UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA"

Transcripción

1 UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA Objetivos

2

3 Geoetría analítica Introducción U 3.1. Definición de recta 91

4 Dos puntos sólo pueden ser unidos por una sola recta la relación ateática que satisface la unión de estos se llaa ecuación de la recta. = 0. = 0. = = k h = k = h Ejeplo 1 A B A B Ángulo de inclinación de una recta 92

5 Geoetría analítica Inclinación de una recta Es el ángulo que fora con la dirección positiva del eje X. Se ide a partir del eje X en el sentido contrario al recorrido de las anecillas del reloj los valores son de 0 a 180 coo se aprecia en la figura 3.1. Y L 2 L O (, X La inclinación de la recta L 1 se representa por el ángulo ; asiiso, la inclinación de la recta L 2 es el ángulo. = L 2 L 93

6 Ejeplo 2 B A = 3.3. Pendiente de una recta La pendiente de una recta el valor de la tangente del ángulo de inclinación pendiente es positiva pendiente es negativa Pendiente de una recta que pasa por dos puntos Sean A( 1, 1 ) B( 2, 2 ), puntos de la recta L, si desde A trazaos una línea recta paralela al eje X e igualente desde B una paralela al eje Y, se fora el triángulo ABC. La inclinación de la recta AB es el ángulo éste es igual al ángulo CAB, coo se observa en la figura 3.2. Y L ( ( 2 X Entonces, por la definición de pendiente se tiene que la pendiente de: 94

7 Geoetría analítica La pendiente de una recta, llaada tabién por algunos autores coeficiente angular de la recta, se suele representar por la letra. Así, se tiene la siguiente fórula: Significa que la pendiente de la recta que pasa por dos puntos es igual a la diferencia de ordenadas dividida entre la diferencia de abscisas, toadas en el iso orden. 2 2 Ejeplo 3 A C B D B A A B 95

8 AB AB CD CD 3.4. Ecuación punto-pendiente de una recta el origen La ecuación de una recta que pasa por el origen tiene pendiente, se puede obtener de una anera sencilla, considerando la figura 3.3, en donde si A( 1, 1 ), B( 2, 2 ) C( 3, 3 ), son puntos de la recta AB, los triángulos AOA, BOB COC son seejantes; entonces se tiene que: Y O X 96

9 Geoetría analítica, entonces, es decir: para cualquier punto P(, ) de la recta AB se verifica que: Así, la ecuación de una recta que pasa por el origen tiene una pendiente es =. Ahora bien, para la obtención de la ecuación de la recta que pasa por un punto tiene una pendiente dada, se considerará que A( 1, 1 ) es un punto de la recta 1 su pendiente. Si P (, ) es un punto cualquiera de la recta, por definición de pendiente se tendrá la ecuación: ; por lo tanto que es la ecuación buscada. A esta ecuación se le suele llaar fora ordinaria de la ecuación de la recta o ecuación punto-pendiente. Ejeplo 4 A = = 2 97

10 Ejeplo 5 A B A (, B ( 2, 2, AB AB = 3.5. Ecuación pendiente-ordenada al origen de una recta = Se llaa ordenada al origen de una recta, al valor de la ordenada en el punto de intersección de la recta con el eje Y. Se representa por la letra b. Para obtener la ecuación de una recta con pendiente ordenada al origen b se procederá coo sigue: 98

11 Geoetría analítica Y L 2 L b 0 X Considerando la figura 3.4 se tiene que la recta L 1, cua ecuación es = pasa por el origen es paralela a L 2, de lo que si la pendiente de L 1 es la de L 2, tabién lo es. Analizando ahora la relación que ha entre las coordenadas de los puntos correspondientes A A, B B sobre abas rectas, se tiene que: Las abscisas son las isas para las dos parejas de puntos, esto es, la abscisa de A es la isa que la de A, la abscisa de B es la isa que la de B. Las ordenadas de los puntos A, B, de la recta L 2 son iguales a las de los puntos correspondientes A, B, de la recta L 1 auentadas siepre en la isa cantidad b, que es la ordenada en el origen de la recta L 2, es decir: La ordenada de A = ordenada de A + b. La ordenada de B = ordenada de B + b. De una anera general, para un punto cualquiera P(, ) de la recta L 2 se tendrá que: ordenada de P = ordenada P + b Por lo tanto, la ordenada al origen de la recta L 1, cua ecuación es =, tiene valor cero; asiiso, la ordenada al origen de la recta L 2 tiene el valor b, por lo que concluios que la ecuación es = + b. Esta relación entre las coordenadas (, ) de un punto cualquiera de la recta L 2, su pendiente su ordenada en el origen b es la ecuación de la recta, se suele llaar fora tangencial o abreviada de la ecuación de la recta. 99

12 Ejeplo 6 = = + 2 = = + Ejercicio

13 Geoetría analítica 3.6. Ecuación siétrica de una recta - Ecuación siétrica es aquella que está deterinada en función de los segentos a b, en agnitud signo, los que deterinan las intersecciones sobre los ejes de las coordenadas. Coo se aprecia en la figura 3.5, la ecuación de la recta que pasa por los puntos A B se obtiene utilizando la ecuación puntopendiente, esto es: Y B b b 0 a (a X esto es, a = b ab, trasponiendo térinos dividiendo por ab, resulta pasa por los puntos A B., es la ecuación siétrica de la recta que Ejeplo 7 101

14 b a 3.7. Ecuación general de una recta La ecuación general de prier grado con dos variables es de la fora: A + B + C = 0 Si alguno de los coeficientes es igual a cero, se tienen los casos siguientes: A = 0, C = 0 B no es igual a cero, la ecuación es de la fora B = 0, equivale a = 0, que representa al eje X. B = 0, C = 0 A no es igual a cero, la ecuación es de la fora A = 0, equivale a = 0, que representa al eje Y. A = 0 B C no son iguales a cero, la ecuación es de la fora B + C = 0; esto es = C/B, que representa una recta paralela al eje X a la distancia C/B. B = 0 A C no son iguales a cero, la ecuación es de la fora A + C = 0; esto es, = C/A, que representa una recta paralela al eje Y a la distancia C/A. 102

15 Geoetría analítica C = 0 A B no son cero, la ecuación es de la fora A + B = 0; esto es, = A/B, que representa una recta que pasa por el origen tiene de pendiente A/B. En resuen, cualesquiera que sean los valores de A, B C, con A B diferentes de cero, una ecuación de la fora: A + B + C = 0 representa una recta. A esta ecuación se le llaa fora general de la ecuación de la recta. A B C B = + b C/B A/B Ejeplo 8 = 0 = 0 103

16 Ejeplo 9 A + B + C = fora general NOTA B B B 3.8. Distancia de un punto a una recta fora noral Fora noral de la ecuación de la recta Es aquella que viene deterinada en función de la distancia (d) del origen a la recta del ángulo, que es el ángulo forado por el segento d con la dirección positiva del eje X, coo se uestra en la figura

17 Geoetría analítica Y b d 0 a X BOP AB AOP Sustituendo estos valores en la ecuación siétrica anterior, resulta:, entonces la ecuación noral de la recta es: + = d A + B +C d A + B +C + d dk = C (*) 105

18 k = d d d A + B + C

19 Geoetría analítica Ejeplo d d P( P A + B + C A + B + C

20 en valor absoluto, A + B + C C A B d A + B + C P( 108

21 Geoetría analítica Ejeplo O P Q O d P d = Q d = 3.9. Intersección de rectas intersección Ecuación de todas las rectas que pasan por un punto dado A ( 1, 1 ) Se denoina haz de rectas a la failia de rectas que pasan por el punto A difieren sólo en su pendiente. Si se nobra a una pendiente cualquiera, entonces la ecuación de todas las rectas que pasan por el punto A, con eclusión de la paralela al eje Y, que no tiene pendiente, es: A cada valor de le corresponderá una recta del haz. Asiiso, la ecuación de la recta que pasa por A es paralela al eje Y es = 1, ahora bien, si se conocen por lo enos dos rectas de esta failia, cóo podreos calcular el punto de intersección. Cálculo del punto de intersección de dos rectas. Para hallar el punto de intersección de las dos rectas. 109

22 Se resuelve el sistea de ecuaciones. Las soluciones del sistea forado por las ecuaciones de las rectas dan las coordenadas del punto de intersección. Ejeplo 12 A + = ( A P Ángulo entre rectas rectas ángulo entre dos 110

23 Geoetría analítica Ángulo de dos rectas en función de sus pendientes Sean las rectas L 1 L 2, de la figura 3.8, cua inclinación es 1 2 cuas pendientes son 1 2, respectivaente. Consideraos el ángulo, edido de L 1 a L 2, en dirección contraria de las anecillas del reloj. se puede calcular en función de las pendientes de L 1 L 2, es decir 1 2. En el triángulo MNP, el ángulo es eterior consecuenteente: 2 2 = 1 + ; por lo tanto = 2 1 De la fórula de la tangente de la diferencia de dos ángulos, resulta: Si se quisiera calcular el ángulo de L 2 a L 1 en dirección contraria de las anecillas del reloj, la fórula sería: que es igual a tan pero con signo contrario, lo que nos dice que se trata de ángulos supleentarios, coo a lo habíaos encionado. 111

24 Ejeplo 13 A A B C AB A AC Y X A A NOTA la fórula no se puede aplicar 112

25 Geoetría analítica Ejercicio 2 A B A Failia de rectas paralelas Ecuación de todas las rectas paralelas a una recta de pendiente dada Es la ecuación de la failia de rectas paralelas a una recta dada. Todas estas rectas se diferencian en la ordenada en el origen. Así, si 1 es la pendiente de la recta dada llaaos b a una ordenada al origen cualquiera, tendreos que la ecuación buscada es: = 1 + b Ahora bien, cóo saber si dos rectas son paralelas. La condición de paraleliso de dos rectas es que sus pendientes sean iguales. Si dos rectas son paralelas, su ángulo es cero la tangente de cero grados es tabién cero. Por lo tanto, en la fórula: el nuerador es igual a cero, o sea 1 2 = 0, entonces 1 = 2, por lo que si las pendientes son iguales, las rectas son paralelas. 113

26 Ejeplo 14 = 4 = 4 = 4 + n Distancia entre rectas paralelas Para calcular la distancia entre dos rectas paralelas, se toa un punto cualquiera de una de las rectas se calcula la distancia de este punto a la otra recta. Si abas rectas están en su fora noral, sus ecuaciones solaente se diferencian en sus distancias d d al origen. La distancia entre las dos rectas será: d d o d + d dependiendo de si las rectas se encuentran en el iso cuadrante o en cuadrantes distintos (el origen se encuentra entre las dos rectas) respectivaente. Ejeplo

27 Geoetría analítica d d d d d d d Ecuación de una recta es paralela a otra que pasa por un punto dado Ejeplo 16 A = ( A = 3, = = ( + = ( =. 115

28 3.12. Failia de rectas perpendiculares Condición de perpendicularidad entre rectas Si dos rectas son perpendiculares, el ángulo entre ellas es de 90 la tangente de 90 no eiste, pero la cotangente es igual a cero. Entonces, para que: sea igual a cero se debe cuplir que:, por lo que, o tabién. Así dos rectas son perpendiculares si sus pendientes son negativaente recíprocas, es decir, si su producto es igual a 1. Entonces, una failia de rectas perpendiculares es la que todas sus rectas foran un ángulo de 90 con una recta dada, sus pen dientes son negativaente recíprocas su producto es igual a 1. Ejeplo 17 D l A B l 2 C AB AB CD CD 116

29 Geoetría analítica Ecuación de una recta perpendicular a otra que pasa por un punto deterinado Ejeplo 18 : P P + 9 = Representación de regiones en el plano utilizando desigualdades rectas ( 117

30 = + b. = + b. > + b < + b Y Y > + b = + b X X < + b = + b > a < a = a = a 118

31 Geoetría analítica Ejeplo

32 Ejercicio 3 A A D Ejercicios resueltos A B 120

33 Geoetría analítica 2. AB A B B B 3. b 4. b 121

34 M 2 5. M A + B + C, A B 6. M M 2 M M 2 122

35 Geoetría analítica 7. A B AB AC AB AC BC BC 123

36 8. A d d

37 Geoetría analítica 10. A B C AB AB AC AC BC BC AB AC 2 125

38 11. P C O : CO CO P P CO 12., 2 126

39 Geoetría analítica 13. d A u d 2 u 127

40 d d 14. A B C 15. = A D 128

41 Geoetría analítica AD L L 2 L 0 L L 2 P L L Q L 2 L R L L L 2 L 2 L 129

42 130 PQR PR QR P Q

43 Geoetría analítica Autoevaluación =0 =0 =

44 5. B C O P A B = 0 7. A B C B A C

45 Geoetría analítica 10. d 4 d d d d Ejercicios opcionales M 1. M M 2 2. P Q 3. M M 2 N M 4. A 5. A 133

46

47 Geoetría analítica Respuestas a los ejercicios 1 = b = d = 4 P 3 b Respuestas a la autoevaluación 135

48 Respuestas a los ejercicios opcionales M A 136

Regresar Wikispaces. 01. El extremo de un segmento es A(6. 4) y su punto medio M(-2, 9), hallar su otro extremo B(x, y). B(x. y) M(-2, 9) A(6.

Regresar Wikispaces. 01. El extremo de un segmento es A(6. 4) y su punto medio M(-2, 9), hallar su otro extremo B(x, y). B(x. y) M(-2, 9) A(6. Regresar Wikispaces 01. El extreo de un segento es A(6. 4 y su punto edio M(-2, 9, hallar su otro extreo B(x, y. B(x. y M(-2, 9 A(6. 4 AB 2 x 6 01. = = 2 x 6 = 4 + 2x x = 10 BM 1 2 x y 4 = 2 y 4 = 18 +

Más detalles

La recta se define como el lugar geométrico de todos los puntos de un plano que al tomarse de dos en dos se obtiene la misma pendiente.

La recta se define como el lugar geométrico de todos los puntos de un plano que al tomarse de dos en dos se obtiene la misma pendiente. Formas de la ecuación de una recta. Hasta el momento, se han dado algunas características de la recta tales como la distancia entre dos puntos, su pendiente, su ángulo de inclinación, relación entre ellas,

Más detalles

Guía de verano Mecánica 3º Medios Introducción. Concepto de dirección

Guía de verano Mecánica 3º Medios Introducción. Concepto de dirección Guía de verano Mecánica 3º Medios 17 Introducción Esta guía servirá coo un repaso, de las ideas asociadas con una raa de las ateáticas u iportantes para el físico. El algebra vectorial es iportante porque

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA C u r s o : Matemática Material N 8 GUÍA TEÓRICO PRÁCTICA Nº 5 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando

Más detalles

RECTAS PARALELAS Y PERPENDICULARES

RECTAS PARALELAS Y PERPENDICULARES RECTAS PARALELAS Y PERPENDICULARES Qué piensas cuando te dicen que dos líneas foran un ángulo recto? Qué terinología usarías para describir a estas líneas? Cóo describirías dos rectas paralelas? Después

Más detalles

Distancia entre dos puntos

Distancia entre dos puntos GAE-05_MAAL3_Distancia entre dos puntos Distancia entre dos puntos Por: Sandra Elvia Pérez Para deterinar una expresión que te ayude a calcular la distancia entre dos puntos cualesquiera, toa los siguientes

Más detalles

GEOMETRÍA ANALÍTICA PLANA

GEOMETRÍA ANALÍTICA PLANA C O L L E G I S N N T O N I O D E P D U F R N C I S C N S C R C I X E N T GEOMETRÍ NLÍTIC PLN / Ecuaciones de la recta Un punto y un vector Dos puntos Un punto y la pendiente P x, p P(x, y ) P(p, p ) v

Más detalles

GEOMETRÍA ANALÍTICA. La idea de línea recta es uno de los conceptos intuitivos de la Geometría (como son también el punto y el plano).

GEOMETRÍA ANALÍTICA. La idea de línea recta es uno de los conceptos intuitivos de la Geometría (como son también el punto y el plano). GEOMETRÍA ANALÍTICA La idea de línea recta es uno de los conceptos intuitivos de la Geometría (como son también el punto y el plano). LA RECTA.- La recta es un conjunto infinito de puntos alineados en

Más detalles

UNIDAD DE APRENDIZAJE II

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE II Saberes procedimentales 1. Emplea de manera sistemática conceptos algebraicos, geométricos, trigonométricos y de geometría analítica. 2. Relaciona una ecuación algebraica con a

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA C u r s o : Matemática Material N 18 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA GUÍA TEÓRICO PRÁCTICA Nº 15 SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando

Más detalles

CARÁCTER DE LA GEOMETRÍA ANALÍTICA

CARÁCTER DE LA GEOMETRÍA ANALÍTICA CARÁCTER DE LA GEOMETRÍA ANALÍTICA La Geometría Elemental, conocida a por el estudiante, se denomina también Geometría PURA para distinguirla del presente estudio. Recordaremos que por medio de un sistema

Más detalles

Geometría Analítica. GEOMETRÍA ANALÍTICA PLANA SISTEMA DE COORDENADAS RECTANGULARES 1. DE UN PUNTO 2. DISTANCIA ENTRE DOS PUNTOS

Geometría Analítica.  GEOMETRÍA ANALÍTICA PLANA SISTEMA DE COORDENADAS RECTANGULARES 1. DE UN PUNTO 2. DISTANCIA ENTRE DOS PUNTOS Geometría Analítica GEOMETRÍA ANALÍTICA PLANA René Descartes, matemático francés, en 67 define una ecuación algebraica para cada figura geométrica; es decir, un conjunto de pares ordenados de números reales

Más detalles

LA RECTA Y SUS ECUACIONES

LA RECTA Y SUS ECUACIONES UNIDAD LA RECTA Y SUS ECUACIONES EJERCICIOS RESUELTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivo. Recordarás

Más detalles

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA UNIVERSIDAD DE CHILE FACULTAD DE ARQUITECTURA Y URBANISMO ESCUELA DE GEOGRAFÍA DEPARTAMENTO DE CIENCIAS DE LA CONSTRUCCIÓN ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : 1er. AÑO PROF. L. ALTIMIRAS

Más detalles

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6. ECUACIÓN DE LA RECTA 1. El ángulo de inclinación de una recta mide 53º y pasa por los puntos ( 3, n) y ( 5, 4). Hallar el valor de n. A) 1 /5 B) 8 /5 C) 1 /5 D) 8 /5 E) 7 /3. Qué tipo de triángulo es el

Más detalles

Ejemplos resueltos: CIRCUNFERENCIA Y ELIPSE

Ejemplos resueltos: CIRCUNFERENCIA Y ELIPSE Ejeplo : Deterina la ecuación de la circunferencia con centro en (,) y que pasa por el punto (,5) Respuesta: ( x + ) + ( y ) 0 Ejeplo : Deterina centro, radio y grafica de x 6x + y + y (x- )² + (y + /)²

Más detalles

INSTITUTO UNIVERSITARIO DE CALDAS GUÍA TALLER GEOMETRÍA ANALÍTICA. GRADO 11-4 DOCENTE: CRISTINA CANO.

INSTITUTO UNIVERSITARIO DE CALDAS GUÍA TALLER GEOMETRÍA ANALÍTICA. GRADO 11-4 DOCENTE: CRISTINA CANO. Distancia entre dos puntos del plano INSTITUTO UNIVERSITARIO DE CALDAS Dados dos puntos cualesquiera A(1,y1), B(,y), definimos la distancia entre ellos, d(a,b), como la longitud del segmento que los separa.

Más detalles

MATHEMATICA. Geometría - Triángulos. Ricardo Villafaña Figueroa. Ricardo Villafaña Figueroa. Material realizado con Mathematica y Geometry Expressions

MATHEMATICA. Geometría - Triángulos. Ricardo Villafaña Figueroa. Ricardo Villafaña Figueroa. Material realizado con Mathematica y Geometry Expressions MATHEMATICA Geometría - Triángulos Material realizado con Mathematica y Geometry Expressions Contenido TRIÁNGULOS... 3 Cálculo de los ángulos interiores de un triángulo... 3 Baricentro... 6 Ortocentro...

Más detalles

1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a la recta x + 7y + 1 = 0

1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a la recta x + 7y + 1 = 0 Universidad Técnica Federico Santa María Departamento de Matemática Campus Santiago Geometría Analítica 1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a

Más detalles

El análisis cartesiano (René Descartes ) descubrió que las ecuaciones pueden tener una representación gráfica.

El análisis cartesiano (René Descartes ) descubrió que las ecuaciones pueden tener una representación gráfica. Capítulo 4. Estudio de la línea recta El análisis cartesiano (René Descartes 1596-1650) descubrió que las ecuaciones pueden tener una representación gráfica. Para lograr esa representación gráfica es necesario

Más detalles

Bloque 2. Geometría. 3. La recta. 1. Definición de recta

Bloque 2. Geometría. 3. La recta. 1. Definición de recta Bloque 2. Geometría 3. La recta 1. Definición de recta Para representar puntos en un plano (superficie de dos dimensiones) utilizamos dos rectas graduadas y perpendiculares, cuyo corte es el punto 0 de

Más detalles

Sistema de coordenadas cartesianas. Ecuación de la recta y de la circunferencia.

Sistema de coordenadas cartesianas. Ecuación de la recta y de la circunferencia. Clase 4 Sistema de coordenadas cartesianas. Ecuación de la recta y de la circunferencia. Clase 4... 1 1. Sistema de Coordenadas Cartesianas... 2 1.a. Punto medio... 3 1.b. Distancia entre dos puntos...

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE MATEMÁTICAS LA RECTA

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE MATEMÁTICAS LA RECTA LA RECTA Definición Se llama línea recta al lugar geométrico de todos los puntos contenidos en el, Q x, y de la plano tales que, tomados dos puntos cualesquiera P( x y ) y ( ) recta, el valor de la pendiente

Más detalles

Lección 2.4. El Sistema de Coordenadas y La Ecuación de la Recta. 21/02/2017 Prof. José G. Rodríguez Ahumada. 1 de 24

Lección 2.4. El Sistema de Coordenadas y La Ecuación de la Recta. 21/02/2017 Prof. José G. Rodríguez Ahumada. 1 de 24 Lección.4 El Sistema de Coordenadas La Ecuación de la Recta /0/07 Prof. José G. Rodríguez Ahumada de 4 Referencia: Actividades.4 Seccíón. Sistema de Coordenadas Cartesianas. Ejercicios de Práctica: 5-8.

Más detalles

LA RECTA Y SUS ECUACIONES

LA RECTA Y SUS ECUACIONES UNIDAD 1 LA RECTA Y SUS ECUACIONES PROBLEMAS PROPUESTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivos

Más detalles

Guía de Matemática Segundo Medio

Guía de Matemática Segundo Medio Guía de Matemática Segundo Medio Aprendizaje Esperado:. Analizan la ecuación de la recta; establecen la dependencia entre las variables y la expresan gráfica y algebraicamente.. Identifican e interpretan

Más detalles

Página 209 PARA RESOLVER. 44 Comprueba que el triángulo de vértices A( 3, 1), B(0, 5) y C(4, 2) es rectángulo

Página 209 PARA RESOLVER. 44 Comprueba que el triángulo de vértices A( 3, 1), B(0, 5) y C(4, 2) es rectángulo 44 Comprueba que el triángulo de vértices A(, ), B(0, ) y C(4, ) es rectángulo y halla su área. Veamos si se cumple el teorema de Pitágoras: AB = (0 + ) + ( ) = AC = (4 + ) + ( ) = 0 BC = 4 + ( ) = 0 +

Más detalles

AYUDAS SOBRE LA LINEA RECTA

AYUDAS SOBRE LA LINEA RECTA AYUDAS SOBRE LA LINEA RECTA AYUDA : Grafiquemos la función Solución: Se debe escoger algunos números que representan a la variable x, para obtener el valor de la variable y respectivamente así: El proceso:

Más detalles

LA RECTA. Una recta r es el conjunto de los puntos del plano, alineados con un punto P y con una dirección dada.

LA RECTA. Una recta r es el conjunto de los puntos del plano, alineados con un punto P y con una dirección dada. LA RECTA Una recta r es el conjunto de los puntos del plano, alineados con un punto P y con una dirección dada. En geometría euclidiana, la recta o la línea recta, se extiende en una misma dirección, existe

Más detalles

es el lugar geométrico de los puntos p tales que ; R (1)

es el lugar geométrico de los puntos p tales que ; R (1) LA RECTA DEL PLANO ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS La recta en el plano como lugar geométrico Dados un punto p un vector no nulo u, la recta T paralela a u que pasa por p es el lugar geométrico

Más detalles

ÁLGEBRA Y GEOMETRÍA ANALÍTICA Trabajo Práctico Nº 5 Recta y Plano Cursada 2014

ÁLGEBRA Y GEOMETRÍA ANALÍTICA Trabajo Práctico Nº 5 Recta y Plano Cursada 2014 ÁLGEBRA Y GEOMETRÍA ANALÍTICA Trabajo Práctico Nº Recta Plano Cursada Desarrollo Temático de la Unidad La recta en el plano: su determinación. Distintas formas de la ecuación de la recta a partir de la

Más detalles

Representación gráfica de lugares geométricos

Representación gráfica de lugares geométricos Representación gráfica de lugares geométricos Representará gráficamente ecuaciones de las rectas y de espacios geométricos poligonales, considerando principios, leyes y procedimientos de trazo, aplicables

Más detalles

ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE G E O M É T R Í A GUÍA A N A L Í T I C A

ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE G E O M É T R Í A GUÍA A N A L Í T I C A CENTRO DE ESTUDIOS DE BACHILLERATO LIC. JESÚS REYES HEROLES ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE GEOMETRÍA G E O M É T R Í A GUÍA ANALÍTICA A N A L Í T I C A G U

Más detalles

Diseño Industrial Ecuación de la recta Ing. Gustavo Moll

Diseño Industrial Ecuación de la recta Ing. Gustavo Moll ECUACIÓN DE LA RECTA Tres o más puntos alineados determinan una recta. Encontrar una ecuación que represente a esa recta significa encontrar una le o patrón que deban seguir todos los puntos de esa recta

Más detalles

La línea recta se representa con una raya o una flecha sobre dos letras mayúsculas que simbolizan dos de sus puntos, o con una letra minúscula.

La línea recta se representa con una raya o una flecha sobre dos letras mayúsculas que simbolizan dos de sus puntos, o con una letra minúscula. Geoetría y Trigonoetría. LA RECTA.1 Definición y notación de rectas RECTA La línea recta es aquella que tiene todos sus puntos en una isa dirección. La recta no tiene líites, no se conocen su punto inicial

Más detalles

3.1. Distancia entre dos puntos. Definición 3.1. Sean a, b e, se llama distancia entre los números a y b que se denota por d (a, b), a la cantidad:

3.1. Distancia entre dos puntos. Definición 3.1. Sean a, b e, se llama distancia entre los números a y b que se denota por d (a, b), a la cantidad: III. UNIDAD: GEOMETRIA ANALITICA LANA. La Geometría Analítica permite usar los métodos algebraicos en la solución de problemas geométricos, recíprocamente, los métodos de la geometría analítica pueden

Más detalles

1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2)

1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2) 1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2) 2. Halla la ecuación de la recta r, sabiendo que es paralela a y=2x-3 y pasa por el punto (1,3). 3. Halla la ecuación de la recta

Más detalles

1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a)

1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a) Ejercicios de cónicas 1º bachillerato C 1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a) b) c) d) e) f) g) h) i) Soluciones: a) Circunferencia de centro ( y radio 3. Excentricidad

Más detalles

ECUACIÓN GENERAL DE LA RECTA

ECUACIÓN GENERAL DE LA RECTA ECUACIÓN GENERAL DE LA RECTA Sugerencias para quien imparte el curso En los ejemplos que se proponen, se debe tratar en la medida de lo posible que el propio alumno encuentre las respuestas y llegue a

Más detalles

INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO

INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO PRIMER EXAMEN PARCIAL INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO GUÍA DE GEOMETRÍA ANALÍTICA 2016-2017A SISTEMA DE COORDENADAS, LUGARES

Más detalles

EJERCICIOS DE GEOMETRÍA RESUELTOS

EJERCICIOS DE GEOMETRÍA RESUELTOS EJERCICIOS DE GEOMETRÍA RESUELTOS 1.- Dada la recta r: 4x + 3y -6 = 0, escribir la ecuación de la recta perpendicular a ella en el punto de corte con el eje de ordenadas. : - Hallamos el punto de corte

Más detalles

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253 Eje temático: Álgebra y funciones Contenidos: Operatoria con expresiones algebraicas Nivel: 2 Medio Funciones 1. Funciones En la vida diaria encontramos situaciones en las que aparecen valores que varían

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMÍREZ CALZADA DE LA ESCUELA PREPARATORIA PROBLEMARIO GEOMETRÍA ANALÍTICA

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMÍREZ CALZADA DE LA ESCUELA PREPARATORIA PROBLEMARIO GEOMETRÍA ANALÍTICA UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO PLANTEL IGNACIO RAMÍREZ CALZADA DE LA ESCUELA PREPARATORIA PROBLEMARIO GEOMETRÍA ANALÍTICA ELABORO: ING. ROBERTO MERCADO DORANTES SEPTIEMBRE 2008 Sistemas coordenados

Más detalles

PROFR.: JULIO C. JIMÉNEZ RAMÍREZ GRUPOS: TODOS LOS ALUMNOS IRREGULARES EPOEM No.16 TRUNO: VESPETINO

PROFR.: JULIO C. JIMÉNEZ RAMÍREZ GRUPOS: TODOS LOS ALUMNOS IRREGULARES EPOEM No.16 TRUNO: VESPETINO Ecuación vectorial de la recta Ecuaciones paramétricas de la recta Ecuación continua de la recta Pendiente Ecuación punto-pendiente de la recta Ecuación general de la recta Ecuación explícita de la recta

Más detalles

II Examen Parcial. (x 2) si x 2 0 x 2 (x 2) = (2 x) si x 2 < 0 x < 2

II Examen Parcial. (x 2) si x 2 0 x 2 (x 2) = (2 x) si x 2 < 0 x < 2 Instituto Tecnológico de Costa Rica Tiempo: horas, 15 minutos Escuela de Matemática Puntaje Total: 4 puntos Matemática General II Semestre 004 1. Resuelva las siguientes ecuaciones. SOLUCIÓN II Eamen Parcial

Más detalles

6º Economía Matemática III Escrito 1) 2) 3) 6º Economía Escrito Matemática III

6º Economía Matemática III Escrito 1) 2) 3) 6º Economía Escrito Matemática III 6º Econoía Mateática III 1. Halla la ecuación de la circunferencia de centro ( 3, ) C tangente a la recta de ecuación 3 x + y = 7.. Halla la ecuación de la recta tangente a la circunferencia de ecuación

Más detalles

Ecuaciones de la forma. y se sabe que pasa por el punto ( 4 ;16 ), cuál es la ecuación de la recta? con m > 0. contenga los puntos ( 2;? por qué?

Ecuaciones de la forma. y se sabe que pasa por el punto ( 4 ;16 ), cuál es la ecuación de la recta? con m > 0. contenga los puntos ( 2;? por qué? Ecuaciones de la forma y = m. Haga las gráficas de y = y = y = y = y y y y y y a. Como son las rectas b. Cuales son simétricas respecto al origen c. La recta y que tipo de simetría presenta respecto a

Más detalles

UCV FACULTAD DE INGENIERIA CALCULO I 16/04/2010. Solución al primer examen parcial. x - x 3 1

UCV FACULTAD DE INGENIERIA CALCULO I 16/04/2010. Solución al primer examen parcial. x - x 3 1 UCV FACULTAD DE INGENIERIA CALCULO I 16/04/010 Solución al primer eamen parcial 1. Encuentre el conjunto de todos los números reales que satisfacen el sistema de inecuaciones - 3 4 4 0 1 1 1 Solución:

Más detalles

Tutorial MT-b16. Matemática Tutorial Nivel Básico. Geometría analítica en línea recta

Tutorial MT-b16. Matemática Tutorial Nivel Básico. Geometría analítica en línea recta 12345678901234567890 M ate m ática Tutorial MT-b16 Matemática 2006 Tutorial Nivel Básico Geometría analítica en línea recta Matemática 2006 Tutorial Geometría analítica en línea recta Marco teórico: 1.

Más detalles

Resolución Guía de Trabajo. Geometría Analítica.

Resolución Guía de Trabajo. Geometría Analítica. Universidad de la Frontera Facultad de Ingeniería TEMUCO, Agosto 8 de 01 Departamento de Matemática y Estadística Resolución Guía de Trabajo. Geometría Analítica. Fundamentos de Matemáticas. Profesores:

Más detalles

UNI DAD 4 ESPACIO BIDIMENSIONAL: CÓNICAS

UNI DAD 4 ESPACIO BIDIMENSIONAL: CÓNICAS UNI DAD 4 ESPACIO BIDIMENSIONAL: CÓNICAS Objetivos Geometría analítica Introducción L cónica sección cónica Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0 A B C D E F 4.1. Circunferencia Circunferencia es el conjunto

Más detalles

3. 2. Pendiente de una recta. Definición 3. 3.

3. 2. Pendiente de una recta. Definición 3. 3. 3.. Pendiente de una recta. Definición 3. 3. Se llama Angulo de Inclinación α de una recta L, al que se forma entre el eje en su dirección positiva y la recta L, cuando esta se considera dirigida hacia

Más detalles

APUNTES DE GEOMETRÍA ANALÍTICA

APUNTES DE GEOMETRÍA ANALÍTICA CAPÍTULO 1: LA RECTA EN EL PLANO Conceptos Primitivos: Punto, recta, plano. APUNTES DE GEOMETRÍA ANALÍTICA Definición 1 (Segmento) Llamaremos segmento a la porción de una línea recta comprendida entre

Más detalles

Tensiones principales en el caso plano y Círculo de Mohr

Tensiones principales en el caso plano y Círculo de Mohr Tensiones principales en el caso plano Círculo de Mohr Partiendo del sistema de ecuaciones que relaciona las componentes de la tensión en el sistema de referencia {, } en función de las componentes de

Más detalles

8.- GEOMETRÍA ANÁLITICA

8.- GEOMETRÍA ANÁLITICA 8.- GEOMETRÍA ANÁLITICA 1.- PROBLEMAS EN EL PLANO 1. Dados los puntos A = (1, 2), B = (-1, 3), C = (3, 4) y D = (1, 0) halla las coordenadas de los vectores AB, BC, CD, DA y AC. Solución: AB = (-2, 1),

Más detalles

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: GEOMETRÍA ANALITICA GUÍA DE ESTUDIO PARA LA ÚLTIMA OPORTUNIDAD DE ACREDITAR LA MATERÍA

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: GEOMETRÍA ANALITICA GUÍA DE ESTUDIO PARA LA ÚLTIMA OPORTUNIDAD DE ACREDITAR LA MATERÍA Geometría analítica 1.- Ecuación de la recta 2.- Cónicas 3.-Ecuación de la parábola UNIDAD II: CONICAS (CIRCUNFERENCIA Y PARABOLAS) Una superficie cónica de revolución está engendrada por la rotación de

Más detalles

UNIDAD DE APRENDIZAJE III

UNIDAD DE APRENDIZAJE III UNIDAD DE APRENDIZAJE III Saberes procedimentales 1. Emplea de manera sistemática conceptos algebraicos, geométricos, trigonométricos y de geometría analítica. 2. Relaciona una ecuación algebraica con

Más detalles

GEOMETRÍA ANALÍTICA. 32) Deduce la ecuación de la recta cuyos puntos de intersección con los ejes son A=(6,0) y B=(0,-2). Sol: x-3y- 6=0.

GEOMETRÍA ANALÍTICA. 32) Deduce la ecuación de la recta cuyos puntos de intersección con los ejes son A=(6,0) y B=(0,-2). Sol: x-3y- 6=0. GEOMETRÍA ANALÍTICA 30) Encuentra la ecuación vectorial, paramétrica y continua de la recta que pasa por los puntos A=(3,2) y B=(1,-1). Sol: (x,y)=(3,2)+t(2,3); {x=3+2t; y=2+3t}; (x-3)/2=(y-2)/3 31) Cuál

Más detalles

Academia de Matemáticas T.M Geometría Analítica Página 1

Academia de Matemáticas T.M Geometría Analítica Página 1 INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos

Más detalles

EL ESPACIO AFÍN EUCLIDEO

EL ESPACIO AFÍN EUCLIDEO EL ESPACIO AFÍN EUCLIDEO DEFINICIÓN: Dado el Espacio Afín donde es el espacio ordinario, es el espacio de los vectores libres y f es la aplicación que a cada par de puntos (A,B) asocia el vector libre.

Más detalles

95 EJERCICIOS de RECTAS

95 EJERCICIOS de RECTAS 9 EJERCICIOS de RECTAS Forma paramétrica: 1. Dado el punto A(,3) y el vector director ur = (1, ), se pide: a) Hallar las ecuaciones paramétricas de la recta r que determinan. b) Obtener otros tres puntos

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: A Día: CURSO

Apellidos: Nombre: Curso: 2º Grupo: A Día: CURSO EXAMEN DE MATEMATICAS II ª ENSAYO (ÁLGEBRA) Apellidos: Nobre: Curso: º Grupo: A Día: CURSO Opción A. Considera la atriz a a B a a que depende de un paráetro. a) [, puntos] Para qué valores de a tiene B

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS EJERCICIOS PROPUESTOS ) Se dan los siguientes puntos por sus coordenadas: A(3, 0), B(, 0), C(0, ) y sea P un punto variable sobre el eje. i) Hallar la ecuación de la recta (AC) y de la recta (r) perpendicular

Más detalles

Profr. Efraín Soto Apolinar. Rectas. Podemos determinar de una manera única a una recta de varias formas:

Profr. Efraín Soto Apolinar. Rectas. Podemos determinar de una manera única a una recta de varias formas: Rectas Podemos determinar de una manera única a una recta de varias formas: a partir de su ecuación, a partir de dos de sus puntos a partir del ángulo que forma con uno de los ejes su distancia al origen,

Más detalles

I) La pendiente de PS es cero. II) La pendiente de RQ es negativa. III) La pendiente de SR NO es un número real.

I) La pendiente de PS es cero. II) La pendiente de RQ es negativa. III) La pendiente de SR NO es un número real. Programa Estándar Anual Nº Guía práctica Ecuación de la recta en el plano cartesiano Ejercicios PSU 1. En la figura, PQRS es un trapecio. Entonces, cuál(es) de las siguientes afirmaciones es (son) verdadera(s)?

Más detalles

Departamento de Bachillerato Preparatoria UNAM Matemáticas V Plan 100 Ciclo 06 / 07 TAREA 2, PARCIAL 3 TEMA: Ecuación de Primer Grado

Departamento de Bachillerato Preparatoria UNAM Matemáticas V Plan 100 Ciclo 06 / 07 TAREA 2, PARCIAL 3 TEMA: Ecuación de Primer Grado Departamento de Bachillerato Preparatoria UNAM Matemáticas V Plan 100 Ciclo 06 / 07 TAREA 2, PARCIAL 3 TEMA: Ecuación de Primer Grado NOMBRE DEL ESTUDIANTE: Apellido paterno Apellido materno Nombre(s)

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Física General 1 Proyecto PE - Curso 008 Instituto de Física Facultad de Ingeniería UdelaR TITULO D I N Á I C A D E P A R T Í C U L A AUTORES Santiago Góez, Anthony éndez, Eduardo Lapaz INTRODUCCIÓN Analizaos

Más detalles

Si se pueden obtener las imágenes de x por simple sustitución.

Si se pueden obtener las imágenes de x por simple sustitución. TEMA 0: REPASO DE FUNCIONES FUNCIONES: TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción,

Más detalles

GEOMETRÍA EN EL PLANO. Dos rectas perpendiculares tienen las pendientes inversas y de signo contrario. Calculamos la pendiente de la recta dada:

GEOMETRÍA EN EL PLANO. Dos rectas perpendiculares tienen las pendientes inversas y de signo contrario. Calculamos la pendiente de la recta dada: GEOMETRÍA EN EL PLANO. La ecuación de la recta que pasa por el punto A(4, 6) y es perpendicular a la recta 4x y + = 0 es: A) x + y + 8 = 0 B) 6x 4y 48 = 0 C) x + y = 0 (Convocatoria junio 00. Examen tipo

Más detalles

Geometría analítica. 3. Calcula u+ vy u v analítica y gráficamente en los siguientes. a) u (1, 3) y v(5,2) b) u (1, 3) y v(4,1) Solución:

Geometría analítica. 3. Calcula u+ vy u v analítica y gráficamente en los siguientes. a) u (1, 3) y v(5,2) b) u (1, 3) y v(4,1) Solución: 5 Geometría analítica. Operaciones con vectores Piensa y calcula Dado el vector v (3, 4) del dibujo siguiente, calcula mentalmente su longitud y la pendiente. D A v(3, 4) C O Longitud = 5 Pendiente = 4/3

Más detalles

Guía de Rectas en el plano. Prof. Wilson Herrera. 1. Hallar la ecuación de la recta que pasa por el punto a(1, 5) y tiene de pendiente 2.

Guía de Rectas en el plano. Prof. Wilson Herrera. 1. Hallar la ecuación de la recta que pasa por el punto a(1, 5) y tiene de pendiente 2. Wilson Herrera 1 Guía de Rectas en el plano. Prof. Wilson Herrera. 1. Hallar la ecuación de la recta que pasa por el punto a(1, 5) y tiene de pendiente 2. 2. Hallar la ecuación de la recta que pasa por

Más detalles

ECUACIÓN DE LA RECTA

ECUACIÓN DE LA RECTA MATEMÁTICA SEMANA 2 ECUACIÓN DE LA RECTA Todos los derechos de autor son de la exclusiva propiedad de IACC o de los otorgantes de sus licencias. No está permitido copiar, reproducir, reeditar, descargar,

Más detalles

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO.

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO. RAZONAMIENTO Y DEMOSTRACIÓN Determina la distancia entre pares de puntos. Calcula las coordenadas del punto medio del segmento cuyos extremos son dos puntos dados. Halla la pendiente de una recta. COMUNICACIÓN

Más detalles

INECUACIONES Y VALOR ABSOLUTO

INECUACIONES Y VALOR ABSOLUTO INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.

Más detalles

5 Rectas y planos en el espacio

5 Rectas y planos en el espacio 5 Rectas planos en el espacio A B AB v A cada par de puntos A B del plano o del espacio tridimensional, hemos asociado en un vector AB como se muestra en la figura contigua; de manera que si conocemos

Más detalles

EECUACIONES LINEALES EN UNA VARIABLE ECUACIONES CUADRATICAS EN UNA VARIABLE APLICACIONES

EECUACIONES LINEALES EN UNA VARIABLE ECUACIONES CUADRATICAS EN UNA VARIABLE APLICACIONES EECUACIONES LINEALES EN UNA VARIABLE ECUACIONES CUADRATICAS EN UNA VARIABLE APLICACIONES RESOLVER ECUACIONES LINEALES EN UNA VARIABLE RESOLVER ECUACIONES CUADRATICAS EN UNA VARIABLE RESOLVER PROBLEMAS

Más detalles

ESPACIO AFÍN REAL TRIDIMENSIONAL. Sistema de referencia (E3, V3, f). Coordenadas cartesianas.

ESPACIO AFÍN REAL TRIDIMENSIONAL. Sistema de referencia (E3, V3, f). Coordenadas cartesianas. 1. Puntos y Vectores. ESPACIO AFÍN REAL TRIDIMENSIONAL Sistema de referencia (E3, V3, f). Coordenadas cartesianas. 2. Primeros resultados analíticos. Vector que une dos puntos. Punto medio de un segmento.

Más detalles

TEMA 0: REPASO DE FUNCIONES

TEMA 0: REPASO DE FUNCIONES TEMA 0: REPASO DE FUNCIONES Recordamos que una función real de variable real es una aplicación de un subconjunto de los números reales A en el conjunto de los números reales de forma que a cada elemento

Más detalles

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra. Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =

Más detalles

CALCULO DIFERENCIAL Escuela Colombiana de Ingeniería. Geometría Analítica = Unión de Álgebra con la Geometría.

CALCULO DIFERENCIAL Escuela Colombiana de Ingeniería. Geometría Analítica = Unión de Álgebra con la Geometría. PRELIMINARES. COORDENADAS EN UN PLANO Cuando se trabaja un sistema de coordenadas Geometría Analítica = Unión de Álgebra con la Geometría. La geometría Analítica se origina al asignar coordenadas numéricas

Más detalles

m=0 La ecuación de una recta se puede obtener a partir de dos puntos por los que pase la recta: y y1 = m(x x1)

m=0 La ecuación de una recta se puede obtener a partir de dos puntos por los que pase la recta: y y1 = m(x x1) Recta Una propiedad importante de la recta es su pendiente. Para determinar este coeficiente m en una recta que no sea vertical, basta tener dos puntos (, y) & (, y) que estén sobre la recta, la pendiente

Más detalles

5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES

5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES Tema 5 : Funciones elementales - Matemáticas B 4º E.S.O. 1 TEMA 5 FUNCIONES ELEMENTALES 5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES 3º 5.1.1 - FUNCIONES DE PROPORCIONALIDAD: y = mx Las funciones de proporcionalidad

Más detalles

VI. ECUACIÓN DE PRIMER GRADO

VI. ECUACIÓN DE PRIMER GRADO VI. EUIÓN DE PRIER GRDO 6.. EUIÓN DE UN LUGR GEOÉTRIO En el capítulo anterior (V), se trató uno de los problemas centrales de la Geometría nalítica (Discutir una ecuación) para trazar su gráfica, un segundo

Más detalles

Sistema de coordenadas. Plano cartesiano

Sistema de coordenadas. Plano cartesiano Geometría analítica La geometría analítica estudia las figuras geométricas mediante técnicas básicas del análisis matemático y del álgebra en un determinado sistema de coordenadas.. Actualmente la geometría

Más detalles

Áreas entre curvas. Ejercicios resueltos

Áreas entre curvas. Ejercicios resueltos Áreas entre curvas Ejercicios resueltos Recordemos que el área encerrada por las gráficas de dos funciones f y g entre las rectas x = a y x = b es dada por Ejercicios resueltos b a f x g x dx Ejercicio

Más detalles

Función cuadrática. Ecuación de segundo grado completa

Función cuadrática. Ecuación de segundo grado completa Función cuadrática Una función cuadrática es aquella que puede escribirse como una ecuación de la forma: f(x) = ax 2 + bx + c donde a, b y c (llamados términos) son números reales cualesquiera y a es distinto

Más detalles

FUNCIONES DE PROPORCIONALIDAD: y = mx. Su pendiente es 0. La recta y = 0 coincide con el eje

FUNCIONES DE PROPORCIONALIDAD: y = mx. Su pendiente es 0. La recta y = 0 coincide con el eje Funciones elementales - Matemáticas B 4º E.S.O. FUNCIONES ELEMENTALES DISTINTOS TIPOS DE FUNCIONES LINEALES FUNCIONES DE PROPORCIONALIDAD: y = mx FUNCIÓN CONSTANTE: y = n Las funciones de proporcionalidad

Más detalles

101 EJERCICIOS de RECTAS

101 EJERCICIOS de RECTAS 101 EJERCICIOS de RECTAS Forma paramétrica: 1. Dado el punto A(5,3) y el vector director ur = (1, ), se pide: a) Hallar las ecuaciones paramétricas de la recta r que determinan. b) Obtener otros tres puntos

Más detalles

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA ESCUELA PREPARATORIA OFICIAL No. 268 GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA Profra: Citlalli Artemisa García García 1) Qué es la pendiente? 2) Cómo es la pendiente de rectas

Más detalles

Capítulo VII CENTRO DE GRAVEDAD, CENTRO DE MASA Y CENTROIDE

Capítulo VII CENTRO DE GRAVEDAD, CENTRO DE MASA Y CENTROIDE Capítulo II CENTRO DE GREDD, CENTRO DE MS Y CENTROIDE 7. INTRODUCCIÓN Todo cuerpo que se halla en las inediaciones de la tierra interactúa con ella coo resultado de esta interacción actúa sore el cuerpo

Más detalles

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva.

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva. EJERCICIOS PARA PREPARAR EL EXAMEN GLOBAL DE ANÁLISIS ln ) Dada la función f ( ) = +, donde ln denota el logaritmo - 4 neperiano, se pide: a) Determinar el dominio de f y sus asíntotas b) Calcular la recta

Más detalles

ENSEÑANZA DE LA FUNCIÓN CUADRÁTICA INTERPRETANDO SU COMPORTAMIENTO AL VARIAR SUS PARAMETROS

ENSEÑANZA DE LA FUNCIÓN CUADRÁTICA INTERPRETANDO SU COMPORTAMIENTO AL VARIAR SUS PARAMETROS ENSEÑANZA DE LA FUNCIÓN CUADRÁTICA INTERPRETANDO SU COMPORTAMIENTO AL VARIAR SUS PARAMETROS JUAN ALFONSO OAXACA LUNA, MARÍA DEL CARMEN VALDERRAMA BRAVO Introducción Uno de los conceptos centrales en el

Más detalles

PROGRAMA PRE-PAES 2015 Asignatura: Matemática Contenido Virtual

PROGRAMA PRE-PAES 2015 Asignatura: Matemática Contenido Virtual Programa PREPAES, Universidad Francisco Gavidia015 PROGRAMA PRE-PAES 015 Asignatura: Matemática Contenido Virtual TEMA: APLIQUEMOS ELEMENTOS DE GEOMETRIA ANALITICA Profesor: Luis Roberto Padilla R. e-mail:

Más detalles

1 er Problema. 2 Problema

1 er Problema. 2 Problema Facultad de Contaduría Administración. UNAM Lugares geométricos Autor: Dr. José Manuel Becerra Espinosa MATEMÁTICAS BÁSICAS LUGARES GEOMÉTRICOS Eisten dos problemas fundamentales en la Geometría Analítica:.

Más detalles

TEMA 6. ECUACIONES DE LA RECTA

TEMA 6. ECUACIONES DE LA RECTA TEMA 6. ECUACIONES DE LA RECTA Dados un punto y un vector, vamos a hallar las ecuaciones de la recta r que pasa por el punto A y es paralela al vector. Sea consideramos los vectores un punto cualquiera

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA Pobre del estudiante que no aventaje a su maestro. LA LÍNEA RECTA Leonardo da Vinci DESEMPEÑOS Identificar, interpretar, graficar

Más detalles

x-z = 0 x+y+2 = [2012] [EXT-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por

x-z = 0 x+y+2 = [2012] [EXT-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por x = 1+t 1. [014] [EXT-A] Considera los puntos A(1,1,) y B(1,-1,-) y la recta dada por y = t. z = 1 a) Halla la ecuación general del plano que que contiene a r y es paralelo a la recta que pasa por A y

Más detalles

LA FUNCIÓN LINEAL: Ecuaciones y aplicaciones de la línea recta.

LA FUNCIÓN LINEAL: Ecuaciones y aplicaciones de la línea recta. INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: GEOMETRÍA DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA

Más detalles

SOLUCIONARIO GUÍA TÉCNICO PROFESIONAL Dinámica I: fuerza y leyes de Newton

SOLUCIONARIO GUÍA TÉCNICO PROFESIONAL Dinámica I: fuerza y leyes de Newton SOLUCIONARIO GUÍA ÉCNICO PROFESIONAL Dináica I: fuerza y leyes de Newton SGUICC016C3-A16V1 Solucionario guía Dináica I: fuerza y leyes de Newton Íte Alternativa Habilidad 1 C Reconociiento A Aplicación

Más detalles

Sistema Bidimensional

Sistema Bidimensional Capítulo 7 Sistema Bidimensional 7.1. Sistema Cartesiano La correspondencia entre pares ordenados de números reales y puntos en el plano, idea inicial que se debe a Renato Descartes (1596-1650), es lo

Más detalles