Capítulo VII CENTRO DE GRAVEDAD, CENTRO DE MASA Y CENTROIDE

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Capítulo VII CENTRO DE GRAVEDAD, CENTRO DE MASA Y CENTROIDE"

Transcripción

1 Capítulo II CENTRO DE GREDD, CENTRO DE MS Y CENTROIDE 7. INTRODUCCIÓN Todo cuerpo que se halla en las inediaciones de la tierra interactúa con ella coo resultado de esta interacción actúa sore el cuerpo una fuera resultante que tiene dirección radial que está dirigida hacia el centro de la tierra. Esta fuera es de naturalea gravitatoria porque es originada por el capo gravitatorio que rodea a la tierra recie el nore de FUERZ DE GREDD. a agnitud de esta fuera se deterina aplicando la le de Gravitación Universal de Newton, que dice: Dos cuerpos cualesquiera en el universo se atraen con una fuera cua agnitud es directaente proporcional al producto de sus asas e inversaente proporcional al cuadrado de la distancia que separa los centros de asa de los cuerpos. Estos cuerpos cualesquiera podrían ser el planeta tierra un ojeto uicado sore él. a fuera de la gravedad al actuar sore un cuerpo o partícula que se halla en el interior de un capo gravitatorio produce una aceleración denoinada aceleración de la gravedad. Esta aceleración tiene la isa dirección de la fuera de la gravedad su valor depende de la posición del cuerpo, es decir de la distancia que haa entre el cuerpo el centro de la tierra. Para un cuerpo uicado en las cercanías de la superficie terrestre, la aceleración de la gravedad tiene un valor proedio de 9,8 /s o, pie/s. a aceleración de la gravedad la fuera de la gravedad son edidas vectoriales de los efectos producidos por la acción del capo gravitatorio o capo gravitacional éste es el resultado de una propiedad de la ateria denoinada GREDD. 7. CENTRO DE GREDD (G) Es aquel punto de un cuerpo o partícula donde actúa la fuera resultante de la gravedad. Esta fuera es ejercida por el capo gravitatorio donde se halla inerso dicho cuerpo o partícula su agnitud o intensidad dependerá de las asas del cuerpo del planeta (la tierra, por ejeplo), así coo de la distancia que haa entre el centro del planeta el cuerpo. o partícula. Se considera que en el centro de gravedad se halla concentrado el peso total de un cuerpo

2 dw d G W as coordenadas del centro de gravedad G:,, se hallan ediante un proceso de integración, a partir de un diferencial de peso dw. Se cuple: dw dw Donde: dw dw dw dw dw d = peso específico Reeplaando dw oteneos: d d d d d d 7. CENTRO DE MS (C.M.) Es aquel punto donde actúa la fuera neta, a fin de deterinar el oviiento de traslación del cuerpo coo un todo. * Cuando un cuerpo está en oviiento, ha un punto que se ueve en la isa traectoria que seguiría una partícula si se sujetara a la isa fuera neta, a este punto se llaa centro de asa. as coordenadas del centro de asa:,,, se deterinan reeplaando ( = densidad) en las ecuaciones del centro de gravedad, coo g se cancela, queda: g d d d d d d donde: d d. Si se reeplaa está equivalencia en las ecuaciones anteriores, queda: d d d d d d Nota.- Para fines prácticos se considera que el centro de asa el centro de gravedad están en el iso punto. Sin eargo, si el cuerpo es lo suficienteente grande, la gravedad tiene valores distintos en diferentes partes del cuerpo, en este caso el centro de asa el centro de gravedad son diferentes. 4

3 7.4 CENTROIDE (C).- Es el centro geoétrico de un cuerpo u ojeto. Si el aterial que constitue el cuerpo u ojeto es unifore hoogéneo, las ecuaciones para calcular el centroide dependen sólo de la geoetría del cuerpo. Se consideran tres casos específicos. er Caso: Centroide de voluen d C Para calcular el centroide de un voluen, priero se elige un diferencial de voluen d, el cual puede ser un disco circular de espesor pequeño, un cascarón cilíndrico u otro eleento diferencial, ediante un proceso de integración se halla las coordenadas del centroide de dicho voluen. Si C ( ) es el centroide del voluen, donde son las coordenadas de C, estas coordenadas se deterinan ediante las siguientes ecuaciones: d d O taién d d d O taién d d d O taién d Donde:,,, son las coordenadas del centro de gravedad del eleento diferencial utiliado. 5

4 do Caso: Centroide de área C Para calcular el centroide de un área, priero se elige un diferencial de área, que generalente es un rectángulo, ediante un proceso de integración se halla las coordenadas del centroide de dicha área. Si C ( ) es el centroide del área, las coordenadas se deterinan en fora siilar que en el caso del voluen. Es decir: O taién O taién O taién er Caso: Centroide de línea Para calcular el centroide de una línea, priero se elige un diferencial de longitud d se procede igual que en los casos anteriores. d as coordenadas para el centroide de una línea se deterinan utiliando las ecuaciones siguientes: C d d d d O taién O taién d d d d O taién d 6

5 Nota: El centroide de un ojeto puede uicarse dentro o fuera del ojeto. siiso, si la figura del ojeto es siétrica, respecto a uno o ás ejes, su centroide se halla en uno de los ejes o en la intersección de los ejes (ver las figuras siguientes). C 7.4. Centroide en cuerpos copuestos Un cuerpo copuesto consiste en una serie de cuerpos de fora sencilla que están conectados. Estos cuerpos sencillos pueden ser rectangulares, triangulares, seicirculares, etc. os cuerpos copuestos pueden descoponerse en sus partes analiar cada parte por separado. Método para hallar el centroide de un ojeto geoétrico copuesto. Se divide el ojeto o cuerpo en un núero finito de partes coponentes que tengan foras ás sencillas. Si una parte coponente tiene un agujero, o una región geoétrica donde no eista aterial, ésta se toa coo una coponente adicional pero con signo negativo.. Se deterina las coordenadas,, del centroide de cada parte.. Se calcula las coordenadas del centroide del ojeto o cuerpo, utiliando las siguientes ecuaciones: En líneas: En áreas: 7

6 En volúenes: 7.4. TEOREMS DE PPPUS-GUDINUS TEOREM I: El área de una superficie de revolución es igual a la longitud de la curva generatri ultiplicada por la distancia recorrida por el centroide de dicha curva al oento de generar la superficie. * Recordar que una superficie de revolución se genera ediante la rotación de una curva plana con respecto a un eje fijo. Por ejeplo (ver figura siguiente), se puede otener la superficie de una esfera rotando un arco seicircular BC con respecto al diáetro C se puede producir la superficie de un cono rotando una línea recta B con respecto a un eje C. B B Esfera C Cono C TEOREM II: El voluen de un cuerpo de revolución es igual al área generatri ultiplicada por la distancia recorrida por el centroide del área al oento de generar el cuerpo. * Recordar que un cuerpo de revolución se genera ediante la rotación de un área plana alrededor de un eje fijo. Coo se uestra en la siguiente figura, se puede generar una esfera o un cono rotando la fora apropiada con respecto al eje que se indica. B B Esfera C Cono C 8

7 7.5 TB 7. Situación del centroide en algunas líneas, superficies volúenes. 9

8 TB 7. Situación del centroide en algunas líneas, superficies volúenes (Continuación). Fuente: RIEY W. STURGES. Estática. Editorial Reverté. 5

9 7.6 PROBEMS RESUETOS DE CENTRO DE GREDD, CENTRO DE MS Y CENTROIDE. PROBEM Nº Deterine el centroide del área liitada por la paráola 4a las rectas. Resolución Para calcular el centroide del área encionada, priero hago las gráficas correspondientes a la paráola 4a a las rectas. d 4a 4 a Cálculo de, (coordenadas e ) del centroide del área ostrada en la figura En este tipo de proleas, priero se elige un eleento diferencial luego se aplica las ecuaciones siguientes: Donde: son las coordenadas del centroide del eleento diferencial utiliado. PRIMER MÉTODO DE RESOUCIÓN: UTIIZNDO UN FRNJ HORIZONT COMO EEMENTO DIFERENCI De la figura anterior oservaos que: 4a d a d

10 Reeplaando en las ecuaciones de e, teneos: / 4a / 4a a a d d 4a / 4a 4a ( a d) / 4a a d 4 SEGUNDO MÉTODO DE RESOUCIÓN: EEMENTO DIFERENCI UTIIZNDO UN FRNJ ERTIC COMO d 4 a 4 a De la figura anterior se oserva que: 4 a ( ) d ( 4a ) d Se sae que las coordenadas e del centroide de área se calculan con las ecuaciones siguientes:

11 uego, al reeplaar,, teneos: / 4a ( 4a ) d / 4a ( 4a ) d 4a / 4a 4a ( 4a ) d / 4a 4 ( 4a ) d TERCER MÉTODO DE RESOUCIÓN: UTIIZNDO UN EEMENTO DIFERENCI RECTNGUR d d 4 a / 4a 4 a De la figura anterior oservaos que: d d Saeos que las coordenadas siguientes: e del centroide de área se calculan con las ecuaciones

12 Reeplaando,, teneos: / 4a / 4a d d d d 4a / 4a / 4a d d d d 4 PROBEM Nº a piea de áquina en fora de que se uestra en la figura está copuesta por dos arras hoogéneas. a arra es de una aleación de tungsteno con densidad de 4 kg/. a arra es de acero, con densidad 7 8 kg/. Deterine las coordenadas e del centro de asa de esta piea

13 Resolución as coordenadas e del centro de asa para el cuerpo copuesto ostrado en la figura, están dadas por las ecuaciones siguientes: Donde: son las coordenadas de los cuerpos coponentes () (). son las asas de los cuerpos coponentes () (). Cálculo de (coordenada del centro de asa del cuerpo copuesto en fora de ): Para calcular, priero necesito conocer los valores de las coordenadas, así coo de las asas. as coordenadas, de acuerdo al sistea de coordenadas ostrado en la figura, tienen los siguientes valores: 4 as asas se deterinan utiliando la ecuación:. Dado que la densidad del cuerpo ( ) es dato del prolea, el voluen se halla ultiplicando las tres diensiones del cuerpo, entonces teneos: 9 4kg/ (484 ), 75kg 9 78kg/ (484 ) 5, 994kg l reeplaar los valores de,,, teneos que: 4,75 5,994 97, 545,75 5,994 Cálculo de (coordenada del centro de asa del cuerpo copuesto en fora de ): Para calcular, priero necesito conocer los valores de, así coo de. as coordenadas, de acuerdo al sistea de coordenadas ostrado en la figura, tienen los siguientes valores: 4 as asas a se hallaron anteriorente son: l reeplaar los valores de,,, teneos que:, 75kg 5, 994kg,75 45,994 9, 7,75 5,994 5

CENTRO DE GRAVEDAD, CENTRO DE MASA Y CENTROIDE

CENTRO DE GRAVEDAD, CENTRO DE MASA Y CENTROIDE UNIERSIDD NION DE O FUTD DE INGENIERÍ EÉTRI Y EETRÓNI ESUE PROFESION DE INGENIERÍ EÉTRI ENTRO DE GREDD, ENTRO DE MS Y ENTROIDE ING. JORGE MONTÑO PISFI O, 2010 ENTRO DE GREDD, ENTRO DE MSYY ENTROIDE ENTRO

Más detalles

1. Respecto de la fuerza de atracción gravitacional entre la Tierra y la Luna, y considerando que m T

1. Respecto de la fuerza de atracción gravitacional entre la Tierra y la Luna, y considerando que m T 1 Ciencias Básicas Física Prograa Estándar Intensivo Cuaderno Estrategias y Ejercitación Dináica II: ley de gravitación, fuerza de roce CUACES007CB82-A16V1 Estrategias? PSU Pregunta PSU 1. Respecto de

Más detalles

DINAMICA. Inercia.-Es la propiedad de la materia por cuya causa es necesario ejercer una fuerza sobre un cuerpo para modificar su posición inicial.

DINAMICA. Inercia.-Es la propiedad de la materia por cuya causa es necesario ejercer una fuerza sobre un cuerpo para modificar su posición inicial. DINAMICA DEFINICIÓN.- Es parte de la ecánica que tiene por objeto el estudio de la relación que existe entre el oviiento de una partícula y las causas que lo originan, es decir relaciona la cineática y

Más detalles

Problemas Resueltos. Con estas dos ecuaciones, se deduce que

Problemas Resueltos. Con estas dos ecuaciones, se deduce que Probleas Resueltos 6.1 Deterinar la posición de equilibrio y la frecuencia angular del sistea de resorte, asa y polea ostrados. El resorte tiene una constante, y la polea puede considerarse coo desprovista

Más detalles

Guía de verano Mecánica 3º Medios Introducción. Concepto de dirección

Guía de verano Mecánica 3º Medios Introducción. Concepto de dirección Guía de verano Mecánica 3º Medios 17 Introducción Esta guía servirá coo un repaso, de las ideas asociadas con una raa de las ateáticas u iportantes para el físico. El algebra vectorial es iportante porque

Más detalles

UNIVERSIDAD NACIONAL DE SAN LUIS FACULTAD DE INGENIERIA Y CIENCIAS AGROPECUARIAS

UNIVERSIDAD NACIONAL DE SAN LUIS FACULTAD DE INGENIERIA Y CIENCIAS AGROPECUARIAS UNIVERSIDD NCINL DE SN LUIS FCULTD DE INGENIERI Y CIENCIS GRPECURIS FÍSIC I TRBJ PRÁCTIC N o 7 MMENT DE INERCI DINÁMIC DE RTCIÓN PRBLEM N o 1: Una bicicleta desacelera uniforeente de una velocidad inicial

Más detalles

Una fuerza es una magnitud vectorial que representa la interacción entre dos cuerpos.

Una fuerza es una magnitud vectorial que representa la interacción entre dos cuerpos. 1 Concepto de fuerza Una fuerza es una agnitud vectorial que representa la interacción entre dos cuerpos. La interacción entre dos cuerpos se puede producir a distancia o por contacto. or tanto las fuerzas

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Física General 1 Proyecto PE - Curso 008 Instituto de Física Facultad de Ingeniería UdelaR TITULO D I N Á I C A D E P A R T Í C U L A AUTORES Santiago Góez, Anthony éndez, Eduardo Lapaz INTRODUCCIÓN Analizaos

Más detalles

UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA

UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA Objetivos Geoetría analítica Introducción U 3.1. Definición de recta 91 Dos puntos sólo pueden ser unidos por una sola recta la relación ateática que satisface

Más detalles

SOLUCIONARIO GUÍA TÉCNICO PROFESIONAL Dinámica I: fuerza y leyes de Newton

SOLUCIONARIO GUÍA TÉCNICO PROFESIONAL Dinámica I: fuerza y leyes de Newton SOLUCIONARIO GUÍA ÉCNICO PROFESIONAL Dináica I: fuerza y leyes de Newton SGUICC016C3-A16V1 Solucionario guía Dináica I: fuerza y leyes de Newton Íte Alternativa Habilidad 1 C Reconociiento A Aplicación

Más detalles

Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo la opción que crea correcta. Acierto +1 ; blanco, 0; error 1.

Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo la opción que crea correcta. Acierto +1 ; blanco, 0; error 1. FONAMENTS FÍSICS ENGINYERIA AERONÀUTICA SEGONA AVALUACIÓ TEORIA TEST (30 %) 09-gener-006 COGNOMS: NOM: DNI: PERM: Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo

Más detalles

, las que se muestran en la siguiente figura (P 2. es punto medio entre la Tierra y la Luna). P 2 P 1

, las que se muestran en la siguiente figura (P 2. es punto medio entre la Tierra y la Luna). P 2 P 1 Convenio Nº Guía práctica Ley de gravitación y fuerza de roce Ejercicios PSU Para esta guía considere que la agnitud de la aceleración de gravedad (g) es 10 s 2. 1. Un grupo de científicos necesita poner

Más detalles

Ejemplo: Cilindro con magnetización permanente. Se tiene un cilindro de longitud infinita y radio R, coaxial con el eje z,

Ejemplo: Cilindro con magnetización permanente. Se tiene un cilindro de longitud infinita y radio R, coaxial con el eje z, EC3 TEOÍA ELECTOAGNÉTICA Ejeplo: Cilindro con agnetización peranente Se tiene un cilindro de longitud infinita y radio, coaxial con el eje z, con una densidad de agnetización x. Deterinar el capo agnético

Más detalles

FÍsica Introducción a la Física.

FÍsica Introducción a la Física. FÍsica Introducción a la Física. FÍSICA TEMA I. INTRODUCCIÓN A LA FÍSICA. La Física es una ciencia basada en las observaciones, se encarga del estudio de la ateria y energía de todos los fenóenos que alteran

Más detalles

156 Ecuaciones diferenciales

156 Ecuaciones diferenciales 156 Ecuaciones diferenciales 3.6 Mecánica El paracaidiso es uno de los deportes extreos que día a día cuenta con ayor núero de adeptos. Los que practican este deporte se tiran desde un avión en oviiento

Más detalles

DETERMINACIÓN DE LA VISCOSIDAD DE UN LÍQUIDO

DETERMINACIÓN DE LA VISCOSIDAD DE UN LÍQUIDO UNIVERSIDAD CATÓLICA DE VALPARAÍSO INSTITUTO DE FÍSICA OBJETIVO DETERMINACIÓN DE LA VISCOSIDAD DE UN LÍQUIDO En este experiento se deterinará el coeficiente de viscosidad del aceite de otor. INTRODUCCIÓN

Más detalles

!!!""#""!!!!!!""#""!!!!!!""#""!!!!!!""#""!!!

!!!#!!!!!!#!!!!!!#!!!!!!#!!! Tea 11 Capos agnéticos y corrientes eléctricas! 1 Probleas para entrenarse 1 Una partícula α (q 3, 10-19 C) se introduce perpendicularente en un capo cuya inducción agnética es,0 10 3 T con una velocidad

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física General Proyecto PMME - Curso 7 Facultad de Ineniería UdelaR Maquina de Atwood doble Mathías Möller José Oscar Silva Francisco Paroli INRODUCCION: Este trabajo trata de aplicar las leyes de Newton

Más detalles

TEMA II CENTRO DE GRAVEDAD Y CENTROIDES

TEMA II CENTRO DE GRAVEDAD Y CENTROIDES Universidad de los Andes Facultad de Ingeniería Departamento de Ciencias Aplicadas y Humanísticas. Mecánica Racional 10 TEMA II CENTRO DE GRAVEDAD Y CENTROIDES Apuntes de clases, de la profesora Nayive

Más detalles

SEGUNDO EXAMEN PARCIAL DE FÍSICA I MODELO 1

SEGUNDO EXAMEN PARCIAL DE FÍSICA I MODELO 1 SEGUNDO EXAMEN PARCIAL DE FÍSICA I MODELO 1 1.- Una ujer de 60 kg se encuentra de pie en la parte trasera de una balsa de 6 de longitud y 10 kg que flota en reposo en aguas tranquilas y sin rozaiento.

Más detalles

1. Movimiento Armónico Simple

1. Movimiento Armónico Simple MANEJO CONOCIMIENOS PROPIOS DE LAS CIENCIAS NAURALES 1. Moviiento Arónico Siple 1.1 Moviiento oscilatorio En la naturaleza eisten algunos cuerpos que describen oviientos repetitivos con características

Más detalles

FÍSICA. 2º BCN CONTROL BLOQUE I Examen 1

FÍSICA. 2º BCN CONTROL BLOQUE I Examen 1 Examen 1 1. La ley de la gravitación universal de Newton. 2. Dibuja la órbita de un planeta alrededor del Sol y las fuerzas que intervienen en el movimiento de aquél, así como la velocidad del planeta

Más detalles

Física I T 1 T 2 T 3

Física I T 1 T 2 T 3 Física I 2011 Práctica 2 Dináica Dináica de partículas *1-Una fuerza F, aplicada a un objeto de asa 1 produce una aceleración de 3/s 2. La isa fuerza aplicada en un segundo objeto de asa 2 produce una

Más detalles

FACULTAD DE INGENIERIA

FACULTAD DE INGENIERIA ASIGNATURA: FÍSICA I GUIA DE PROBLEMAS N 6 OSCILACIONES FACULTAD DE INGENIERIA Carreras: Ing. en Alientos Ing. Quíica Ing. de Minas Ing. en Metalurgia Extractiva 2º Seestre - 2018 GUÍA Nº 6: OSCILACIONES

Más detalles

CAPÍTULO 11 CIRCULO DE MOHR

CAPÍTULO 11 CIRCULO DE MOHR Círculo de Mohr Capítulo CAPÍTULO CIRCULO DE MOHR. ESFUERZOS EN EL SUELO ESFUERZOS NORMALES Y TANGENCIALES Notación: Siga Esfuerzo noral o directo a la superficie. Tau Esfuerzo de cizalladura o cortante

Más detalles

ECUACIONES DE DIMENSIÓN

ECUACIONES DE DIMENSIÓN Tea 6-1 Ecuaciones de Diensión - 1 Tea 6 Curso 006/07 Departaento de Física y Quíica Aplicadas a la Técnica Aeronáutica Curso 006/07 Tea 6- Se representan las agnitudes fundaentales con letras ayúsculas:

Más detalles

DINÁMICA. * Los items denotados con * podrán ser resueltos luego de la primera clase de computación.

DINÁMICA. * Los items denotados con * podrán ser resueltos luego de la primera clase de computación. DINÁMICA * os ites denotados con * podrán ser resueltos lueo de la priera clase de coputación. 1 - El sistea de la fiura está inicialente en reposo, las poleas y los hilos tienen asas despreciables y los

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos I.E.S. ASTELAR BADAJOZ A. enguiano PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - 8 (RESUELTOS por Antonio enguiano) ATEÁTIAS II Tiepo áio: horas inutos Se valorará la corrección la claridad en

Más detalles

Figura 18. Práctica de trabajo y energía Sistema general.

Figura 18. Práctica de trabajo y energía Sistema general. ECUACIONES DE MOVIMIENTO (PRÁCTICA 5: TRABAJO Y ENERGÍA) Ing. rancisco ranco Web: http://granciscoranco.blogspot.co/ uente de inoración: Trabajo de grado de Mónica A. Caacho D. Wilson H. Ibachi M. Ingeniería

Más detalles

Física I Segunda convocatoria. 3 de septiembre de 2012

Física I Segunda convocatoria. 3 de septiembre de 2012 Segunda convocatoria. 3 de septiebre de 2012 C I Blan -El test se calificará sobre 5 puntos. -Las respuestas correctas (C) puntúan positivaente y las incorrectas (I) negativaente, resultando la puntuación

Más detalles

PROBLEMAS RESUELTOS DE MOMENTOS DE INERCIA

PROBLEMAS RESUELTOS DE MOMENTOS DE INERCIA UNVERSDAD NACONAL DEL CALLAO FACULTAD DE NGENERÍA ELÉCTRCA ELECTRÓNCA ESCUELA PROFESONAL DE NGENERÍA ELÉCTRCA CURSO : MECÁNCA DE SÓLDOS PROFESOR : ng. JORGE MONTAÑO PSFL PROBLEMAS RESUELTOS DE MOMENTOS

Más detalles

Automá ca. Capítulo5.Estabilidad. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez

Automá ca. Capítulo5.Estabilidad. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez Autoáca Capítulo5.Estailidad JoséRaónLlataGarcía EstherGonzálezSaraia DáasoFernándezPérez CarlosToreFerero MaríaSandraRolaGóez DepartaentodeTecnologíaElectrónica eingenieríadesisteasyautoáca Estailidad

Más detalles

Trabajo de una Fuerza. Trabajo y Energía. Observaciones: Trabajo de una Fuerza. Trabajo de una Fuerza. Trabajo y Energía

Trabajo de una Fuerza. Trabajo y Energía. Observaciones: Trabajo de una Fuerza. Trabajo de una Fuerza. Trabajo y Energía Trabajo y Energía Trabajo de una Fuerza Es una anera diferente de resolver probleas de dináica en los que la fuerzas son funciones de la posición y no del tiepo. F r Observaciones: Sólo cuenta la coponente

Más detalles

FACULTAD DE INGENIERIA

FACULTAD DE INGENIERIA ASIGNATURA: FÍSICA I DOBLE CURSADO GUIA DE PROBLEMAS N 8 OSCILACIONES 1º Seestre - 2018 GUÍA Nº 8: OSCILACIONES PROBLEMA N 1.- Un cuerpo oscila con un oviiento arónico siple, según la ecuación: x = 6.cos

Más detalles

TEORÍA PROBLEMA 1. Apellidos y nombre

TEORÍA PROBLEMA 1. Apellidos y nombre pellidos y nobre TEOÍ POEM FOESTES. USO -. EXMEN MODEO Un disco de radio gira en torno a su eje perpendicular fijo con aceleración angular. Hallar las coponentes de la aceleración para un punto de su periferia

Más detalles

SISTEMAS NO INERCIALES

SISTEMAS NO INERCIALES SISTEMAS NO INECIALES 1 - En el piso de un colectivo está apoyado un paquete de asa. El colectivo parte del reposo con una aceleración constante, a. Decir cuáles son las fuerzas aplicadas sobre el paquete,

Más detalles

Tema 4: Centro de masas

Tema 4: Centro de masas Tema 4: Centro de masas Mecánica Racional, 2º, Grado en Ingeniería Civil Escuela Técnica Superior de Ingenieros Universidad de Sevilla 1 Índice Definición y propiedades Cálculo de centro de masa Cuerpos

Más detalles

COLISIONES SERWAY CAPITULO 9

COLISIONES SERWAY CAPITULO 9 COLISIONES SERWAY CAPITULO 9 COLISIONES PERFECTAMENTE INELASTICAS Una colisión inelástica es aquella en la que la energía cinética total del sistea NO es la isa antes y después de la colisión aun cuando

Más detalles

TEMA 2: El movimiento. Tema 2: El movimiento 1

TEMA 2: El movimiento. Tema 2: El movimiento 1 TEMA 2: El oviiento Tea 2: El oviiento 1 ESQUEMA DE LA UNIDAD 1.- Introducción. 2.- Características del oviiento. 2.1.- Posición. 2.2.- Trayectoria. 2.3.- Desplazaiento. 2.4.- Velocidad. 2.5.- Aceleración.

Más detalles

Tema 6. Oscilaciones de sistemas con varios grados de libertad

Tema 6. Oscilaciones de sistemas con varios grados de libertad Tea 6. Oscilaciones de sisteas con varios grados de libertad Priera parte: Sistea de dos asas un uelle. Ecuaciones del oviiento Nuestro sistea está forado por dos asas, en general diferentes,, unidas por

Más detalles

MOVIMIENTO OSCILATORIO

MOVIMIENTO OSCILATORIO MOVIMIENTO OSCILATORIO - Considere una partícula de asa suspendida del techo por edio de un resorte de constante elástica y lonitud natural l. Deterine cóo varía la posición con el tiepo sabiendo que en

Más detalles

5: SISTEMAS NO INERCIALES,

5: SISTEMAS NO INERCIALES, Guia 5: SISTEMAS NO INECIALES, Cátedra Leszek Szybisz 1 - En el piso de un colectivo está apoyado un paquete de asa. El colectivo parte del reposo con una aceleración constante, a. Decir cuáles son las

Más detalles

2 Coordenadas de un vector

2 Coordenadas de un vector Unidad 7. Vectores BACHILLERATO Mateáticas I Coordenadas de un ector Página 75 Si u(, 5) y (, ) son las coordenadas de dos ectores respecto de una ase, halla las coordenadas respecto de la isa ase de:

Más detalles

PRÁCTICA Nº 1 LEY DE HOOKE - MOVIMIENTO ARMÓNICO SIMPLE

PRÁCTICA Nº 1 LEY DE HOOKE - MOVIMIENTO ARMÓNICO SIMPLE PRÁCTICA Nº LEY DE HOOKE - MOVIMIENTO ARMÓNICO SIMPLE.- INTRODUCCION TEORICA..-Estudio estático Cuando se obliga a un cuerpo a cabiar de fora, la "fuerza deforadora" puede ser proporcional a la deforación,

Más detalles

DINÁMICA DE UNA PARTÍCULA

DINÁMICA DE UNA PARTÍCULA DINÁMIC DE UN PÍCUL da Seana Sistea de eferencia Inercial (SI) PÍCUL LIE: Se llaa así a una partícula que está ISLD, es decir, es única en el universo. EQUILIIO: Ocurre cuando una partícula tiene CELECIÓN

Más detalles

LOCALIZACIÓN DEL CENTRO DE GRAVEDAD DE OBJETOS DE SIMETRÍA CILÍNDRICA

LOCALIZACIÓN DEL CENTRO DE GRAVEDAD DE OBJETOS DE SIMETRÍA CILÍNDRICA LOCALIZACIÓN DEL CENTRO DE GRAVEDAD DE OBJETOS DE SIMETRÍA CILÍNDRICA Talavera M., Pezet F., Lazos R. Centro Nacional de Metrología k, 4,5 Carr. a los Cués, Municipio El Marqués, Qro. Tel.: (42) 11 5 Ext.

Más detalles

= b, donde b es la dt constante de amortiguamiento del sistema.

= b, donde b es la dt constante de amortiguamiento del sistema. Moviiento oscilatorio: Un sistea asa-resorte está copuesto por una asa, sujeta al extreo libre de un resorte horizontal. Es conveniente introducir un sistea coordenado, de tal fora que se coloca el origen

Más detalles

Ejemplos resueltos: CIRCUNFERENCIA Y ELIPSE

Ejemplos resueltos: CIRCUNFERENCIA Y ELIPSE Ejeplo : Deterina la ecuación de la circunferencia con centro en (,) y que pasa por el punto (,5) Respuesta: ( x + ) + ( y ) 0 Ejeplo : Deterina centro, radio y grafica de x 6x + y + y (x- )² + (y + /)²

Más detalles

< ρ y cuyo coeficiente de viscosidad es η. Se supone que la velocidad de la esferano origina turbulencias en el fluido.

< ρ y cuyo coeficiente de viscosidad es η. Se supone que la velocidad de la esferano origina turbulencias en el fluido. EY DE STOES Una esfera de radio r y densidad ρ parte del reposo en el seno de un fluido de densidad ρ f < ρ y cuyo coeficiente de viscosidad es η. Se supone que la velocidad de la esferano origina turbulencias

Más detalles

Control 1 (PAUTA) Física General III (FIS130) Movimiento Oscilatorio

Control 1 (PAUTA) Física General III (FIS130) Movimiento Oscilatorio Control 1 (PAUTA) Física General III (FIS130) Moviiento scilatorio Pregunta 1 La figura uestra una placa cuadrada etálica hoogénea, de lado a y asa, la cual oscila alrededor de un eje perpendicular a su

Más detalles

INFORME SEMESTRAL. Curso: Mecánica Cuántica Semestre Profesor: M. en C. Angel G. Figueroa Soto Diciembre de 2012

INFORME SEMESTRAL. Curso: Mecánica Cuántica Semestre Profesor: M. en C. Angel G. Figueroa Soto Diciembre de 2012 INFORME SEMESTRAL Curso: Mecánica Cuántica Seestre 13-1 Profesor: M. en C. Angel G. Figueroa Soto Diciebre de 1 OBJETIVO. Presentar al aluno el foraliso de la ecánica cuántica REQUISITOS. El aluno deberá

Más detalles

Capítulo I PRINCIPIOS GENERALES Y VECTORES FUERZA 1.1 INTRODUCCIÓN

Capítulo I PRINCIPIOS GENERALES Y VECTORES FUERZA 1.1 INTRODUCCIÓN PRINIPIOS GENERLES Y VETORES FUERZ apítulo I 1.1 INTRODUIÓN La mecánica trata de la respuesta de los cuerpos a la acción de las fuerzas. Las leyes de la mecánica encuentran aplicación en el estudio de

Más detalles

1.- SISTEMA DE REFERENCIA EN EL PLANO. COORDENADAS DE PUNTOS Y VECTORES.

1.- SISTEMA DE REFERENCIA EN EL PLANO. COORDENADAS DE PUNTOS Y VECTORES. º Bachillerato Mateáticas I Tea 6: Geoetría analítica.- SISTEMA DE REFERENCIA EN EL PLANO. COORDENADAS DE PUNTOS Y VECTORES. Un Sistea de referencia en el plano está forado por: Un punto O llaado Origen

Más detalles

Fuerzas de fricción (o de rozamiento)

Fuerzas de fricción (o de rozamiento) Fuerzas de fricción (o de rozaiento) Si un cuerpo se ueve sobre una superficie áspera o rugosa, encontrará adeás de la resistencia del aire, otra fuerza de resistencia debida a la rugosidad de la superficie.

Más detalles

Problema 1 F 1 , F 2. = G M 2 m D 2. = G M 1 m D 1. = ( D y) 2 + x 2. Las fuerzas que se ejercen sobre la estrella de masa m serían

Problema 1 F 1 , F 2. = G M 2 m D 2. = G M 1 m D 1. = ( D y) 2 + x 2. Las fuerzas que se ejercen sobre la estrella de masa m serían Problea 1 Las fuerzas que se ejercen sobre la estrella de asa serían 1, F D Podeos establecer las coordenadas de las estrellas en un plano cartesiano para siplificar el problea. La distancia de la estrella

Más detalles

FÍSICA APLICADA. PRIMER PARCIAL 18 - MARZO 2015 CUESTIONES TEORÍA

FÍSICA APLICADA. PRIMER PARCIAL 18 - MARZO 2015 CUESTIONES TEORÍA FÍSICA APLICADA. PRIMER PARCIAL 18 - MARZO 2015 CUESTIONES TEORÍA 1.- Contestar razonadaente a las siguientes preguntas acerca del oviiento arónico siple (MAS): 1A (0.25 p).- Si el periodo de un MAS es

Más detalles

= = 11,11. Actividades resueltas de Dinámica

= = 11,11. Actividades resueltas de Dinámica Actividades resueltas de Dináica Sobre un cuerpo de 5 kg actúa una uerza de 0 N durante 3 s. Calcular: a) El ipulso de la uerza. b) La variación de la cantidad de oviiento del cuerpo. c) Su velocidad inal

Más detalles

Última modificación: 1 de agosto de

Última modificación: 1 de agosto de Contenido CAMPO ELÉCTRICO EN CONDICIONES ESTÁTICAS 1.- Naturaleza del electromagnetismo. 2.- Ley de Coulomb. 3.- Campo eléctrico de carga puntual. 4.- Campo eléctrico de línea de carga. 5.- Potencial eléctrico

Más detalles

Distancia entre dos puntos

Distancia entre dos puntos GAE-05_MAAL3_Distancia entre dos puntos Distancia entre dos puntos Por: Sandra Elvia Pérez Para deterinar una expresión que te ayude a calcular la distancia entre dos puntos cualesquiera, toa los siguientes

Más detalles

Fuerzas entre cargas. Ley de Coulomb. Campo eléctrico.1º bachillerato

Fuerzas entre cargas. Ley de Coulomb. Campo eléctrico.1º bachillerato Fuerzas entre cargas. Ley de Coulomb La materia puede tener carga eléctrica. De hecho en los átomos existen partículas con carga eléctrica positiva (protones) y otras con carga eléctrica negativa (electrones)

Más detalles

Los pesos de las partículas pueden reemplazarse por una única (equivalente) resultante con un punto de aplicación G bien definido.

Los pesos de las partículas pueden reemplazarse por una única (equivalente) resultante con un punto de aplicación G bien definido. UNIDAD 2 EQUILIBRIO DE CUERPOS RÍGIDOS. CENTROS DE GRAVEDAD GENERALIDADES.- El centro de gravedad es aquel que localiza el peso resultante de un sistema de partículas y el centro de masas de un sistema

Más detalles

CARGA ESPECÍFICA DEL ELECTRÓN

CARGA ESPECÍFICA DEL ELECTRÓN Laboratorio de Electricidad y Magnetiso FIS0153 CARGA ESPECÍFICA DEL ELECTRÓN OBJETIVO Calcular el cociente entre la asa y la carga del electrón. EQUIPAMIENTO 1. Netbook o notebook 2. Bobina de 520 vueltas

Más detalles

ÍNDICE. 4 Círculos Ecuaciones de los círculos / Ecuación estándar de un círculo Problemas resueltos Problemas complementarios

ÍNDICE. 4 Círculos Ecuaciones de los círculos / Ecuación estándar de un círculo Problemas resueltos Problemas complementarios ÍNDICE 1 Sistemas de coordenadas lineales. Valor absoluto. Desigualdades... 01 Un sistema de coordenadas lineales / Intervalos finitos / Intervalos infinitos / Desigualdades 2 Sistema de coordenadas rectangulares...

Más detalles

17 Efectúa las siguientes transformaciones e indica qué rapidez, de las tres primeras,

17 Efectúa las siguientes transformaciones e indica qué rapidez, de las tres primeras, Pág. 7 Efectúa las siguientes transforaciones e indica qué rapidez, de las tres prieras, es ayor: a) 2 /s a k/h b) 54 k/h a /s c) 30 da/in a /s d) 28 r.p.. a rad/s a) 2 2 k 3 600 s 2 3 600 k 43,2 s s 0

Más detalles

PRÁCTICA Nº 8. FUERZA SOBRE UNA CARGA EN MOVIMIENTO

PRÁCTICA Nº 8. FUERZA SOBRE UNA CARGA EN MOVIMIENTO PRÁCTICA Nº 8. FUERZA SOBRE UNA CARGA EN MOVIMIENTO OBJETIVOS Describir la trayectoria seguida por un rayo de electrones en presencia de capos eléctricos generados por potenciales continuos y alternos.

Más detalles

Figura 12. Leyes del movimiento Sistema general.

Figura 12. Leyes del movimiento Sistema general. ECUACIONES DE MOVIMIENTO (PRÁCTICA 4: LEYES DEL MOVIMIENTO) Ing. Francisco Franco Web: http://gfranciscofranco.blogspot.co/ Fuente de inforación: Trabajo de grado de Mónica A. Caacho D. y Wilson H. Ibachi

Más detalles

Si se incrementa el número de elementos en los cuales se ha dividido la placa y simultáneamente se disminuye el tamaño de cada elemento se obtiene

Si se incrementa el número de elementos en los cuales se ha dividido la placa y simultáneamente se disminuye el tamaño de cada elemento se obtiene Capítulo 5 Fuerzas distribuidas. Centroides y centros de gravedad Introducción La acción de la Tierra sobre un cuerpo rígido debe representarse por un gran número de pequeñas fuerzas distribuidas sobre

Más detalles

ESTRUCTURAS I : CONTEXTUALIZACIÓN / MAGNITUDES FÍSICAS EN EL SI

ESTRUCTURAS I : CONTEXTUALIZACIÓN / MAGNITUDES FÍSICAS EN EL SI ESTRUCTURAS I : CONTEXTUALIZACIÓN / MAGNITUDES FÍSICAS EN EL SI Guillermo A. Olivares Martínez Arquitecto PUCV Mg.Estructuras UPC guillermo.olivares@ead.cl MAGNITUDES FÍSICAS Propiedades que pueden medirse

Más detalles

Este problema es una clásico de aplicación de la Segunda Ley de Newton y la forma de operar para obtener el resultado pedido. Veamos su esquema:

Este problema es una clásico de aplicación de la Segunda Ley de Newton y la forma de operar para obtener el resultado pedido. Veamos su esquema: ísica Dos planos inclinados con dos cuerpos, unidos a través de una cuerda que pasa por una polea despreciable. Supongaos que ha rozaiento en los dos planos inclinados. Supongaos que el sistea se ueva

Más detalles

EXAMEN FINAL DE FÍSICA I ( ) TOPOGRAFÍA

EXAMEN FINAL DE FÍSICA I ( ) TOPOGRAFÍA EXMEN FINL DE FÍSIC I (--03) TOPOGRFÍ pellidos:...nobre:... La duración del exaen es de 3 horas. Cada problea está valorado sobre 0 puntos. Problea.- En el interior de un ascensor cuelga un uelle de constante

Más detalles

SERIE DE EJERCICIOS CENTRO MASA, IMPULSO Y CANTIDAD DE MOVIMIENTO

SERIE DE EJERCICIOS CENTRO MASA, IMPULSO Y CANTIDAD DE MOVIMIENTO FÍSIC 1 SECMCHOQUE 1 UNIVERSIDD DE VLPRÍSO FCULTD DE CIENCIS SERIE DE EJERCICIOS CENTRO MS, IMPULSO Y CNTIDD DE MOVIMIENTO 1.- Defina y/o explique los siguientes conceptos: a) Centro de asa c) Cantidad

Más detalles

CAPITULO Nº 2 FUERZAS NO CONCURRENTES EN EL PLANO

CAPITULO Nº 2 FUERZAS NO CONCURRENTES EN EL PLANO CAPITULO Nº 2 FUERZAS NO CONCURRENTES EN EL PLANO Fuerzas no concurrentes.- Se define como fuerzas no concurrentes a aquellas cuyas líneas de acción no se cortan en un solo punto, por tanto la fuerza resultante

Más detalles

UNIVERSIDAD DE BUENOS AIRES

UNIVERSIDAD DE BUENOS AIRES ACUAD DE INGENIERÍA DEPARAENO DE HIDRÁUICA CÁEDRA DE HIDRÁUICA GENERA (69.01) "SISEAS DE UNIDADES Y ECUACIONES DE DIENSIÓN" "Aplicación a las Propiedades ísicas de Utilización en la Hidráulica" Ing. uis

Más detalles

Momento angular de una partícula. Momento angular de un sólido rígido

Momento angular de una partícula. Momento angular de un sólido rígido Momento angular de una partícula Se define momento angular de una partícula respecto de del punto O, como el producto vectorial del vector posición r por el vector momento lineal mv L=r mv Momento angular

Más detalles

Dinámica de un sistema de partículas (en trabajo de parto)

Dinámica de un sistema de partículas (en trabajo de parto) Dináica de un sistea de partículas (en trabajo de parto) W. Barreto Junio, 2008. El estudio de un sistea de partículas desde el punto de vista dináico es el siguiente paso natural. Existe la noción de

Más detalles

Regresar Wikispaces. 01. El extremo de un segmento es A(6. 4) y su punto medio M(-2, 9), hallar su otro extremo B(x, y). B(x. y) M(-2, 9) A(6.

Regresar Wikispaces. 01. El extremo de un segmento es A(6. 4) y su punto medio M(-2, 9), hallar su otro extremo B(x, y). B(x. y) M(-2, 9) A(6. Regresar Wikispaces 01. El extreo de un segento es A(6. 4 y su punto edio M(-2, 9, hallar su otro extreo B(x, y. B(x. y M(-2, 9 A(6. 4 AB 2 x 6 01. = = 2 x 6 = 4 + 2x x = 10 BM 1 2 x y 4 = 2 y 4 = 18 +

Más detalles

Problemas propuestos sobre Dinámica

Problemas propuestos sobre Dinámica 1 Universidad de ntioquia Instituto de ísica Probleas propuestos sobre Dináica Nota: Si se encuentra algún error en las respuestas, le agradeceos reportarlo a su profesor de Teoría de ísica I. para ser

Más detalles

Indice de contenido. Ecuaciones de los círculos / Ecuación estándar de un círculo. Problemas complementarios

Indice de contenido. Ecuaciones de los círculos / Ecuación estándar de un círculo. Problemas complementarios l' Indice de contenido Un sistema de coordenadas lineales / Intervalos finitos / Intervalos infinitos / Desigualdades Ejes de coordenadas / Coordenadas / Cuadrantes / Fórmula de la distancia / Fórmulas

Más detalles

CURSO CERO DE FÍSICA DINÁMICA

CURSO CERO DE FÍSICA DINÁMICA CURSO CERO DE ÍSICA Departaento de ísica COTEIDO. Principios fundaentales de la dináica. Priera ley de ewton: Ley de la inercia. Segunda ley de ewton: Ley fundaental de la dináica. Tercera ley de ewton:

Más detalles

1.1. LEY DE GRAVITACIÓN UNIVERSAL INTENSIDAD DEL CAMPO GRAVITACIONAL POTENCIAL ENERGÍA PONTENCIAL GRAVITATORIA...

1.1. LEY DE GRAVITACIÓN UNIVERSAL INTENSIDAD DEL CAMPO GRAVITACIONAL POTENCIAL ENERGÍA PONTENCIAL GRAVITATORIA... TEMA 1 1.1. LEY DE GRAVITACIÓN UNIVERSAL... 1 1.2. INTENSIDAD DEL CAMPO GRAVITACIONAL.... 4 1.3. POTENCIAL... 11 1.4. ENERGÍA PONTENCIAL GRAVITATORIA... 16 1.5. LEYES DE KEPLER... 18 1.6. VELOCIDAD DE

Más detalles

TEOREMAS DE CONSERVACIÓN

TEOREMAS DE CONSERVACIÓN TEOREMAS DE CONSERVACIÓN - Dos cuerpos de asas y 2 y velocidades v r y v r 2, que se ueven sobre una isa recta, chocan elásticaente. ueo del choque, abos cuerpos continuan oviéndose sobre la isa recta.

Más detalles

1. Calificación máxima: 2 puntos Calcular los siguientes límites (donde Ln significa Logaritmo Neperiano).

1. Calificación máxima: 2 puntos Calcular los siguientes límites (donde Ln significa Logaritmo Neperiano). JUNIO INSTRUCCIONES: El eaen presenta dos opciones B; el aluno deberá elegir una de ellas contestar raonadaente a los cuatro ejercicios de que consta dicha opción en h. in. OPCIÓN. Calificación áia: puntos

Más detalles

Es un sistema de dos vectores deslizables de la misma magnitud que están en distintas rectas sostén con la misma dirección pero sentido contrario

Es un sistema de dos vectores deslizables de la misma magnitud que están en distintas rectas sostén con la misma dirección pero sentido contrario MECANICA TEORÍA Moento Entonces Sistea Par o Cupla de Vectores Es un sistea de dos vectores deslizables de la isa agnitud que están en distintas rectas sostén con la isa dirección pero sentido contrario

Más detalles

Movimiento oscilatorio

Movimiento oscilatorio Seana 11 11 Moviiento oscilatorio Moviiento oscilatorio Epeceos! En la naturaleza nos encontraos con oviientos en los cuales la velocidad y aceleración no son constantes. Un oviiento que presenta tales

Más detalles

Movimiento Amortiguado y Forzado

Movimiento Amortiguado y Forzado Moviiento Aortiguado y Forzado Problea 1. Una asa al extreo de un uelle oscila con una aplitud de 5 c y una frecuencia de 1 Hz (ciclos por segundo). Para t = 0, la asa esta en la posición de equilibrio

Más detalles

APLICACIONES DE LAS LEYES DE NEWTON

APLICACIONES DE LAS LEYES DE NEWTON ALICACIOES DE LAS LEYES DE EWO Introducción ara resolver los probleas de dináica utilizaos las leyes de ewton que requieren conocer, dibujar y calcular las fuerzas que actúan sobre los cuerpos. En la ayoría

Más detalles

UNIVERSIDAD DE CHILE ESCUELA DE INGENIERIA Y CIENCIAS DEPARTAMENTO DE FISICA FI 21A - 6 MECANICA. Prof. Patricia Sotomayor C.

UNIVERSIDAD DE CHILE ESCUELA DE INGENIERIA Y CIENCIAS DEPARTAMENTO DE FISICA FI 21A - 6 MECANICA. Prof. Patricia Sotomayor C. UNIVESIDAD DE CHILE ESCUELA DE INGENIEIA Y CIENCIAS DEPATAMENTO DE FISICA CONTOL Nº 3 FI A - 6 MECANICA Prof. Patricia Sotoayor C. 9 de Junio de 4 Tiepo: :3 horas Problea Una partícula de asa se ueve en

Más detalles

Centro de masa. Centro de gravedad. Centroides.

Centro de masa. Centro de gravedad. Centroides. Centro de masa. Centro de gravedad. Centroides. MOMENTOS Hasta ahora se han calculado momentos de fuerzas. Sin embargo, en muchos problemas de ingeniería aparecen momentos de masas, fuerzas, volúmenes,

Más detalles

1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES.

1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES. 1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES. a) CONCEPTO DE FUERZA La fuerza es una magnitud asociada a las interacciones entre los sistemas materiales (cuerpos). Para que se

Más detalles

ELEMENTOS DEL MOVIMIENTO.

ELEMENTOS DEL MOVIMIENTO. 1 Poición y deplazaiento. ELEMENTOS DEL MOVIMIENTO. Ejercicio de la unidad 11 1.- Ecribe el vector de poición y calcula u ódulo correpondiente para lo iguiente punto: P 1 (4,, 1), P ( 3,1,0) y P 3 (1,0,

Más detalles

PRINCIPIOS HIDROSTÁTICOS

PRINCIPIOS HIDROSTÁTICOS 1 GUIA FISICA GRADO ONCE: MECANICA DE FLUIDOS AUTOR Lic. Física, ERICSON SMITH CASTILLO PRINCIPIOS HIDROSTÁTICOS En cada una de las partes que se ha dividido el estudio de los fluidos teneos la participación

Más detalles

Factor de forma para conducción bidimensional

Factor de forma para conducción bidimensional Factor de fora para conducción bidiensional En la literatura es frecuente encontrar soluciones analíticas a soluciones de interés práctico en ingeniería. En particular, el factor de fora perite calcular

Más detalles

MANUAL DE METODOLOGÍAS ANEXOS ANEXO II. MODELOS DE INTERPOLACIÓN Y EXTRAPOLACIÓN

MANUAL DE METODOLOGÍAS ANEXOS ANEXO II. MODELOS DE INTERPOLACIÓN Y EXTRAPOLACIÓN MANUAL DE METODOLOGÍAS ANEOS ANEO II. MODELOS DE INTERPOLACIÓN ETRAPOLACIÓN ANEO II. MODELOS DE INTERPOLACIÓN ETRAPOLACIÓN FECHA: -AGO -7 II. INTERPOLACIÓN ETRAPOLACIÓN LINEAL En VALMER se aplican distintos

Más detalles

DE SÓLIDOS I UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA

DE SÓLIDOS I UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA CURSO: MECÁNICA DE SÓLIDOS I PROFESOR: ING. JORGE A. MONTAÑO PISFIL I. MECÁNICA

Más detalles

Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial

Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial PRIMERA LEY DE NEWTON. Todo cuerpo continuará en su estado de reposo o de velocidad constante en línea recta, a menos que una

Más detalles

EXAMEN TEMA 1 QUÍMICA 2ºBACHILLERATO. Nombre: 5/10/2018

EXAMEN TEMA 1 QUÍMICA 2ºBACHILLERATO. Nombre: 5/10/2018 EXAMEN TEMA 1 QUÍMICA 2ºBACHILLERATO Nobre: 5/10/2018 1.- El p-cresol es un copuesto de asa olecular relativa 108,1, que se utiliza coo desinfectante en la fabricación de herbicidas. El p-cresol sólo contiene

Más detalles

Física: Movimiento Circular y Gravitación

Física: Movimiento Circular y Gravitación Física: Movimiento Circular y Gravitación Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Movimiento circular uniforme Propiedades: Este objeto tiene una trayectoria circular. El objeto demora el

Más detalles

UNIVERSIDAD DE GRANADA RESOLUCIÓN PRUEBA DE ACCESO A LA UNIVERSIDAD TERRITORIO DEL MINISTERIO DE EDUCACIÓN CURSO v v

UNIVERSIDAD DE GRANADA RESOLUCIÓN PRUEBA DE ACCESO A LA UNIVERSIDAD TERRITORIO DEL MINISTERIO DE EDUCACIÓN CURSO v v UNIVERSIDAD DE GRANADA RESOLUCIÓN PRUEBA DE ACCESO A LA UNIVERSIDAD TERRITORIO DEL INISTERIO DE EDUCACIÓN CURSO 00-0 FÍSICA Instrucciones: a) Duración: hora 30 inutos. b) Debe desarrollar tres probleas

Más detalles