Como la variable en la segunda ecuación esta despejada y tiene un valor numérico solo sustituimos su valor en cualquiera de las otras ecuaciones, esto es: 117

118 Entonces: Y como se encontraron valores para y podemos decir que si es combinación lineal de los dos vectores dados. Ejemplo 60.- Determina si es combinación lineal de, y. Igualando coeficientes De donde Como se encontraron valores para y entonces si es combinación lineal de. Ejemplo 61- Si y. Escriba como combinación lineal de los vectores y. Sistema de ecuaciones Resolviendo el sistema mediante el software: 118

119 Entonces Escribiendo al vector como una combinación lineal de los vectores y : Ejercicios propuestos. Determinar si es combinación lineal de los vectores, y. Determinar si es combinación lineal de los vectores, y. Determinar si es combinación lineal de los vectores, y. Determinar cuáles vectores y pueden expresarse como combinaciones lineales de los vectores en. 1) 2) 119

120 3) 4.4 Conjunto Generador Un conjunto de vectores de un espacio vectorial se dice que es generador si todo vector se puede escribir como la combinación lineal de ellos. Ejemplo 62.- Demuestre que los vectores y generan el espacio. Por demostrar que todo vector de se puede escribir como combinación lineal de y. Entonces como se encontraron valores para y, si es combinación lineal de y y si genera a. Ejemplo 63.- Determina si y generan a. Por demostrar que todo vector de se puede escribir como combinación lineal de y. Sea con y. Por lo tanto no es combinación lineal de y, por consecuente no generan a. 120

121 Ejemplo 64.- Demuestre que los vectores y generan a. Por demostrar que todo vector de se puede escribir como combinación lineal de y. Sea con y. Sistema de ecuaciones Resolviendo el sistema En este caso para que se cumpla la tercera fila los tres escalares deberían ser 0. Pero anteriormente vimos que para que se dé la combinación lineal no todos los valores son cero. Por lo tanto no es combinación lineal de y por consecuente no generan a. Problemas propuestos. Determine si los siguientes conjuntos generan a. Determine si los siguientes conjuntos generan a. 121

122 4.5 Independencia Y Dependencia Lineal Un conjunto no vacio de vectores (diferentes) de un espacio vectorial es linealmente dependiente (L.D.) si y solo si el vector 0 es una combinación lineal de ellos, esto es: La negación de la dependencia lineal es independencia lineal (L.I.). Ejemplo 65.- Determine si los siguientes conjuntos de vectores son L.I. ó L.D. Resolviendo el sistema por el software: 122

123 Nota: Cuando el sistema homogéneo tenga solución única los vectores serán L.I. y para la solución múltiple serán L.D. Ejemplo 66.- Determina si el siguiente conjunto de vectores es L.I. ó L.D. Sistema de ecuaciones Resolviendo el sistema 123

124 Como se aprecia a simple vista en el sistema, la variable vale 0. Entonces podemos reducir nuestro sistema de ecuaciones de un sistema y quedaría como sigue: a un Sistema de ecuaciones De este sistema de ecuaciones apreciamos que una recta es paralela a la otra ya que sus coeficientes son múltiplos entre si. De la nota anterior concluimos que el conjunto de vectores es Linealmente Dependiente. Ejemplo 67.- Determina si el siguiente conjunto de vectores es L.I. ó L.D. De las ecuaciones anteriores obtenemos que. Entonces nuestros vectores son Linealmente Independiente. Ejercicios propuestos Determine cuales conjuntos de vectores son L.D ó L.I. 124

125 4.6 Base y dimensión ***Base*** Si es un conjunto de vectores de un espacio vectorial, entonces es una base para si y solo si El espacio es generado por. es un conjunto linealmente independiente. Ejemplo 68.- Demuestre que el conjuntos. Resolviendo para. Por comprobar que el espacio es generado por. es una base para Resolviendo el sistema Sistema de ecuaciones De la cual nuestro sistema quedaría de la siguiente forma Los valores de nuestras incógnitas son: 125

126 Por lo tanto es combinación lineal de y, por consecuente genera a. Por comprobar que es un conjunto linealmente independiente. Resolviendo el sistema Sistema de ecuaciones De la cual nuestro sistema quedaría de la siguiente forma Ya que se cumplieron las 2 condiciones llegamos a la conclusión de que una base de. es Ejemplo 69.- Demuestre que el conjunto base para. Resolviendo para. Por comprobar que el espacio es generado por. es una Por lo tanto es combinación lineal de y, por consecuente genera a. 126

127 Por comprobar que es un conjunto linealmente independiente. Nota: Cuando el sistema homogéneo tenga solución única los vectores serán L.I. y para la solución múltiple serán L.D. Ya que se cumplieron las 2 condiciones llegamos a la conclusión de que una base de. es Ejemplo 70.- Demuestre que el siguiente conjunto es una base para. Por comprobar que el espacio es generado por. Por lo tanto es combinación lineal de y, por consecuente genera a. Por comprobar que es un conjunto linealmente independiente. 127

128 Ya que se cumplieron las 2 condiciones llegamos a la conclusión de que una base de. es Ejercicios propuestos. Demuestre que cada uno de los conjuntos, y son una base para. Demuestre que cada uno de los conjuntos y es una base para (polinomios de segundo grado). Demuestre que cada uno de los conjuntos y son una base para. ***Dimensión*** Si un espacio vectorial tiene una base que consta de vectores, entonces el número se denomina dimensión de y se denota por. Si consta solamente del vector cero, entonces la dimensión de se define como cero. Algunos ejemplos de esta definición son La dimensión de con las operaciones normales es. La dimensión de con las operaciones normales es. 128

129 La dimensión de con las operaciones normales es. Si es un subespacio de un espacio vectorial -dimensional, entonces se puede demostrar que la dimensión de es finita y que la dimensión de es menor o igual que. Básicamente la dimensión se determina al hallar un conjunto de vectores linealmente independientes que genere el subespacio. Este conjunto es una base del subespacio; la dimensión del subespacio es el numero de vectores que hay en la base. Ejemplo 71.- Determine las dimensiones de los siguientes subespacios de. a) y son números reales} b) es un numero real} Solución: El objetivo es encontrar un conjunto de vectores linealmente independientes que genere el subespacio. a) Al escribir el vector representativo como: Se observa que es generado por el conjunto Por los temas anteriormente vistos se puede demostrar que este conjunto es linealmente independiente. Sistema de ecuaciones Resolviendo directamente el sistema 129

130 Por tanto, es una base de y se concluye que es un subespacio bidimensional de. b) Al escribir el vector representativo como: Se observa que es generado por el conjunto. No existe otro vector para compararlo, así que, es un espacio unidimensional de. Ejemplo 72.- Encuentre la dimensión del subespacio de generado por: Solución. Aunque es generado por el conjunto, este no es una base de porque es un conjunto linealmente dependiente. En particular puede expresarse como una combinación lineal de y en la siguiente forma: Esto significa que es generado por el conjunto. Además es linealmente independiente, ya que ningún vector es un múltiplo escalar de otro, así se concluye que la dimensión de es 2. Ejercicios propuestos. En los siguientes ejercicios determine la dimensión del espacio vectorial dado. a) b) En los siguientes ejercicios encuentre una base y determine la dimensión de. a) es un número real} b) es un número real} En los siguientes ejercicios encuentre una base y determine la dimensión de. a) es un número real} 130

131 b) son número reales} 4.7 Rango de una matriz y sistemas de ecuaciones lineales. En este tema se verá el espacio vectorial generado por los vectores renglón o por los vectores columna de una matriz. Después se demuestra cómo se relacionan estos espacios con las soluciones de sistemas de ecuaciones lineales. Para una matriz, las -adas correspondientes a los renglones de se denominan vectores renglón de. Renglones vectores de A De manera similar, las -adas correspondientes a las columnas de se denominan vectores renglón de. Ejemplo 73.- Determinar los vectores columna y los vectores renglón de la matriz. Los vectores renglón son: (1,2,3) y (4,5,6) Los vectores columna son: (1,4), (2,5) y (3,6) Ejemplo 74.- Determinar los vectores columna y los vectores renglón de la matriz. 131

132 Los vectores renglón son: (1,2,3), (4,5,6) y (7,8,9) Los vectores columna son: (1,4,7), (2,5,8) y (3,6,9) Ahora se tiene otra definición respecto al tema: a) El espacio renglón de es el subespacio de generado por los vectores del renglón de. b) El espacio columna de es el subespacio de generado por los vectores columna de. Si una matriz es equivalente por renglones a una matriz, entonces el espacio renglón de es igual al espacio renglón de. Ahora se verá cómo se obtiene una base para el espacio renglón de una matriz. Teorema.- Si una matriz es equivalente por renglones a una matriz que esta en forma escalonada, entonces los vectores renglón de diferentes de 0 forman una base del espacio renglón de. A continuación se resolverá un ejemplo para aclarar el teorema anterior. Ejemplo 75.- Encuentre una base para el espacio renglón de Solución. Mediante las operaciones elementales en los renglones, en forma escalonada como se muestra a continuación: vuelve a escribirse 132

133 Aplicando el teorema que se vio anteriormente se concluye que los vectores renglón diferentes de cero, y, forman una base del espacio renglón de. Ahora se verá una aplicación de este método. Ejemplo 76.- Encuentre una base del espacio de generado por Solución. El primer paso es usar los tres vectores para construir los renglones de una matriz. Después se escribe en forma escalonada como en el ejemplo anterior. Por lo tanto, los vectores renglón de diferentes de cero, y, forman una base del espacio renglón de. En otras palabras, forman una base del subespacio generado por. Para encontrar una base del espacio columna de una matriz solo aplicamos el método anterior a la transpuesta de ( ), en la cual la columnas se hacen filas. Para ejemplificar este caso tomaremos la matriz del ejemplo anterior. 133

134 Se escribe en forma escalonada. Entonces la base del espacio renglón de seria: y, lo que equivale a afirmar que forman una base del espacio columna de. Con lo cual se presenta el siguiente teorema: Teorema.- Si es una matriz, entonces el espacio renglón y el espacio de la columna de tienen la misma dimensión. La dimensión del espacio renglón (o columna) de una matriz tiene el siguiente nombre especial. Definición.- La dimensión del espacio renglón (o columna) de una matriz se llama rango de y se denota por. Ejemplo 77.- Encuentre el rango de la matriz Solución. La matriz se convierte a la forma escalonada: Como tiene tres renglones diferentes de cero, entonces el rango de es 3. Ahora veremos cómo se relaciona todo esto con los sistemas de ecuaciones lineales tanto en los sistemas homogéneos como en los que no son homogéneos. 134

135 ***Soluciones de sistemas de ecuaciones lineales*** Los conceptos de espacios, renglón, columna y rango algunas veces tienen aplicaciones interesantes a sistemas de ecuaciones lineales. La notación permite concebir el conjunto solución del sistema como un subconjunto de. Las soluciones de estos sistemas se escriben como -adas y se denominan vectores solución. En primer lugar se hablara de los sistemas homogéneos para luego dar paso al análisis de los sistemas no homogéneos. A continuación se enuncia un teorema en el cual habla de las soluciones del sistema homogéneo. Teorema.- Si es una matriz de, entonces el conjunto de todas las soluciones del sistema homogéneo de ecuaciones lineales Es un subespacio de sistema., este subespacio se denomina espacio solución del Ejemplo 78.- determine el espacio solución del sistema siguiente matriz. para la Solución. Comenzamos por hacer transformaciones elementales en los renglones de la matriz aumentada. El objetivo es dejar la matriz aumentada en su forma escalonada. El sistema de ecuaciones que da esta matriz escalonada es La solución de este sistema es paramétrica, ocupando a y como variables independientes y asignándoles un parámetro a cada una, se tiene que: 135

136 Esto significa que el espacio solución de solución de la forma: consta de todos los vectores Po lo tanto y forman una base y se puede concluir que el espacio solución de es un subespacio de dos dimensiones de. En el ejemplo anterior el rango de la matriz y la dimensión del espacio solución están relacionados. A continuación se generaliza esta situación. Teorema.- Si es una matriz con rango, entonces la dimensio del espacio solución de es. En donde es el número de variables. Ejemplo 79.- Determine la dimensión del espacio solución del siguiente sistema homogéneo de ecuaciones lineales. Solución. Se obtiene la matriz en forma escalonada reducida de este sistema. Comprobaremos si la reducción de esta matriz a la escalonada es correcta con el software: 136

137 Por lo tanto, la matriz de coeficientes tiene un rango igual a 3 y, por el teorema anterior, se sabe que la dimensión del espacio solución es. ***Soluciones de un sistema lineal no homogéneo*** El siguiente teorema describe como se puede usar el rango de una matriz para determinar el número de soluciones de un sistema de ecuaciones lineales. Teorema.- Sea un sistema de ecuaciones lineales en variables. 1) Si, entonces el sistema tiene solución única. 2) Si, entonces el sistema tiene infinidad de soluciones. 3) Si, entonces el sistema no tiene solución. Ejemplo 80.- Determine cuantas soluciones tiene cada uno de los siguientes sistemas de ecuaciones lineales. Solución. Resolviendo para el inciso (a). Construyendo la matriz de coeficientes del sistema y convirtiéndola a su forma escalonada: 137

138 Construyendo la matriz aumentada del sistema y convirtiéndola a su forma escalonada: Entonces: Por lo tanto: Este sistema es consistente, ya que el rango de la matriz de coeficientes es igual al rango de su matriz aumentada. Además, este sistema tiene solución única por que el rango de es igual al número de variables. Resolviendo para el inciso (b). Construyendo la matriz de coeficientes del sistema y convirtiéndola a su forma escalonada: Construyendo la matriz aumentada del sistema y convirtiéndola a su forma escalonada: Entonces: Por lo tanto: 138

139 Este sistema es consistente, ya que el rango de la matriz de coeficientes es igual al rango de su matriz aumentada. Además, este sistema tiene infinidad de soluciones porque el rango de es menor que el número de variables. Resolviendo para el inciso (c). Construyendo la matriz de coeficientes del sistema y convirtiéndola a su forma escalonada: Construyendo la matriz aumentada del sistema y convirtiéndola a su forma escalonada: Entonces: Por lo tanto: Este sistema es inconsistente (no tiene soluciones), ya que el rango de la matriz de coeficientes es menor al rango de su matriz aumentada. Ejercicios propuestos. En los siguientes ejercicios, determine (a) el rango de la matriz, (b) una base del espacio renglón y (c) una base del espacio columna. 139

140 En los siguientes ejercicios, determine una base del subespacio de generado por. En los siguientes ejercicios, encuentre una base y la dimensión de las siguientes matrices. En los siguientes ejercicios encuentre, (a) una base, (b) la dimensión del espacio solución del sistema homogéneo de ecuaciones lineales dado. En los siguientes ejercicios encuentre, (a) una base, (b) la dimensión del espacio solución del sistema homogéneo de ecuaciones lineales dado. 140

141 4.8 Coordenadas y cambios de base ***Coordenadas*** Si es una base de un espacio vectorial, entonces todo vector puede expresarse en una y solo una forma como una combinación lineal de vectores en. Los coeficientes de la combinación lineal son las coordenadas de con respecto a. A continuación se concreta el párrafo anterior en la siguiente definición: Definición.- Sean una base de un espacio vectorial y un vector en tales que Entonces los escalares se denominan coordenadas de con respecto a la base. El vector de coordenadas de con respecto a es el vector en denotado por En, la notación de los vectores de coordenadas se conforma con la notación usual para las componentes. En otras palabras, cuando un vector en se escribe como significa que las son las coordenadas de con respecto a la base normal de. Así, se tiene Donde es la base normal de. Ejemplo 81.- Determine el vector de coordenadas de en con respecto a la base normal. Solución. Como puede expresarse como Entonces se observa que el vector de coordenadas de normal es simplemente: con respecto a la base 141

142 Así, las componentes de a la base normal. son las mismas que sus coordenadas con respecto Ejemplo 82.- El vector de coordenadas de en con respecto a la base (no normal) Es. Determine las coordenadas de con respecto a la base (normal) Solución. Dado que, se puede escribir Además, como con respecto a están dadas por, se concluye que las coordenadas de Ejemplo 83.- Encuentre el vector de coordenadas de en con respecto a la base (no normal) Solución. Se escribe como una combinación lineal de y. Igualando las componentes, se tiene el siguiente sistema de ecuaciones lineales Resolveremos este sistema mediante el software: 142

143 Por lo tanto, de con respecto a es:, y el vector de coordenadas ***Cambio de base*** Lo que se hizo en los 2 ejemplos anteriores se denomina cambio de base. Es decir, se tenían las coordenadas de un vector con respecto a una base y se solicito encontrar las coordenadas con respecto a otra base Ejemplo 84.- Halle la matriz de transición de a para las siguientes bases de. Y Solución. Primero se usan los vectores en las dos bases para formar las matrices y. Después, se junta con para formar la matriz y se usa la eliminación de Gauss-Jordan para volver a escribir como. 143

144 Ahora se tiene que calcular la inversa de software: la cual calcularemos con el Entonces se concluye que la matriz de transición de a es: Una observación importante es si es la base normal en, entonces la matriz de transición está definida por: Caso 1: Pero si es la base normal, entonces Caso 2: Ejemplo 85.- Encuentre la matriz de transición de a para las siguientes bases de. y Solución. Se empieza por formar la matriz Después usamos la eliminación de Gauss-Jordan para obtener Así, se obtiene que 144

145 Ejercicios propuestos. En los siguientes ejercicios se da el vector de coordenadas de con respecto a una base (no normal) de. Determine el vector de coordenadas de con respecto a la base normal de. 1) 2) 3) 4) 5) Determine el vector de coordenadas de en con respecto a la base. 1) 2) 3) 4) 5) Determinar la matriz de transición de a. 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 145

146 CAPITULO V. ESPACIOS CON PRODUCTO INTERNO En matemáticas, un espacio con producto interior es un espacio vectorial con una operación adicional, el producto interno (también llamada producto escalar o producto punto). Los espacios vectoriales con producto interno generalizan el concepto de Espacio Euclidiano (el cual posee el producto escalar como producto interno) y se estudian en análisis funcional. 5.1 Longitud y producto punto en R n Producto Escalar o Producto Punto Definición Sean R n. El producto punto, o producto escalar, de dos vectores cualesquiera en se define como Nota: Cuando se habla del vector u ó v se pondrá en negro, para distinguir de una letra normal. Ejemplo 45.- Determine el producto punto entre los vectores: De la propia definición del producto punto entre los vectores: Nota: Es importante observar que el producto punto es sólo entre vectores de las misma dimensión: no entre un escalar y un vector; no entre dos vectores de diferentes dimensiónes. También debe observarse que el resultado del producto punto es un escalar, no un vector. Ejemplo 46.- Determine el producto punto entre los vectores: EJEMPLO 47.- Indique cuales opciones contienen operaciones indefinidas:

147 1. Indefinida porque es un escalar. 2. Definida porque es una suma entre escalares. 3. Definida porque es un escalar por un vector. 4. Definida. 5. Definida: es un escalar al cubo. 6. Indefinida: lo que falla es la suma de escalar con vector. 7. Definida: es un producto entre escalares Propiedades del Producto Punto Si u, v, y w son vectores en R n y c es un escalar, entonces se cumple las propiedades siguientes EJEMPLO USANDO MATEMATICA Determine el producto punto entre los vectores : Ortogonalidad Definición Dos vectores y, se dice que son vectores ortogonales, si Nota: Ortogonalidad es sinónimo de perpendicularidad, esto es, el que dos vectores sean ortogonales significa que el ángulo entre ellos es de. Ejemplo 48.- Diga si las siguientes parejas de vectores son o no ortogonales: Los vectores no son ortogonales debido a que Los vectores sí son ortogonales debido a que: 147

Tema 1. Álgebra lineal. Matrices

Tema 1. Álgebra lineal. Matrices 1 Tema 1. Álgebra lineal. Matrices 0.1 Introducción Los sistemas de ecuaciones lineales aparecen en un gran número de situaciones. Son conocidos los métodos de resolución de los mismos cuando tienen dos

Más detalles

Sistemas de Ecuaciones Lineales

Sistemas de Ecuaciones Lineales Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a

Más detalles

Matrices y determinantes

Matrices y determinantes Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna

Más detalles

Ing. Ramón Morales Higuera

Ing. Ramón Morales Higuera MATRICES. Una matriz es un conjunto ordenado de números. Un determinante es un número. CONCEPTO DE MATRIZ. Se llama matriz a un conjunto ordenado de números, dispuestos en filas y Las líneas horizontales

Más detalles

Sistemas de Ecuaciones y Matrices

Sistemas de Ecuaciones y Matrices Sistemas de Ecuaciones y Matrices 0.1 Sistemas de ecuaciones Consideremos las gráficas de dos funciones f y g como en la figura siguiente: P Q y = fx y = gx En la práctica, en ocasiones hay que encontrar

Más detalles

Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ...

Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ... MATRICES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales. Tienen también muchas aplicaciones

Más detalles

Mat r i z in v e r s a

Mat r i z in v e r s a Unidad 2 Método de GaUss Mat r i z in v e r s a M U lt i pli cat i va Objetivos: Al inalizar la unidad, el alumno: Representará un sistema de m ecuaciones lineales con n incógnitas mediante una matriz

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES 1 SISTEMAS DE ECUACIONES LINEALES Una ecuación es un enunciado o proposición que plantea la igualdad de dos expresiones, donde al menos una de ellas contiene cantidades desconocidas llamadas variables

Más detalles

Matriz sobre K = R o C de dimensión m n

Matriz sobre K = R o C de dimensión m n 2 Matrices y Determinantes 21 Matrices Matriz sobre K = R o C de dimensión m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Tipos de matrices: Cuadrada: n n = (a ij) i=1,,m j=1,,n Nula: (0) i,j 1 0

Más detalles

MENORES, COFACTORES Y DETERMINANTES

MENORES, COFACTORES Y DETERMINANTES MENORES, COFACTORES Y DETERMINANTES 1. Introducción. 2. Determinante de una matriz de 3 x 3. 3. Menores y cofactores. 4. Determinante de una matriz de n x n. 5. Matriz triangular. 6. Determinante de una

Más detalles

Ejemplo 1. Ejemplo introductorio

Ejemplo 1. Ejemplo introductorio . -Jordan. Ejemplo 1. Ejemplo introductorio. -Jordan Dos especies de insectos se crían juntas en un recipiente de laboratorio. Todos los días se les proporcionan dos tipos de alimento A y B. 1 individuo

Más detalles

Matrices, determinantes, sistemas de ecuaciones lineales.

Matrices, determinantes, sistemas de ecuaciones lineales. UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Resúmenes Curso 2007-2008 Matrices, determinantes, sistemas de ecuaciones lineales. Una matriz A de orden m n es una colección de m

Más detalles

CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES

CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES Parte A: determinantes. A.1- Definición. Por simplificar, consideraremos que a cada matriz cuadrada se le asocia un número llamado determinante que se

Más detalles

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES.

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. Matrices: Se llama matriz de dimensión m n a un conjunto de números reales dispuestos en m filas y n columnas de la siguiente forma: 11 a 12 a 13... a 1n A= a a 21

Más detalles

Una matriz es una arreglo rectangular ordenado de elementos, comúnmente llamados escalares, dispuestos en m renglones y n columnas.

Una matriz es una arreglo rectangular ordenado de elementos, comúnmente llamados escalares, dispuestos en m renglones y n columnas. MATRICES Las matrices tienen una importancia fundamental en el análisis económico sobre todo en el estudio de sistemas de ecuaciones lineales, como en el modelo insumo-producto. Cuando trabajamos con modelos

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 1 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Tema 1: Matrices y Determinantes

Tema 1: Matrices y Determinantes Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz

Más detalles

Sistema de ecuaciones algebraicas

Sistema de ecuaciones algebraicas Sistema de ecuaciones algebraicas Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad: ITESM CEM

Más detalles

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ). INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.

Más detalles

Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas.

Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Matrices Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

ALGEBRA Y GEOMETRÍA II 2º semestre Año: 2012. Guía de Estudio y Ejercitación propuesta

ALGEBRA Y GEOMETRÍA II 2º semestre Año: 2012. Guía de Estudio y Ejercitación propuesta ALGEBRA Y GEOMETRÍA II 2º semestre Año: 2012 1 Guía de Estudio y Ejercitación propuesta Esta selección de Temas y Ejercicios están extraídos del texto FUNDAMENTOS DE ALGEBRA LINEAL de R. Larson y D. Falvo.

Más detalles

Lección 5.1: Matrices y determinantes. Primeros conceptos. Objetivos de esta lección

Lección 5.1: Matrices y determinantes. Primeros conceptos. Objetivos de esta lección Matemáticas Tema 5: Conceptos básicos sobre matrices y vectores Objetivos Lección 5.: y determinantes Philippe Bechouche Departamento de Matemática Aplicada Universidad de Granada 3 4 phbe@ugr.es 5 Qué

Más detalles

Las matrices se denotarán usualmente por letras mayúsculas, A, B,..., y los elementos de las mismas por minúsculas, a, b,...

Las matrices se denotarán usualmente por letras mayúsculas, A, B,..., y los elementos de las mismas por minúsculas, a, b,... INTRO. MATRICES Y DETERMINANTES Prof. Gustavo Sosa Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas

Más detalles

Determinante de una matriz

Determinante de una matriz 25 Matemáticas I : Preliminares Tema 3 Determinante de una matriz 31 Determinante de una matriz cuadrada Definición 67- Sea A una matriz cuadrada de orden n Llamaremos producto elemental en A al producto

Más detalles

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES ALGEBRA DE MATRICES DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES DEFINICIONES 2 Las matrices y los determinantes son herramientas

Más detalles

Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. TEMA 1.- MATRICES 1.-Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la

Más detalles

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares

Más detalles

Procedimiento para encontrar la inversa de una matriz cuadrada (Método de Gauss-Jordan).

Procedimiento para encontrar la inversa de una matriz cuadrada (Método de Gauss-Jordan). Ejemplo 19: Demuestre que la matriz A es invertible y escríbala como un producto de matrices elementales. Solución: Para resolver el problema, se reduce A a I y se registran las operaciones elementales

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Este tema resulta fundamental en la mayoría de las disciplinas, ya que son muchos los problemas científicos y de la vida cotidiana que requieren resolver simultáneamente

Más detalles

Matrices, determinantes y sistemas de ecuaciones lineales

Matrices, determinantes y sistemas de ecuaciones lineales Matrices, determinantes y sistemas de ecuaciones lineales David Ariza-Ruiz 10 de octubre de 2012 1 Matrices Una matriz es una tabla numérica rectangular de m filas y n columnas dispuesta de la siguiente

Más detalles

Conjuntos y matrices. Sistemas de ecuaciones lineales

Conjuntos y matrices. Sistemas de ecuaciones lineales 1 Conjuntos y matrices Sistemas de ecuaciones lineales 11 Matrices Nuestro objetivo consiste en estudiar sistemas de ecuaciones del tipo: a 11 x 1 ++ a 1m x m = b 1 a n1 x 1 ++ a nm x m = b n Una solución

Más detalles

Tema 5: Sistemas de Ecuaciones Lineales

Tema 5: Sistemas de Ecuaciones Lineales Tema 5: Sistemas de Ecuaciones Lineales Eva Ascarza-Mondragón Helio Catalán-Mogorrón Manuel Vega-Gordillo Índice 1 Definición 3 2 Solución de un sistema de ecuaciones lineales 4 21 Tipos de sistemas ecuaciones

Más detalles

2.- Sistemas de ecuaciones Lineales

2.- Sistemas de ecuaciones Lineales .- Sistemas de ecuaciones Lineales..- Definición, Clasificación de los sistemas lineales y tipos de solución. Definición Una ecuación lineal con las variables escribirse en la forma,..., n es una ecuación

Más detalles

Combinación Lineal. Departamento de Matemáticas, CCIR/ITESM. 10 de enero de 2011

Combinación Lineal. Departamento de Matemáticas, CCIR/ITESM. 10 de enero de 2011 Combinación Lineal Departamento de Matemáticas, CCIR/ITESM 10 de enero de 011 Índice.1. Introducción............................................... 1.. Combinación lineal entre vectores...................................

Más detalles

Matrices, Determinantes y Sistemas de ecuaciones lineales

Matrices, Determinantes y Sistemas de ecuaciones lineales Tema 1 Matrices, Determinantes y Sistemas de ecuaciones lineales 1.1. Matrices Definición: Una MATRIZ es un conjunto de números reales dispuestos en forma de rectángulo, que usualmente se delimitan por

Más detalles

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales Introducción Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A. Cayley

Más detalles

Tema 1: Matrices. Sistemas de ecuaciones. Determinantes

Tema 1: Matrices. Sistemas de ecuaciones. Determinantes Tema 1: Matrices. Sistemas de ecuaciones. Determinantes José M. Salazar Octubre de 2016 Tema 1: Matrices. Sistemas de ecuaciones. Determinantes Lección 1. Matrices. Sistemas de ecuaciones. Determinantes

Más detalles

UNIDAD I: SISTEMAS DE DOS ECUACIONES CON DOS INCÓGNITAS

UNIDAD I: SISTEMAS DE DOS ECUACIONES CON DOS INCÓGNITAS UNIDAD I: SISTEMAS DE DOS ECUACIONES CON DOS INCÓGNITAS Sistemas de dos ecuaciones con dos incógnitas. Método de igualación. Método de reducción. Método de sustitución Método de eliminación Gaussiana.

Más detalles

Matrices escalonadas y escalonadas reducidas

Matrices escalonadas y escalonadas reducidas Matrices escalonadas y escalonadas reducidas Objetivos. Estudiar las definiciones formales de matrices escalonadas y escalonadas reducidas. Comprender qué importancia tienen estas matrices para resolver

Más detalles

Tema 2. Sistemas de ecuaciones lineales

Tema 2. Sistemas de ecuaciones lineales Tema 2. Sistemas de ecuaciones lineales Estructura del tema. Definiciones básicas Forma matricial de un sistema de ecuaciones lineales Clasificación de los sistemas según el número de soluciones. Teorema

Más detalles

Determinantes. Primera definición. Consecuencias inmediatas de la definición

Determinantes. Primera definición. Consecuencias inmediatas de la definición Determinantes Primera definición Para calcular el determinante de una matriz cuadrada de orden n tenemos que saber elegir n elementos de la matriz de forma que tomemos solo un elemento de cada fila y de

Más detalles

Francisco José Vera López

Francisco José Vera López Álgebra y Matemática Discreta Matrices. Sistemas de ecuaciones. Francisco José Vera López Dpto. de Matemática Aplicada Facultad de Informática 2015 1 Matrices 2 Sistemas de Ecuaciones Matrices Una matriz

Más detalles

Vectores en el plano UNIDAD I: MATRICES. Dirección de un vector. Sentido de un vector

Vectores en el plano UNIDAD I: MATRICES. Dirección de un vector. Sentido de un vector UNIDAD I: MATRICES Vectores en el plano Un vector,, es un segmento con una dirección que va del punto A (origen) al punto B (etremo).un vector es un segmento orientado que va del punto A (origen) al punto

Más detalles

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1.1 SISTEMAS DE ECUACIONES LINEALES Una ecuación lineal es una ecuación polinómica de grado 1, con una o varias incógnitas. Dos ecuaciones son equivalentes

Más detalles

Lección 1. Algoritmos y conceptos básicos.

Lección 1. Algoritmos y conceptos básicos. Página 1 de 8 Lección 1. Algoritmos y conceptos básicos. Objetivos. La primera lección del curs está dedicada a repasar los conceptos y algoritmos del álgebra lineal, básicos para el estudio de la geometría

Más detalles

ARITMÉTICA Y ÁLGEBRA

ARITMÉTICA Y ÁLGEBRA ARITMÉTICA Y ÁLGEBRA 1.- Discutir el siguiente sistema, según los valores de λ: Resolverlo cuando tenga infinitas soluciones. Universidad de Andalucía SOLUCIÓN: Hay cuatro ecuaciones y tres incógnitas,

Más detalles

Matrices y Determinantes.

Matrices y Determinantes. Matrices y Determinantes. Definición [Matriz] Sea E un conjunto cualquiera, m, n N. Matrices. Generalidades Matriz de orden m n sobre E: a 11 a 12... a 1n a 21 a 22... a 2n...... a m1 a m2... a mn a ij

Más detalles

Objetivos: Al inalizar la unidad, el alumno:

Objetivos: Al inalizar la unidad, el alumno: Unidad 1 Matrices y determinantes Objetivos: Al inalizar la unidad, el alumno: Identiicará qué es una matriz y cuáles son sus elementos. Distinguirá los principales tipos de matrices. Realizará operaciones

Más detalles

Matrices 2º curso de Bachillerato Matemáticas aplicadas a las ciencias sociales

Matrices 2º curso de Bachillerato Matemáticas aplicadas a las ciencias sociales MATRICES Índice:. Introducción-------------------------------------------------------------------------------------- 2. Definición de matriz-----------------------------------------------------------------------------

Más detalles

Matrices y sistemas de ecuaciones

Matrices y sistemas de ecuaciones Matrices y sistemas de ecuaciones María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I M. Muñoz (U.P.C.T.) Matrices y sistemas de ecuaciones Matemáticas I 1 / 59 Definición de Matriz Matrices

Más detalles

MATRICES. Entonces, A y B son matrices cuadradas de orden 3 y 2 respectivamente.

MATRICES. Entonces, A y B son matrices cuadradas de orden 3 y 2 respectivamente. 1 MATRICES Una matriz es una tabla ordenada de escalares a ij de la forma La matriz anterior se denota también por (a ij ), i =1,..., m, j =1,..., n, o simplemente por (a ij ). Los términos horizontales

Más detalles

Ecuaciones matriciales AX = B y XA = B. Cálculo de la matriz inversa

Ecuaciones matriciales AX = B y XA = B. Cálculo de la matriz inversa Ecuaciones matriciales AX = B y XA = B Cálculo de la matriz inversa Objetivos Aprender a resolver ecuaciones matriciales de la forma AX = B y XA = B Aprender a calcular la matriz inversa con la eliminación

Más detalles

MATRICES. TIPOS DE MATRICES Según el aspecto de las matrices, éstas pueden clasificarse en:

MATRICES. TIPOS DE MATRICES Según el aspecto de las matrices, éstas pueden clasificarse en: Repaso de Matrices MATRICES Una matriz es una tabla ordenada de escalares a ij de la forma La matriz anterior se denota también por (a ij ), i =1,..., m, j =1,..., n, o simplemente por (a ij ). Los términos

Más detalles

Sistemas de Ecuaciones Lineales

Sistemas de Ecuaciones Lineales Sistemas de Ecuaciones Lineales El sistema de ecuaciones lineales como modelo matemático de problemas Los sistemas de ecuaciones lineales permiten el planteamiento de problemas y soluciones que toman en

Más detalles

MATRICES OPERACIONES BÁSICAS CON MATRICES

MATRICES OPERACIONES BÁSICAS CON MATRICES MATRICES OPERACIONES BÁSICAS CON MATRICES ANTECEDENTES En el año 1850, fueron introducidas por J.J. Sylvester El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A.

Más detalles

1 de 6 24/08/2009 9:54 MATRICES Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853 En

Más detalles

MATRICES. Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden x (que se lee por ).

MATRICES. Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden x (que se lee por ). 1 MATRICES 1 Una matriz es una disposición rectangular de números (Reales); la forma general de una matriz con filas y columnas es Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden

Más detalles

Definición: Dos matrices A y B son iguales si tienen el mismo orden y coinciden los elementos que ocupan el mismo lugar.

Definición: Dos matrices A y B son iguales si tienen el mismo orden y coinciden los elementos que ocupan el mismo lugar. UNIDAD 03: MATRICES Y DETERMINANTES. 3.1 Conceptos de Matrices. 3.1.1 Definición de matriz. Definición: Se lama matriz de orden m x n a un arreglo rectangular de números dispuestos en m renglones y n columnas.

Más detalles

Unidad 2. Matrices Conceptos básicos 2.2. Operaciones con matrices 2.3. Matriz Inversa 2.4. El método de Gauss-Jordan 2.5.

Unidad 2. Matrices Conceptos básicos 2.2. Operaciones con matrices 2.3. Matriz Inversa 2.4. El método de Gauss-Jordan 2.5. Unidad. Matrices.. Conceptos básicos.. Operaciones con matrices.. Matriz Inversa.. El método de Gauss-Jordan.. Aplicaciones Objetivos particulares de la unidad Al culminar el aprendizaje de la unidad,

Más detalles

FUNDAMENTOS MATEMÁTICOS. Tema 6 MATRICES Y DETERMINANTES

FUNDAMENTOS MATEMÁTICOS. Tema 6 MATRICES Y DETERMINANTES FUNDAMENTOS MATEMÁTICOS Tema 6 MATRICES Y DETERMINANTES 6.1 Definición de matriz de números. Una matriz orden (m n) es un conjunto de m n números ordenados en una tabla: en donde podemos apreciar horizontalmente

Más detalles

Fundamentos matemáticos. Tema 2 Matrices y ecuaciones lineales

Fundamentos matemáticos. Tema 2 Matrices y ecuaciones lineales Grado en Ingeniería agrícola y del medio rural Tema 2 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2017 Licencia Creative Commons 4.0 Internacional J.

Más detalles

MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES

MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES CONCEPTO DE MATRIZ Definición: Se denomina matriz A o (a ij ) a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas : Columnas Filas Elemento a ij : Cada uno

Más detalles

Matrices y Determinantes. Prof. Nilsa I. Toro Catedrática Recinto Universitario de Mayagüez Residencial - AFAMaC

Matrices y Determinantes. Prof. Nilsa I. Toro Catedrática Recinto Universitario de Mayagüez Residencial - AFAMaC Matrices y Determinantes Prof. Nilsa I. Toro Catedrática Recinto Universitario de Mayagüez Residencial - AFAMaC Origen y Usos Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J.

Más detalles

Matrices. p ij = a ik b kj = a i1 b 1j + a i2 b 2j + + a in b nj.

Matrices. p ij = a ik b kj = a i1 b 1j + a i2 b 2j + + a in b nj. Matrices Introducción Una matriz de m filas y n columnas con elementos en el cuerpo K es un rectángulo de elementos de K (es decir, números) del tipo a a 2 a n a 2 a 22 a 2n A = (a ij ) = a m a m2 a mn

Más detalles

Matrices, Determinantes y Sistemas Lineales.

Matrices, Determinantes y Sistemas Lineales. 12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión

Más detalles

El Método de Gauss. Hallar el conjunto solución del siguiente sistema de ecuaciones. (1.1)

El Método de Gauss. Hallar el conjunto solución del siguiente sistema de ecuaciones. (1.1) El Método de Gauss. Hallar el conjunto solución del siguiente sistema de ecuaciones. x + 5y + z = x y + z = 8 x + y = 10 (1.1) Una manera de resolver este problema consiste en aplicar el método de reducción

Más detalles

Matrices. Primeras definiciones

Matrices. Primeras definiciones Primeras definiciones Una matriz es un conjunto de elementos números ordenado en filas y columnas. En general una matriz se nombra con una letra mayúscula y a sus elementos con letras minúsculas indicando

Más detalles

Capitulo 6. Matrices y determinantes

Capitulo 6. Matrices y determinantes Capitulo 6. Matrices y determinantes Objetivo. El alumno aplicará los conceptos fundamentales de las matrices, determinantes y sus propiedades a problemas que requieran de ellos para su resolución. Contenido.

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Expresiones algebraicas Las expresiones algebraicas Elementos de una expresión algebraica Números de cualquier tipo Letras Signos de operación: sumas, restas, multiplicaciones y

Más detalles

Una ecuación lineal de n-incógnitas es una igualdad de la forma:

Una ecuación lineal de n-incógnitas es una igualdad de la forma: página 1/39 Teoría Tema 6 Ecuación lineal Una ecuación lineal de n-incógnitas es una igualdad de la forma: a 1 x 1 +a 2 x 2 +a 3 x 3 +...+a n x n =c Donde a 1,a 2, a 3,..., a n,c son números reales. En

Más detalles

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES 5 de Abril de 2 MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES (Clase ) Departamento de Matemática Aplicada Facultad de Ingeniería Universidad Central de Venezuela Puntos a tratar. Definición

Más detalles

Isabel Eguia Ribero Aitziber Unzueta Inchaurbe Elisabete Alberdi Celaya

Isabel Eguia Ribero Aitziber Unzueta Inchaurbe Elisabete Alberdi Celaya FUNDAMENTOS DEL ÁLGEBRA LINEAL. EJERCICIOS Y CUESTIONES. SOLUCIONES CON MATHEMATICA Isabel Eguia Ribero Aitziber Unzueta Inchaurbe Elisabete Alberdi Celaya ISBN: 978-84-606-6054-5 Depósito legal: BI-355-2015

Más detalles

Tema 6 Lenguaje Algebraico. Ecuaciones

Tema 6 Lenguaje Algebraico. Ecuaciones Tema 6 Lenguaje Algebraico. Ecuaciones 1. El álgebra El álgebra es una rama de las matemáticas que emplea números y letras con las operaciones aritméticas de sumar, restar, multiplicar, dividir, potencias

Más detalles

MATRICES. Jaime Garrido Oliver

MATRICES. Jaime Garrido Oliver MATRICES Jaime Garrido Oliver ÍNDICE DE CONTENIDOS ÍNDICE DE CONTENIDOS... 2 MATRICES... 3 1.1. INTRODUCCIÓN.... 3 2. TIPOS DE MATRICES... 4 2.1. Matriz Fila, Matriz Columna... 4 2.2. Matrices cuadradas...

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

Í N D I C E MATRICES Y DETERMINANTES.

Í N D I C E MATRICES Y DETERMINANTES. MATRICES Y DETERMINANTES Año escolar: 5to. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: martilloatomico@gmail.com

Más detalles

MATRICES DETERMINANTES

MATRICES DETERMINANTES MATRICES Y DETERMINANTES INTRODUCCIÓN, MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de

Más detalles

Matrices 2º curso de Bachillerato Ciencias y tecnología

Matrices 2º curso de Bachillerato Ciencias y tecnología MATRICES Índice:. Introducción-------------------------------------------------------------------------------------- 2. Definición de matriz-----------------------------------------------------------------------------

Más detalles

Sistemas de Ecuaciones Lineales. Solución de Sistemas de Ecuaciones Lineales. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.

Sistemas de Ecuaciones Lineales. Solución de Sistemas de Ecuaciones Lineales. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com. Sistemas de Ecuaciones Lineales Solución de Sistemas de Ecuaciones Lineales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 2007-2008 Contenido 1. Sistemas de Ecuaciones Lineales 2

Más detalles

Se dice que una matriz cuadrada A es invertible, si existe una matriz B con la propiedad de que

Se dice que una matriz cuadrada A es invertible, si existe una matriz B con la propiedad de que MATRICES INVERTIBLES Se dice que una matriz cuadrada A es invertible, si existe una matriz B con la propiedad de que AB = BA = I siendo I la matriz identidad. Denominamos a la matriz B la inversa de A

Más detalles

Matemáticas Aplicadas a los Negocios

Matemáticas Aplicadas a los Negocios LICENCIATURA EN NEGOCIOS INTERNACIONALES Matemáticas Aplicadas a los Negocios Unidad 4. Aplicación de Matrices OBJETIVOS PARTICULARES DE LA UNIDAD Al finalizar esta unidad, el estudiante será capaz de:

Más detalles

ÁLGEBRA DE MATRICES TRASPUESTA DE UNA MATRIZ SUMA Y RESTA DE MATRICES

ÁLGEBRA DE MATRICES TRASPUESTA DE UNA MATRIZ SUMA Y RESTA DE MATRICES ÁLGEBRA DE MATRICES TRASPUESTA DE UNA MATRIZ La traspuesta de una matriz A consiste en intercambiar las filas por las columnas (o las columnas por las filas) y se denota por: A T Así, la traspuesta de

Más detalles

Lo rojo sería la diagonal principal.

Lo rojo sería la diagonal principal. MATRICES. Son listas o tablas de elementos y que tienen m filas y n columnas. La dimensión de la matriz es el número se filas y de columnas y se escribe así: mxn (siendo m el nº de filas y n el de columnas).

Más detalles

Tema 1: MATRICES. OPERACIONES CON MATRICES

Tema 1: MATRICES. OPERACIONES CON MATRICES Tema 1: MATRICES. OPERACIONES CON MATRICES 1. DEFINICIÓN Y TIPO DE MATRICES DEFINICIÓN. Una matriz es un conjunto de números reales dispuestos en filas y columnas. Si en ese conjunto hay m n números escritos

Más detalles

Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales

Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales 1era evaluación. Determinantes DETERMINANTES Se trata de una herramienta matemática que sólo se puede utilizar cuando nos encontremos con matrices

Más detalles

Sistemas lineales y matrices

Sistemas lineales y matrices resumen04 1 Sistemas lineales y matrices Sistemas de ecuaciones lineales Un sistema de ecuaciones lineales es de la orma indicada a la izquierda y se suele representar por una matriz una tabla como la

Más detalles

UNIDAD 1 : MATRICES Y DETERMINANTES

UNIDAD 1 : MATRICES Y DETERMINANTES Material de estudio 05: Matrices y UNIDAD : MATRICES Y DETERMINANTES Las matrices aparecen por primera vez hacia el año 850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales 1 Definiciones Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de expresiones de la forma: a 11 x 1 + a 12 x 2 + + a 1n x n = a 21 x 1 + a 22 x 2 + +

Más detalles

SISTEMAS DE ECUACIONES LINEALES MÉTODO DE LA MATRIZ INVERSA

SISTEMAS DE ECUACIONES LINEALES MÉTODO DE LA MATRIZ INVERSA MÉTODO DE LA MATRIZ INVERSA Índice Presentación... 3 Método de la matriz inversa... 4 Observaciones... 5 Ejemplo I.I... 6 Ejemplo I.II... 7 Ejemplo II... 8 Sistemas compatibles indeterminados... 9 Método

Más detalles

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:

Más detalles

Un sistema formado por dos ecuaciones y dos incógnitas, se puede escribir como sigue:

Un sistema formado por dos ecuaciones y dos incógnitas, se puede escribir como sigue: MATEMÁTICAS EJERCICIOS RESUELTOS DE SISTEMAS LINEALES Juan Jesús Pascual SISTEMA DE ECUACIONES LINEALES A. Introducción teórica B. Ejercicios resueltos A. INTRODUCCIÓN TEÓRICA Sistemas de ecuaciones lineales

Más detalles

MATEMÁTICAS II: MATRICES Y DETERMINANTES

MATEMÁTICAS II: MATRICES Y DETERMINANTES MATRICES Llamaremos matriz de números reales de orden (o dimensión) m n a un conjunto ordenado de m n números reales, dispuestos en m filas y n columnas: A a 11 a 12 a 13 a 1j a 1n a 21 a 22 a 23 a 2j

Más detalles

Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES

Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES Prof. Rafael López Camino Universidad de Granada 1 Matrices Definición 1.1 Una matriz (real) de n filas y m columnas es una expresión de la forma a 11...

Más detalles

1 ÁLGEBRA DE MATRICES

1 ÁLGEBRA DE MATRICES 1 ÁLGEBRA DE MATRICES 1.1 DEFINICIONES Las matrices son tablas numéricas rectangulares. Se dice que una matriz es de dimensión m n si tiene m filas y n columnas. Cada elemento de una matriz se designa

Más detalles

Definición de matriz Una matriz A es un conjunto de números dispuestos en filas y en columnas.

Definición de matriz Una matriz A es un conjunto de números dispuestos en filas y en columnas. 1.- CONCEPTO DE MATRIZ. TIPOS DE MATRICES Definición de matriz Una matriz A es un conjunto de números dispuestos en filas y en columnas. 1 3 4 Por ejemplo, A = es una matriz de 2 filas y 3 columnas 0 5

Más detalles

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5 DETERMINANTES Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un escalar particular denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno

Más detalles

Sistemas de ecuaciones lineales 4

Sistemas de ecuaciones lineales 4 4. SISTEMAS DE ECUACIONES LINEALES 4.1. DEFINICIONES Y CLASIFICACIÓN DE SISTEMAS. La ecuación de una recta en el plano tiene la forma ; su generalización a variables es:, y recibe el nombre de ecuación

Más detalles

Matrices 1. Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Matrices 1. Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Matrices 1 Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se

Más detalles