Fuerza magnetomotriz y campo magnético. CAMPOS MAGNÉTICOS GIRATORIOS.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Fuerza magnetomotriz y campo magnético. CAMPOS MAGNÉTICOS GIRATORIOS."

Transcripción

1 APÉNDICE 1 uerza agnetootriz y capo agnético. CAMPOS MAGNÉTICOS GIRATORIOS.

2 APÉNDICE I. UERZA MAGNETOMOTRIZ Y CAMPO MAGNETICO EN EL ENTREHIERRO DE UNA MAQUINA ELECTRICA. El proceso de conversión de energía que tiene lugar en todas las Máquinas Eléctricas, se produce por la acción de un capo agnético, responsable últio de dicha transforación. El capo agnético puede aterializarse 1, entre otras cosas, por la fuerza agnetootriz (en lo sucesivo f..) que se calcula coo el producto del núero de espiras del devanado por la intensidad que circula por ellas. De tal anera que si pretendeos analizar la fora de un deterinado capo agnético podeos hacerlo analizando la fora que tiene la onda de f... El circuito agnético de cualquier Máquina Eléctrica está constituido, de fora general, por aterial ferroagnético y entrehierro o espacio de aire existente entre el estator y el rotor. Si suponeos que la pereabilidad del hierro es infinita, lo que es lo iso que aditir que el hierro tiene una reluctancia despreciable, podeos asegurar que no se requiere ninguna fuerza agnetootriz para producir la inducción en esta parte del circuito agnético. En otras palabras, lo anterior quiere decir que el problea queda reducido al entrehierro, es decir a coprobar que fora tiene el capo agnético en el entrehierro. El capo agnético en el entrehierro de una áquina eléctrica, es el resultado de las f...s cobinadas de los devanados inductor e inducido, que actúan en esa región. En principio, es el devanado inductor el que produce el capo en el entrehierro, creando f.e..s. en el devanado del inducido, que dan lugar a corrientes cuando se cierra dicho circuito. Al circular una intensidad por el devanado del inducido, se crea otra f..., que se 1 Siepre y cuando el capo agnético sea creado por una corriente que circula por un devanado. Página de 13.

3 llaa de reacción del inducido, que al cobinarse con la f... del inductor origina el capo agnético resultante en el entrehierro de la áquina. Teniendo en cuenta adeás, que de acuerdo con la ley de araday, la f.e.. inducida es función de la inducción, se podrá coprender la iportancia de la distribución del capo agnético en la fora de onda de la f.e.. Se van a analizar, en este apartado, las foras de las f...s. y capos producidos por diferentes tipos de devanados para poder estudiar posteriorente las f.e..s. que se obtienen en el inducido y los pares electroagnéticos a que dan lugar. Con objeto de hacer ás sencillo el cálculo y para destacar ás claraente los principios físicos involucrados, se supondrá una áquina rotativa cilíndrica, es decir sin polos salientes tanto en el estator coo en el rotor, lo que representa la existencia de un entrehierro de espesor unifore o constante. Para siplificar las figuras, se supondrá tabién que la áquina es bipolar, coincidiendo, en este caso, los grados geoétricos con los eléctricos (agnéticos). Página 3 de 13.

4 CAMPO MAGNETICO Y UERZA MAGNETOMOTRIZ PRODUCIDA POR UN DEVANADO CONCENTRADO DE PASO DIAMETRAL Recordeos, antes de nada, que paso diaetral quiere decir que el ancho de bobina (distancia entre los dos lados activos de una bobina) coincide con el paso polar. Considereos, en prier lugar, una bobina de N espiras representada por el esquea siplificado de la figura 1. Se trata de deterinar la fora de la distribución tanto del capo agnético coo de la f... a lo largo del entrehierro. La bobina está recorrida por una corriente de i aperios, que en principio supondreos que es de c.c. Se han representado las líneas de capo agnético que produce la bobina; estas líneas atraviesan radialente el entrehierro y se cierran por los núcleos ferroagnéticos de estator y rotor (capo senoidal). El sentido de las líneas de inducción viene deterinado por la regla de Apére de la ano derecha, es decir si se coge la bobina con la ano derecha, de tal odo que los dedos abracen la bobina en el sentido de la circulación de la corriente, el dedo pulgar apuntará hacia el polo norte producido por la bobina. La figura de la derecha representa una sección transversal de la áquina en donde se dibuja el eje de la bobina coo un eje perpendicular al plano que contiene la bobina. Se observará que el eje de la bobina coincide igura 1 con el eje polar. Se ha considerado que la bobina tiene una anchura de 180 eléctricos, lo cual indica para el caso en que la áquina tenga dos polos, que el paso de bobina es diaetral (la denoinación diaetral, se eplea tabién para definir bobinas cuya anchura sea de un paso polar, es decir 180 eléctricos, aunque la áquina tenga cualquier núero de polos. Tabién se utiliza la expresión de paso copleto o polar). Página 4 de 13.

5 Supongaos ahora que haceos un corte en la áquina por el punto M y desarrollaos el entrehierro coo uestra la figura siguiente (igura B). El eje de la bobina se toa coo referencia de posiciones angulares (θ = 0). Asiiso, se han asignado los sentidos de las líneas de inducción, representadas a puntos, en el entrehierro teniendo en cuenta la regla de la ano derecha. Tabién puede utilizarse la regla del sacacorchos para deterinar dichas direcciones. Para poder deterinar la agnitud de la inducción en cada punto del entrehierro, será necesario aplicar al circuito agnético la ley de Apére en fora integral: γ H d l = N i = a lo largo de un caino cerrado, γ. Evidenteente, puede elegirse cualquier caino cerrado coo recinto de integración. Ahora bien, si teneos en cuenta que en las Máquinas Eléctricas Rotativas existe sietría circular, resulta que lo que suceda en el entrehierro para un ángulo θ sucede, con signo contrario, para un ángulo θ + 180º eléctricos (agnéticos). Por lo tanto, elegido el caino señalado en la figura resultará que: (θ) = - (θ ) La integral de línea puede calcularse por traos y tendreos, entonces: γ = a b + c + b(rotor) c d + a = N i d(estator) teniendo en cuenta que H en el estator y en el rotor es nulo por hipótesis (µ H 0 ya que B = µ H), nos quedará: a b + c d = N i Cada una de las integrales anteriores representa las f..s. que atraviesan el entrehierro: ab + cd = N i Página 5 de 13.

6 igura Página 6 de 13.

7 Ahora bien, por razones de sietría y si la anchura del entrehierro es constante, la f... que atraviesa el entrehierro en el punto θ es igual y de sentido contrario a la f... que atraviesa por el punto θ + 180º. Es decir, las dos f.. son iguales en ódulo: ab = cd = N i = pero de sentido contrario: cd = N I ab N I = si suponeos coo positiva la f... que atraviesa el entrehierro en sentido del rotor hacia el estator y negativa la que lo hace en sentido contrario. Si se desea ahora deterinar la f... en cualquier otro punto del entrehierro, lo que haceos es toar el circuito "abcd" e irlo trasladando hacia la izquierda o hacia la derecha para ir "barriendo" todos los puntos del entrehierro. En nuestro caso, coo solo teneos una sola bobina el capo o f... será unifore y su valor es el expresado anteriorente. en de estator al rotor. Moviendo, pues, el recinto de integración "abcd" se obtendrá el valor de (θ) en cualquier punto del entrehierro. En la figura D. se ha dibujado la distribución de f... que es una onda rectangular de valor áxio = Ni/ y que es positiva entre -90 y +90 y negativa entre +90 y -90. La onda de f... es una función periódica del ángulo θ que adite un desarrollo en serie de ourier de tal anera que la onda de f... puede ser considerada coo la sua de una onda fundaental y una serie de arónicos de orden ipar dada la sietría de la curva inicial. En la figura E se uestran dicha onda fundaental y una serie de arónicos. Si consideraos, únicaente, la onda fundaental resulta que la distribución de la f.. a lo largo del entrehierro es una función cosenoidal, de aplitud fija, que responde a la expresión: ( θ) = cosθ y de tal anera que el eje de la onda coincide con el eje de la bobina. La onda es variable en el espacio y su valor, en cada punto del entrehierro, será siepre el iso en tanto no Página 7 de 13.

8 varíe la corriente que circula por la bobina o peranezca invariable la posición de la bobina. La aplitud de la onda de f... vale: N i = Si suponeos ahora que se alienta la bobina con una corriente senoidal: i = I! cos ωt entonces, la f... será una función del espacio y del tiepo y responderá a la expresión: N I ( θ, t) = cosωt cosθ = cosωt cosθ Para ver el significado de esta últia expresión se ha dibujado en la figura 3 la onda (θ,t) en diferentes instantes de tiepo, así coo la fora de la corriente alterna. A edida que evoluciona el tiepo, la corriente que circula por la bobina sigue una distribución senoidal, lo que hace odificar la aplitud de la f... En la figura se ha representado la distribución de f... en el entrehierro en cada instante de tiepo y su fasor espacial correspondiente. Se observa que la onda de f... y su fasor espacial peranecen fijos en el espacio pero que su aplitud varía senoidalente con el tiepo. Se dice entonces que la onda es estacionaria o pulsante. Página 8 de 13.

9 igura 3 Página 9 de 13.

10 .M.M. PRODUCIDA POR UN DEVANADO TRIASICO. CAMPOS GIRATORIOS. TEOREMA DE ERRARIS. Veaos ahora un caso que tiene una gran utilidad práctica en el funcionaiento de las áquinas eléctricas. Considereos un sistea forado por tres devanados, colocados bien sea en el estator o en el rotor, de tal fora que estén desfasados 10 eléctricos en el espacio, coo se indica esqueáticaente en la figura 4. igura 4. Cada zona rayada de la isa anera, indica un devanado distribuido de la isa fase, para que en total se cubra la periferia de la áquina. Interesa calcular la f... en un punto P del entrehierro deterinado por el ángulo, respecto del eje del devanado AA' (fase a), debido a la contribución de los tres arrollaientos, al circular por ellos un sistea de corrientes trifásicas equilibradas, es decir: i i a b = I = I cosωt cos ( ωt 10º ) ( ωt 10º ) i c = I cos + Suponiendo, coo en los casos anteriores que la distribución de la f... de cada devanado sea senoidal en el espacio, cada devanado producirá una capo pulsatorio orientado en su eje respectivo. Coo qui Página 10 de 13.

11 era que los tres ejes agnéticos están desfasados 10 eléctricos en el espacio, las f...s. que producen cada devanado en el punto P del entrehierro serán: a b ( θ, t) = cosωt cosθ ( θ, t) = cos( ωt 10º ) cos( θ 10º ) ( θ, t) = cos( ωt + 10º ) cos( θ 10º ) c + hay que recalcar que los devanados llevan corrientes desfasadas 10 en el tiepo y que los bobinados están desfasados 10 eléctricos en el espacio. En consecuencia la onda de f... resultante en el punto P será igual a la sua de tres ondas pulsatorias anteriores: [ cosωt cosθ + cos( ωt 10º ) cos( θ 10º ) + cos( ωt + 10º ) cos( θ 10º )] T = + que haciendo uso de la trigonoetría queda, finalente: 3 ( θ, t) = cos( ωt θ) = cos( ωt pα) 3 En la figura 5 se ha representado la evolución en el tiepo de las tres corrientes, las ondas de f... de cada una de las fases, la f... resultante coo sua de las tres ondas, y en la parte derecha se ha efectuado la sua haciendo uso de los fasores espaciales. Coo se ha representado un ciclo copleto de las corrientes en el tiepo y se observa gráficaente que corresponde a un ciclo copleto de rotación del fasor f... resultante, se dice entonces que ha producido un capo agnético giratorio que presenta dos características fundaentales: - Tiene una aplitud constante - Gira a velocidad constante. Página 11 de 13.

12 igura 5. Página 1 de 13.

13 Si la áquina es bipolar, coo es el caso que heos representado, una variación de 360 eléctricos en el tiepo corresponde a un giro de 360 agnéticos en el espacio. Coo para una áquina bipolar coinciden los grados eléctricos con los geoétricos, cada ciclo de variación de la corriente provoca una revolución copleta de la f... Si se realiza el devanado para cuatro polos, entonces serán necesarios dos ciclos de variación de la corriente para obtener una revolución en la f... En general si la áquina tiene p polos la velocidad de giro del fasor espacial de f... será: ω = p! ω y si denoinaos por n a la velocidad de giro de la f... en r.p.. y f a la frecuencia de las corrientes se cuple: n ω = π ω = π f 60 que al sustituir en la expresión anterior resultará: 60 f n = p que se denoina velocidad de sincroniso del capo giratorio y que es función directa de la frecuencia y del núero de pares de polos de la áquina. Si se considera el caso de España donde la frecuencia es de 50 Hz. las velocidades de sincroniso que se obtienen según sea el núero de polos (,4,6,8,...) son 3000, 1500, 1000, respectivaente. El estudio anterior constituye la deostración de teorea de erraris, e indica la posibilidad de producir un capo agnético giratorio a partir de un sistea de tres devanados fijos desfasados 10 eléctricos en el espacio, por los que se introducen corrientes desfasadas 10 en el tiepo. Página 13 de 13.

CAMPO MAGNÉTICO FCA 07 ANDALUCÍA

CAMPO MAGNÉTICO FCA 07 ANDALUCÍA 1. Una cáara de niebla es un dispositivo para observar trayectorias de partículas cargadas. Al aplicar un capo agnético unifore, se observa que las trayectorias seguidas por un protón y un electrón son

Más detalles

PROBLEMAS RESUELTOS DE INDUCCIÓN ELECTROMAGNÉTICA

PROBLEMAS RESUELTOS DE INDUCCIÓN ELECTROMAGNÉTICA 0 PROLEMAS RESUELTOS DE INDUCCIÓN ELECTROMAGNÉTICA PROLEMAS DEL CURSO Un rotor de 100 espiras gira dentro de un capo agnético constante de 0,1 T con una elocidad angular de 50 rad/s. Sabiendo que la superficie

Más detalles

UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA

UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA Objetivos Geoetría analítica Introducción U 3.1. Definición de recta 91 Dos puntos sólo pueden ser unidos por una sola recta la relación ateática que satisface

Más detalles

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R TEMA PE9 PE.9.1. Los campos magnéticos de los que estamos rodeados continuamente representan un riesgo potencial para la salud, en Europa se han establecido recomendaciones para limitar la exposición,

Más detalles

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que

Más detalles

8.9 Algunas aplicaciones de la inducción magnética.

8.9 Algunas aplicaciones de la inducción magnética. CAPÍTULO 8 Inducción agnética Índice del capítulo 8 8. Flujo agnético. 8. La ley de Faraday. 83 8.3 Ley de Lenz. 8.4 Fe de oviiento. 8.5 Corrientes de Foucault. 8.6 Inductancia. 8.7 Energía agnética. 8.8

Más detalles

TEMA 5: Motores de Corriente Continua.

TEMA 5: Motores de Corriente Continua. Esquema: TEMA 5: Motores de Corriente Continua. TEMA 5: Motores de Corriente Continua....1 1.- Introducción...1 2.- Ley de Faraday...2 3.- Constitución de una Máquina Eléctrica...2 4.- Principio de un

Más detalles

INDUCCIÓN MAGNÉTICA. b N v u e l t a s. a B

INDUCCIÓN MAGNÉTICA. b N v u e l t a s. a B INDUCCIÓN MAGNÉTICA 1) Un solenoide posee n vueltas por unidad de longitud, radio 1 y transporta una corriente I. (a) Una bobina circular grande de radio 2 > 1y N vueltas rodea el solenoide en un punto

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2014-2 2 Capítulo 5. Torsión 5.4 Ángulo 3 Un par es un momento que tiende a hacer girar respecto a su eje longitudinal. Su efecto es de interés

Más detalles

Capítulo VII CENTRO DE GRAVEDAD, CENTRO DE MASA Y CENTROIDE

Capítulo VII CENTRO DE GRAVEDAD, CENTRO DE MASA Y CENTROIDE Capítulo II CENTRO DE GREDD, CENTRO DE MS Y CENTROIDE 7. INTRODUCCIÓN Todo cuerpo que se halla en las inediaciones de la tierra interactúa con ella coo resultado de esta interacción actúa sore el cuerpo

Más detalles

SESION 12: FUNDAMENTOS DE LAS MAQUINAS DE CORRIENTE ALTERNA CA

SESION 12: FUNDAMENTOS DE LAS MAQUINAS DE CORRIENTE ALTERNA CA SESION 12: FUNDAMENTOS DE LAS MAQUINAS DE CORRIENTE ALTERNA CA 1. INTRODUCCION Las máquinas de corriente alterna pueden ser generadores que convierten energía mecánica en energía eléctrica de corriente

Más detalles

FÍSICA. PRUEBA ACCESO A UNIVERSIDAD +25 TEMA 9. Magnetismo

FÍSICA. PRUEBA ACCESO A UNIVERSIDAD +25 TEMA 9. Magnetismo FÍSICA. PRUEBA ACCESO A UNIVERSIDAD +5 TEMA 9. Magnetiso El agnetiso es un fenóeno que fue observado por los griegos de la región de Magnesia al ver coo el ineral agnetita (Fe 3 O 4 ) atraía pequeños trozos

Más detalles

2 m C. S

2 m C. S www.clasesalacarta.co Uniersidad de Castilla La Mancha Junio 04 JUNIO 04 Opción A Problea.- Un planeta gigante tiene dos satélites, S y S, cuyos periodos orbitales son T = 4.5 días terrestres y T = 5.9

Más detalles

1.- EL CAMPO MAGNÉTICO

1.- EL CAMPO MAGNÉTICO 1.- EL CAMPO MAGNÉTICO Las cargas en oviiento foran una corriente eléctrica I; y estas generan una nueva perturbación en el espacio que se describe por edio de una agnitud nueva llaada capo agnético B.

Más detalles

EL MUELLE. LAS FUERZAS ELÁSTICAS

EL MUELLE. LAS FUERZAS ELÁSTICAS EL MUELLE. LAS FUERZAS ELÁSTICAS En una pista horizontal copletaente lisa, se encuentra un uelle de 30 c de longitud y de constante elástica 100 N/. Se coprie 0 c y se sitúa una asa de 500 g frente a él.

Más detalles

Ejemplos resueltos: CIRCUNFERENCIA Y ELIPSE

Ejemplos resueltos: CIRCUNFERENCIA Y ELIPSE Ejeplo : Deterina la ecuación de la circunferencia con centro en (,) y que pasa por el punto (,5) Respuesta: ( x + ) + ( y ) 0 Ejeplo : Deterina centro, radio y grafica de x 6x + y + y (x- )² + (y + /)²

Más detalles

ASIGNATURA GAIA MECÁNICA DE FLUIDOS NOMBRE IZENA FECHA DATA 18/1/ mm L = 0,5 m 1V1. 10 mm L = 0,5 m. 8 mm

ASIGNATURA GAIA MECÁNICA DE FLUIDOS NOMBRE IZENA FECHA DATA 18/1/ mm L = 0,5 m 1V1. 10 mm L = 0,5 m. 8 mm SIGNUR GI MECÁNIC DE FLUIDOS CURSO KURSO NOMBRE IZEN FECH D 8//00 0 L 0, V B 8 L 0V 0V 0 L 0, ubería de retorno al tanque 0 L 0Z B 0Z M 0 8 L Esquea de fijación del cilindro y vástago S El circuito hidráulico

Más detalles

1 Universidad de Castilla La Mancha Septiembre 2015 SEPTIEMRE 2015 Opción A Problema 1.- Tenemos tres partículas cargadas q 1 = -20 C, q 2 = +40 C y q 3 = -15 C, situadas en los puntos de coordenadas A

Más detalles

Factor de forma para conducción bidimensional

Factor de forma para conducción bidimensional Factor de fora para conducción bidiensional En la literatura es frecuente encontrar soluciones analíticas a soluciones de interés práctico en ingeniería. En particular, el factor de fora perite calcular

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE A: JUSTIFICACIÓN Al observar la Naturaleza nos daos cuenta de que uchos eventos físicos (por ejeplo el oviiento de rotación y traslación de los planetas) son repetitivos, sucediendo

Más detalles

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común. Magnetismo

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común. Magnetismo Nombre: Campo magnético Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común Guía 14 Magnetismo Fecha: Un imán genera en su entorno un campo magnético que es el espacio perturbado por

Más detalles

MOTOR DE INDUCCION MONOFASICO

MOTOR DE INDUCCION MONOFASICO MAQUINAS ELÉCTRICAS ROTATIVAS MOTOR DE INDUCCION MONOFASICO Mg. Amancio R. Rojas Flores 1. Principio de funcionamiento Básicamente, un motor de inducción monofásico está formado por un rotor en jaula de

Más detalles

MAQUINAS ELECTRICAS MODULO DE AUTOAPRENDIZAJE V

MAQUINAS ELECTRICAS MODULO DE AUTOAPRENDIZAJE V SESION 1: INTRODUCCION DE A LOS PRINCIPIOS DE LAS MAQUINAS ELECTRICAS 1. DEFINICION DE MAQUINAS ELECTRICAS Las Máquinas Eléctrica son dispositivos empleados en la conversión de la energía mecánica a energía

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles

Una fuerza es una magnitud vectorial que representa la interacción entre dos cuerpos.

Una fuerza es una magnitud vectorial que representa la interacción entre dos cuerpos. 1 Concepto de fuerza Una fuerza es una agnitud vectorial que representa la interacción entre dos cuerpos. La interacción entre dos cuerpos se puede producir a distancia o por contacto. or tanto las fuerzas

Más detalles

s sufre, por ese campo magnético, una fuerza

s sufre, por ese campo magnético, una fuerza Problemas de Campo Magnético. 1. En el sistema de referencia ( O; i, j, k ) un hilo conductor colocado en la dirección del eje OY, tiene una intensidad de 10 A en el sentido positivo de dicho eje. Si hay

Más detalles

= = 11,11. Actividades resueltas de Dinámica

= = 11,11. Actividades resueltas de Dinámica Actividades resueltas de Dináica Sobre un cuerpo de 5 kg actúa una uerza de 0 N durante 3 s. Calcular: a) El ipulso de la uerza. b) La variación de la cantidad de oviiento del cuerpo. c) Su velocidad inal

Más detalles

Inducción electromagnética. Ecuaciones de Maxwell

Inducción electromagnética. Ecuaciones de Maxwell Inducción electroagnética. Física II Grado en Ingeniería de Organización Industrial Prier Curso Joaquín Bernal Méndez/Ana Marco Raírez Curso 2011-2012 Departaento de Física Aplicada III Universidad de

Más detalles

3. TRANSFORMADORES. Su misión es aumentar o reducir el voltaje de la corriente manteniendo la potencia. n 2 V 1. n 1 V 2

3. TRANSFORMADORES. Su misión es aumentar o reducir el voltaje de la corriente manteniendo la potencia. n 2 V 1. n 1 V 2 3. TRANSFORMADORES Un transformador son dos arrollamientos (bobina) de hilo conductor, magnéticamente acoplados a través de un núcleo de hierro común (dulce). Un arrollamiento (primario) está unido a una

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

FÍSICA DE MATERIALES 3 de Febrero de 2011

FÍSICA DE MATERIALES 3 de Febrero de 2011 1. El polipropileno es uno de los políeros ás coúnente epleados en nuestra vida diaria. Lo ás habitual es que el polipropileno cristalice en el sistea onoclínico con paráetros de red a=0,665 n, b=2.095

Más detalles

Una Forma Distinta para Hallar la Distancia de un Punto a una Recta

Una Forma Distinta para Hallar la Distancia de un Punto a una Recta Una Fora Distinta para Hallar la Distancia de un Punto a una Recta Lic. Enrique Vílchez Quesada Universidad Nacional Escuela de Mateática Abstract La siguiente propuesta nace de la iniciativa de copartir

Más detalles

ESTIMACIÓN DE LA RADIACIÓN GLOBAL HORIZONTAL A PARTIR DE LAS BANDAS HELIOGRAFICAS

ESTIMACIÓN DE LA RADIACIÓN GLOBAL HORIZONTAL A PARTIR DE LAS BANDAS HELIOGRAFICAS 3.4 Radiación global y instruentos de edición La radiación global se define coo radiación solar en el intervalo espectral de 0.3 y 3 μ se calcula coo RG=Rdir + Rdif sua de dos agnitudes y son radiación

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE 4 MOVIMIENO ARMÓNICO SIMPLE 4.. MOVIMIENOS PERIÓDICOS. Conocido el período de rotación de la Luna alrededor de la ierra, y sabiendo que la Luna no eite luz propia, sino que refleja la que recibe del Sol,

Más detalles

Departamento de Física y Química. PAU Física, junio 2012 OPCIÓN A

Departamento de Física y Química. PAU Física, junio 2012 OPCIÓN A 1 PAU Física, junio 2012 OPCIÓN A Pregunta 1.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita circular a una altura de 2 10 4 km sobre su superficie. Calcule la velocidad orbital

Más detalles

INDICE Capítulo 1. Conversión de Energía Capítulo 2. Inductancia Capítulo 3. Transformador

INDICE Capítulo 1. Conversión de Energía Capítulo 2. Inductancia Capítulo 3. Transformador INDICE Capítulo 1. Conversión de Energía 1 1.1. Fuerza en un capacitor 2 1.2. El Toroide 5 1.3. Circuitos magnéticos en serie y paralelo 7 1.4. Otros sistemas comunes de unidades magnéticas 8 1.5. Materiales

Más detalles

d m φ dt ξ = Por otro lado, por definición, la fem es la integral del campo a lo largo de una trayectoria C, o trayectoria cerrada

d m φ dt ξ = Por otro lado, por definición, la fem es la integral del campo a lo largo de una trayectoria C, o trayectoria cerrada Tema: Inducción magnética. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética. I. Objetivos. Comprender acerca de la relación del voltaje inducido en una bobina, en función

Más detalles

b) Debe desarrollar las cuestiones y problemas de una de las dos opciones c) Puede utilizar calculadora no programable

b) Debe desarrollar las cuestiones y problemas de una de las dos opciones c) Puede utilizar calculadora no programable Dpto. Física y Quíica Instrucciones a) Duración: hora y 3 inutos b) Debe desarrollar las cuestiones y probleas de una de las dos opciones c) Puede utilizar calculadora no prograable d) Cada cuestión o

Más detalles

Unidad didáctica: Electricidad, electromagnetismo y medidas

Unidad didáctica: Electricidad, electromagnetismo y medidas Unidad didáctica: Electricidad, electroagnetiso y edidas CURSO 3º ESO versión 1.0 1 Unidad didáctica: Electricidad, electroagnetiso y edidas ÍNDICE 1.- Introducción..- Corriente eléctrica..1.- Corriente

Más detalles

Tema 1: Combinatoria

Tema 1: Combinatoria Tea : Cobinatoria C. Ortiz, A. Méndez, E. Martín y J. Sendra Febrero de Índice Guía del tea. Introducción. Principios básicos del conteo 3. Variaciones 4. Perutaciones 4 5. Perutaciones circulares. 5 6.

Más detalles

Módulo 7: Fuentes del campo magnético

Módulo 7: Fuentes del campo magnético 7/04/03 Módulo 7: Fuentes del campo magnético Campo magnético creado por cargas puntuales en movimiento Cuando una carga puntual q se mueve con velocidad v, se produce un campo magnético B en el espacio

Más detalles

6. Máquinas eléctricas.

6. Máquinas eléctricas. 6. Máquinas eléctricas. Definiciones, clasificación y principios básicos. Generadores síncronos. Campos magnéticos giratorios. Motores síncronos. Generadores de corriente continua. Motores de corriente

Más detalles

VARIADORES DE FRECUENCIA]

VARIADORES DE FRECUENCIA] VARIADORES DE FRECUENCIA] Variador De Frecuencia Micromaster Siemens Cuando los motores Eléctricos no eran capaces de alcanzar un elevado potencial Eléctrico a reducidas y a grandes velocidades a la vez,

Más detalles

Guía complementaria / PTL Guía de Ejercicios Vectores y algunas Aplicaciones.

Guía complementaria / PTL Guía de Ejercicios Vectores y algunas Aplicaciones. Guía de Ejercicios Vectores y algunas plicaciones. 1 Notabene : Todas las agnitudes vectoriales se presentan en esta guía con negrita y cursiva. Por distracción, puede haberse oitido tal cosa en algún

Más detalles

Análisis de circuitos trifásicos. Primera parte

Análisis de circuitos trifásicos. Primera parte Análisis de circuitos trifásicos. Primera parte Objetivos 1. Mencionar el principio de funcionamiento de los generadores trifásicos. 2. Establecer los tipos básicos de conexiones de circuitos trifásicos

Más detalles

1. Concepto de amplificación de señales en los circuitos de control Amplificadores estáticos Amplificadores magnéticos...

1. Concepto de amplificación de señales en los circuitos de control Amplificadores estáticos Amplificadores magnéticos... Contenido 1. Concepto de amplificación de señales en los circuitos de control.... 2 2. Amplificadores estáticos.... 2 2.1. Amplificadores magnéticos... 2 2.2. Amplificadores electrónicos.... 3 3. Amplificadores

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, septiembre 2011 OPCIÓN A Cuestión 1.- Un espejo esférico convexo, proporciona una imagen virtual de un objeto que se encuentra a 3 m del espejo con un tamaño 1/5 del de la imagen real. Realice

Más detalles

PROBLEMAS ELECTROMAGNETISMO

PROBLEMAS ELECTROMAGNETISMO PROBLEMAS ELECTROMAGNETISMO 1. Se libera un protón desde el reposo en un campo eléctrico uniforme. Aumenta o disminuye su potencial eléctrico? Qué podemos decir de su energía potencial? 2. Calcula la fuerza

Más detalles

MÁQUINAS ASÍNCRONAS O DE INDUCCIÓN

MÁQUINAS ASÍNCRONAS O DE INDUCCIÓN DOCUMENTACIÓN DE LA PRÁCTICA DE LABORATORIO: MÁQUINAS ASÍNCRONAS O DE INDUCCIÓN 1.- CONEXIONADO DE LOS MOTORES TRIFÁSICOS DE INDUCCIÓN a) b) c) Fig. 1: Caja de bornes de un motor asíncrono trifásico: a)

Más detalles

5.1.1)Principio de funcionamiento.

5.1.1)Principio de funcionamiento. CAPÍTULO 5 MÁQUINAS DE CORRIENTE CONTINUA 5.1)ASPECTOS CONSTRUCTIVOS Y PRINCI- PIO DE FUNCIONAMIENTO. 5.1.1)Principio de funcionamiento. Devanado de Estator (campo): - Objetivo: producir el campo que posibilita

Más detalles

PROBLEMAS DE VIBRACIONES Y ONDAS

PROBLEMAS DE VIBRACIONES Y ONDAS PROBLEMAS DE VBRACONES Y ONDAS º PROBLEMAS DE M.A.S. PROBLEMAS RESUELTOS º Una partícula que realiza un M.A.S. recorre una distancia total de 0 c en cada vibración copleta y su áxia aceleración es de 50

Más detalles

GENERADORES DE CORRIENTE CONTINUA (C.C) INTRODUCCIÓN

GENERADORES DE CORRIENTE CONTINUA (C.C) INTRODUCCIÓN GENERADORES DE CORRIENTE CONTINUA (C.C) INTRODUCCIÓN La máquina de c-c es una maquina de polos, salientes con los polos salientes en el estator. En estos polos van colocadas diversas bobinas de campo que

Más detalles

CURSO CERO DE FÍSICA DINÁMICA

CURSO CERO DE FÍSICA DINÁMICA CURSO CERO DE ÍSICA Departaento de ísica COTEIDO. Principios fundaentales de la dináica. Priera ley de ewton: Ley de la inercia. Segunda ley de ewton: Ley fundaental de la dináica. Tercera ley de ewton:

Más detalles

EJERCICIOS PROPUESTOS DE MAQUINAS ELECTRICAS TEMA-2 (TRANSFORMADORES)

EJERCICIOS PROPUESTOS DE MAQUINAS ELECTRICAS TEMA-2 (TRANSFORMADORES) EJERCICIO Nº1 EJERCICIOS PROPUESTOS DE MAQUINAS ELECTRICAS TEMA-2 (TRANSFORMADORES) Un transformador monofásico de 10KVA, relación 500/100V, tiene las siguientes impedancias de los devanados: Ω y Ω. Al

Más detalles

Cap Desviación de fase, el índice de modulación y la desviación de frecuencia

Cap Desviación de fase, el índice de modulación y la desviación de frecuencia Cap. 6-2.- Desviación de fase, el índice de odulación y la desviación de frecuencia Coparar las expresiones (c), (d) y (e) para la portadora con odulación angular, en la tabla 6-1, uestra que la fórula

Más detalles

F.M.M. Y CAMPO MAGNÉTICO EN EL ENTREHIERRO DE LAS MÁQUINAS ELÉCTRICAS SIMÉTRICAS

F.M.M. Y CAMPO MAGNÉTICO EN EL ENTREHIERRO DE LAS MÁQUINAS ELÉCTRICAS SIMÉTRICAS UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA F.M.M. Y CAMPO MAGNÉTICO EN EL ENTREHIERRO DE LAS MÁQUINAS ELÉCTRICAS SIMÉTRICAS Miguel Ángel Rodríguez Pozueta F.M.M. Y CAMPO

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

Inversores. Conversión de continua a alterna

Inversores. Conversión de continua a alterna Inversores Conversión de continua a alterna Introducción Convierten corriente continua a alterna. Motores de alterna de velocidad ajustable. Sistemas de alimentación ininterrumpida. Dispositivos de corriente

Más detalles

MAGNETISMO. Martín Carrera Rubín 2ª

MAGNETISMO. Martín Carrera Rubín 2ª MAGNETISMO Martín Carrera Rubín 2ª 1. Introducción 2. Hipótesis 3. Materiales 4. Procedimientos 5. Análisis de los resultados 6. Conclusión Esta práctica de magnetismo podemos distinguir varios puntos

Más detalles

Sistemas Trifásicos. Departamento de Ingeniería Eléctrica UNEFA Maracay Redes Eléctricas II Chrystian Roa

Sistemas Trifásicos. Departamento de Ingeniería Eléctrica UNEFA Maracay Redes Eléctricas II Chrystian Roa Generador trifásico Secuencia de fases. Conexiones: estrella, delta. Carga trifásica. Estudio y resolución de sistemas en desequilibrio. Modelo equivalente monofásico. Estudio y resolución de sistemas

Más detalles

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo FUNDAMENTOS DE INGENIERÍA ELÉCTRICA José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo Tema 10: Máquinas de corriente continua PUNTOS OBJETO

Más detalles

CÁLCULO DE PENDIENTE EN CAÑERIA DE DESAGÜE CLOACAL

CÁLCULO DE PENDIENTE EN CAÑERIA DE DESAGÜE CLOACAL CÁLCULO DE PENDIENTE EN CAÑERIA DE DESAGÜE CLOACAL FUNDAMENTOS PROCEDIMIENTOS CRITERIOS DE PROYECTO PROFESOR: M.M.O. MARTÍN RODRIGO PIRAGINI ESPECIALIDAD: CONSTRUCCIONES CIVILES 1 Pasos para el diseño

Más detalles

INSTITUTO POLITECNICO NACIONAL Centro de Estudios Científicos y Tecnológicos Wilfrido Massieu Laboratorio de Física III. Alumno Grupo Equipo

INSTITUTO POLITECNICO NACIONAL Centro de Estudios Científicos y Tecnológicos Wilfrido Massieu Laboratorio de Física III. Alumno Grupo Equipo NSTTUTO POTECNCO NCON Centro de Estudios Científicos y Tecnológicos Wilfrido Massieu aboratorio de Física luno Grupo Equipo Profesor de teoría Profesor de laboratorio Fecha / / Calificación.- Ubicación

Más detalles

MATERIAL PARA DIVERSIFICACIÓN: LAS MÁQUINAS ELÉCTRICAS PARA EL ALUMNADO DE ALTO NIVEL

MATERIAL PARA DIVERSIFICACIÓN: LAS MÁQUINAS ELÉCTRICAS PARA EL ALUMNADO DE ALTO NIVEL ISS 1988-47 DEP. LEGAL: GR 9/007 º 6 EERO DE 010 MATERIAL PARA DIVERSIFICACIÓ: LAS MÁQUIAS ELÉCTRICAS PARA EL ALUMADO DE ALTO IVEL Resumen AUTORIA ADRÉS ATOIO GIL MARTÍ TEMÁTICA TECOLOGÍA ETAPA BACHILLERATO

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 2002-2003 CONVOCATORIA SEPTIEMBRE ELECTROTÉCNIA EL ALUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro

Más detalles

Tema Magnetismo

Tema Magnetismo Tema 21.8 Magnetismo 1 Magnetismo Cualidad que tienen ciertos materiales de atraer al mineral de hierro y todos los derivados que obtenemos de él. Imán natural: magnetita tiene la propiedad de ejercer

Más detalles

TEMA I.4. Descripción Matemática de una Onda. Dr. Juan Pablo Torres-Papaqui

TEMA I.4. Descripción Matemática de una Onda. Dr. Juan Pablo Torres-Papaqui TEMA I.4 Descripción Matemática de una Onda Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas,

Más detalles

T-2) LA FUERZA DE LORENTZ (10 puntos)

T-2) LA FUERZA DE LORENTZ (10 puntos) T-2) LA FUERZA DE LORENTZ (10 puntos) Un móvil se desliza por un plano inclinado sobre el que pende el conductor cilíndrico AC a una distancia h de la línea de máxima pendiente, tal como indica la figura.

Más detalles

Examen Final Fisi 3162/3172 Nombre: lunes, 18 de mayo de 2009

Examen Final Fisi 3162/3172 Nombre: lunes, 18 de mayo de 2009 Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de ísica Examen inal isi 3162/3172 Nombre: lunes, 18 de mayo de 2009 Sección: Prof. Lea cuidadosamente las instrucciones. Seleccione

Más detalles

Campo Magnético en un alambre recto.

Campo Magnético en un alambre recto. Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar

Más detalles

OLIMPIADA DE FÍSICA 2011 PRIMER EJERCICIO

OLIMPIADA DE FÍSICA 2011 PRIMER EJERCICIO OLIMPIADA DE FÍSICA 011 PRIMER EJERCICIO Con ayuda de una cuerda se hace girar un cuerpo de 1 kg en una circunferencia de 1 m de radio, situada en un plano vertical, cuyo centro está situado a 10,8 m del

Más detalles

Examen de TEORIA DE MAQUINAS Junio 07 Nombre...

Examen de TEORIA DE MAQUINAS Junio 07 Nombre... Examen de TEORIA DE MAQUINAS Junio 07 Nombre... La figura muestra un mecanismo biela-manivela. La manivela posee masa m y longitud L, la biela masa 3 m y longitud 3 L, y el bloque masa 2m. En la posición

Más detalles

Tema 6. Análisis de Circuitos en Régimen Sinusoidal Permanente

Tema 6. Análisis de Circuitos en Régimen Sinusoidal Permanente Tea 6. Análisis de Circuitos en Régien Sinusoidal Peranente 6. ntroducción 6. Fuentes sinusoidales 6.3 Respuesta sinusoidal en estado estable 6.4 Fasores 6.5 Relaciones fasoriales para R, L y C 6.6 pedancia

Más detalles

Problema 1 El campo magnético en una cierta región del espacio es

Problema 1 El campo magnético en una cierta región del espacio es Dpto de Física UNS Electromagnetismo y Física B 2do Cuat. 2011 Guía N 5 (Faraday - Inducción Electromagnética) Prof. C Carletti Asist. W. Reimers Problema 1 El campo magnético en una cierta región del

Más detalles

La Energía Mecánica. E = m v

La Energía Mecánica. E = m v Energía La Energía Mecánica Direos que la energía de un cuerpo o sistea de cuerpos es la capacidad que tienen para realizar trabajo. Esta definición es iperfecta pero nos alcanza para hacer una priera

Más detalles

1. Calificación máxima: 2 puntos Calcular los siguientes límites (donde Ln significa Logaritmo Neperiano).

1. Calificación máxima: 2 puntos Calcular los siguientes límites (donde Ln significa Logaritmo Neperiano). JUNIO INSTRUCCIONES: El eaen presenta dos opciones B; el aluno deberá elegir una de ellas contestar raonadaente a los cuatro ejercicios de que consta dicha opción en h. in. OPCIÓN. Calificación áia: puntos

Más detalles

Mantenimiento y reparación de motores asíncronos

Mantenimiento y reparación de motores asíncronos y reparación de motores asíncronos Índice: y reparación de averías 1. Herramientas. 2.. 3. de averías. de motores de inducción. 2 Herramientas y reparación de averías de motores de inducción. 3 y reparación

Más detalles

Campo Magnético. Cuestiones y problemas de las PAU-Andalucía

Campo Magnético. Cuestiones y problemas de las PAU-Andalucía Campo Magnético. Cuestiones y problemas de las PAU-Andalucía Cuestiones 1. a) (12) Fuerza magnética sobre una carga en movimiento; ley de Lorentz. b) Si la fuerza magnética sobre una partícula cargada

Más detalles

El modelo semiclásico de las propiedades de transporte: Objetivo

El modelo semiclásico de las propiedades de transporte: Objetivo El modelo semiclásico de las propiedades de transporte: Objetivo En el estudio de las propiedades de transporte se usa una aproximación que se basa en los principios usado para el estudio de los electrones

Más detalles

TEMA I: Modelación Experimental de Procesos

TEMA I: Modelación Experimental de Procesos TEMA I: Modelación Experiental de Procesos Métodos Clásicos para Modelación o Identificación de Procesos. Introducción La puesta en funcionaiento de un deterinado proceso que opera en lazo cerrado, requiere

Más detalles

Tema 8. Inducción electromagnética

Tema 8. Inducción electromagnética Tema 8. Inducción electromagnética Se producirá una corriente eléctrica inducida en un circuito, cuando varíe el flujo magnético que lo atraviesa. Los aparatos se alimentan con energía eléctrica, y necesitan

Más detalles

CORRIENTE INDUCIDA EN UN SOLENOIDE. EL TRANSFORMADOR.

CORRIENTE INDUCIDA EN UN SOLENOIDE. EL TRANSFORMADOR. eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

DISEÑO Y FABRICACIÓN DE UN MOTOR DE CORRIENTE CONTINUA

DISEÑO Y FABRICACIÓN DE UN MOTOR DE CORRIENTE CONTINUA ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA Trabajo de Sistemas Eléctricos - CURSO 2005-2006 DISEÑO Y FABRICACIÓN DE UN MOTOR DE CORRIENTE CONTINUA ÍNDICE 1 Diseño de

Más detalles

Volumen de Sólidos de Revolución

Volumen de Sólidos de Revolución 60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido

Más detalles

JMLC - Chena IES Aguilar y Cano - Estepa. Introducción

JMLC - Chena IES Aguilar y Cano - Estepa. Introducción Introducción En Magnesia existía un mineral que tenía la propiedad de atraer, sin frotar, materiales de hierro, los griegos la llamaron piedra magnesiana. Pierre de Maricourt (1269) da forma esférica a

Más detalles

CAPITULO XI EL VATIMETRO. El vatímetro es un instrumento capaz de medir la potencia promedio consumida en un circuito

CAPITULO XI EL VATIMETRO. El vatímetro es un instrumento capaz de medir la potencia promedio consumida en un circuito CAPIULO XI EL VAIMERO. INRODUCCION. El vatímetro es un instrumento capaz de medir la potencia promedio consumida en un circuito Según la definición de potencia, un vatímetro debe ser un instrumento que

Más detalles

ELECTRODINAMICA. Nombre: Curso:

ELECTRODINAMICA. Nombre: Curso: 1 ELECTRODINAMICA Nombre: Curso: Introducción: En esta sesión se estudiara los efectos de las cargas eléctricas en movimiento en diferentes tipos de conductores, dando origen al concepto de resistencia

Más detalles

PRUEBA OBJETIVA. Encierre con un círculo la letra o letras que correspondan a las alternativas válidas de entre las propuestas.

PRUEBA OBJETIVA. Encierre con un círculo la letra o letras que correspondan a las alternativas válidas de entre las propuestas. PRUEBA OBJETIVA Encierre con un círculo la letra o letras que correspondan a las alternativas válidas de entre las propuestas. 1. Capital financiero es: a) Es la edida de un bien econóico referida al oento

Más detalles

Motor eléctrico: Sistema que convierte la energía Eléctrica en Mecánica.

Motor eléctrico: Sistema que convierte la energía Eléctrica en Mecánica. Motor eléctrico: Sistema que convierte la energía Eléctrica en Mecánica. Motor eléctrico: Lo más común es la máquina rotatoria Motor eléctrico: Pero existen otros sistemas que también son Motores. Motor

Más detalles

4. GUÍAS DE ONDA. 4.1.1 guías de onda planas con espejos. Para el análisis de propagación en estas guías se hacen las siguientes consideraciones:

4. GUÍAS DE ONDA. 4.1.1 guías de onda planas con espejos. Para el análisis de propagación en estas guías se hacen las siguientes consideraciones: C4-Guias de onda 1 4. GUÍAS DE ONDA Debido a efectos difractivos, los haces de luz van increentando su sección transversal a edida que viajan en el espacio libre. Estos efectos pueden corregirse ediante

Más detalles

APUNTES DE LA ASIGNATURA:

APUNTES DE LA ASIGNATURA: APUNTES DE LA ASIGNATURA: ASIGNATURA OBLIGATORIA DE 3º DE INGENIERÍA INDUSTRIAL TEMA 9 TRENES DE ENGRANAJES JESÚS Mª PINTOR BOROBIA DR. INGENIERO INDUSTRIAL DPTO. DE INGENIERÍA MECÁNICA, ENERGÉTICA Y DE

Más detalles

UNIVERSIDADES DE ANDALUCÍA: PRUEBA DE SELECTIVIDAD. FÍSICA. JUNIO 2005

UNIVERSIDADES DE ANDALUCÍA: PRUEBA DE SELECTIVIDAD. FÍSICA. JUNIO 2005 I.E.S. Al-Ándalus. Arahal. Sevilla. Dpto. Física y Quíica. Selectividad Andalucía. Física. Junio 5-1 UNIVERSIDADES DE ANDALUCÍA: PRUEBA DE SELECTIVIDAD. FÍSICA. JUNIO 5 OPCIÓN A 1. Dos partículas con cargas

Más detalles

Javier Junquera. Movimiento de rotación

Javier Junquera. Movimiento de rotación Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.

Más detalles

Física General IV: Óptica

Física General IV: Óptica Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba Física General IV: Óptica Práctico de Laboratorio N 1: Ondas en una Cuerda Elástica 1 Objetivo: Estudiar el movimiento oscilatorio

Más detalles

Tema 1. Imanes. Campo, inducción y flujo magnético

Tema 1. Imanes. Campo, inducción y flujo magnético Tema 1. Imanes. Campo, inducción Emilio ha observado con frecuencia la utilización de imanes en la vida diaria, De dónde han salido? Cuáles son sus propiedades? Cómo podemos usarlos?. Desde los tiempos

Más detalles

a las pruebas de circuito abierto y cortocircuito a los generadores sincrónicos,

a las pruebas de circuito abierto y cortocircuito a los generadores sincrónicos, Electricidad avanzada ENTREGA 1 Pruebas de circuito abierto y cortocircuito en los generadores sincrónicos La máquina sincrónica es hoy por hoy, la más ampliamente utilizada para convertir grandes cantidades

Más detalles

División 3. Trenes de engranajes. Descripción Cinemática

División 3. Trenes de engranajes. Descripción Cinemática CAPITULO 9 TRENES DE ENGRANAJES, REDUCTORES PLANETARIOS Y DIFERENCIALES División 3 Trenes de engranajes. Descripción Cineática . Descripción General Introducción Un tren de engranajes es un ecaniso forado

Más detalles

Unidad didáctica: Electricidad y Electrónica

Unidad didáctica: Electricidad y Electrónica Unidad didáctica: Electricidad y Electrónica CURSO 1º ESO versión 1.0 Electricidad y Electrónica - 1 Unidad didáctica: Electricidad y Electrónica ÍNDICE 1.- El átoo y sus partículas..- Materiales conductores,

Más detalles

INDICE Capitulo 1. El concepto del circuito magnético Capitulo 2. Excitación de estructuras ferromagnéticas con corriente directa

INDICE Capitulo 1. El concepto del circuito magnético Capitulo 2. Excitación de estructuras ferromagnéticas con corriente directa INDICE Capitulo 1. El concepto del circuito magnético 1-1. introducción 1 1-2. algunas leyes básicas de electrostática 3 1-3. algunas leyes básicas de magnetostática 8 1-4. otras conclusiones útiles en

Más detalles