MATEMÁTICAS 2º BACH CIENCIAS MATRICES. Profesor: Fernando Ureña Portero

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MATEMÁTICAS 2º BACH CIENCIAS MATRICES. Profesor: Fernando Ureña Portero"

Transcripción

1 La palabra Álgebra proviene del libro Al-jabr wa l muqabalah, del matemático árabe Al-Jowarizmi (siglo IX). Con dicho nombre se designó en occidente en posteriores siglos a la ciencia que aprendieron del citado libro. El principal objetivo del Álgebra clásico fue la resolución de ecuaciones hasta prácticamente la Edad Media con la aparición del libro de Al-Jowarizmi. El Álgebra se extendió hacia Europa a través de España se consagro durante los siglos XVI y XVII. Matemáticos como Diofanto (siglo III), Cardano y Tartaglia (siglo XVI), Vieta y Descartes (siglo XVII), Gauss, Galois, Hamilton, Sylvester y Cauchy (siglo XIX) son los principales impulsores del desarrollo y formalización del Álgebra durante la historia. 1. CONCEPTO DE MATRIZ Definición: Se denomina matriz A o (aij) a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas : Filas Columnas Elemento aij: Cada uno de los números o expresión de que consta la matriz que se encuentra en la fila i y en la columna j. Un elemento se distingue de otro por la posición que ocupa. Definición:El conjunto de todas las matrices con m filas y n columnas se denota como Mmxn. Así: A = ( ) ; donde A M 2x3 Definición: La dimensión de una matriz es el número de filas y columnas de una matriz. Así, una matriz será de dimensión: 2x4, 3x2, 2x5,... Si la matriz tiene el mismo número de filas que de columnas, se dice que es de orden: 2, 3,..., p.e. M3

2 2. TIPOS DE Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas, son iguales. Según la dimensión: a) Matriz RECTANGULAR: m n, M mx n. b) Matriz CUADRADA: m=n, M n, caso particular (y especial) de las Rectangulares. Matrices RECTANGULARES: Matriz fila: está constituida por una sola fila: (2 3-1) Matriz columna: tiene una sola columna 0 ( 1) 2 Matrices CUADRADAS: Elementos de las matrices cuadradas: 1. Diagonal principal: elementos de la forma aii, es decir en la diagonal que va desde a11 hasta ann. 2. Diagonal secundaria: elementos de la forma aij donde i+j=n+1, es decir, los elementos en la diagonal que va desde a1n hasta an1. Diagonal Principal Diagonal Secundaria Tipos de Matrices CUADRADAS Definición: La Matriz Traspuesta A t de una matriz A es la matriz que se obtiene cambiando ordenadamente las filas por las columnas (o viceversa). Propiedades de la trasposición de matrices: I) (A t ) t =A II) (A±B) t =A t ±B t III) (K A) t =K A t IV) (A B) t =B t A t

3 Matriz nula O: todos los elementos son ceros. Matriz triangular superior: los elementos situados por debajo de la diagonal principal son ceros. Matriz triangular inferior: los elementos situados por encima de la diagonal principal son ceros. Matriz diagonal: todos los elementos situados por encima y por debajo de la diagonal principal son nulos. Matriz escalar: es una matriz diagonal en la que los elementos de la diagonal principal son iguales. Matriz identidad o unidad I: es una matriz diagonal en la que los elementos de la diagonal principal son iguales a 1. Anotaciones: Toda matriz diagonal es triangular, tanto superior como inferior, pues loselementos por encima y por debajo de la diagonal son nulos. Toda matriz escalar es diagonal. La matriz identidad es una matriz escalar. Matriz Regular o Inver tible: es una matriz cuadrada que tiene inversa: Si A -1 A A -1 =A -1 A=I Matriz Idempotente: si se cumple que A 2 = A Matriz Simétrica: si se verifica que: A = A t ( 2 5 4) Matriz Ortogonal: si se verifica que A A t = I Matriz Singular: matriz no tiene matriz inversa. A 1 Matriz Involutiva: si se cumple que A 2 = I. Matriz Antisimétrica o Hemisimétrica: si se verifica que: A = -A t Matriz Opuesta: ( 1 0 3) A=(-aij), siendo A=(a ij)

4 3. OPERACIONES CON 3.1. IGUALDAD DE Definición: dos matrices A y B se dicen que son iguales (A=B) si se cumplen: - misma dimensión - elementos que ocupan el mismo lugar son iguales: (a ij) = (b ij) 3.2. SUMA DE Definición: Dadas dos matrices de la misma dimensión, A=(a ij) y B=(b ij), se define la matriz suma como: A ± B=(a ij)±(b ij)= (a ij±b ij). Es decir, A ± B se obtiene sumando los elementos de las dos matrices que ocupan la misma posición. La resta de dos matrices es la suma de la matriz minuendo con la opuesta de la matriz sustraendo, es decir, A - B= A + (- B). En la práctica se restan los elementos directamente A = ( 2 1) ; B = ( 1 0);A + B = (( 2) ) = ( 1 1) ; A B = ( ) = ( 3 1) ( 4) ( 4) Propiedades de la suma de matrices Asociativa:A + (B + C) = (A + B) + C Elemento neutro:a + 0 = A (O es la matriz nula). Elemento simétrico u opuesto: A + (-A) = O Conmutativa:A + B = B + A (no la diferencia) (A+B) t =A t +B t 3.3. PRODUCTO DE UN ESCALAR POR UNA MATRIZ Definición: Dada una matriz A=(a ij) de dimensión m x n y un número real k,se define el producto de un k por una matriz: a la matriz del mismo orden que A, en la que cada elemento de la matriz A está multiplicado por k: K A=K (a ij)=(k a ij) ( 3) A = ( 3) ( ) = ( ) Propiedades: p (q A) = (p q) A; A M mx n; p,q k (A + B) = k A + k B; A,B M m x n ; k (p+q) A = p A + q A; A M m x n ; p, q 1 A = A; A M mxn (k A) t =k A t ; A M m xn ; k

5 3.4. PRODUCTO DE Dos matrices A y B se dicen multiplicables si el número de columnas de A coincide con el número de filas de B. Mm x n x Mn x p = Mm x p Definición: El producto de la matriz A=(aij) Mmxn y B=(bij) Mnxp es otra matriz C= A B Mmxp, con igual nº de filas que A y de columnas que B, tal que el elemento de la matriz C que ocupa la fila i y columna j, cij se obtiene multiplicando la fila i-ésima de la primera matriz con la columna j-ésima de la segunda. F i x C j A B = ( ) ( ) = ( ) = ( ) x 3 3 x 2 2 x 2 Propiedades del producto de matrices Asociativa: A (B C) = (A B) C Elemento neutro: A I=I A=A (I=matriz identidad del mismo orden que A). No es Conmutativa: A B B A (en general) Distributiva del producto respecto de la suma: A (B + C) = A B + A C (A B) t =B t At 4. MATRIZ INVERSA Definición: La matriz inversa de una matriz cuadrada A Mn es otra matriz cuadrada de la misma dimensión que se denota como A -1 Mn, tal que se cumple: A A -1 = A -1 A = I (I=matriz unidad o identidad de la misma dimensión que A) La matriz inversa, en caso de existir, es única. Propiedades: (A B) -1 = B-1 A-1 (A -1 ) -1 = A (k A -1 ) = k-1 A-1 (A t ) -1 = (A -1 ) t El método más sencillo para el cálculo de la inversa lo veremos en el tema siguiente, cuando definamos el determinante de las matrices. Para matrices 2x2 podemos calcular la inversa a partir de la definición (ejemplificar). Ejemplo: Calcular la inversa de la matriz A = ( 3 5 ( 3 5 b ) (a ), ayuda: a b A 1 = ( c d ); c d ) = ( c 3a + 5d ) ; (3a 0 1 4a + 8c 4a + 8d ) = ( ), resolviendo el sistema: A 1 = ( 2 5/4 1 3/4 )

6 5. RANGO DE UNA MATRIZ Definición: Rango de una matriz: es el número de líneas (filas o columnas) de esa matriz que son linealmente independientes. Una fila (o columna) es linealmente independiente de otra u otras cuando no se puede establecer una combinación lineal entre ellas. Una fila (o columna) es linealmente dependiente de otra u otras cuando se puede establecer una combinación lineal entre ellas. El rango de una matriz A se simboliza: rg(a) o r(a). Notas: -El rango de una matriz A no varía cuando esta se somete a transformaciones elementales, por tanto, los rangos de dos matrices equivalentes coinciden. Así, se pueden suprimir las filas o columnas nulas y las que sean combinación lineal de otras para determinar el rango. -Si una matriz A es de dimensión m x n, su rango no puede ser mayor que m ni mayor que n. Así, el rango de una matriz cuadrada A de orden n es siempre menor o igual a n [r(a) n]. Evidentemente también es positivo por definición. -Es evidente, a partir de la definición, que el rango de un a matriz coincide siempre con el de su traspuesta: r(a)=r(a t ). -Es también lógico y evidente que el rango por filas y por columnas coincide. -Una matriz cuadrada A de orden n tiene inversa, si y solo si, su rango es máximo, es decir, si su rango es n: A - 1 r(a)=n. Se llaman transformaciones elementales por filas en una matriz a las siguientes: a) Intercambiar las filas i y j, que lo escribiremos: F i F j. b) Sustituir la fila i por el resultado de multiplicarla por un escalar a 0, que lo escribiremos: F' i = af j. c) Sustituir la fila i por el resultado de sumar los productos de las filas i y j por dos escalares a 0, b 0, que los escribiremos: F ' i= F i + af j. Definición: Si una matriz B se obtiene de A mediante trasformaciones elementales, se dice que A y B son equivalentes y se escribe A B. Cálculo por el método de Gauss Podemos descartar una línea si: Todos sus coeficientes son ceros. Hay dos líneas iguales. Una línea es proporcional a otra. Una línea es combinación lineal de otras. F 3 = 2F 1 ; F 4 es nula; F 5 = 2F 2 + F 1 r(a) = 2. En general consiste en hacer nulas el máximo número de líneas posible, y el rango será el número de filas no nulas. F 2-3F 1 F 3-2F 1 ; Por tanto r(a)= 3

7 6. ECUACIONES Y SISTEMAS MATRICIALES Definición: Se llama ecuación/sistema matricial a toda ecuación/sistema en el que la/s incógnitas sean matrices. ax + by = C Por ejemplo: AX=B o {, siendo A, B, C, D, X e Y matrices y a, b, c, d parámetros cx + dy = D numéricos. Sólo analizaremos algunos casos concretos sencillos de ecuaciones y sistemas lineales que nos proporcionarán las herramientas básicas para los demás casos que se nos presenten. CASO 1: La ecuación lineal general A X = B. Si la matriz A es invertible, la ecuación es equivalente a A -1 A X= A -1 B I X=A -1 B y, por tanto: X= A -1 B En caso de que no sea invertible, o que ni siquiera sea cuadrada, se resuelve considerando la matriz incógnita X como una matriz genérica de m n incógnitas y resolviendo el sistema lineal de ecuaciones. Es importante recordar que el producto de matrices no es conmutativo, por lo que no debemos olvidar que no es lo mismo multiplicar a derecha que a izquierda. Así, si la ecuación fuese X A= B, la solución sería X=B A -1, siempre que A sea invertible. Ejemplo 1: Resolver A X+B=C; siendo A = ( ) ; B = (4 ) y C = ( ). A X=C-B; X=A -1 (C-B); calculamos A -1 ; A 1 = ( ); por tanto después de operar X = ( ) ax + by = C CASO 2: El sistema lineal general de ecuaciones { cx + dy = D Este tipo de sistema se resuelve utilizando los mismos métodos (sustitución, igualación y reducción) que en los sistemas numéricos con la salvedad de que no existe la división de una matriz por un número. 2 5 X + 2Y = A; donde A = ( Ejemplo 2: Resolver { 0 3 ) 1 3 2X 3Y = B; donde B = ( 4 2 ) Resolviendo el sistema por cualquier método, la solución sería: X = 1 9/7 (3A + 2B) = (8/7 7 8/7 13/7 ) ; Y = 1 7 (2A B) (= 3/7 13/7 4/7 4/7 )

8 7. APLICACIONES DEL CÁLCULO MATRICIAL Existen numerosas situaciones reales en las que el cálculo matricial tiene gran utilidad (Sociología, Transporte, Teoría de Grafos,...). Veamos uno de estos ejemplos: Ejemplo 3: Una fábrica produce dos modelos de lavadoras: A y B, en tres terminaciones: N, L y S. Produce del modelo A: 400 unidades en la terminación N, 200 unidades en la L y 50 en la S. Produce del modelo B: 300 unidades en la terminación N, 100 unidades en la L y 30 en la S. La terminación N lleva 25 horas de taller y 1 hora de administración. La terminación L lleva 30 horas de taller y 1,2 horas de administración. La terminación S lleva 33 horas de taller y 1,3 horas de administración. Calculemos, utilizando cálculo matricial, una matriz que represente las horas de taller y administración para cada uno de los modelos. La matriz P representa la cantidad de lavadoras para cada modelo y terminación P = ( ). La matriz H representa la cantidad de horas de taller y administración para cada terminación H = ( 30 1,2).Así pues la matriz P H = ( ) representará las horas ,3 de taller (1ª columna) y administra ción (2ª columna) para cada modelo A (1ª fila) y B (2ª fila).

9 APLICACIONES DE LA MATRIZ INVERSA PARA RESOLVER ECUACIONES MATRICIALES

10

11 EJERCICIOS RESUELTOS DE

12

13

14

15 EJERCICIOS PROPUESTOS 1.-Calcular la matriz solicitada en la siguiente ecuaci ón matricial:( 1 2 b ) + (a 1 0 c d ) = I /4 3/4 1/ Sacar factor común en estas matrices: ( ) ; ( ) ; ( 2 1/4 3/8 1/4 0 2 ) Resolver: ( 2a 2b 2c 2d ) = ( a a + b 2 + c + d 3d + 4 ). 4.-Sean las matrices: A = ( ) ; B = ( ). Calcular: 3A-5B; A B; B A;A2. 5.-Resolver los sistemas: X + Y = ( 2 1 { 3 0 ) X + Y = ( X Y = ( 6 2 ; { ) 0 1 ) X 3Y = ( ) 6.-Resolver las incógnitas: ( 1 x y 0 ) (x ) = (0 2 y ) 7.-Calcular las matrices que conmuten con ( ). 8.-Dada la matriz A = ( ). Calcular: An, A 50, A Dada la matriz B = ( 0 1 0). Calcular B n Demostrar las propiedades de la matriz traspuesta de A = ( ) Dada la matriz B = ( 1 0 2). Calcular K para que se cúmpla: (A-kI 3) 2 = Si A y B son matrices diagonales de orden 2, demostrar que A B=B A. Hallar aquellas matrices diagonales que cumplan A 2 =I 2.

MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES

MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES CONCEPTO DE MATRIZ Definición: Se denomina matriz A o (a ij ) a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas : Columnas Filas Elemento a ij : Cada uno

Más detalles

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones.

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones. TEMA 1: MATRICES Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

MATRICES. Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

MATRICES. Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. MATRICES Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Matrices Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se denomina

Más detalles

Matrices 1. Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Matrices 1. Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Matrices 1 Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se

Más detalles

Matemáticas Física Curso de Temporada Verano Ing. Pablo Marcelo Flores Jara

Matemáticas Física Curso de Temporada Verano Ing. Pablo Marcelo Flores Jara Matemáticas Física Curso de Temporada Verano 2016 Ing. Pablo Marcelo Flores Jara pablofloresjara@gmail.com UNIDAD III: INTRODUCCIÓN AL CÁLCULO MATRICIAL Ing. Pablo Marcelo Flores Jara pablofloresjara@gmail.com

Más detalles

Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. TEMA 1.- MATRICES 1.-Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la

Más detalles

Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas.

Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Matrices Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

Es una tabla bidimensional de números consistente en cantidades abstractas que pueden sumarse y multiplicarse.

Es una tabla bidimensional de números consistente en cantidades abstractas que pueden sumarse y multiplicarse. Definición de matriz Es una tabla bidimensional de números consistente en cantidades abstractas que pueden sumarse y multiplicarse. Una matriz es un cuadrado o tabla de números ordenados. Se llama matriz

Más detalles

Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. MATRICES Matriz Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n A = a i1 a ij a in a m1 a

Más detalles

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares

Más detalles

TEMA 7: MATRICES. OPERACIONES.

TEMA 7: MATRICES. OPERACIONES. TEMA 7: MATRICES. OPERACIONES. 1. MATRICES. TIPOS DE MATRICES. Se llama matriz de orden m x n (m filas y n columnas) a un conjunto de m n elementos, distribuidos en m filas y n columnas y encerrados entre

Más detalles

Tema 1: MATRICES. OPERACIONES CON MATRICES

Tema 1: MATRICES. OPERACIONES CON MATRICES Tema 1: MATRICES. OPERACIONES CON MATRICES 1. DEFINICIÓN Y TIPO DE MATRICES DEFINICIÓN. Una matriz es un conjunto de números reales dispuestos en filas y columnas. Si en ese conjunto hay m n números escritos

Más detalles

MATRICES OPERACIONES BÁSICAS CON MATRICES

MATRICES OPERACIONES BÁSICAS CON MATRICES MATRICES OPERACIONES BÁSICAS CON MATRICES ANTECEDENTES En el año 1850, fueron introducidas por J.J. Sylvester El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A.

Más detalles

Matrices 2º curso de Bachillerato Ciencias y tecnología

Matrices 2º curso de Bachillerato Ciencias y tecnología MATRICES Índice:. Introducción-------------------------------------------------------------------------------------- 2. Definición de matriz-----------------------------------------------------------------------------

Más detalles

Universidad Alonso de Ojeda. Facultad de Ingeniería GUIA DE ESTUDIO ALGEBRA LINEAL.

Universidad Alonso de Ojeda. Facultad de Ingeniería GUIA DE ESTUDIO ALGEBRA LINEAL. UNIDAD II: MATRICES Universidad Alonso de Ojeda. MATRIZ Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas EJEMPLO: Cada uno de los números

Más detalles

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ...

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ... TEMA : MATRICES Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas a a a... a n a a a... an A... am am am... amn A los números reales a ij se les llama elementos

Más detalles

Matrices, determinantes y sistemas de ecuaciones lineales

Matrices, determinantes y sistemas de ecuaciones lineales Matrices, determinantes y sistemas de ecuaciones lineales David Ariza-Ruiz 10 de octubre de 2012 1 Matrices Una matriz es una tabla numérica rectangular de m filas y n columnas dispuesta de la siguiente

Más detalles

Algebra lineal Matrices

Algebra lineal Matrices Algebra lineal Matrices Una matriz A un arreglo rectangular de números dispuestos en m renglones (filas) y n columnas. Fila 1 La componente o elemento ij de A, denotado por es el número que aparece en

Más detalles

Matrices y determinantes

Matrices y determinantes Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES CONCEPTO MATRICES Se llama matriz de orden (dimensión) m n a un conjunto de m n elementos dispuestos en m filas y n columnas Se representa por A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn j=1,2,,n

Más detalles

Matrices. Álgebra de matrices.

Matrices. Álgebra de matrices. Matrices. Álgebra de matrices. 1. Definiciones generales Definición 1.1 Si m y n son dos números naturales, se llama matriz de números reales de orden m n a una aplicación A : {1, 2, 3,..., m} {1, 2, 3,...,

Más detalles

1 de 6 24/08/2009 9:54 MATRICES Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853 En

Más detalles

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1.1 SISTEMAS DE ECUACIONES LINEALES Una ecuación lineal es una ecuación polinómica de grado 1, con una o varias incógnitas. Dos ecuaciones son equivalentes

Más detalles

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES.

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. Matrices: Se llama matriz de dimensión m n a un conjunto de números reales dispuestos en m filas y n columnas de la siguiente forma: 11 a 12 a 13... a 1n A= a a 21

Más detalles

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales Introducción Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A. Cayley

Más detalles

Matrices, Determinantes y Sistemas Lineales.

Matrices, Determinantes y Sistemas Lineales. 12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión

Más detalles

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico.

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. Tema 1: Matrices El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. 1. Terminología Comenzamos con la definición de matriz

Más detalles

MATRICES. 2º Bachillerato. Se llama matriz a una disposición rectangular de números reales, a los cuales se les denomina elementos de la matriz.

MATRICES. 2º Bachillerato. Se llama matriz a una disposición rectangular de números reales, a los cuales se les denomina elementos de la matriz. Concepto de matriz. Igualdad de matrices MATRICES 2º Bachillerato Concepto de matriz. Igualdad de matrices Concepto de matriz. Igualdad de matrices Se llama matriz a una disposición rectangular de números

Más detalles

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES ALGEBRA DE MATRICES DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES DEFINICIONES 2 Las matrices y los determinantes son herramientas

Más detalles

Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales

Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales 1era evaluación. Matrices Definición: Una matriz es un conjunto de números ordenados en filas y columnas. Para definirla se utilizan letras

Más detalles

Definición: Dos matrices A y B son iguales si tienen el mismo orden y coinciden los elementos que ocupan el mismo lugar.

Definición: Dos matrices A y B son iguales si tienen el mismo orden y coinciden los elementos que ocupan el mismo lugar. UNIDAD 03: MATRICES Y DETERMINANTES. 3.1 Conceptos de Matrices. 3.1.1 Definición de matriz. Definición: Se lama matriz de orden m x n a un arreglo rectangular de números dispuestos en m renglones y n columnas.

Más detalles

MATRICES Y DETERMINANTES DEFINICIÓN DE MATRIZ. TIPOS

MATRICES Y DETERMINANTES DEFINICIÓN DE MATRIZ. TIPOS Índice Presentación... 3 Matrices... 4 Tipos de matrices I... 5 Tipos de matrices II... 6 Suma de matrices... 7 Multiplicación por un escalar... 8 Producto de matrices... 9 Trasposición de matrices...

Más detalles

TEMA V. Pues bien, a estas caracterizaciones de los sistemas de ecuaciones lineales se las llamó matrices. En el caso del sistema considerado tenemos:

TEMA V. Pues bien, a estas caracterizaciones de los sistemas de ecuaciones lineales se las llamó matrices. En el caso del sistema considerado tenemos: TEMA V 1. MATRICES Y SISTEMAS DE ECUACIONES LINEALES. Sea el siguiente sistema de ecuaciones lineales: Realmente quien determina la naturaleza y las soluciones del sistema, no son las incógnitas: x, y,

Más detalles

Matrices y Sistemas Lineales

Matrices y Sistemas Lineales Matrices y Sistemas Lineales Álvarez S, Caballero MV y Sánchez M a M salvarez@umes, mvictori@umes, marvega@umes 1 ÍNDICE Matemáticas Cero Índice 1 Definiciones 3 11 Matrices 3 12 Sistemas lineales 5 2

Más detalles

Definición de matriz Una matriz A es un conjunto de números dispuestos en filas y en columnas.

Definición de matriz Una matriz A es un conjunto de números dispuestos en filas y en columnas. 1.- CONCEPTO DE MATRIZ. TIPOS DE MATRICES Definición de matriz Una matriz A es un conjunto de números dispuestos en filas y en columnas. 1 3 4 Por ejemplo, A = es una matriz de 2 filas y 3 columnas 0 5

Más detalles

3. Matrices. 1 Definiciones básicas. 2 Operaciones con matrices. 2.2 Producto de una matriz por un escalar. 2.1 Suma de matrices.

3. Matrices. 1 Definiciones básicas. 2 Operaciones con matrices. 2.2 Producto de una matriz por un escalar. 2.1 Suma de matrices. Tema I Capítulo 3 Matrices Álgebra Departamento de Métodos Matemáticos y de Representación UDC 3 Matrices 1 Definiciones básicas Definición 11 Una matriz A de dimensión m n es un conjunto de escalares

Más detalles

Tema 1: Matrices. October 13, 2016

Tema 1: Matrices. October 13, 2016 Tema 1: Matrices October 13, 2016 1 Matrices Las matrices se usan en muchos ámbitos de las ciencias: sociología, economía, hojas de cálculo, matemáticas, física,... Se inició su estudio en el siglo XIX

Más detalles

1 ÁLGEBRA DE MATRICES

1 ÁLGEBRA DE MATRICES 1 ÁLGEBRA DE MATRICES 1.1 DEFINICIONES Las matrices son tablas numéricas rectangulares. Se dice que una matriz es de dimensión m n si tiene m filas y n columnas. Cada elemento de una matriz se designa

Más detalles

Tema 1: Matrices. Sistemas de ecuaciones. Determinantes

Tema 1: Matrices. Sistemas de ecuaciones. Determinantes Tema 1: Matrices. Sistemas de ecuaciones. Determinantes José M. Salazar Octubre de 2016 Tema 1: Matrices. Sistemas de ecuaciones. Determinantes Lección 1. Matrices. Sistemas de ecuaciones. Determinantes

Más detalles

BOLETÍN DE MATRICES 2 IES A Sangriña Curso 2016/ Calcula la matriz inversa, si existe, usando el método de Gauss:

BOLETÍN DE MATRICES 2 IES A Sangriña Curso 2016/ Calcula la matriz inversa, si existe, usando el método de Gauss: *** OBLIGATORIOS *** 1. Efectúa todos los posibles productos: 2. Calcula la matriz inversa, si existe, usando el método de Gauss: 3. Sean y. Encuentra X para que cumpla: 3 X 2 A = 5 B 4. Encuentra dos

Más detalles

Matrices y Sistemas Lineales

Matrices y Sistemas Lineales Matrices y Sistemas Lineales Álvarez S, Caballero MV y Sánchez M a M salvarez@umes, mvictori@umes, marvega@umes Índice 1 Definiciones 3 11 Matrices 3 12 Sistemas lineales 6 2 Herramientas 8 21 Operaciones

Más detalles

Lo rojo sería la diagonal principal.

Lo rojo sería la diagonal principal. MATRICES. Son listas o tablas de elementos y que tienen m filas y n columnas. La dimensión de la matriz es el número se filas y de columnas y se escribe así: mxn (siendo m el nº de filas y n el de columnas).

Más detalles

1. Matrices. Operaciones con matrices

1. Matrices. Operaciones con matrices REPASO MUY BÁSICO DE MATRICES. Matrices. Operaciones con matrices.. Introducción Las matrices aparecieron por primera vez hacia el año 850, introducidas por el inglés J. J. Sylvester. Su desarrollo se

Más detalles

Una matriz es un arreglo rectangular de elementos. Por ejemplo:

Una matriz es un arreglo rectangular de elementos. Por ejemplo: 1 MATRICES CONCEPTOS BÁSICOS Definición: Matriz Una matriz es un arreglo rectangular de elementos. Por ejemplo: es una matriz de 3 x 2 (que se lee 3 por 2 ) pues es un arreglo rectangular de números con

Más detalles

MATRICES. Jaime Garrido Oliver

MATRICES. Jaime Garrido Oliver MATRICES Jaime Garrido Oliver ÍNDICE DE CONTENIDOS ÍNDICE DE CONTENIDOS... 2 MATRICES... 3 1.1. INTRODUCCIÓN.... 3 2. TIPOS DE MATRICES... 4 2.1. Matriz Fila, Matriz Columna... 4 2.2. Matrices cuadradas...

Más detalles

Matrices y Determinantes. Prof. Nilsa I. Toro Catedrática Recinto Universitario de Mayagüez Residencial - AFAMaC

Matrices y Determinantes. Prof. Nilsa I. Toro Catedrática Recinto Universitario de Mayagüez Residencial - AFAMaC Matrices y Determinantes Prof. Nilsa I. Toro Catedrática Recinto Universitario de Mayagüez Residencial - AFAMaC Origen y Usos Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J.

Más detalles

Matrices y Determinantes.

Matrices y Determinantes. Tema II Capítulo 1 Matrices Álgebra Lineal I Departamento de Métodos Matemáticos y de Representación UDC Tema II Matrices y Determinantes 1 Matrices 1 Definiciones básicas Definición 11 Una matriz A de

Más detalles

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ). INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Definición: se llama matriz de m filas y n columnas sobre un cuerpo K (R ó C), a una ordenación rectangular de la forma Notación: a11 a...... a1n a21 a...... a2n A = M M M donde cada elemento a ij Є K

Más detalles

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:

Más detalles

SISTEMAS DE ECUACIONES LINEALES MÉTODO DE LA MATRIZ INVERSA

SISTEMAS DE ECUACIONES LINEALES MÉTODO DE LA MATRIZ INVERSA MÉTODO DE LA MATRIZ INVERSA Índice Presentación... 3 Método de la matriz inversa... 4 Observaciones... 5 Ejemplo I.I... 6 Ejemplo I.II... 7 Ejemplo II... 8 Sistemas compatibles indeterminados... 9 Método

Más detalles

UNIDAD 1 : MATRICES Y DETERMINANTES

UNIDAD 1 : MATRICES Y DETERMINANTES Material de estudio 05: Matrices y UNIDAD : MATRICES Y DETERMINANTES Las matrices aparecen por primera vez hacia el año 850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe

Más detalles

Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES

Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES Prof. Rafael López Camino Universidad de Granada 1 Matrices Definición 1.1 Una matriz (real) de n filas y m columnas es una expresión de la forma a 11...

Más detalles

Conjuntos y matrices. Sistemas de ecuaciones lineales

Conjuntos y matrices. Sistemas de ecuaciones lineales 1 Conjuntos y matrices Sistemas de ecuaciones lineales 11 Matrices Nuestro objetivo consiste en estudiar sistemas de ecuaciones del tipo: a 11 x 1 ++ a 1m x m = b 1 a n1 x 1 ++ a nm x m = b n Una solución

Más detalles

MATRICES. M(n) ó M nxn A =

MATRICES. M(n) ó M nxn A = MTRICES Definición de matriz. Una matriz de orden m n es un conjunto de m n elementos pertenecientes a un conjunto, que para nosotros tendrá estructura de cuerpo conmutativo y lo denotaremos por K, dispuestos

Más detalles

Matrices. José Vicente Romero Bauset. ETSIT-curso 2009/2010. José Vicente Romero Bauset Tema 1.- Matrices. 1

Matrices. José Vicente Romero Bauset. ETSIT-curso 2009/2010. José Vicente Romero Bauset Tema 1.- Matrices. 1 Matrices José Vicente Romero Bauset ETSIT-curso 2009/2010 José Vicente Romero Bauset Tema 1- Matrices 1 Introducción Por qué estudiar las matrices? Son muchas las situaciones de la vida real en las que

Más detalles

Tema 5. Matrices y Determinantes

Tema 5. Matrices y Determinantes Tema 5. Matrices y Determinantes 1. Definiciones 2. Operaciones Propiedades 3. Determinantes Orden 2 Orden 3: Regla de Sarrus Orden mayor de 3 Propiedades 4. Matriz inversa Ecuaciones matriciales 5. Rango

Más detalles

Las matrices se denotarán usualmente por letras mayúsculas, A, B,..., y los elementos de las mismas por minúsculas, a, b,...

Las matrices se denotarán usualmente por letras mayúsculas, A, B,..., y los elementos de las mismas por minúsculas, a, b,... INTRO. MATRICES Y DETERMINANTES Prof. Gustavo Sosa Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas

Más detalles

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE 3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE ECUACIONES LINEALES Y MATRICES COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2011-2012 3.1.1. Resolución de sistemas de ecuaciones lineales. Método

Más detalles

Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales

Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales 1era evaluación. Determinantes DETERMINANTES Se trata de una herramienta matemática que sólo se puede utilizar cuando nos encontremos con matrices

Más detalles

DOCENTE: JESÚS E. BARRIOS P.

DOCENTE: JESÚS E. BARRIOS P. DOCENTE: JESÚS E. BARRIOS P. DEFINICIONES Es larga la historia del uso de las matrices para resolver ecuaciones lineales. Un texto matemático chino que proviene del año 300 A. C. a 200 A. C., Nueve capítulos

Más detalles

APÉNDICE A. Algebra matricial

APÉNDICE A. Algebra matricial APÉNDICE A Algebra matricial El estudio de la econometría requiere cierta familiaridad con el álgebra matricial. La teoría de matrices simplifica la descripción, desarrollo y aplicación de los métodos

Más detalles

Matrices: Una ordenación de números dispuestos en filas y columnas, encerrados entre corchetes

Matrices: Una ordenación de números dispuestos en filas y columnas, encerrados entre corchetes Matrices: Una ordenación de números dispuestos en filas y columnas, encerrados entre corchetes Ejemplos: Verifican ciertas reglas o algebra, denominada algebra de matrices.la matriz representa en general

Más detalles

Matriz Columna: Es la matriz que está formada por una única columna (n = 1).

Matriz Columna: Es la matriz que está formada por una única columna (n = 1). Tema 7: Matrices. 7.1 Concepto de Matriz. Una matriz A es un cuadro de elementos dispuestos en m filas y n columnas, a 11 a 12 a 13 a 1n a 21 a 22 a 23 a A = a 31 a 32 a 2n 33 a 3n donde el elemento a

Más detalles

Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3

Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3 1.- DETERMINANTE DE UNA MATRIZ CUADRADA Determinante de una matriz cuadrada de orden 1 Dada una matriz cuadrada de orden 1, A = (a), se define det A = det (a) = a Determinante de una matriz cuadrada de

Más detalles

1. Lección 3: Matrices y Determinantes

1. Lección 3: Matrices y Determinantes Apuntes: Matemáticas Empresariales II 1. Lección 3: Matrices y Determinantes Se define matriz de orden n m a todo conjunto de n m elementos de un cuerpo K, dispuestos en n filas y m columnas: A n m = (

Más detalles

Matemá'cas generales

Matemá'cas generales Matemá'cas generales Matrices y Sistemas Patricia Gómez García José Antonio Álvarez García DPTO. DE MATEMÁTICA APLICADA Y CIENCIAS DE LA COMPUTACIÓN Este tema se publica bajo Licencia: Crea've Commons

Más detalles

Contenido. 2 Operatoria con matrices. 3 Determinantes. 4 Matrices elementales. 1 Definición y tipos de matrices

Contenido. 2 Operatoria con matrices. 3 Determinantes. 4 Matrices elementales. 1 Definición y tipos de matrices elementales Diciembre 2010 Contenido Definición y tipos de matrices elementales 1 Definición y tipos de matrices 2 3 4 elementales 5 elementales Definición 1.1 (Matriz) Una matriz de m filas y n columnas

Más detalles

MATRICES Y DETERMINANTES MATRIZ INVERSA

MATRICES Y DETERMINANTES MATRIZ INVERSA Índice Presentación... 3 Determinante de una matriz... 4 Determinante de matrices de orden 2 y 3... 5 Determinante de una matriz... 6 Ejemplo... 7 Propiedades del cálculo de determinantes... 8 Matriz inversa...

Más detalles

UNIDAD I: SISTEMAS DE DOS ECUACIONES CON DOS INCÓGNITAS

UNIDAD I: SISTEMAS DE DOS ECUACIONES CON DOS INCÓGNITAS UNIDAD I: SISTEMAS DE DOS ECUACIONES CON DOS INCÓGNITAS Sistemas de dos ecuaciones con dos incógnitas. Método de igualación. Método de reducción. Método de sustitución Método de eliminación Gaussiana.

Más detalles

MATEMÁTICAS II: MATRICES Y DETERMINANTES

MATEMÁTICAS II: MATRICES Y DETERMINANTES MATRICES Llamaremos matriz de números reales de orden (o dimensión) m n a un conjunto ordenado de m n números reales, dispuestos en m filas y n columnas: A a 11 a 12 a 13 a 1j a 1n a 21 a 22 a 23 a 2j

Más detalles

Fundamentos matemáticos. Tema 2 Matrices y ecuaciones lineales

Fundamentos matemáticos. Tema 2 Matrices y ecuaciones lineales Grado en Ingeniería agrícola y del medio rural Tema 2 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2017 Licencia Creative Commons 4.0 Internacional J.

Más detalles

Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución:

Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución: 3 Determinantes. Determinantes de orden 2 y 3 por Sarrus Piensa y calcula 3 6 Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4 8 3 8 6 4 = 24 24 = 0 Aplica la teoría.

Más detalles

Se llama adjunto de un elemento de una matriz A, al número resultante de multiplicar por el determinante de la matriz complementaria

Se llama adjunto de un elemento de una matriz A, al número resultante de multiplicar por el determinante de la matriz complementaria T.3: MATRICES Y DETERMINANTES 3.1 Determinantes de segundo orden Se llama determinante de a: 3.2 Determinantes de tercer orden Se llama determinante de a: Ejercicio 1: Halla los determinantes de las siguientes

Más detalles

Clase 8 Matrices Álgebra Lineal

Clase 8 Matrices Álgebra Lineal Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas

Más detalles

ALGEBRA y ALGEBRA LINEAL

ALGEBRA y ALGEBRA LINEAL 520142 ALGEBRA y ALGEBRA LINEAL Primer Semestre, Universidad de Concepción CAPITULO 7. MATRICES DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Matriz Sean

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una

Más detalles

EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES

EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES DETERMINANTES Y SISTEMAS DE ECUACIONES JUNIO 06/07. a) Calcula el rango de la matriz A según los valores del parámetro a 3 a A = 4 6 8 3 6 9 b)

Más detalles

Matrices, determinantes, sistemas de ecuaciones lineales.

Matrices, determinantes, sistemas de ecuaciones lineales. UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Resúmenes Curso 2007-2008 Matrices, determinantes, sistemas de ecuaciones lineales. Una matriz A de orden m n es una colección de m

Más detalles

6. Obtén las matrices A y B que verifiquen el sistema. 7. Encuentra una matriz X que cumpla. siendo. 9. Resuelve la siguiente ecuación matricial:

6. Obtén las matrices A y B que verifiquen el sistema. 7. Encuentra una matriz X que cumpla. siendo. 9. Resuelve la siguiente ecuación matricial: Ejercicios. Escribe la matriz traspuesta de: 2 3 3 B= 0 4 3 2 4 C= 2 3 2. Se consideran las matrices: 0 3 2 2 2 2 0 2 3 B= 0 4 C=2 4 3 0 2 5 Calcula: 3A, 3A + 2C, A C, C A y A B. 3. Dadas las matrices

Más detalles

Tema 1: Matrices y Determinantes

Tema 1: Matrices y Determinantes Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz

Más detalles

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5 DETERMINANTES Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un escalar particular denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno

Más detalles

Introducción al Cálculo con Matrices

Introducción al Cálculo con Matrices Introducción al Cálculo con Matrices 2016Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Concepto de Matriz o Tabla... 4 1.1 Listas Numéricas... 4 1.2 Tablas Numéricas... 4 1.3 Matrices...

Más detalles

MATRICES. Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden x (que se lee por ).

MATRICES. Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden x (que se lee por ). 1 MATRICES 1 Una matriz es una disposición rectangular de números (Reales); la forma general de una matriz con filas y columnas es Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden

Más detalles

APUNTES ALGEBRA SUPERIOR

APUNTES ALGEBRA SUPERIOR 1-1-016 APUNTES ALGEBRA SUPERIOR Apuntes del Docente Esp. Pedro Alberto Arias Quintero. Departamento De Ciencias Básicas, Unidades Tecnológicas de Santander. Contenido MATRICES Y DETERMINANTES... ELEMENTOS

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 1 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Matrices y Sistemas de Ecuaciones lineales

Matrices y Sistemas de Ecuaciones lineales Matrices y Sistemas de Ecuaciones lineales Llamaremos M m n (K) al conjunto de las matrices A = (a ij ) (i = 1, 2,..., m; j = 1, 2,..., n) donde los elementos a ij pertenecen a un cuerpo K. Las matrices,

Más detalles

on muchas las actividades en las que conviene disponer las informaciones numéricas

on muchas las actividades en las que conviene disponer las informaciones numéricas UNIDAD 1 Matrices on muchas las actividades en las que conviene disponer las informaciones numéricas S ordenadas en tablas de doble entrada. Por ejemplo, se conocen las distancias entre las siguientes

Más detalles

Al consejero A no le gusta ninguno de sus colegas como presidente. Dos consejeros (C y E) están de acuerdo en los mismos candidatos (B, C y D).

Al consejero A no le gusta ninguno de sus colegas como presidente. Dos consejeros (C y E) están de acuerdo en los mismos candidatos (B, C y D). ÁLGEBRA DE MATRICE Página 48 Ayudándote de la tabla... De la tabla podemos deducir muchas cosas: Al consejero A no le gusta ninguno de sus colegas como presidente. B solo tiene un candidato el C. Dos consejeros

Más detalles

MATRICES Y DETERMINANTES II.

MATRICES Y DETERMINANTES II. MATRICES Y DETERMINANTES II. Matriz adjunta es la matriz cuadrada que se obtiene al sustituir cada elemento por su adjunto correspondiente. Calcula la matriz adjunta: 2 2 2 A =( 2 1 0 ) 3 2 2 Primero calculamos

Más detalles

Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Ejemplo:

Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Ejemplo: Mapa conceptual Determinante de segundo orden Dada una matriz cuadrada de segundo orden: a a 11 12 A = a a 21 22 se llama determinante de A al número real: det (A)= A = a11 a 12 = a a a a a21 a22 11 22

Más detalles

UNIDAD 3 FUNCIONES, MATRICES Y DETERMINANTES. Matrices. Dr. Daniel Tapia Sánchez

UNIDAD 3 FUNCIONES, MATRICES Y DETERMINANTES. Matrices. Dr. Daniel Tapia Sánchez UNIDD FUNCIONES, MTRICES Y DETERMINNTES Matrices Dr. Daniel Tapia Sánchez Estos son los temas que estudiaremos:.7. Concepto de matriz e igualdad de matrices.7. Clasificación de matrices según sus elementos.7.

Más detalles

Tema 4: Matrices y Determinantes. Algunas Notas sobre Matrices y Determinantes. Álgebra Lineal. Curso

Tema 4: Matrices y Determinantes. Algunas Notas sobre Matrices y Determinantes. Álgebra Lineal. Curso Tema 4: Matrices y Determinantes Algunas Notas sobre Matrices y Determinantes Álgebra Lineal Curso 2004-2005 Prof. Manu Vega Índice 1. Determinantes 3 2. Regla de Sarrus 3 3. Propiedades de los determinantes

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

Definición (matriz): Definición (dimensión de una matriz): Si una matriz tiene m renglones y n columnas se dice que es de dimensión m n.

Definición (matriz): Definición (dimensión de una matriz): Si una matriz tiene m renglones y n columnas se dice que es de dimensión m n. Índice general 1. Álgebra de Matrices 1 1.1. Conceptos Fundamentales............................ 1 1.1.1. Vectores y Matrices........................... 1 1.1.2. Transpuesta................................

Más detalles

TEMA 7. Matrices y determinantes.

TEMA 7. Matrices y determinantes. TEMA 7 Matrices y determinantes. 1. Matrices. Generalidades Definición 1 Sea E un conjunto cualquiera, m, n IN. Definimos matriz de orden m n sobre E a una expresión de la forma: a 11 a 12... a 1n a 21

Más detalles

MATEMÁTICAS 2º BACH CIENCIAS DETERMINANTES DETERMINANTES

MATEMÁTICAS 2º BACH CIENCIAS DETERMINANTES DETERMINANTES 1. CONCEPTO, CÁLCULO DE. Definición: A cada matriz cuadrada A=(aij),de orden n, se le asigna un número real, denominado determinante de A, denotado por A o por det (A). A =det (A)= 1.-Determinante de orden

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC13 Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas ITESM Matrices: Conceptos y Operaciones Básicas Matemáticas Discretas - p. 1/25 Una matriz A m n es un arreglo

Más detalles

Matrices, determinantes y sistemas de ecuaciones lineales

Matrices, determinantes y sistemas de ecuaciones lineales Capítulo 4 Matrices, determinantes y sistemas de ecuaciones lineales DEFINICIÓN DE MATRIZ DE NÚMEROS REALES Una matriz de números reales de tamaño m n es un conjunto ordenado por filas y columnas de números

Más detalles