Capitulo 6. Matrices y determinantes

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Capitulo 6. Matrices y determinantes"

Transcripción

1 Capitulo 6. Matrices y determinantes Objetivo. El alumno aplicará los conceptos fundamentales de las matrices, determinantes y sus propiedades a problemas que requieran de ellos para su resolución. Contenido. 6.1 Definición de matriz y de igualdad de matrices. Operaciones con matrices y sus propiedades: adición, sustracción, multiplicación por un escalar y multiplicación. Matriz identidad. 6.2 Definición y propiedades de la inversa de una matriz. Cálculo de inversa por transformaciones elementales. 6. Ecuaciones matriciales y su resolución. Representación y resolución matricial de los sistemas de ecuaciones lineales. 6.4 Matrices triangulares, diagonales y sus propiedades. Definición de traza de una matriz y sus propiedades. 6.5 Transposición de una matriz y sus propiedades. Matrices simétricas, antisimétricas y ortogonales. Conjugación de una matriz y sus propiedades. Matrices hermitianas, antihermitianas y unitarias. Potencia de una matriz y sus propiedades. 6.6 Definición de determinante de una matriz y sus propiedades. Cálculo de determinantes: Regla de Sarrus, desarrollo por cofactores y método de condensación. Cálculo de la inversa por medio de la adjunta. Regla de Cramer para la resolución de sistemas de ecuaciones lineales de orden superior a tres Definición de matriz.. Matriz: Arreglo rectangular de entes matemáticos (polinomios, funciones, etc.) que usualmente son números. Definición: Una matriz de m x n con elementos en C es un arreglo de la forma: donde a 11, a 12,, a mn C y m, n Z. a 11 a 1n M = a m1 a mn En forma abreviada, M= [a ij ] con i= 1,..., m; j= 1,..., n. AA = 2 + i 0 8 π 4 i x2 1 BB = [1 2 ] 1x CC = 2 x1 DD = i 0 0 i

2 Igualdad de matrices. Definición: Sean A= [a ij ] y B= [b ij ] dos matrices de orden m x n con elementos en C. A y B son iguales si: a ij = b ij ; con i= 1,..., m; j= 1,..., n Operaciones con matrices. Adición de matrices. Si A= [a ij ] mxn y B= [b ij ] mxn entonces A+B=S= [s ij ] mxn donde s ij = a ij + b ij para i= 1,..., m; j= 1,..., n i A = i B = 2 i C = 7 + i 0 2x 2i 4 x2 4 x2 4 A + B = 2 1 2i 0 x2 A + C y B + C no se pueden efectuar NO son conformables para la adición de matrices. Propiedades de la adición de matrices. i) A + (B+C) = (A+B) + C Asociatividad ii) A + B = B + A Conmutatividad iii) A+ 0 = A (Matriz nula del mismo orden) Elemento idéntico iv) A + (-A) =0 Elemento inverso Sustracción de matrices. Si A= [a ij ] mxn y B= [b ij ] mxn entonces A - B se define como A + (-B). Multiplicación por un escalar. Sea A= [a ij ] mxn y α ϵ C. El producto αa es una matriz de m x n definida por: αa = αa ij Teorema: Si A y B son dos matrices de m x n con elementos en C y α, β ϵ C, entonces: i) α(a + B) = αa + αb ii) (α + β)a = αa + βa iii) α(βa) = (αβ)a Multiplicación de matrices. Si A= [a ij ] mxn y B= [b ij ] nxq entonces AB= [p ij ] mxq donde: nn pp iiii = aa iiii bb kkkk kk=1 para i = 1,..., m; j = 1,..., q. 5 1 A = x 2 0 B = 4 1 x2 C = x4

3 2 9 AAAA = xx ; BBBB = xx ; CCCC = xx AC, BA, CB son NO CONFORMABLES para la multiplicación de matrices. AC CA, AB BA y BC CB, la multiplicación de matrices NO siempre es conmutativa. Demostrar que las matrices A, B y C son conmutables para la multiplicación. A = 0 1 1, B = 1 2 4, C = 1 2 AB = 4 6 ; BA = ; AC = ; CA = A y B NO son permutables (conmutables), A y C SI son permutables. Teorema. Sean A, B y C matrices de m x n, n x p y p x q respectivamente, cuyos elementos son números complejos, entonces: A(BC) = (AB)C. Se cumple la ASOCIATIVIDAD en la multiplicación de matrices. Demostrar que las matrices A, B y C cumplen con la asociatividad para la multiplicación. A = 1 2 4, B = , C = Primera forma A(BC): BC = , ABC = Segunda forma (AB)C: AB =, ABC = Teorema. Sean A, B y C matrices de m x n, n x p y p x q respectivamente, y D, E, F, matrices de m x n, m x n y n x p respectivamente, cuyos elementos son números complejos, entonces: i) A(B+C) = AB + AC ii) (D+E)F = DF + EF Matriz identidad. Se conoce como "matriz identidad" de orden n a una matriz cuadrada de n x n de la forma: I n = Definición. Se llama matriz identidad de orden n, a la matriz cuadrada de orden n, I n =[d ij ], tal que: δδ iiii = 1, ssss ii = jj δδ iiii = 0, ssss ii jj

4 La matriz identidad constituye el elemento idéntico en la multiplicación de matrices. Teorema. Si A es una matriz con elementos en C, entonces: i) I m A = A ii) AI n = A 6.2. Inversa de una matriz. Definición. Sea A una matriz de n x n con elementos en C. Una matriz X se dice que es inversa de A si: XA = I n = AX y se representa con A -1. Nota: 1. Para que una matriz A tenga inversa, es condición necesaria que sea cuadrada. A -1 deberá ser cuadrada y del mismo orden que A. 2. NO todas las matrices cuadradas tienen inversa (deta=0).. Singular ( AA 1 ) Matriz No singular ( AA 1 ) 4. Si existe la inversa de una matriz cuadrada, ésta es única (unicidad). Teorema: Si A y B son dos matrices no singulares del mismo orden y λ CC, entonces: i) A 1 es única ii) (AA 1 ) 1 = AA iii) (AAAA) 1 = BB 1 AA 1 iv) (λaa) 1 = 1 λ AA 1, ssss λ 0 Cálculo de la inversa por transformaciones elementales. [A I n ] T 1 T k I n A 1 Transformaciones elementales a) Intercambiar dos renglones. b) Multiplicar un renglón por un escalar diferente de cero. c) Multiplicar un renglón por un escalar diferente de cero y sumarlo a otro renglón, reemplazando este último por el resultado obtenido Ej 1. A = 5 6 ; A 1 = Ej 2. B = ; B 1 = i 1 2 i 2 + i 5 i Ej. C = 0 2 i 1 + i ; C 1 = 0 1 i 0 1 i 0 i 1 + 2i

5 6.. Ecuaciones matriciales. Ej 1. AX+B = X Solución: AX + B = X; X AX = B; (I A)X = B; XX = ( AA) 11 BB X = Ej 2. Dadas las matrices: A = ; B = Resolver la ecuación: AX = B XX = Ej. Dadas las matrices: A = ; B = ; C = Resolver la ecuación: XA + B = C XX = Ej 4. Siendo: A = ; B = ; C = Calcular el valor de X en las siguientes ecuaciones: 1. XA= B+I XX = AX+B= C XX = XA+B= 2C XX = AX+BX= C XX = XAB - XC = 2C XX = Ej 5. Siendo: A = ; B = ; C = Resolver la ecuación matricial: A X + 2 B = C XX =

6 Ej 6. Resolver en forma matricial el sistema: x + y + z = 6 x + 2y + 5z = 12 x + 4y + 25z = 6 X=, Y= 2, Z= Representación matricial de un sistema de ecuaciones lineales. Ecuación matricial: AX = B, donde: A- Matriz de coeficientes X- Vector de incógnitas B- Vector de términos independientes. Resolver el siguiente sistema a través de álgebra matricial. x + z = 2 y - 2z = -1 x + y + 2z = 1 0 x A = ; X = y ; B = 1 ; Solución: A 1 = X = z Tipos especiales de matrices cuadradas. Regiones de una matriz cuadrada. a 11 a 12 a 1n a MM = 21 a 22 Triángulo superior a 2n a n1 a n2 a nn Triángulo inferior Diagonal principal Traza de una matriz Definición: Sea A=[a ij ] una matriz de n x n con elementos en C. Se llama traza de A y se representa con Tr(A), al número: nn aa iiii Teorema: Si A y B son dos matrices de n x n con elementos en C y αα CC. i) tr(a+b) = tr(a) + tr(b) ii) tr(αa) = α tr(a) iii) tr(ab) = tr(ba) ii=1

7 Matrices triangulares Definición: Sea A=[a ij ] una matriz de n x n con elementos en C. Se dice que: i) A es triangular superior si a ij = 0 para i > j. ii) A es triangular inferior si a ij = 0 para i < j. Teorema: Si A y B son dos matrices triangulares superiores (inferiores) del mismo orden y α C, entonces: i) A+B es triangular superior (inferior) ii) αa es triangular superior (inferior) iii) AB es triangular superior (inferior) Se cumple la propiedad de cerradura para este tipo de matrices. Matriz diagonal Los elementos fuera de la diagonal son nulos y distintos entre si. Definición: Sea A=[a ij ] una matriz de n x n con elementos en C. Se dice que A es una matriz diagonal si a ij = 0 para i j, y se representa como: diag (a 11, a 22,..., a nn ) Teorema: Si A y B son dos matrices diagonales tales que A= diag (a 11, a 22,..., a nn ) y B= diag (b 11, b 22,..., b nn ) y α C, entonces: i) A+B = diag (a 11 + b 11, a 22 + b 22,..., a nn + b nn ) ii) αa = diag (αa 11, αa 22,..., αa nn ) iii) AB = diag (a 11 b 11, a 22 b 22,..., a nn b nn ) iv) A -1 = diag (1/a 11, 1/a 22,..., 1/a nn ), si A es no singular. Matriz escalar Los elementos fuera de la diagonal son nulos e iguales entre si, pero diferentes de la unidad. α 0 0 MM = 0 α 0 = αi n 0 0 α

8 Operaciones sobre una matriz 1. Transposición: AA AA TT Si A = A T se tiene una matriz simétrica Si A = A T se tiene una matriz antisimétrica 2. Conjugación: AA AA Si A = AA se tiene una matriz real Si A = AA se tiene una matriz imaginaria. Conjugación - Transposición: AA AA Si A = A se tiene una matriz hermitiana Si A = A se tiene una matriz antihermitiana 4. Potencia enésima: AA AA nn Idempotente Involutoria Nilpotente Periodica 1. Transposición: AA AA TT Los renglones de A T son las columnas de A y las columnas de A T son los renglones de A. Definición: Sea A=[a ij ] una matriz de m x n con elementos en C. Se llama transpuesta de A a la matriz de n x m: AA TT = CC iiii, tal que C ij = a ij 2i 5 2i 0 i A = i, AT = 0 1 i 1 i Propiedades de la transposición Teorema: Si A y B son dos matrices con elementos en C y α C, entonces: i) A T T = A ii) (αa) T = αa T iii) (A + B) T = A T + B T si A + B iv) (AB) T = B T A T si AB Matrices simétricas y antisimétricas (matrices cuadradas) Definición: Sea A una matriz de n x n con elementos en C, se dice que: i) A es simétrica si A T = A ii) A es antisimétrica si A T = A Matriz simétrica i A = 5 i i ; A = A T ; a ij = a ji i, j 2 i i 0

9 Matriz antisimétrica i B = 5 0 i ; B = B T ; b ij = b ji i j; Si i = j, b ii = 0 2 i i 0 Propiedades de las matrices simétrica y antisimétrica. Teorema: Si A y B son dos matrices simétricas (antisimétricas) de n x n y α C, entonces: i) A+B es simétrica (antisimétrica) ii) αa es simétrica (antisimétrica) Teorema: Si A es una matriz de n x n con elementos en C, entonces: i) A + A T es simétrica ii) A A T es antisimétrica 2. Conjugación: AA AA Definición: Sea A=[a ij ] una matriz de m x n con elementos en C. Se llama conjugada de A a la matriz de m x n A = c ij tal que c ij = a. ij 2i 0 i A = i, A = 2i 0 i i Teorema: Si A y B son dos matrices con elementos en C y α C, entonces: i) ( ) A = A ii) αa = α A iii) A + B = A + B si A + B iv) AB = A B si AB Matrices reales e imaginarias. Definición: Sea A una matriz de m x n con elementos en C, se dice que: i) A es real si A = A ii) A es imaginaria si A = A Teorema: Si A es una matriz de m x n con elementos en C, entonces: i) A + A es real ii) A A es imaginaria. Conjugación - Transposición: AA AA La conjugación transposición de una matriz A, se representa con A y está definida como: A = (A ) T = (A T )

10 Propiedades de la conjugación transposición Teorema: Si A y B son dos matrices con elementos en C y α C, entonces: i) (A ) = A ii) (αa) = α A iii) (A + B) = A + B si A + B iv) (AB) = B A si AB Matrices hermitianas y antihermitianas (matrices cuadradas) Definición: Sea A una matriz de n x n con elementos en C, se dice que: i) A es hermitiana si A = A ii) A es antihermitiana si A = A Matriz hermitiana i A = 5 i ; a ij = a ji i, j ; I(a ii ) = 0, Diagonal principal: R 2 i i 0 Matriz antihermitiana i 5 2 i B = 5 i i ; b ij = b ji i, j ; R(a ii ) = 0, Diagonal principal: I 2 i i 0 Teorema: Si A es una matriz de m x n con elementos en C, entonces: i) AA es hermitiana ii) A A es hermitiana iii) A + A es hermitiana (nxn) iv) A A es antihermitiana (nxn) Potencia enésima Teorema: Sea A una matriz de n x n con elementos en C y m, n N, entonces: i) A m A n = A m+n ii) (A m ) n = A mn Una matriz A no singular se dice que: i) Es ortogonal si: A T = A 1 ii) Es unitaria si: A = A 1 Matriz idempotente: Una matriz de n x n es idempotente si se verifica que A 2 = A. Esto implica que A n = A n N. La matriz debe ser simétrica para ser idempotente, no todas las matrices simétricas son idempotentes. 2 A = ; A 1 2 = =

11 Matriz involutoria: Una matriz de n x n es involutoria si se verifica que A 2 = I n. A = ; A2 = = Matriz nilpotente: Una matriz de n x n es nilpotente si se verifica que A 2 = 0 (matriz nula). Esto implica que A n = 0 n N. A = ; A2 = = A = ; A 2 = = Matriz periódica: Una matriz cuadrada A es periódica si existe p N tal que A p+1 = A. Además si p es el menor número natural que cumple A p+1 = A se dice que A es periódica con periodo p. A = ; A = A 2 A ; A 2 = = ; A = Determinantes El concepto de determinante surge antes que el concepto de matriz, en 1750 los trabajos de Cramer orientados a la resolución de sistemas de ecuaciones lineales, dan como resultado el concepto de determinante. Nota: 1. La matriz es un arreglo de números. 2. El determinante es un número. Propiedades de un determinante Teorema: Sea A=[a ij ] una matriz de n x n con elementos en C: 1) Si los elementos de una línea de A (renglón o columna) son todos nulos, entonces det A= 0. 2) Si B se obtiene de A multiplicando los elementos de una de sus líneas por un número λ C entonces det B = λ det A. ) Si B se obtiene de A intercambiando 2 líneas paralelas (renglones o columnas), entonces det B = -det A. 4) Si dos líneas paralelas de A son proporcionales, entonces det A = 0. 5) Si B se obtiene de A sumando a los elementos de una línea, los elementos de una línea paralela multiplicados por un número λ C, entonces det B = det A. Teorema: Si A=[a ij ] y B=[b ij ] son dos matrices de n x n con elementos en C, entonces: i) det A = det A T ii) det λa = λ n det A iii) det AB = det A det B

12 Cálculo de determinantes Regla de Sarrus Éste método se emplea únicamente para calcular determinantes de segundo y tercer orden. Segundo orden: det A = a 11 a 12 a 21 a 22 = a 11 a 22 a 21 a 12 Tercer orden: a 11 a 12 a 1 det A = a 21 a 22 a 2 = a 11 a 22 a + a 21 a 2 a 1 + a 12 a 2 a 1 a 1 a 22 a 1 a 2 a 2 a 11 a a 21 a 12 a 1 a 2 a Determinar el valor de det A y det B. A = ; det A = 7 B = ; det B = Regla de Cramer para la resolución de sistemas de ecuaciones lineales Para encontrar los valores de las incógnitas de sistemas de ecuaciones lineales de orden 2 y, se requiere un cociente de determinantes. El numerador es el determinante que resulta al remplazar en la matriz de coeficientes, la columna de la incógnita por el vector de términos independientes. El denominador es el determinante asociado a la matriz de coeficientes. Resolver a través de la regla de Cramer los siguientes sistemas. a) 5X+Y = 5 4X+7Y = 27 deta = 2 ; X=-2, Y=5 b) X+1 = Y X+4 Y 9 6 = 8 det A = ; X = 4, Y = 9 c) 2X+Y+4Z = 260 X+4Y+8Z = 0 4X+8Y+6Z = 510 det A = -4 ; X = 50, Y = 20, Z = 25

13 Desarrollo por cofactores Aplicable al cálculo de determinantes de cualquier orden y es el fundamento de todos los métodos de aplicación práctica. Definición: Sea A=[a ij ] una matriz de n x n con elementos en C. i) Se llama "menor" (Mij) del elemento aij, al determinante de la matriz que se obtiene suprimiendo en A al renglón ' i ' y a la columna ' j '. ii) Se llama cofactor (Cij) del elemento aij, al producto: CC iiii = ( 11) ii+jj MM iiii Definición: Sea A=[a ij ] una matriz de mxn con elementos en C y r Z, tal que 1 r n, entonces: n i) det A = j=1 a rj c rj n ii) det A = a ir c ir i=1 Calcular el determinante de la matriz A, utilizando el método por cofactores. det A = 2222 CC = A = Cálculo de la inversa por medio de la matriz adjunta Definición: Sea A=[a ij ] una matriz de n x n con elementos en C y sea Cij el cofactor del elemento aij. Se llama matriz adjunta de A, a la matriz: Adj A = [bij], donde bij = Cji Obtener la adjunta de la matriz A A = Adj A = C ji = ; A Adj A = 6I ; det A = 6 ; A AdjA = (det A)I n Teorema: Si A es una matriz de nxn con elementos en C, entonces: A(Adj A)=(Adj A)A = (det A) In Teorema: A -1 existe si y solo si det A 0. A(Adj A) = (det A)I n ; I n = 1 det A (A(Adj A)) ; AA 11 = 11 AAAAAA AA dddddd AA A = 1 4 A 1 =

Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ...

Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ... MATRICES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales. Tienen también muchas aplicaciones

Más detalles

Matrices, determinantes, sistemas de ecuaciones lineales.

Matrices, determinantes, sistemas de ecuaciones lineales. UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Resúmenes Curso 2007-2008 Matrices, determinantes, sistemas de ecuaciones lineales. Una matriz A de orden m n es una colección de m

Más detalles

Teoría de Matrices. Julio Yarasca. 30 de junio de 2015. Julio Yarasca

Teoría de Matrices. Julio Yarasca. 30 de junio de 2015. Julio Yarasca 30 de junio de 2015 Matriz de m por n Definimeros a una matriz A de orden m por n como un arreglo de números de m filas y n columnas. a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A = a 31 a 32 a 33 a 3n....

Más detalles

Tema 1: Matrices y Determinantes

Tema 1: Matrices y Determinantes Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz

Más detalles

Una matriz es una arreglo rectangular ordenado de elementos, comúnmente llamados escalares, dispuestos en m renglones y n columnas.

Una matriz es una arreglo rectangular ordenado de elementos, comúnmente llamados escalares, dispuestos en m renglones y n columnas. MATRICES Las matrices tienen una importancia fundamental en el análisis económico sobre todo en el estudio de sistemas de ecuaciones lineales, como en el modelo insumo-producto. Cuando trabajamos con modelos

Más detalles

Matriz sobre K = R o C de dimensión m n

Matriz sobre K = R o C de dimensión m n 2 Matrices y Determinantes 21 Matrices Matriz sobre K = R o C de dimensión m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Tipos de matrices: Cuadrada: n n = (a ij) i=1,,m j=1,,n Nula: (0) i,j 1 0

Más detalles

MENORES, COFACTORES Y DETERMINANTES

MENORES, COFACTORES Y DETERMINANTES MENORES, COFACTORES Y DETERMINANTES 1. Introducción. 2. Determinante de una matriz de 3 x 3. 3. Menores y cofactores. 4. Determinante de una matriz de n x n. 5. Matriz triangular. 6. Determinante de una

Más detalles

Álgebra Lineal, Ejercicios

Álgebra Lineal, Ejercicios Álgebra Lineal, Ejercicios MATRICES 1 Se llama traza de una matriz cuadrada a la suma de los elementos de su diagonal principal Sea G el conjunto de todas las matrices cuadradas de orden n con traza nula

Más detalles

Operaciones con matrices

Operaciones con matrices Operaciones con matrices Problemas teóricos En todos los problemas de esta lista se supone que F es un campo (cuerpo). Si no conoce bien el concepto de campo, entonces puede pensar que F = R. Operaciones

Más detalles

Objetivos: Al inalizar la unidad, el alumno:

Objetivos: Al inalizar la unidad, el alumno: Unidad 1 Matrices y determinantes Objetivos: Al inalizar la unidad, el alumno: Identiicará qué es una matriz y cuáles son sus elementos. Distinguirá los principales tipos de matrices. Realizará operaciones

Más detalles

Ejemplo 1. Ejemplo introductorio

Ejemplo 1. Ejemplo introductorio . -Jordan. Ejemplo 1. Ejemplo introductorio. -Jordan Dos especies de insectos se crían juntas en un recipiente de laboratorio. Todos los días se les proporcionan dos tipos de alimento A y B. 1 individuo

Más detalles

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES.

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. Matrices: Se llama matriz de dimensión m n a un conjunto de números reales dispuestos en m filas y n columnas de la siguiente forma: 11 a 12 a 13... a 1n A= a a 21

Más detalles

ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; (A ) = A. 2. La inversa de A 1 es A; (A 1 ) 1 = A. 3. (AB) = B A.

ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; (A ) = A. 2. La inversa de A 1 es A; (A 1 ) 1 = A. 3. (AB) = B A. ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; A = A. 2. La inversa de A 1 es A; A 1 1 = A. 3. AB = B A. 4. Las matrices A A y AA son simétricas. 5. AB 1 = B 1 A 1, si A y B son no singulares. 6. Los escalares

Más detalles

Matrices y determinantes

Matrices y determinantes Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

Sistemas de Ecuaciones Lineales

Sistemas de Ecuaciones Lineales Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a

Más detalles

Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas.

Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Matrices Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

Matrices y Determinantes.

Matrices y Determinantes. Matrices y Determinantes. Definición [Matriz] Sea E un conjunto cualquiera, m, n N. Matrices. Generalidades Matriz de orden m n sobre E: a 11 a 12... a 1n a 21 a 22... a 2n...... a m1 a m2... a mn a ij

Más detalles

Clase 8 Matrices Álgebra Lineal

Clase 8 Matrices Álgebra Lineal Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas

Más detalles

Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. TEMA 1.- MATRICES 1.-Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 1 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Sistema de ecuaciones algebraicas

Sistema de ecuaciones algebraicas Sistema de ecuaciones algebraicas Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad: ITESM CEM

Más detalles

MATRICES. Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden x (que se lee por ).

MATRICES. Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden x (que se lee por ). 1 MATRICES 1 Una matriz es una disposición rectangular de números (Reales); la forma general de una matriz con filas y columnas es Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden

Más detalles

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES 5 de Abril de 2 MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES (Clase ) Departamento de Matemática Aplicada Facultad de Ingeniería Universidad Central de Venezuela Puntos a tratar. Definición

Más detalles

Matrices. p ij = a ik b kj = a i1 b 1j + a i2 b 2j + + a in b nj.

Matrices. p ij = a ik b kj = a i1 b 1j + a i2 b 2j + + a in b nj. Matrices Introducción Una matriz de m filas y n columnas con elementos en el cuerpo K es un rectángulo de elementos de K (es decir, números) del tipo a a 2 a n a 2 a 22 a 2n A = (a ij ) = a m a m2 a mn

Más detalles

2 - Matrices y Determinantes

2 - Matrices y Determinantes Nivelación de Matemática MTHA UNLP 1 2 - Matrices y Determinantes 1 Matrices 11 Definición Una matriz A es cualquier ordenamiento rectangular de números o funciones a 11 a 12 a 1n a 21 a 22 a 2n A a m1

Más detalles

MANUAL DE MATRICES Y DETERMINANTES

MANUAL DE MATRICES Y DETERMINANTES Universidad Politécnica Salesiana Carrera de Ingeniería Mecánica MANUAL DE MATRICES Y DETERMINANTES Msc. Wilson Benavides Wilson Benavides MANUAL DE MATRICES Y DETERMINANTES 2012 Carrera de Ingeniería

Más detalles

Una matriz es un arreglo rectangular de elementos. Por ejemplo:

Una matriz es un arreglo rectangular de elementos. Por ejemplo: 1 MATRICES CONCEPTOS BÁSICOS Definición: Matriz Una matriz es un arreglo rectangular de elementos. Por ejemplo: es una matriz de 3 x 2 (que se lee 3 por 2 ) pues es un arreglo rectangular de números con

Más detalles

Tema 1. Álgebra lineal. Matrices

Tema 1. Álgebra lineal. Matrices 1 Tema 1. Álgebra lineal. Matrices 0.1 Introducción Los sistemas de ecuaciones lineales aparecen en un gran número de situaciones. Son conocidos los métodos de resolución de los mismos cuando tienen dos

Más detalles

Definición de la matriz inversa

Definición de la matriz inversa Definición de la matriz inversa Ejercicios Objetivos Aprender la definición de la matriz inversa Requisitos Multiplicación de matrices, matriz identidad, habilidades básicas de resolver sistemas de ecuaciones

Más detalles

Determinante de una matriz

Determinante de una matriz 25 Matemáticas I : Preliminares Tema 3 Determinante de una matriz 31 Determinante de una matriz cuadrada Definición 67- Sea A una matriz cuadrada de orden n Llamaremos producto elemental en A al producto

Más detalles

Matrices 2º curso de Bachillerato Matemáticas aplicadas a las ciencias sociales

Matrices 2º curso de Bachillerato Matemáticas aplicadas a las ciencias sociales MATRICES Índice:. Introducción-------------------------------------------------------------------------------------- 2. Definición de matriz-----------------------------------------------------------------------------

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC13 Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas ITESM Matrices: Conceptos y Operaciones Básicas Matemáticas Discretas - p. 1/25 Una matriz A m n es un arreglo

Más detalles

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:

Más detalles

Matrices, Determinantes y Sistemas de ecuaciones lineales

Matrices, Determinantes y Sistemas de ecuaciones lineales Tema 1 Matrices, Determinantes y Sistemas de ecuaciones lineales 1.1. Matrices Definición: Una MATRIZ es un conjunto de números reales dispuestos en forma de rectángulo, que usualmente se delimitan por

Más detalles

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares

Más detalles

Tema 5: Sistemas de Ecuaciones Lineales

Tema 5: Sistemas de Ecuaciones Lineales Tema 5: Sistemas de Ecuaciones Lineales Eva Ascarza-Mondragón Helio Catalán-Mogorrón Manuel Vega-Gordillo Índice 1 Definición 3 2 Solución de un sistema de ecuaciones lineales 4 21 Tipos de sistemas ecuaciones

Más detalles

UNIVERSIDAD CARLOS III DE MADRID

UNIVERSIDAD CARLOS III DE MADRID UNIVERSIDAD CARLOS III DE MADRID Departamento de Economía Tema 1: Matrices y sistemas de ecuaciones lineales Empezaremos por recordar conceptos ya conocidos de álgebra lineal como las matrices, determinantes,

Más detalles

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES ALGEBRA DE MATRICES DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES DEFINICIONES 2 Las matrices y los determinantes son herramientas

Más detalles

Conjuntos y matrices. Sistemas de ecuaciones lineales

Conjuntos y matrices. Sistemas de ecuaciones lineales 1 Conjuntos y matrices Sistemas de ecuaciones lineales 11 Matrices Nuestro objetivo consiste en estudiar sistemas de ecuaciones del tipo: a 11 x 1 ++ a 1m x m = b 1 a n1 x 1 ++ a nm x m = b n Una solución

Más detalles

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ). INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.

Más detalles

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ...

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ... TEMA : MATRICES Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas a a a... a n a a a... an A... am am am... amn A los números reales a ij se les llama elementos

Más detalles

Mat r i z in v e r s a

Mat r i z in v e r s a Unidad 2 Método de GaUss Mat r i z in v e r s a M U lt i pli cat i va Objetivos: Al inalizar la unidad, el alumno: Representará un sistema de m ecuaciones lineales con n incógnitas mediante una matriz

Más detalles

Isabel Eguia Ribero Aitziber Unzueta Inchaurbe Elisabete Alberdi Celaya

Isabel Eguia Ribero Aitziber Unzueta Inchaurbe Elisabete Alberdi Celaya FUNDAMENTOS DEL ÁLGEBRA LINEAL. EJERCICIOS Y CUESTIONES. SOLUCIONES CON MATHEMATICA Isabel Eguia Ribero Aitziber Unzueta Inchaurbe Elisabete Alberdi Celaya ISBN: 978-84-606-6054-5 Depósito legal: BI-355-2015

Más detalles

DOCENTE: JESÚS E. BARRIOS P.

DOCENTE: JESÚS E. BARRIOS P. DOCENTE: JESÚS E. BARRIOS P. DEFINICIONES Es larga la historia del uso de las matrices para resolver ecuaciones lineales. Un texto matemático chino que proviene del año 300 A. C. a 200 A. C., Nueve capítulos

Más detalles

Lección 1. Algoritmos y conceptos básicos.

Lección 1. Algoritmos y conceptos básicos. Página 1 de 8 Lección 1. Algoritmos y conceptos básicos. Objetivos. La primera lección del curs está dedicada a repasar los conceptos y algoritmos del álgebra lineal, básicos para el estudio de la geometría

Más detalles

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República ALN Repaso matrices In. Co. Facultad de Ingeniería Universidad de la República Definiciones básicas - Vectores Definiciones básicas - Vectores Construcciones Producto interno: ( x, y n i x y i i ' α Producto

Más detalles

TEMA 2: MATRICES. 2.2.1 Operaciones elementales y matrices elementales. 2.2.2 Proceso de escalonamiento de una matriz no nula.

TEMA 2: MATRICES. 2.2.1 Operaciones elementales y matrices elementales. 2.2.2 Proceso de escalonamiento de una matriz no nula. TEMA 2: MATRICES 21 Generalidades sobre matrices 211 Definición de matriz Tipos de matrices 212 Operaciones algebraicas con matrices 213 Matriz traspuesta y traspuesta-conjugada 214 Submatrices 22 Proceso

Más detalles

Matrices y Determinantes

Matrices y Determinantes Matrices y Determinantes Definición de matriz Matriz Una matriz es un ente matemático equivalente a una tabla; es decir, es un arreglo de elementos de cualquier naturaleza (aunque, en general, suelen ser

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Este tema resulta fundamental en la mayoría de las disciplinas, ya que son muchos los problemas científicos y de la vida cotidiana que requieren resolver simultáneamente

Más detalles

Matrices y Determinantes. Sistemas Ec. Lineales

Matrices y Determinantes. Sistemas Ec. Lineales Matrices y Determinantes. Sistemas Ec. Lineales Matrices.- Definiciones.- Se llama matriz de orden nxm a toda ordenación de n.m números ordenados en n filas y m columnas. Se suelen llamar con letras mayúsculas

Más detalles

PRUEBA MÚLTIPLE ELECCIÓN MATRICES Y DETERMINANTES

PRUEBA MÚLTIPLE ELECCIÓN MATRICES Y DETERMINANTES PRUEBA MÚLTIPLE ELECCIÓN MATRICES Y DETERMINANTES 1. Sea una matriz A M n n (R) nilpotente de índice p. r(a) n 1 r(a) =p 1 8 4 2 2. Sea la matriz A = 2 1 1 0 5 2 1 1 r(a) =2 r(a) =3 r(a) =4 3. Sea una

Más detalles

9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES... 189 9.2. OPERACIONES CON MATRICES... 190 9.3. MATRICES CUADRADAS... 192 9.3.1.

9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES... 189 9.2. OPERACIONES CON MATRICES... 190 9.3. MATRICES CUADRADAS... 192 9.3.1. ÍNDICE 9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES....................... 189 9.2. OPERACIONES CON MATRICES..................... 190 9.3. MATRICES CUADRADAS.......................... 192 9.3.1. Matrices

Más detalles

Ecuaciones matriciales AX = B y XA = B. Cálculo de la matriz inversa

Ecuaciones matriciales AX = B y XA = B. Cálculo de la matriz inversa Ecuaciones matriciales AX = B y XA = B Cálculo de la matriz inversa Objetivos Aprender a resolver ecuaciones matriciales de la forma AX = B y XA = B Aprender a calcular la matriz inversa con la eliminación

Más detalles

Ecuaciones. 3º de ESO

Ecuaciones. 3º de ESO Ecuaciones 3º de ESO El signo igual El signo igual se utiliza en: Igualdades numéricas: 2 + 3 = 5 Identidades algebraicas: (x + 4) x = x 2 + 4 4x Fórmulas: El área, A,, de un círculo de radio r es: A =

Más detalles

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales Introducción Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A. Cayley

Más detalles

Lección 5.1: Matrices y determinantes. Primeros conceptos. Objetivos de esta lección

Lección 5.1: Matrices y determinantes. Primeros conceptos. Objetivos de esta lección Matemáticas Tema 5: Conceptos básicos sobre matrices y vectores Objetivos Lección 5.: y determinantes Philippe Bechouche Departamento de Matemática Aplicada Universidad de Granada 3 4 phbe@ugr.es 5 Qué

Más detalles

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones.

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones. TEMA 1: MATRICES Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES CONCEPTO MATRICES Se llama matriz de orden (dimensión) m n a un conjunto de m n elementos dispuestos en m filas y n columnas Se representa por A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn j=1,2,,n

Más detalles

Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución:

Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución: 3 Determinantes. Determinantes de orden y 3 por Sarrus Piensa y calcula 3 6 Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4 8 3 8 6 4 = 4 4 = 0 Aplica la teoría. Calcula

Más detalles

Matrices, Determinantes y Sistemas Lineales.

Matrices, Determinantes y Sistemas Lineales. 12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión

Más detalles

MATRICES. M(n) ó M nxn A =

MATRICES. M(n) ó M nxn A = MTRICES Definición de matriz. Una matriz de orden m n es un conjunto de m n elementos pertenecientes a un conjunto, que para nosotros tendrá estructura de cuerpo conmutativo y lo denotaremos por K, dispuestos

Más detalles

Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. MATRICES Matriz Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n A = a i1 a ij a in a m1 a

Más detalles

Espacios vectoriales con producto interior

Espacios vectoriales con producto interior Espacios vectoriales con producto interior Longitud, norma o módulo de vectores y distancias entre puntos Generalizando la fórmula pitagórica de la longitud de un vector de R 2 o de R 3, definimos la norma,

Más detalles

ARITMÉTICA Y ÁLGEBRA

ARITMÉTICA Y ÁLGEBRA ARITMÉTICA Y ÁLGEBRA 1.- Discutir el siguiente sistema, según los valores de λ: Resolverlo cuando tenga infinitas soluciones. Universidad de Andalucía SOLUCIÓN: Hay cuatro ecuaciones y tres incógnitas,

Más detalles

CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES

CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES Parte A: determinantes. A.1- Definición. Por simplificar, consideraremos que a cada matriz cuadrada se le asocia un número llamado determinante que se

Más detalles

Lo rojo sería la diagonal principal.

Lo rojo sería la diagonal principal. MATRICES. Son listas o tablas de elementos y que tienen m filas y n columnas. La dimensión de la matriz es el número se filas y de columnas y se escribe así: mxn (siendo m el nº de filas y n el de columnas).

Más detalles

Tema 1: MATRICES. OPERACIONES CON MATRICES

Tema 1: MATRICES. OPERACIONES CON MATRICES Tema 1: MATRICES. OPERACIONES CON MATRICES 1. DEFINICIÓN Y TIPO DE MATRICES DEFINICIÓN. Una matriz es un conjunto de números reales dispuestos en filas y columnas. Si en ese conjunto hay m n números escritos

Más detalles

MATRICES. Producción Nacional (Tn) Producción Rio Negro (Tn) Caolín 8.490 Halita 199.856 Yeso Bentonita 123.092 33.804 Diatomita 15.

MATRICES. Producción Nacional (Tn) Producción Rio Negro (Tn) Caolín 8.490 Halita 199.856 Yeso Bentonita 123.092 33.804 Diatomita 15. MATRICES Las siguientes tablas muestran la producción de distintos minerales en la provincia de Río Negro y en el país durante los años,,,, y. Año Nacional Negro Caolín 8.9 Halita 99.86 Yeso Bentonita.9.8

Más detalles

Matrices triangulares y matrices ortogonales

Matrices triangulares y matrices ortogonales Matrices triangulares y matrices ortogonales Problemas para examen Matrices diagonales 1. Sea a R n. Se denota por diag(a) la matriz diagonal con entradas a 1,..., a n : diag(a) = [ a j δ j,k ] n j,k=1.

Más detalles

Curso de Álgebra Lineal

Curso de Álgebra Lineal Curso de Álgebra Lineal 1. NÚMEROS COMPLEJOS 1.1 Definición, origen y operaciones fundamentales con números complejos Definición. Un número complejo, z, es una pareja ordenada (a, b) de números reales

Más detalles

TEMA 3: Matrices y sistemas de ecuaciones lineales. Álgebra y estructuras finitas/discretas (Grupos A)

TEMA 3: Matrices y sistemas de ecuaciones lineales. Álgebra y estructuras finitas/discretas (Grupos A) TEMA 3: Matrices y sistemas de ecuaciones lineales Álgebra y estructuras finitas/discretas Grupos A Curso 2007-2008 1 2 1 Anillos y cuerpos Definición 1 Un anillo viene dado por un conjunto R y por dos

Más detalles

Sistemas de Ecuaciones y Matrices

Sistemas de Ecuaciones y Matrices Sistemas de Ecuaciones y Matrices 0.1 Sistemas de ecuaciones Consideremos las gráficas de dos funciones f y g como en la figura siguiente: P Q y = fx y = gx En la práctica, en ocasiones hay que encontrar

Más detalles

Matemáticas Aplicadas a los Negocios

Matemáticas Aplicadas a los Negocios LICENCIATURA EN NEGOCIOS INTERNACIONALES Matemáticas Aplicadas a los Negocios Unidad 4. Aplicación de Matrices OBJETIVOS PARTICULARES DE LA UNIDAD Al finalizar esta unidad, el estudiante será capaz de:

Más detalles

Tema 2. Sistemas de ecuaciones lineales

Tema 2. Sistemas de ecuaciones lineales Tema 2. Sistemas de ecuaciones lineales Estructura del tema. Definiciones básicas Forma matricial de un sistema de ecuaciones lineales Clasificación de los sistemas según el número de soluciones. Teorema

Más detalles

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250)

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Universidad Central de Venezuela Facultad de Ingeniería Ciclo Básico Departamento de Matemática Aplicada ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Semestre 1-2011 Mayo 2011 Álgebra Lineal y Geometría

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales 6 Sistemas de ecuaciones lineales 61 Sistemas de ecuaciones lineales Se llama ecuación lineal en n incógnitas sobre R a una expresión de la forma a 1 x 1 + a 2 x 2 + + a n x n = b con los a i en R para

Más detalles

Ing. Ramón Morales Higuera

Ing. Ramón Morales Higuera MATRICES. Una matriz es un conjunto ordenado de números. Un determinante es un número. CONCEPTO DE MATRIZ. Se llama matriz a un conjunto ordenado de números, dispuestos en filas y Las líneas horizontales

Más detalles

Menor, cofactor y comatriz

Menor, cofactor y comatriz Menor, cofactor y comatriz Sea A una matriz cuadrada de orden n. Al quitarle la línea i y la columna j se obtiene una submatriz de orden n-1, que se denota habitualmente A i,j. Por ejemplo, con n = 4,

Más detalles

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN. Apuntes de. para la titulación de

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN. Apuntes de. para la titulación de E.T.S. DE INGENIERÍA INFORMÁTICA Apuntes de ÁLGEBRA LINEAL para la titulación de INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN Fco. Javier Cobos Gavala Amparo Osuna Lucena Rafael Robles Arias Beatriz Silva

Más detalles

Matemá'cas generales

Matemá'cas generales Matemá'cas generales Matrices y Sistemas Patricia Gómez García José Antonio Álvarez García DPTO. DE MATEMÁTICA APLICADA Y CIENCIAS DE LA COMPUTACIÓN Este tema se publica bajo Licencia: Crea've Commons

Más detalles

Edición general: Editores:

Edición general: Editores: Álgebra Lineal Ruth Cueva - Felipe Navas - José Luis Toro Profesores de la Escuela Politécnica Nacional Edición general: Juan Carlos Trujillo Editores: Fabián Barba, Juan Carlos Trujillo Profesores de

Más detalles

Í N D I C E MATRICES Y DETERMINANTES.

Í N D I C E MATRICES Y DETERMINANTES. MATRICES Y DETERMINANTES Año escolar: 5to. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: martilloatomico@gmail.com

Más detalles

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior.

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior. Capítulo 2 Matrices En el capítulo anterior hemos utilizado matrices para la resolución de sistemas de ecuaciones lineales y hemos visto que, para n, m N, el conjunto de las matrices de n filas y m columnas

Más detalles

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1.1 SISTEMAS DE ECUACIONES LINEALES Una ecuación lineal es una ecuación polinómica de grado 1, con una o varias incógnitas. Dos ecuaciones son equivalentes

Más detalles

PROGRAMA ANALÍTICO. I. Objetivos El alumno deberá: II. Contenidos del Programa Analítico. Año 2013

PROGRAMA ANALÍTICO. I. Objetivos El alumno deberá: II. Contenidos del Programa Analítico. Año 2013 Año 013 PROGRAMA ANALÍTICO Asignatura: ÁLGEBRA Y GEOMETRÍA ANALÍTICA Departamento: Matérias Básicas Unidad Docente Básica: Matemática Bloque: Ciencias Básicas Especialidad: COMÚN A TODAS LAS ESPECIALIDADES

Más detalles

Solución de sistemas de ecuaciones lineales: Introducción y conceptos generales

Solución de sistemas de ecuaciones lineales: Introducción y conceptos generales Solución de sistemas de ecuaciones lineales: Introducción y conceptos generales Ing. Jesús Javier Cortés Rosas M. en A. Miguel Eduardo González Cárdenas M. en A. Víctor D. Pinilla Morán * 2011 Resumen

Más detalles

Matrices y determinantes. Sistemas de ecuaciones lineales

Matrices y determinantes. Sistemas de ecuaciones lineales Tema 0 Matrices y determinantes Sistemas de ecuaciones lineales 01 Introducción Definición 011 Se llama matriz a un conjunto ordenado de números, dispuestos en filas y columnas, formando un rectángulo

Más detalles

Definición de la matriz inversa

Definición de la matriz inversa Definición de la matriz inversa Objetivos Aprender la definición de la matriz inversa Requisitos Multiplicación de matrices, habilidades básicas de resolver sistemas de ecuaciones Ejemplo El número real

Más detalles

Matrices y sistemas de ecuaciones lineales

Matrices y sistemas de ecuaciones lineales Matrices y sistemas de ecuaciones lineales Problemas para examen Antes de resolver un problema en el caso general, se recomienda considerar casos particulares (por ejemplo, n = 4 y n = 50). En el caso

Más detalles

MATEMÁTICAS II. Departamento de Matemáticas I.E.S. A Xunqueira I (Pontevedra)

MATEMÁTICAS II. Departamento de Matemáticas I.E.S. A Xunqueira I (Pontevedra) MATEMÁTICAS II 1 José M. Ramos González Este libro es totalmente gratuito y solo vale la tinta y el papel en que se imprima. Es de libre divulgación y no está sometido a ningún copyright. Tan solo se

Más detalles

Espacios Vectoriales www.math.com.mx

Espacios Vectoriales www.math.com.mx Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................

Más detalles

Álgebra matricial. 2.1. Adición y trasposición

Álgebra matricial. 2.1. Adición y trasposición Capítulo 2 Álgebra matricial Estas notas están basadas en las realizadas por el profesor Manuel Jesús Gago Vargas para la asignatura Métodos matemáticos: Álgebra lineal de la Licenciatura en Ciencias y

Más detalles

Matrices y sistemas lineales

Matrices y sistemas lineales 15 Matemáticas I : Preliminares Tema 2 Matrices y sistemas lineales 2.1 Definiciones básicas Una matriz es una tabla rectangular de números, es decir, una distribución ordenada de números. Los números

Más detalles

Métodos directos para resolver sistemas de ecuaciones lineales

Métodos directos para resolver sistemas de ecuaciones lineales Métodos directos para resolver sistemas de ecuaciones lineales Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el

Más detalles

CURSO CERO DE MATEMÁTICAS

CURSO CERO DE MATEMÁTICAS CURSO CERO DE MATEMÁTICAS Dr. García Alonso, Fernando Luis. Dr. García Ferrández, Pedro Antonio. -- RESUMEN TEORÍA DE ÁLGEBRA Matrices Las matrices constituyen una herramienta fundamental para la ejecución

Más detalles

EJERCICIOS RESUELTOS DE MATRICES

EJERCICIOS RESUELTOS DE MATRICES EJERCICIOS RESUELTOS DE MATRICES. Dadas las matrices A - 3, B 0 - y C 3 -, calcular si es posible: a) A + B b) AC c) CB y C t B d) (A+B)C a) A + B - 3 + 0 - b) AC - 3 3 - +0 -+ 3+ +(-) 0 7 0.+(-).3+(-)(-).+(-)

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA GERENCIA ACADEMICA COORDINACION DE PREGRADO PROYECTO INGENIERIA 1272-416/ALGEBRA DE ESTRUCTURAS SEMESTRE:

UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA GERENCIA ACADEMICA COORDINACION DE PREGRADO PROYECTO INGENIERIA 1272-416/ALGEBRA DE ESTRUCTURAS SEMESTRE: GERENCIA ACADEMICA COORDINACION DE PREGRADO PROYECTO INGENIERIA PROGRAMA: ALGEBRA LINEAL CÓDIGO ASIGNATURA: 1272-521 PRE-REQUISITO: 1272-416/ALGEBRA DE ESTRUCTURAS SEMESTRE: 90-II UNIDADES DE CRÉDITO:

Más detalles

FUNDAMENTOS MATEMÁTICOS. Tema 6 MATRICES Y DETERMINANTES

FUNDAMENTOS MATEMÁTICOS. Tema 6 MATRICES Y DETERMINANTES FUNDAMENTOS MATEMÁTICOS Tema 6 MATRICES Y DETERMINANTES 6.1 Definición de matriz de números. Una matriz orden (m n) es un conjunto de m n números ordenados en una tabla: en donde podemos apreciar horizontalmente

Más detalles

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5 DETERMINANTES Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un escalar particular denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno

Más detalles