1. Introducción: aproximación de un vector

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. Introducción: aproximación de un vector"

Transcripción

1 .6 Ajuste lineal por ínios cuadrados (6_AL_T_v9;005.w0.4; C & / C) 0. Notación (, ) producto interno de vectores A atriz de diseño (rectangular; n); contiene por colunas los vectores de las funciones del odelo A T A atriz de las ecuaciones norales (cuadrada; n n) d vector error o diferencia e vector de una base f vector de la función f () evaluada para el vector de las abscisas núero de datos (diensiones de espacio) n núero de paráetros ajustables (diensión del subespacio) vector con abscisas o variable independiente del odelo abscisa del dato vector con ordenadas o variable dependiente (ordenada) del odelo a (vector) aproiación a ordenada del dato α vector de paráetros ajustables α paráetro ajustable * α valor óptio o valor dado de un paráetro ajustable χ función escalar que representa la agnitud del vector error (sua de residuales); depende de los paráetros ajustables incertidubre en la ordenada α incertidubre en la abscisa varianza de residuales incertidubre en el paráetro α. Introducción: aproiación de un vector Considereos la epansión de un vector en térinos de una base en el espacio de - diensiones. Si la base es { e, e,..., e }, entonces (0.) α e. Para deterinar los coeficientes α, proectaos el vector sobre cada uno de los vectores base obteneos ecuaciones para coeficientes. El sistea tiene solución única. Si la base es ortogonal, entonces (,e (0.) ) ( e,e )e. Para una base ortonoral

2 (0.) (,e )e. Ahora bien, qué pasa si en vez de la base utilizaos un conjunto de n (< ) vectores { f, f,..., f n } LI? Si el vector en una cobinación lineal de los n vectores se podrá hacer una epansión; sin ebargo, en el caso ás general, eistirán vectores que no se podrán epresar en térinos de { f, f,..., f n }. En este caso podeos hacer una aproiación; podeos construir un vector (0.4) a α f preguntar que tan parecido (o que tan cercano) es este vector a. Para cuantificar la aproiación definios el vector error (o diferencia) (0.5) d a escogeos los paráetros α, α,..., α n será cero si está en el subespacio de cubierto por los n vectores. n { } para que d sea lo ás cercano a cero; d Considerando una aproiación con dos vectores en el espacio -D, teneos que a está en el plano generado por { f, f } ; si está tabién en el plano entonces podeos escoger { α, α } tal que d 0 la aproiación es eacta (i.e. la α * f aproiación se convierte en una f epansión). Si no está en el d * plano, d no puede ser cero; sin f d () * ebargo, podeos escoger los a paráetros para que la longitud d () () de d sea ínia ( d * a ) coo se α * f uestra en la figura. a () La relación con ínios cuadrados (lineales) se puede ver si pensaos en ajustar un odelo de dos paráetros a tres puntos. Considerando el ajuste de una recta, el odelo sería α + α (en este caso representa la ordenada no un vector). Si consideraos que la función a iniizar (χ) sea la sua del cuadrado de los residuales (diferencia entre la ordenada el odelo α + α coo se uestra en la siguiente figura), teneos que (, ) (, ) α + α ( α + α ) (, )

3 ( ) (0.6) χ + α ). La ecuación anterior se puede escribir coo la ultiplicación (atricial) de un vector fila por un vector coluna; esto es + α ) χ ( + α ) + α ) + α )) + α ). + α ) Lo anterior se puede ver coo el cuadrado de la nora de un vector; esto es χ + α ) + α ) + α ) (α + α (0.7) χ ( α f + α f ) a d. El problea de ínios cuadrados consiste en encontrar valores α * * {, α } que iniizan la sua de residuales (χ) o, equivalenteente, la longitud del vector error (o diferencia) d. Notas:. Es iportante no confundir coo ordenada (del odelo α + α ) con coo el vector de coponentes (. El vector f ientras que el vector f. Equivalenteente, en el odelo f (), ientras que f (). Los coponentes de los vectores se generan cuando se aplican las funciones a las abscisas,,...,. En algunos tetos se utiliza χ ó χ en vez de χ. 4. La diensión del espacio es el núero de puntos (). 5. La diensión del subespacio en donde se encuentra la aproiación a es el núero de paráetros (o funciones) del odelo (n). 6. Por lo general, n < ; si n, entonces la aproiación se convierte en una epansión (d 0) a enos que los vectores sean LD. Aun en el caso n <, podeos obtener una epansión si resulta que d 0 (i.e. podeos encontrar una recta que pasa por ás de dos puntos). ). ) { }.. Solución: iniización utilizando la nora euclideana Regresando a la ecuación (6) ó (7) de la sección anterior teneos que:

4 ( ) (0.8) χ(α,α ) + α ) a (α,α ) d(α,α ) Entonces, para encontrar puntos críticos, diferenciaos con respecto a α, α χ ( + α ))( ) ( + α ) ) α 0 4 { }. χ ( + α ) α )( ) ( + α ) ) 0 Puesto que α, α salen de la suatoria aparecen de anera lineal, podeos escribir un sistea para encontrar la solución al problea anterior: α α Este sistea tiene solución resulta que los valores de α, α iniizan a χ. Toando el punto de vista de vectores, podeos usar un arguento geoétrico para encontrar α, α. Sabeos que la longitud del vector d será ínia cuando éste sea perpendicular al plano; entonces, el producto interno entre d a es cero. Esto es, ( d, a ) 0 ( a, a ) 0 (, a ) ( a, a ) 0 Ahora bien, α + α a α + α α + α α α Aα α + α Donde A ( f f ) es la atriz de diseño tiene por colunas las funciones evaluadas para cada ; α es el vector de los paráetros α, α. Del arguento geoétrico teneos que ( ) T (Aα) α T A T Aα a T α T A T ( a, a ) (, a ) ( a, ) T a a Aα con esto α T (A T Aα A T ) 0. Puesto que α T no es el vector cero, A T Aα A T 0 ( A T A)α A T. Esta es la ecuación atricial que resuelve el problea de ínios cuadrados utilizando las ecuaciones norales (esto es, teneos que invertir una atriz cuadrada de n n donde n es el núero de paráetros ajustables). De la isa anera podeos pensar que puesto que A T no es cero podeos escribir A T Aα ( ) 0 Aα. En este caso la ecuación es al parecer ás sencilla ecepto que ahora teneos que invertir una atriz rectangular de n donde ha filas (de datos) n colunas (de

5 n paráetros ajustables); para resolver esta ecuación es necesario utilizar Descoposición por Valores Singulares (que no es parte del curso). Por tanto sólo utilizareos las ecuaciones norales. Ejeplo: recta (odelo α + α ) que iniiza la distancia a los puntos 0 - / En este caso la atriz de diseño es 0 A, el vector de ordenadas es, las ecuaciones norales son ( A T A)α A T 0 0 α α 0 5 Invirtiendo la atriz noral teneos que α α con esto deducios que la recta que pasa ás cerca de los tres puntos es α α 5.. Modelos con tres paráetros fora generalizada del odelo Considereos el ajuste de una parábola a cuatro o ás puntos ; en este caso el odelo es (0.9) α + α + α la función a iniizar es χ(α, α, α ) ( + α + α )). La iniización nos lleva a

6 α α 4 α Se puede ver que llegaos a las ecuaciones norales ( A T A)α A T donde A es A M M M 6 ( f f f ) las colunas son las funciones {,, } evaluadas para cada una de las abscisas. Con esto podeos generalizar a un odelo de tres funciones arbitrarias α f () + α f () + α f () lo cual nos lleva al iso problea: ( A T A)α A T ; en este caso la atriz de diseño es f ( ) f ( ) f ( ) f ( ) f ( ) f ( ) A f ( ) f ( ) f ( ) M M M f ( ) f ( ) f ( ) ( f f f ). De hecho se puede ver que la atriz cuadrada (A T A) está dada por los productos internos de los vectores { f, f, f } f ( f, f ) ( f, f ) ( A T A) ( f, f ) f ( f, f ) ( f, f ) ( f, f ) f que es siétrica pues el producto interno lo es para el capo de los reales. Las ecuaciones norales son ( A T A)α A T f ( f, f ) ( f, f ) ( f, f ) f ( f, f ) ( f, f ) ( f, f ) f α α α ( f, ) ( f, ). ( f, ) De la desigualdad de Schwarz se puede deostrar que el problea tiene solución (i.e. la atriz noral tiene inversa) siepre que los vectores sean linealente independientes (LI); con esto se puede ver que se pueden considerar odelos ás generales siepre cuando sean lineales en los paráetros a iniizar. Esto es, podeos considerar varias

7 variables independientes funciones (no-lineales) de las variables independientes la dependiente. El único requisito es que se foren vectores LI. Ejeplo: Ajusteos los paráetros {α, α, α } del odelo α + α + α utilizando los datos En este caso las colunas (vectores) de A son {,, } claraente se generan vectores LI; la atriz de diseño es 0 0 A, el planteaiento del problea es 4 4 α ( A T A)α A T 4 6 α α la solución es 7 α α α Queda claro que el odelo lineal ás general de n paráetros para dos variables es f 0 (, ) α f (, ) + α f (, ) α n f n (, ). Adeás, si teneos un odelo con n paráetros algunos de ellos los quereos fijar en valores dados, sólo pasaos esos suandos al lado izquierdo de la ecuación consideraos un vector que depende de. Considerando el odelo α f () + α f () + α f () + α 4 f 4 () + α 5 f 5 () podeos toar {α, α, α 4 } coo fijos ajustar {α, α 5 } reacoodando α * f () α * f () α 4 * f 4 () α f () + α 5 f 5 () considerando el vector α * f () α * f () α 4 * f 4 () en vez del vector de ordenadas. 4. Linealización de algunos odelos no-lineales Para odelos coo 7

8 α e α no se pueden generar las ecuaciones norales pues α aparece de anera no-lineal. En este caso se pueden sacar el logarito del odelo considerar ln ln α e α ( ) lnα + α. Se puede utilizar la teoría epuesta para encontrar {lnα, α }. Tabién se puede linealizar α ( α ) pero no así α sen ( α ). 5. Ajuste con errores (incertidubres) en los datos Suponiendo que las ordenadas están caracterizadas por desviaciones estándar Modelo α + α datos ± ± M M ± Nota : si se consideran incertidubres en las abscisas el problea se vuelve no-lineal Modelo α + α datos ± ± El problea se trata en Press, Flanner, Teuols &Vetterling; Nuerical Recipes in {Fortran, c, Pascal} ± ± M M ± ± En este curso consideraos que no ha incertidubre en las s Esto es, los datos son de la fora: Consideraos χ ( α,α ) + α ) 8 ± 0 ± ± 0 ± M M ± 0 ± le daos aor peso a puntos con enor incertidubre

9 χ α Si + α ) 0 α α i,,... * ( ) χ α α α + α ) 0, el problea queda igual 6. Incertidubre en los paráetros Propagación de errores: si z f (, ), dz f f d + d Sua (valor edio cuadrático; rs) para calcular incertidubre en z z f + f Incertidubre en z en térinos de las incertidubres en & (, ) Regresaos al ajuste de una línea recta α + α con paráetros ajustables α, α A M { } ; en este caso α α α M A T Aα A T α α 9

10 Sea * S S S * S S S α α Si * S S, α α S S * S S S S * α S S S S S S S S S S S S * atriz de covarianzas S S S S * S S S α * S S S Suponiendo incertidubre en solaente α S S S S S S ( ± ) Con esto podeos calcular la incertidubre en α α α S S ( S S ) S { S * S S + S S } S S S S * S S α S De anera siilar α * 0

11 Nótese que * S S S S S S α * cov α,α cov ( α,α ) ( ) α Resultados del ajuste α ± α α ± α Si consideraos el caso en que todas las incertidubres de las ordenadas son iguales o no las ha (i.e. todas son iguales a uno), teneos que odificar las fórulas de las incertidubres: α S α S S χ n α * * α * χ n S Para propósito de eáenes en el curso de FMM, bastará con calcular, * para obtener las incertidubres en los paráetros (dejando indicado que éstas ha que ultiplicarlas por χ n. 7. El problea de la recta a través de tres puntos Regreseos al odelo α + α con datos A ± ± ; esto es,,,. ± α α α R R

12 Considerando que la solución al problea de ínios cuadrados está dada por A T Aα α α + + α α Siplificaos el problea suponiendo que las abscisas están dadas por {-δ, 0, δ}; con 0 α esto obteneos: 0 δ α + + δ( ). La solución del problea es: α α δ δ( ) δ δ( ) δ α + + ± intercepto de la recta es la altura proedio; incertidubre en el intercepto : α δ ± δ pendiente es la diferencia de las alturas laterales con incertidubre : δ χ Teneos casos etreos (recordeos que ): Incertidubre en pendiente pequeña Incertidubre en pendiente grande δ << δ >> odelo de paráetros + + ± + δ ± δ odelo de paráetro: nos da la altura pero nos dice que no toeos en cuenta la pendiente + + ±

13 8. Resuen Ajuste de odelos utilizando ínios cuadrados lineales es equivalente a buscar una aproiación al vector de -diensiones en un subespacio de n-diensiones (odelo con n paráetros ajustables). La ejor aproiación utilizando la nora euclideana está dada por A T Aα. Para el ajuste de la recta ás cercana a puntos utilizaos χ ( + α )). ( ) es la atriz de covarianzas nos da las incertidubres en los paráetros (caso especial cuando no ha incertidubres en las ordenadas o todas las incertidubres son iguales: ultiplicaos por La inversa de A T A χ n ). Modelos coo α e α o α α ( ) se pueden linealizar Modelo lineal ás general de n paráetros para dos variables es f 0 (, ) α f (, ) + α f (, ) α n f n (, ) ; en este caso, ( A T A)α A T f ( f, f ) ( f, f ) ( f, f ) f ( f, f ) ( f, f ) ( f, f ) f α α α ( f, ) ( f, ). ( f, )

Apellidos: Nombre: Curso: 2º Grupo: A Día: CURSO

Apellidos: Nombre: Curso: 2º Grupo: A Día: CURSO EXAMEN DE MATEMATICAS II ª ENSAYO (ÁLGEBRA) Apellidos: Nobre: Curso: º Grupo: A Día: CURSO Opción A. Considera la atriz a a B a a que depende de un paráetro. a) [, puntos] Para qué valores de a tiene B

Más detalles

1. Calificación máxima: 2 puntos Calcular los siguientes límites (donde Ln significa Logaritmo Neperiano).

1. Calificación máxima: 2 puntos Calcular los siguientes límites (donde Ln significa Logaritmo Neperiano). JUNIO INSTRUCCIONES: El eaen presenta dos opciones B; el aluno deberá elegir una de ellas contestar raonadaente a los cuatro ejercicios de que consta dicha opción en h. in. OPCIÓN. Calificación áia: puntos

Más detalles

Tema 4 resolución de sistemas mediante Determinantes

Tema 4 resolución de sistemas mediante Determinantes Tea 4 resolución de sisteas ediante Deterinantes. Estudio del carácter de un sistea Teorea de Rouché Estudia la copatibilidad de los siguientes sisteas resuélvelos si tienen solución: 5 5 4 a b c t t a

Más detalles

MATEMÁTICAS II 2010 OPCIÓN A. para x a.

MATEMÁTICAS II 2010 OPCIÓN A. para x a. MTEMÁTICS II OPCIÓN Ejercicio : Sea una unción deinida coo a b ( ) para a. a a) Calcula a b para que la gráica de pase por el punto (, ) tenga una asíntota oblicua con pendiente -. b) Para el caso a =,

Más detalles

Pruebas de Acceso a Ensen anzas Universitarias Oficiales de Grado (PAEG)

Pruebas de Acceso a Ensen anzas Universitarias Oficiales de Grado (PAEG) PAEG junio 06 Opción A Mateáticas II º Bachillerato Pruebas de Acceso a Ensen anzas Universitarias Oiciales de Grado (PAEG) Mateáticas II (Universidad de Castilla-La Mancha) junio 06 Propuesta A EJERCICIO

Más detalles

Este problema es una clásico de aplicación de la Segunda Ley de Newton y la forma de operar para obtener el resultado pedido. Veamos su esquema:

Este problema es una clásico de aplicación de la Segunda Ley de Newton y la forma de operar para obtener el resultado pedido. Veamos su esquema: ísica Dos planos inclinados con dos cuerpos, unidos a través de una cuerda que pasa por una polea despreciable. Supongaos que ha rozaiento en los dos planos inclinados. Supongaos que el sistea se ueva

Más detalles

Segunda parte: Modos de vibración

Segunda parte: Modos de vibración Segunda parte: odos de vibración Objetivo: Estudiar el oviiento general de un sistea oscilatorio de varios grados de libertad étodo: Deterinar los odos de vibración del sistea. El oviiento general será

Más detalles

ÁREA: BÁSICA CLAVE DE LA ASIGNATURA: LA 102

ÁREA: BÁSICA CLAVE DE LA ASIGNATURA: LA 102 TEÁTIS ÁRE: ÁSI LVE DE L SIGNTUR: L OJETIVO(S) GENERL(ES) DE L SIGNTUR: l térino del curso el aluno analizará los principios de las ateáticas; aplicará los isos coo herraientas para operar en los coportaientos

Más detalles

1) Estudia las discontinuidades y halla las ecuaciones de las asíntotas de la función: 1 f(x)= 1-e x

1) Estudia las discontinuidades y halla las ecuaciones de las asíntotas de la función: 1 f(x)= 1-e x CURSO 22-23. Septiebre de 23. ) Estudia las discontinuidades y halla las ecuaciones de las asíntotas de la función: f() -e 2) Utilizando la definición, calcula las derivadas laterales de la función f()

Más detalles

Materia: MATEMÁTICAS II PROPUESTA A. 3 2x + 1 dx (1,25 puntos por integral)

Materia: MATEMÁTICAS II PROPUESTA A. 3 2x + 1 dx (1,25 puntos por integral) Pruebas de Acceso a nseñanas Universitarias Oficiales de Grado. Bachillerato L. O.. Materia: MATMÁTICA II Instrucciones: l aluno deberá contestar a una de las dos opciones propuestas A o B. Los ejercicios

Más detalles

Fuerzas de fricción (o de rozamiento)

Fuerzas de fricción (o de rozamiento) Fuerzas de fricción (o de rozaiento) Si un cuerpo se ueve sobre una superficie áspera o rugosa, encontrará adeás de la resistencia del aire, otra fuerza de resistencia debida a la rugosidad de la superficie.

Más detalles

UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA

UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA Objetivos Geoetría analítica Introducción U 3.1. Definición de recta 91 Dos puntos sólo pueden ser unidos por una sola recta la relación ateática que satisface

Más detalles

1.- SISTEMA DE REFERENCIA EN EL PLANO. COORDENADAS DE PUNTOS Y VECTORES.

1.- SISTEMA DE REFERENCIA EN EL PLANO. COORDENADAS DE PUNTOS Y VECTORES. º Bachillerato Mateáticas I Tea 6: Geoetría analítica.- SISTEMA DE REFERENCIA EN EL PLANO. COORDENADAS DE PUNTOS Y VECTORES. Un Sistea de referencia en el plano está forado por: Un punto O llaado Origen

Más detalles

IES Fernando de Herrera Curso 2016 / 17 Segundo trimestre Observación evaluable escrita nº 1 2º Bach CT NOMBRE:

IES Fernando de Herrera Curso 2016 / 17 Segundo trimestre Observación evaluable escrita nº 1 2º Bach CT NOMBRE: IES Fernando de Herrera Curso 6 / Segundo triestre Observación evaluable escrita nº º Bach CT NOMBRE: Instrucciones: ) Todos los folios deben tener el nobre estar nuerados en la parte superior. ) Todas

Más detalles

GEOMETRÍA ANALÍTICA PLANA

GEOMETRÍA ANALÍTICA PLANA C O L L E G I S N N T O N I O D E P D U F R N C I S C N S C R C I X E N T GEOMETRÍ NLÍTIC PLN / Ecuaciones de la recta Un punto y un vector Dos puntos Un punto y la pendiente P x, p P(x, y ) P(p, p ) v

Más detalles

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A Eáenes de Mateáticas de Selectividad ndalucía resueltos http://qui-i.co/ Eaen de Selectividad Mateáticas JUNIO 8 - ndalucía OPCIÓN.- [,5 puntos] Halla los coeficientes a, b y c sabiendo que la función

Más detalles

Ecuación característica (raíces reales y distintas, raíces reales e iguales, raíces complejas conjugadas)

Ecuación característica (raíces reales y distintas, raíces reales e iguales, raíces complejas conjugadas) .6.. Ecuación característica (raíces reales distintas, raíces reales iguales, raíces coplejas conjugadas).6.. Ecuación característica (raíces reales y distintas, raíces reales e iguales, raíces coplejas

Más detalles

ANÁLISIS DE LA TASA INSTANTÁNEA DE INTERÉS A PARTIR DE SU REPRESENTACIÓN GRÁFICA

ANÁLISIS DE LA TASA INSTANTÁNEA DE INTERÉS A PARTIR DE SU REPRESENTACIÓN GRÁFICA 1 ANÁLISIS DE LA TASA INSTANTÁNEA DE INTERÉS A PARTIR DE SU REPRESENTACIÓN GRÁFICA AUTORES: Cra. Laura S. BRAVINO Mgter. Oscar A. MARGARIA Esp. Valentina CEBALLOS SALAS Departaento de Estadística y Mateática

Más detalles

Problema 1 F 1 , F 2. = G M 2 m D 2. = G M 1 m D 1. = ( D y) 2 + x 2. Las fuerzas que se ejercen sobre la estrella de masa m serían

Problema 1 F 1 , F 2. = G M 2 m D 2. = G M 1 m D 1. = ( D y) 2 + x 2. Las fuerzas que se ejercen sobre la estrella de masa m serían Problea 1 Las fuerzas que se ejercen sobre la estrella de asa serían 1, F D Podeos establecer las coordenadas de las estrellas en un plano cartesiano para siplificar el problea. La distancia de la estrella

Más detalles

Movimiento Armónico Forzado

Movimiento Armónico Forzado Moviiento Arónico Forzado Estudieos ahora el oviiento de una asa soetida a una fuerza elástica, en presencia de fuerzas de arrastre y de una fuerza externa que actúa sobre la isa. Asuireos que la fora

Más detalles

Guía de verano Mecánica 3º Medios Introducción. Concepto de dirección

Guía de verano Mecánica 3º Medios Introducción. Concepto de dirección Guía de verano Mecánica 3º Medios 17 Introducción Esta guía servirá coo un repaso, de las ideas asociadas con una raa de las ateáticas u iportantes para el físico. El algebra vectorial es iportante porque

Más detalles

Capítulo 3. Fundamentos matemáticos del estudio

Capítulo 3. Fundamentos matemáticos del estudio Capítulo 3. Fundaentos ateáticos del estudio 3.1 Ecuación de Darcy La ley de Darcy es el pilar fundaental de la hidrología subterránea. Es una ley experiental obtenida por el ingeniero francés Henry Darcy

Más detalles

ENSEÑANZA DE LA FUNCIÓN CUADRÁTICA INTERPRETANDO SU COMPORTAMIENTO AL VARIAR SUS PARAMETROS

ENSEÑANZA DE LA FUNCIÓN CUADRÁTICA INTERPRETANDO SU COMPORTAMIENTO AL VARIAR SUS PARAMETROS ENSEÑANZA DE LA FUNCIÓN CUADRÁTICA INTERPRETANDO SU COMPORTAMIENTO AL VARIAR SUS PARAMETROS JUAN ALFONSO OAXACA LUNA, MARÍA DEL CARMEN VALDERRAMA BRAVO Introducción Uno de los conceptos centrales en el

Más detalles

CAPITULO 7 MODELO CON TIEMPOS DE FALLA CON DISTRIBUCION DE PROBABILIDAD GENERAL Y FRECUENCIA DE MUESTREO VARIABLE.

CAPITULO 7 MODELO CON TIEMPOS DE FALLA CON DISTRIBUCION DE PROBABILIDAD GENERAL Y FRECUENCIA DE MUESTREO VARIABLE. CAPITULO 7 MODELO CON TIEMPOS DE FALLA CON DISTRIBUCION DE PROBABILIDAD GENERAL Y FRECUENCIA DE MUESTREO VARIABLE. En este capítulo se presenta el odelo propuesto por Rahi & Banerjee [3], su solución con

Más detalles

156 Ecuaciones diferenciales

156 Ecuaciones diferenciales 156 Ecuaciones diferenciales 3.6 Mecánica El paracaidiso es uno de los deportes extreos que día a día cuenta con ayor núero de adeptos. Los que practican este deporte se tiran desde un avión en oviiento

Más detalles

MATEMÁTICAS II. F 3 = F 3 (m 1)F 1. ( m 1 F 2 = F 2 F 1 F 3 = F 3 2F 1 F 4 = F 4 + 2F 1. = x = y = z = λ λ IR

MATEMÁTICAS II. F 3 = F 3 (m 1)F 1. ( m 1 F 2 = F 2 F 1 F 3 = F 3 2F 1 F 4 = F 4 + 2F 1. = x = y = z = λ λ IR el acceso a la Universidad (EBAU Curso 7-8 MATEMÁTICAS II Se presentan los ejercicios con un procediiento para resolverlos. Naturalente, los procediientos propuestos no son los únicos posibles. OPCIÓN

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos I.E.S. ASTELAR BADAJOZ A. enguiano PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - 8 (RESUELTOS por Antonio enguiano) ATEÁTIAS II Tiepo áio: horas inutos Se valorará la corrección la claridad en

Más detalles

APLICACIONES DE LAS LEYES DE NEWTON

APLICACIONES DE LAS LEYES DE NEWTON ALICACIOES DE LAS LEYES DE EWO Introducción ara resolver los probleas de dináica utilizaos las leyes de ewton que requieren conocer, dibujar y calcular las fuerzas que actúan sobre los cuerpos. En la ayoría

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Métodos multivariantes en control estadístico de la calidad

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Métodos multivariantes en control estadístico de la calidad UNIVERIDAD NACIONAL MAYOR DE AN MARCO FACULTAD DE CIENCIA MATEMÁTICA E.A.P. DE ETADÍTICA Métodos ultivariantes en control estadístico de la calidad Capítulo III. Gráficos de control T de Hotelling TRABAJO

Más detalles

Constante de un resorte Por Fernando Vega Salamanca

Constante de un resorte Por Fernando Vega Salamanca Constante de un resorte Por Fernando Vega Salaanca El objetivo es encontrar experientalente la constante de un resorte, para lo cual ostraos varios procediientos..0 Con ayuda de la Ley de Hoo En este apartado

Más detalles

D to de Economía Aplicada Cuantitativa I Basilio Sanz Carnero

D to de Economía Aplicada Cuantitativa I Basilio Sanz Carnero D to de Econoía Aplicada Cuantitativa I Basilio Sanz Carnero MODELOS DINÁMICOS: INTRODUCCIÓN En econoetría se considera odelos estáticos a aquellos en que las variables no presentan retardos (los odelos

Más detalles

Ejemplos resueltos: CIRCUNFERENCIA Y ELIPSE

Ejemplos resueltos: CIRCUNFERENCIA Y ELIPSE Ejeplo : Deterina la ecuación de la circunferencia con centro en (,) y que pasa por el punto (,5) Respuesta: ( x + ) + ( y ) 0 Ejeplo : Deterina centro, radio y grafica de x 6x + y + y (x- )² + (y + /)²

Más detalles

Tema 6. Oscilaciones de sistemas con varios grados de libertad

Tema 6. Oscilaciones de sistemas con varios grados de libertad Tea 6. Oscilaciones de sisteas con varios grados de libertad Priera parte: Sistea de dos asas un uelle. Ecuaciones del oviiento Nuestro sistea está forado por dos asas, en general diferentes,, unidas por

Más detalles

Problemas Resueltos. Con estas dos ecuaciones, se deduce que

Problemas Resueltos. Con estas dos ecuaciones, se deduce que Probleas Resueltos 6.1 Deterinar la posición de equilibrio y la frecuencia angular del sistea de resorte, asa y polea ostrados. El resorte tiene una constante, y la polea puede considerarse coo desprovista

Más detalles

8. Suma de momentos angulares

8. Suma de momentos angulares 8. ua de oentos angulares ) Introducción ) Definición de oento angular total ) ua de dos spines ½ ) ua de dos s cualesquiera 4) Coeficientes de Clebsch-Gordan 5) Un eeplo: dos partículas con hailtoniano

Más detalles

{ } ( ) ( ) ( ) ( ) ( ) ( ) Opción A. = ± m. min. Ejercicio A.1- Se considera el sistema de ecuaciones lineales:

{ } ( ) ( ) ( ) ( ) ( ) ( ) Opción A. = ± m. min. Ejercicio A.1- Se considera el sistema de ecuaciones lineales: IES Mediterráneo de Málaga Solución Junio Juan Carlos lonso Gianonatti Opción Ejercicio.- Se considera el sistea de ecuaciones lineales: a) Discutir su copatibilidad en función del paráetro b) Resolver

Más detalles

LÍMITES Y CONTINUIDAD

LÍMITES Y CONTINUIDAD CONCEPTOS BÁSICOS ÍMITES Y CONTINUIDAD a deinición de ite para unciones de varias variables es siilar a aquélla para unciones de una variable, pero con la salvedad de que los entornos toados alrededor

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos .E.S. CSTELR DJOZ. Menguiano PRUE DE CCESO (LOGSE) UNVERSDD DE LERES SEPTEMRE - (RESUELTOS por ntonio Menguiano) MTEMÁTCS Tiepo áio: horas inutos Contesta de anera clara raonada una de las dos opciones

Más detalles

Unidad 1. Trabajo y energía

Unidad 1. Trabajo y energía Unidad 1 Trabajo y energía ELEMENTOS DE FíSICA 3 1.1. Concepto de asa y fuerza Se entiende coo fuerza a cualquier acción que es capaz de odificar el reposo o el estado de oviiento de un cuerpo, es decir,

Más detalles

2. Subespacios vectoriales

2. Subespacios vectoriales 8 CÉSAR ROSALES GEOMETRÍA I 2. Subespacios vectoriales Una vez definido el concepto de espacio vectorial vaos a introducir otra de las nociones fundaentales de esta asignatura: la de subespacio vectorial.

Más detalles

Regresar Wikispaces. 01. El extremo de un segmento es A(6. 4) y su punto medio M(-2, 9), hallar su otro extremo B(x, y). B(x. y) M(-2, 9) A(6.

Regresar Wikispaces. 01. El extremo de un segmento es A(6. 4) y su punto medio M(-2, 9), hallar su otro extremo B(x, y). B(x. y) M(-2, 9) A(6. Regresar Wikispaces 01. El extreo de un segento es A(6. 4 y su punto edio M(-2, 9, hallar su otro extreo B(x, y. B(x. y M(-2, 9 A(6. 4 AB 2 x 6 01. = = 2 x 6 = 4 + 2x x = 10 BM 1 2 x y 4 = 2 y 4 = 18 +

Más detalles

EJERCICIOS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES (CAPÍTULO 5 ) PROPUESTOS EN EXÁMENES

EJERCICIOS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES (CAPÍTULO 5 ) PROPUESTOS EN EXÁMENES EJERCICIOS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES (CAPÍTULO 5 ) PROPUESTOS EN EXÁMENES 1º) Razone breveente sobre los conceptos de Casualidad, Causalidad y Especificación de odelos estadísticos.(junio

Más detalles

y 11 y 1 n es el coeficiente en la función objetivo de la variable básica que está en la fila i-ésima.

y 11 y 1 n es el coeficiente en la función objetivo de la variable básica que está en la fila i-ésima. Extraído de PUJOLAR, D. (2007): Fundaentos de Prograación lineal Optiización en redes. Ejercicios resueltos de Investigación Operativa, 4ª edición. Bellaterra: Publicacions de la Universitat Autònoa de

Más detalles

Geometría: Vectores en el plano

Geometría: Vectores en el plano Geoetría: Vectores en el plano Mateaticas Geoetría: Vectores en el plano. Conjunto R Vaos a crear el producto cartesiano de RR, que desinareos por R : R RR todos los pares ordenados forados por núeros

Más detalles

Rectificación de Imágenes basada en Objetos Circulares

Rectificación de Imágenes basada en Objetos Circulares Rectificación de Iágenes basada en Objetos Circulares Iage Rectification based on Circular Objects José Luis Lera, Rafael Castellet ETSI Geodésica, Cartográfica Topográfica. Universidad Politécnica de

Más detalles

Los koalindres colgantes

Los koalindres colgantes CASO 1:_DOS MASAS (UNA POLEA) Antes de estudiar el caso de infinitos koalindres colgando de infinitas poleas, planteaos el caso de dos koalindres colgando de una sola polea Dado que no hay rozaiento, la

Más detalles

2 Coordenadas de un vector

2 Coordenadas de un vector Unidad 7. Vectores BACHILLERATO Mateáticas I Coordenadas de un ector Página 75 Si u(, 5) y (, ) son las coordenadas de dos ectores respecto de una ase, halla las coordenadas respecto de la isa ase de:

Más detalles

INFORME SEMESTRAL. Curso: Mecánica Cuántica Semestre Profesor: M. en C. Angel G. Figueroa Soto Diciembre de 2012

INFORME SEMESTRAL. Curso: Mecánica Cuántica Semestre Profesor: M. en C. Angel G. Figueroa Soto Diciembre de 2012 INFORME SEMESTRAL Curso: Mecánica Cuántica Seestre 13-1 Profesor: M. en C. Angel G. Figueroa Soto Diciebre de 1 OBJETIVO. Presentar al aluno el foraliso de la ecánica cuántica REQUISITOS. El aluno deberá

Más detalles

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0103) Movimiento Rectilíneo Vertical. r g. ( ) gt. A( t) g. g r

1 Física General I Paralelos 05 y 22. Profesor RodrigoVergara R 0103) Movimiento Rectilíneo Vertical. r g. ( ) gt. A( t) g. g r Física General I Paralelos 5. Profesor RodrigoVergara R 3) Moviiento Rectilíneo Vertical ) Moviiento Vertical con aceleración constante Conocer aplicar las ecuaciones de posición, velocidad aceleración

Más detalles

MATEMÁTICAS 2º BACH CIENCIAS ÁLGEBRA: Ejercicios de Exámenes

MATEMÁTICAS 2º BACH CIENCIAS ÁLGEBRA: Ejercicios de Exámenes MATEMÁTICAS º BACH CIENCIAS CURSO 5-6 +.-Dada la atri A = ( 3 + ). Se pide: a) (3p) Estudiar el rango de A en función del paráetro. b) (3p) Calcular para que A tenga inversa. c) (4p) Para = calcular A

Más detalles

TEMA 2: El movimiento. Tema 2: El movimiento 1

TEMA 2: El movimiento. Tema 2: El movimiento 1 TEMA 2: El oviiento Tea 2: El oviiento 1 ESQUEMA DE LA UNIDAD 1.- Introducción. 2.- Características del oviiento. 2.1.- Posición. 2.2.- Trayectoria. 2.3.- Desplazaiento. 2.4.- Velocidad. 2.5.- Aceleración.

Más detalles

TRABAJO PRÁCTICO Nº 5 - RESOLUCIÓN ESTÁTICA DE VIGAS. Efectuar la resolución estática de las vigas de la de la planta tipo (s/pb y s/1º).

TRABAJO PRÁCTICO Nº 5 - RESOLUCIÓN ESTÁTICA DE VIGAS. Efectuar la resolución estática de las vigas de la de la planta tipo (s/pb y s/1º). 1/8 TRABAJO PRÁCTICO Nº 5 - RESOLUCIÓN ESTÁTICA DE VIGAS Efectuar la resolución estática de las vigas de la de la planta tipo (s/pb y s/1º). Coo ejeplo se realizará la resolución estática de vigas de la

Más detalles

7. Sistemas oscilantes

7. Sistemas oscilantes 7. Sisteas oscilantes En esta sección tratareos sisteas que están soetidos a fuerzas que tratan de antener al sistea en su posición inicial, con lo cual se presentan oscilaciones. Epezareos con un sistea

Más detalles

LOCALIZACIÓN DEL CENTRO DE GRAVEDAD DE OBJETOS DE SIMETRÍA CILÍNDRICA

LOCALIZACIÓN DEL CENTRO DE GRAVEDAD DE OBJETOS DE SIMETRÍA CILÍNDRICA LOCALIZACIÓN DEL CENTRO DE GRAVEDAD DE OBJETOS DE SIMETRÍA CILÍNDRICA Talavera M., Pezet F., Lazos R. Centro Nacional de Metrología k, 4,5 Carr. a los Cués, Municipio El Marqués, Qro. Tel.: (42) 11 5 Ext.

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física General Proyecto PMME - Curso 7 Facultad de Ineniería UdelaR Maquina de Atwood doble Mathías Möller José Oscar Silva Francisco Paroli INRODUCCION: Este trabajo trata de aplicar las leyes de Newton

Más detalles

EECUACIONES LINEALES EN UNA VARIABLE ECUACIONES CUADRATICAS EN UNA VARIABLE APLICACIONES

EECUACIONES LINEALES EN UNA VARIABLE ECUACIONES CUADRATICAS EN UNA VARIABLE APLICACIONES EECUACIONES LINEALES EN UNA VARIABLE ECUACIONES CUADRATICAS EN UNA VARIABLE APLICACIONES RESOLVER ECUACIONES LINEALES EN UNA VARIABLE RESOLVER ECUACIONES CUADRATICAS EN UNA VARIABLE RESOLVER PROBLEMAS

Más detalles

EJERCICIOS DE GEOMETRÍA ANALÍTICA Y PARÁBOLA. 1.- Encuentre la ecuación de la parábola con vértice V ( 0, 0 ) y F ( 3, 0 ). Grafique la ecuación.

EJERCICIOS DE GEOMETRÍA ANALÍTICA Y PARÁBOLA. 1.- Encuentre la ecuación de la parábola con vértice V ( 0, 0 ) y F ( 3, 0 ). Grafique la ecuación. EJERCICIOS DE GEOMETRÍA ANALÍTICA Y PARÁBOLA 1.- Encuentre la ecuación de la parábola con vértice V ( 0, 0 ) y F (, 0 ). Grafique la ecuación. La distancia del vértice al foco es a =, entonces la ecuación

Más detalles

= + g(x, y) = x + y 2x 4y + 5. a. Identifique g(x,y) y sus trazas con los planos z = 1 y y = 0. (2 puntos) lím

= + g(x, y) = x + y 2x 4y + 5. a. Identifique g(x,y) y sus trazas con los planos z = 1 y y = 0. (2 puntos) lím CÁLCULO III (05) SEGUNDO PARCIAL (%) 08/05/0 1 Sean las superficies f(, ) g(, ) 5 a Identifique g(,) sus trazas con los planos z 1 0 ( puntos) b Discuta la eistencia de lí (,) (1,) f(, ) ( puntos) g(,)

Más detalles

Dinámica de un sistema de partículas (en trabajo de parto)

Dinámica de un sistema de partículas (en trabajo de parto) Dináica de un sistea de partículas (en trabajo de parto) W. Barreto Junio, 2008. El estudio de un sistea de partículas desde el punto de vista dináico es el siguiente paso natural. Existe la noción de

Más detalles

SEMESTRE TIPO 1 DURACIÓN MÁXIMA 2.0 HORAS 31 DE MAYO DE NOMBRE Apellido paterno Apellido materno Nombre (s) Firma

SEMESTRE TIPO 1 DURACIÓN MÁXIMA 2.0 HORAS 31 DE MAYO DE NOMBRE Apellido paterno Apellido materno Nombre (s) Firma UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA PRIMER EAMEN FINAL RESOLUCIÓN SEMESTRE

Más detalles

Determinación de la carga específica del electrón: experimento de Brainbridge

Determinación de la carga específica del electrón: experimento de Brainbridge Deterinación de la carga específica del electrón: experiento de Brainbridge Franchino Viñas, Sebastián f ranchsebs@yahoo.co.ar Grupo Hernández Maiztegui, Francisco f ranx18@hotail.co Muglia, Juan Panelo,

Más detalles

a.- (0; 0), 3xy = 0 3 (0) (0) = 0, 0 = 0, Sí b.- (2; -4), x 2 + y = 0 (2) 2 + (-4) 2 = 0, 20 = 0, No c.- (9; 3), x - y 2 = (3) 2 = 0, 0 = 0, Si

a.- (0; 0), 3xy = 0 3 (0) (0) = 0, 0 = 0, Sí b.- (2; -4), x 2 + y = 0 (2) 2 + (-4) 2 = 0, 20 = 0, No c.- (9; 3), x - y 2 = (3) 2 = 0, 0 = 0, Si Tabién se dice que dos núeros x = x 0 e y = y 0, satisfacen a una ecuación de la fora f (x; y), si al sustituir estos núeros en la ecuación, en lugar de las variables x e y, el prier iebro se convierte

Más detalles

200Ncos30 = 173N. Aplicación de la resultante con un ángulo θ = arctan = arctan( 1.42) R Dos posibles soluciones θ = 55

200Ncos30 = 173N. Aplicación de la resultante con un ángulo θ = arctan = arctan( 1.42) R Dos posibles soluciones θ = 55 Ejeplos # Resultante de fuerzas actuando sobre un cuerpo Resultante: R = F = F + F + F3 Descoposición en coponentes F F 00Ncos30 = 73N F 300Ncos35 = N F 55Ncos33 = 93N R F y 00Nsin30 300Nsin35 55Nsin33

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE LAS PALMAS JUNIO 2014. (RESUELTOS por Antonio Menguiano)

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE LAS PALMAS JUNIO 2014. (RESUELTOS por Antonio Menguiano) IES CSTELR DJOZ PRUE DE CCESO (LOGSE) UNIVERSIDD DE LS PLS JUNIO (RESUELTOS por ntonio enguiano) TEÁTICS II Tiepo áio: horas inutos Elija una de las dos opciones, o, conteste a las cuatro cuestiones que

Más detalles

DISEÑO Y ANÁLISIS DE DESEMPEÑO DE OBSERVADORES ADAPTATIVOS EN ESQUEMAS DE CONTROL MEDIANTE REALIMENTACIÓN COMPLETA DE ESTADOS

DISEÑO Y ANÁLISIS DE DESEMPEÑO DE OBSERVADORES ADAPTATIVOS EN ESQUEMAS DE CONTROL MEDIANTE REALIMENTACIÓN COMPLETA DE ESTADOS DISEÑO Y ANÁLISIS DE DESEMPEÑO DE OBSERVADORES ADAPTATIVOS EN ESQUEMAS DE CONTROL MEDIANTE REALIMENTACIÓN COMPLETA DE ESTADOS Valencia Montaño Mónica Andrea Facultad de Ingeniería Electrónica, Escuela

Más detalles

SOLUCIONARIO GUÍA TÉCNICO PROFESIONAL Dinámica I: fuerza y leyes de Newton

SOLUCIONARIO GUÍA TÉCNICO PROFESIONAL Dinámica I: fuerza y leyes de Newton SOLUCIONARIO GUÍA ÉCNICO PROFESIONAL Dináica I: fuerza y leyes de Newton SGUICC016C3-A16V1 Solucionario guía Dináica I: fuerza y leyes de Newton Íte Alternativa Habilidad 1 C Reconociiento A Aplicación

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Física General 1 Proyecto PE - Curso 008 Instituto de Física Facultad de Ingeniería UdelaR TITULO D I N Á I C A D E P A R T Í C U L A AUTORES Santiago Góez, Anthony éndez, Eduardo Lapaz INTRODUCCIÓN Analizaos

Más detalles

( )( ) ( )( ) ( )( ) ( )( ) f ( ) ( )( ) [ f ]

( )( ) ( )( ) ( )( ) ( )( ) f ( ) ( )( ) [ f ] UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA PRIMER EAMEN FINAL SEMESTRE 0 -

Más detalles

TEORÍA TTC-002: RESOLUCIÓN DE LA ECUACIÓN DEL TELEGRAFISTA

TEORÍA TTC-002: RESOLUCIÓN DE LA ECUACIÓN DEL TELEGRAFISTA TEORÍA TTC00: RESOLUCIÓN DE LA ECUACIÓN DEL TELEGRAFISTA En este docuento se resuele de fora ás rigurosa la llaada ecuación del telegrafista, en su expresión en tensión, que puede forularse, según ios,

Más detalles

MANUAL DE METODOLOGÍAS ANEXOS ANEXO II. MODELOS DE INTERPOLACIÓN Y EXTRAPOLACIÓN

MANUAL DE METODOLOGÍAS ANEXOS ANEXO II. MODELOS DE INTERPOLACIÓN Y EXTRAPOLACIÓN MANUAL DE METODOLOGÍAS ANEOS ANEO II. MODELOS DE INTERPOLACIÓN ETRAPOLACIÓN ANEO II. MODELOS DE INTERPOLACIÓN ETRAPOLACIÓN FECHA: -AGO -7 II. INTERPOLACIÓN ETRAPOLACIÓN LINEAL En VALMER se aplican distintos

Más detalles

2 x. x y &

2 x. x y & Sea y(x) = 3 sen(x) con x(t) = t - 3 a) d y d t no se puede calcular pues depende de la variable x y no de la variable t b) 3 cos (t -3) c) 3 cos (t -3) 4 t 4.- Cuál es la verdadera? e % x a) d x no existe

Más detalles

BVI_UII Más ejemplos de Solución de ecuaciones del tipo Cauchy-Euler 501

BVI_UII Más ejemplos de Solución de ecuaciones del tipo Cauchy-Euler 501 BVI_UII Más ejeplos de Solución de ecuaciones del tipo Cauchy-Euler Apéndice BVI_UII Más ejeplos de solución de ecuaciones del tipo Cauchy-Euler Coo se vio en la sección.8. Utilizando una sustitución y

Más detalles

Tema 1: Combinatoria

Tema 1: Combinatoria Tea : Cobinatoria C. Ortiz, A. Méndez, E. Martín y J. Sendra Febrero de Índice Guía del tea. Introducción. Principios básicos del conteo 3. Variaciones 4. Perutaciones 4 5. Perutaciones circulares. 5 6.

Más detalles

Qué modelos! Plan de clase (1/3) Escuela: Fecha: Profr. (a):

Qué modelos! Plan de clase (1/3) Escuela: Fecha: Profr. (a): Qué odelos! Plan de clase (1/3) Escuela: Fecha: Profr. (a): Curso: Mateáticas 2 secundaria Eje teático: SNyPA Contenido: 8.2.3 Identificación y búsqueda de expresiones algebraicas equivalentes a partir

Más detalles

Trabajo de una Fuerza. Trabajo y Energía. Observaciones: Trabajo de una Fuerza. Trabajo de una Fuerza. Trabajo y Energía

Trabajo de una Fuerza. Trabajo y Energía. Observaciones: Trabajo de una Fuerza. Trabajo de una Fuerza. Trabajo y Energía Trabajo y Energía Trabajo de una Fuerza Es una anera diferente de resolver probleas de dináica en los que la fuerzas son funciones de la posición y no del tiepo. F r Observaciones: Sólo cuenta la coponente

Más detalles

SOLUCIONES NOVIEMBRE 2016

SOLUCIONES NOVIEMBRE 2016 Página 1 de 16 SOLUCIONES NOVIEMBRE 016 Autor: Rafael Martínez Calafat (profesor jubilado de Mateáticas) Noviebre 1: Cuáles son las posibles longitudes del tercer lado del triángulo de lados 016 c y 017

Más detalles

UNIVERSIDAD DEL NORTE Departamento de Matemáticas y Estadística. Álgebra Lineal. RESUMEN DE TEMAS DEL EXAMEN FINAL

UNIVERSIDAD DEL NORTE Departamento de Matemáticas y Estadística. Álgebra Lineal. RESUMEN DE TEMAS DEL EXAMEN FINAL 1. Definiciones básicas. UNIVERSIDAD DEL NORTE Departamento de Matemáticas y Estadística. Álgebra Lineal. RESUMEN DE TEMAS DEL EXAMEN FINAL I. Sistemas homogéneos y subespacios de R n. (a) Para el sistema

Más detalles

Ley de Propagación del Error - Ejemplos -

Ley de Propagación del Error - Ejemplos - Ley de Propagación del Error - Ejeplos - MEDCONES ELÉCTCAS Planteo del problea: Medida Directa Medida ndirecta E E A Se ide directaente: = ± E li A A Se iden U e de fora directa y con ellos se saca : =

Más detalles

Pre saberes: Despeje de ecuaciones. Concepto de línea recta.

Pre saberes: Despeje de ecuaciones. Concepto de línea recta. Colegio Javier III Triestre En el 07 Activa tu fe Presentación # Tea: La recta Elaborao por: profesor Héctor Luis Fernánez Pre saberes: Despeje e ecuaciones. Concepto e línea recta. OBJETIVOS DE CLASE:.

Más detalles

Ejemplo: Cilindro con magnetización permanente. Se tiene un cilindro de longitud infinita y radio R, coaxial con el eje z,

Ejemplo: Cilindro con magnetización permanente. Se tiene un cilindro de longitud infinita y radio R, coaxial con el eje z, EC3 TEOÍA ELECTOAGNÉTICA Ejeplo: Cilindro con agnetización peranente Se tiene un cilindro de longitud infinita y radio, coaxial con el eje z, con una densidad de agnetización x. Deterinar el capo agnético

Más detalles

donde M es la suma de la masa de la varilla y del magnético.

donde M es la suma de la masa de la varilla y del magnético. Oscilación de un dipolo agnético en un capo agnético. Lorena Cedrina (lovc@infovia.co.ar) y Paula Villar (coco77@sinectis.co.ar) Laboratorio 5, Departaento de Física - Facultad de Ciencias Eactas y Naturales,

Más detalles

Movimiento Amortiguado y Forzado

Movimiento Amortiguado y Forzado Moviiento Aortiguado y Forzado Problea 1. Una asa al extreo de un uelle oscila con una aplitud de 5 c y una frecuencia de 1 Hz (ciclos por segundo). Para t = 0, la asa esta en la posición de equilibrio

Más detalles

1. Movimiento Armónico Simple

1. Movimiento Armónico Simple MANEJO CONOCIMIENOS PROPIOS DE LAS CIENCIAS NAURALES 1. Moviiento Arónico Siple 1.1 Moviiento oscilatorio En la naturaleza eisten algunos cuerpos que describen oviientos repetitivos con características

Más detalles

1-3 EXPONENTES 18 CAPÍTULO 1 ÁLGEBRA

1-3 EXPONENTES 18 CAPÍTULO 1 ÁLGEBRA . 8 9 t st. s. z z. y y y 9 t t t 6. z z z 7. t t t 8. 6 9. 0 0.. 0 y.. a a. 6 b b a. a 6 b 9b 7 6. 6 7. y 0 6 8. p 9. p yq y y z z 0. y y. y y. 6. 6 a. b a b b a 6. 9 y 6 8. y 7. y 0 9. 0... 6 7. a b

Más detalles

Matemática Discreta - IT Informática de Sistemas - Mónica Esquivel - Antonio J. Lozano

Matemática Discreta - IT Informática de Sistemas - Mónica Esquivel - Antonio J. Lozano Mateática Discreta - IT Inforática de isteas - Mónica squivel - Antonio J. Lozano Tea 4 Técnicas de contar La cobinatoria trata de contar el núero de eleentos de conjuntos finitos. ntre sus aplicaciones

Más detalles

Automá ca. Capítulo5.Estabilidad. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez

Automá ca. Capítulo5.Estabilidad. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez Autoáca Capítulo5.Estailidad JoséRaónLlataGarcía EstherGonzálezSaraia DáasoFernándezPérez CarlosToreFerero MaríaSandraRolaGóez DepartaentodeTecnologíaElectrónica eingenieríadesisteasyautoáca Estailidad

Más detalles

Ayudantía #1: MAT1532 Ecuaciones Diferenciales Carlos Pérez Arancibia

Ayudantía #1: MAT1532 Ecuaciones Diferenciales Carlos Pérez Arancibia Pontificia Universidad Católica de Chile Facultad de Mateáticas Departaento de Mateáticas Prier Seestre de 6 Ayudantía #1: MAT153 Ecuaciones Diferenciales Carlos Pérez Arancibia caperez3@puc.cl 1 Modelaiento

Más detalles

3.- Magnitudes Eléctricas.

3.- Magnitudes Eléctricas. alor icaz (): Es el valor de corriente continua por el que debeos sustituir la corriente alterna para que produzca el iso ecto. e calcula con la fórula: ax / Para la corriente de la red es de 30. Periodo

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano)

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) IES CSTELR BDJOZ RUEB DE CCESO (LOGSE) UNIVERSIDD DE BLERES JUNIO 4 (RESUELTOS por ntonio Menguiano) MTEMÁTICS II Tiepo áio: horas inutos Conteste de anera clara raonada una de las dos opciones propuestas

Más detalles

< ρ y cuyo coeficiente de viscosidad es η. Se supone que la velocidad de la esferano origina turbulencias en el fluido.

< ρ y cuyo coeficiente de viscosidad es η. Se supone que la velocidad de la esferano origina turbulencias en el fluido. EY DE STOES Una esfera de radio r y densidad ρ parte del reposo en el seno de un fluido de densidad ρ f < ρ y cuyo coeficiente de viscosidad es η. Se supone que la velocidad de la esferano origina turbulencias

Más detalles

ÁLGEBRA: Ejercicios de Exámenes

ÁLGEBRA: Ejercicios de Exámenes MATEMÁTICAS º BACH CC. Y TECNOL. ÁLGEBRA: Ejercicios de Eáenes CURSO 3-4.-Dadas las atrices, donde B t es la atri traspuesta de B e I la atri unidad de orden 3. a) (6p.)Estudiar según el paráetro el rango

Más detalles

Capitulo 4 Fuentes puntuales

Capitulo 4 Fuentes puntuales Capitulo 4 Fuentes puntuales 4-1 Introducción. Definición de Fuente puntual A una distancia suficiente en el capo reoto de una antena, los capos radiados de la antenas son transversales y el flujo de potencia

Más detalles

La Restricción Presupuestaria

La Restricción Presupuestaria MICROECONOMÍA I LM5 Universidad de Granada En la clase anterior... La Restricción Presupuestaria 3. Conjunto y Recta Presupuestaria 3. Variaciones de la recta presupuestaria A. Variación de la renta B.

Más detalles

CAPITULO 5. Evaluación de acabado superficial a probetas maquinadas

CAPITULO 5. Evaluación de acabado superficial a probetas maquinadas CAPITULO 5 Evaluación de acabado superficial a probetas aquinadas Coo se observó en el capítulo anterior, todas las pruebas realizadas con el aquinado de insertos de Sandvik Coroant, ayudaron para estiar

Más detalles

Intensidad horaria semanal TAD: 6 TI: 6 C: 4

Intensidad horaria semanal TAD: 6 TI: 6 C: 4 UNIVERSIDAD INDUSTRIAL DE SANTANDER FACULTAD DE CIENCIAS Escuela de Física Prograa: Ciclo de Ciencias Básicas de Ingeniería Nobre de la asignatura: FÍSICA III CÓDIGO: 956, 3648 SEMESTRE: IV Requisitos:

Más detalles

Segundo Parcial, Física, C.B.C. Pág. 1

Segundo Parcial, Física, C.B.C. Pág. 1 C l Segundo Parcial, Física, C..C. Pág. Ciudad Universitaria: 998 (prier cuatriestre). ) El sistea de la figura gira en una esa horizontal con rozaiento despreciable, de odo que los cuerpos se hallan alineados

Más detalles

Física I Segunda convocatoria. 3 de septiembre de 2012

Física I Segunda convocatoria. 3 de septiembre de 2012 Segunda convocatoria. 3 de septiebre de 2012 C I Blan -El test se calificará sobre 5 puntos. -Las respuestas correctas (C) puntúan positivaente y las incorrectas (I) negativaente, resultando la puntuación

Más detalles

Clase Temas

Clase Temas Econoía política Jorge M. Streb Clase 7 9.7. Teas I. Krishna y Morgan sobre cheap talk (sanata II. La condición de single crossing (un solo cruce de Spence y Mirrlees III. Trabajo práctico : discusión

Más detalles