UNIVERSIDAD NACIONAL DE SAN LUIS FACULTAD DE INGENIERIA Y CIENCIAS AGROPECUARIAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIVERSIDAD NACIONAL DE SAN LUIS FACULTAD DE INGENIERIA Y CIENCIAS AGROPECUARIAS"

Transcripción

1 UNIVERSIDD NCINL DE SN LUIS FCULTD DE INGENIERI Y CIENCIS GRPECURIS FÍSIC I TRBJ PRÁCTIC N o 7 MMENT DE INERCI DINÁMIC DE RTCIÓN PRBLEM N o 1: Una bicicleta desacelera uniforeente de una velocidad inicial de 8,4 /s hasta el reposo en una distancia de 115. Cada rueda tiene un diáetro total de 68 c. Deterine: a) La velocidad angular de las ruedas en el instante inicial. b) El núero de revoluciones que gira cada rueda antes de llegar al reposo. c) La aceleración angular de la rueda. d) El tiepo que le lleva llegar al reposo PRBLEM N o 2: Una rueda parte de reposo y acelera de tal anera que su velocidad angular auenta uniforeente a 200rp en 6s. Después de haber girado por un tiepo con esa velocidad, se aplican los frenos y le toa 5 inutos detenerse. Si el núero total de revoluciones de la rueda fue de 3100, calcular el tiepo total de rotación. PRBLEM N o 3: Una rueda acelera uniforeente desde el reposo hasta una velocidad de 200rp en 0,5s. Luego gira a esta velocidad durante 2s para llegar al reposo en 1/3s. Deterinar el núero total de revoluciones que dará en el intervalo copleto. PRBLEM N o 4: Encontrar el oento de inercia en torno al eje - del sistea ostrado en la figura. =1Kg a=0,2 37 o 4. a a a 2. a 3. PRBLEM N o 5: Cuatro asas puntuales de 2Kg cada una, están situadas en las esquinas de un rectángulo de 2 y 3 de lado, coo se uestra en la figura. Calcular: a) el oento de inercia de éste sistea alrededor de un eje perpendicular al plano de las asas y que pasa por una de ellas. b) El trabajo que se necesita para producir una rotación de 2rad/s alrededor de ese eje. z y 2 3 x PRBLEM N o 6: Un disco unifore de asa y radio R cuenta con un borde adicional en fora de anillo de asa así coo con cuatro asas dispuestas de anera siétrica, cada una de /4 de asa, sujetadas a una distancia R/2 del centro coo se ve en la figura. Encontrar el oento de inercia total con respecto a un eje perpendicular al disco que pasa por su centro. disco anillo asa puntual

2 PRBLEM N o 7: Usando el teorea de Steiner, calcular: a) el oento de inercia de un disco de asa M y radio R alrededor de un eje que pasa por el borde del iso y es paralelo al eje de rotación (figura a) b) Íde al anterior, pero para un cilindro hueco de asa M, radio interior R i y radio exterior R e d M R R i R e PRBLEM N o 8: Dos esferas iguales y acizas de 10c de radio, están unidas por una barra de 24c de longitud. Las asas de las esferas valen 2Kg cada una y la barra es de 1Kg. Encontrar el oento de inercia con respecto a un eje perpendicular a la barra que pasa por su centro. PRBLEM N o 9: Con el fin de colocar un satélite plano, unifore y cilíndrico girando con la velocidad correcta, los ingenieros encienden cuatro cohetes tangenciales, coo se ve en la figura. Si el satélite tiene una asa de 2000Kg y un radio de 3, calcular la fuerza unifore requerida de cada cohete si el satélite debe alcanzar las 30rev/in en 5in. PRBLEM N o 10: Una varilla unifore de 1,2 de longitud y 6,4Kg de asa, tiene fija en cada extreo una pequeña bola de 1,06Kg de asa. La varilla está liitada a girar en un plano horizontal alrededor de su eje vertical que pasa por su centro. Se observa que en cierto instante está efectuando 39rev/s. Debido al rozaiento del eje, queda en reposo 32s después. Suponiendo un oento de rotación constante, calcular: a) la aceleración angular b) el oento de rotación retardador que produce el rozaiento del eje c) el trabajo total hecho por el rozaiento en el eje d) el núero de revoluciones ejecutados en los 32s PRBLEM N o 1: Deterinar la agnitud del oento de las tres fuerzas indicadas en la figura respecto a: a) el punto b) el punto F3=70N Nota: La unidad de las longitudes están en c º F1=100N 2 F2=200N PRBLEM N o 12: El objeto de la figura está en equilibrio. El objeto B tiene una asa de 0,735 kg. Deterinar las asas de los objetos, C y D. (Desprecie los pesos de las barras horizontales). 30 c 17,5 c 7,5 c 15 c 5 c 5 c B D C

3 PRBLEM N o 13: Calcular los valores de los oentos de cada una de las fuerzas ostradas en la figura respecto al punto, donde F 1= F 2= F 3=110N y r 1=110, r 2=160 y r 3=210. F1 180º r2 F2 F3 45º r1 r3 r3 PRBLEM N o 14: Un volante adquiere una rotación alrededor de su eje horizontal por la acción de 8Kg de asa unidos a una cuerda arrollada a un eje de 10c de radio. El peso cae verticalente recorriendo una distancia de 2 en 6s partiendo del reposo. Calcular el oento de inercia del volante respecto al eje. PRBLEM N o 15: Una fuerza de 15N, representada por T, se aplica a un acuerda enrollada en una rueda de asa M=4Kg y radio R=33c. Se observa que la rueda acelera uniforeente desde el reposo y alcanza una velocidad de 30rad/s en 3s. Hay un oento de rotación por la fricción de 1,1N-. Calcular el oento de inercia de la rueda. PRBLEM N o 16: Un cilindro circular de 12c de radio y 3Kg de asa se le aplica una fuerza tangencial constante de 20N. Calcular la aceleración angular del oviiento, si el cilindro puede girar respecto de un eje que pasa por su centro y es perpendicular a la base. PRBLEM N o 17: Un bloque de 26,8N se coloca en un plano inclinado a 30 º respecto a la horizontal y ediante una cuerda paralela al plano que pasa por una polea en la parte superior se une a otro bloque de 80N que está colgando. La polea pesa 8,9N y tiene un radio de 0,1. El coeficiente de fricción entre el bloque y la superficie es de 0,1. Deterinar la aceleración del bloque que está suspendido y la tensión de la cuerda a cada lado de la polea. Suponer que la polea es un disco unifore. PRBLEM N o 18: Un cuerpo de 200Kg cuelga verticalente del extreo de una cuerda sin peso arrollada en un cilindro de 1 de diáetro. El cuerpo desciende 8 en 4s. Deterinar cuál es la asa del cilindro. PRBLEM N o 19: En el sistea ostrado en la figura, M=1Kg, =0,2Kg y r=0,2. Deterinar la aceleración lineal de, la aceleración angular del cilindro M y la tensión de la cuerda. Despreciar el efecto de la pequeña polea. r M PRBLEM N o 20: Un bloque de 8Kg, se encuentra en reposo sobre una superficie horizontal. Una cuerda atada al bloque pasa por una polea de 15c de diáetro y se ata al otro extreo con un bloque colgante de 8Kg. Se abandona el sistea desde el reposo y se observa que recorre 5 en 2s. Calcular: a) el oento de inercia de la polea b) la tensión de cada parte de la cuerda. PRBLEM N o 21: Se unen cuatro asas iguales ediante varillas de asa despreciable forando un rectángulo de lados 2a y 2b coo se uestra en la figura. El sistea gira alrededor de un eje en el plano de la figura que pasa por su centro. Encontrar el oento de inercia alrededor de éste eje y la energía cinética si la velocidad angular es de 2rad/s, =1Kg, a=2c y b=4c 2b 2a

4 PRBLEM N o 22: Las asas de la figura se unen ediante una varilla cuyo oento de inercia puede despreciarse. Giran alrededor del eje con una velocidad angular de 2rad/s. Deterinar: a) la velocidad de cada asa y utilizarla para calcular la energía cinética a partir de ½..v 2. b) el oento de inercia alrededor del eje y calcular la energía cinética a partir de ½.I.w 2. y 3Kg 1Kg -20 3Kg 20 1Kg PRBLEM N o 23: El sistea ostrado en la figura, se deja libre del reposo. La asa de 30Kg está a 1 del suelo. La polea es un disco unifore de 10c de radio y 5Kg de asa. Usando el principio de conservación de la energía y energía cinética de rotación, calcular la velocidad de la asa de 30Kg en el instante antes que toque el suelo PRBLEM N o 24: Una bola de 1Kg rueda sobre una superficie horizontal a una velocidad de 20/s y llega a un plano inclinado que fora un ángulo de 30 º con respecto a la horizontal. Calcular: a) la energía cinética de la bola antes de subir por el plano inclinado b) la distancia que recrre subiendo por el plano antes de detenerse, suponiendo que no hay rozaiento PRBLEM N o 25: Los volantes (discos) de gran asa que giran se pueden utilizar para alacenar energía. Considere un volante con un diáetro de 1 y una asa de 500Kg. Se aplica de anera tangencial una fuerza de agnitud F al borde del volante para acelerarlo desde el reposo hasta rev/in durante 3in. Calcular: a) la agnitud de la aceleración angular del volante en ese intervalo b) el oento de rotación necesario para inducir esa aceleración angular c) la agnitud de la fuerza requerida d) la energía cinética rotacional del volante cuando alcanza la velocidad final PRBLEM N o 26: Un bloque de 50gr de asa está atado a una cuerda que pasa por un orificio practicado en una superficie horizontal sin rozaiento, coo se uestra en la figura. El bloque está girando inicialente a una distancia de 20c del orificio con una velocidad de 3rad/s. Se tira entonces de la cuerda hacia abajo acortando el radio de giro a 10c. El bloque puede considerarse coo una asa puntual. Deterinar: a) la nueva velocidad angular b) la variación de energía cinética F PRBLEM N o 27: Una rueda está girando con una velocidad angular de 500rp en un árbol cuyo oento de inercia es insignificante. Una segunda rueda que inicialente está en reposo e idéntica a la priera, repentinaente se acopla al iso árbol. Deterinar la velocidad angular de la cobinación que resulta de acoplar las dos ruedas al árbol. PRBLEM N o 28: Un hobre se encuentra sentado en un taburete de piano, sosteniendo un par de pesas a 90c del eje de rotación del taburete. Se le counica una velocidad de 2rad/s después de lo cuál, acerca las pesas hasta que estén a una distancia de 30c del eje. El oento de inercia del hobre respecto al eje de rotación es de 4,9Kg- 2 y puede considerarse constante. Las pesas tienen 8Kg cada una y pueden considerarse puntuales. Si se desprecia el rozaiento, deterinar: a) la velocidad angular del sistea después de que las dos pesas se han acercado al eje b) el oento cinético inicial del sistea c) la energía cinética del sistea antes y después de acercar las pesas.

5 PRBLEM N o 29: Un bloque de adera de asa M=2Kg que descansa sobre una superficie horizontal sin fricción está unido a una barra rígida de longitud l=1 y asa despreciable coo se ve en la figura. La barra gira alrededor del pivote en el otro extreo. Una bala de asa =5gr que se desplaza paralela a la superficie horizontal y noral a la barra con una velocidad v=300/s golpea el bloque y queda incrustada en el. Deterinar: a) la cantidad de oviiento angular del sistea bala-bloque b) la fracción de energía cinética que se pierde en la colisión. M l v Ejercicios resueltos:

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido 1) Un bloque de 2000 kg está suspendido en el aire por un cable de acero que pasa por una polea y acaba en un torno motorizado. El bloque asciende

Más detalles

1. Calcular el momento de inercia de una. 7. Calcular el momento de inercia de un. cilindro macizo y homogéneo respecto de

1. Calcular el momento de inercia de una. 7. Calcular el momento de inercia de un. cilindro macizo y homogéneo respecto de 1. Calcular el momento de inercia de una lámina rectangular y plana de dimensiones a y b, cuando gira sobre un eje perpendicular a su base a y paralelo a b. 7. Calcular el momento de inercia de un cilindro

Más detalles

GUÍA DE PROBLEMAS F 10º

GUÍA DE PROBLEMAS F 10º Unidad 3: Dináica de la partícula GUÍ DE PROBLEMS 1)-Una partícula de asa igual a kg esta tirada hacia arriba por una plano inclinado liso ediante una fuerza de 14,7 N. Deterinar la fuerza de reacción

Más detalles

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la

Más detalles

SEGUNDO TALLER DE REPASO

SEGUNDO TALLER DE REPASO SEGUNDO TALLER DE REPASO ASIGNATURA: BIOFÍSICA TEMA: DINÁMICA 1. Una fuerza le proporciona a una masa de 4.5kg, una aceleración de 2.4 m/s 2. Calcular la magnitud de dicha fuerza en Newton y dinas. Respuestas:

Más detalles

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si Las pesas de la figura ruedan sin deslizar y sin 6 cm rozamiento por un plano inclinado 30 y de 10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si 100 cm las pesas parten

Más detalles

= = 11,11. Actividades resueltas de Dinámica

= = 11,11. Actividades resueltas de Dinámica Actividades resueltas de Dináica Sobre un cuerpo de 5 kg actúa una uerza de 0 N durante 3 s. Calcular: a) El ipulso de la uerza. b) La variación de la cantidad de oviiento del cuerpo. c) Su velocidad inal

Más detalles

MECÁNICA II CURSO 2004/05

MECÁNICA II CURSO 2004/05 1.1.- Movimientos de un sólido rígido. (rotación alrededor de ejes fijos) 1.1.1 El conjunto representado se compone de dos varillas y una placa rectangular BCDE soldadas entre sí. El conjunto gira alrededor

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Energía y trabajo

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Energía y trabajo 1(7) Ejercicio nº 1 Calcula la altura a la que debe encontrarse una persona de 60 kg para que su energía potencial sea la misma que la de un ratón de 100 g que se encuentra a 75 m del suelo. Ejercicio

Más detalles

Mecánica del Cuerpo Rígido

Mecánica del Cuerpo Rígido Mecánica del Cuerpo Rígido Órdenes de Magnitud Cinemática de la Rotación en Contexto 7.1 Estime la frecuencia de giro a potencia máxima de un ventilador de techo y su correspondiente velocidad angular.

Más detalles

Objetos en equilibrio - Ejemplo

Objetos en equilibrio - Ejemplo Objetos en equilibrio - Ejemplo Una escalera de 5 m que pesa 60 N está apoyada sobre una pared sin roce. El extremo de la escalera que apoya en el piso está a 3 m de la pared, ver figura. Cuál es el mínimo

Más detalles

FISICA I HOJA 4 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 4. ESTÁTICA FORMULARIO

FISICA I HOJA 4 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 4. ESTÁTICA FORMULARIO 4. ESTÁTIC FORMULRIO 4.1) La viga de la figura, que pesa 1.000 kg. y tiene 8 m de larga, hace de carril aéreo. Sobre ella desliza un colgador en el que colocamos 2.000 kg. de carga. Calcular la tensión

Más detalles

Serie de ejercicios de Cinemática y Dinámica TRASLACIÓN Y ROTACIÓN PURAS

Serie de ejercicios de Cinemática y Dinámica TRASLACIÓN Y ROTACIÓN PURAS Serie de ejercicios de inemática y Dinámica TRSLIÓN Y ROTIÓN PURS 1. La camioneta que se representa en la figura viaja originalmente a 9 km/h y, frenando uniformemente, emplea 6 m en detenerse. Diga qué

Más detalles

Docente: Angel Arrieta Jiménez

Docente: Angel Arrieta Jiménez CINEMÁTICA DE UNA PARTÍCULA EN DOS DIMENSIONES EJERCICIOS DE MOVIMIENTO CIRCULAR 1. En el ciclo de centrifugado de una maquina lavadora, el tubo de 0.3m de radio gira a una tasa constante de 630 r.p.m.

Más detalles

Guía 9 Miércoles 14 de Junio, 2006

Guía 9 Miércoles 14 de Junio, 2006 Física I GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 9 Miércoles 14 de Junio, 2006 Movimiento rotacional

Más detalles

La cantidad de movimiento angular obedece una ley de conservación muy similar a la que obedece el momentum lineal.

La cantidad de movimiento angular obedece una ley de conservación muy similar a la que obedece el momentum lineal. En vista de la gran analogía que se han presentado entre la mecánica lineal y la mecánica rotacional, no debe ser ninguna sorpresa que la cantidad de movimiento o momento lineal tenga un similar rotacional.

Más detalles

RECUPERACIÓN DE LA ASIGNATURA : FÍSICA Y QUÍMICA 1º BACHILLERATO CUADERNILLO 1

RECUPERACIÓN DE LA ASIGNATURA : FÍSICA Y QUÍMICA 1º BACHILLERATO CUADERNILLO 1 RECUPERACIÓN DE LA ASIGNATURA : FÍSICA Y QUÍMICA 1º BACHILLERATO CUADERNILLO 1 Para recuperar la asignatura Física y Química 1º de bachillerato debes: Realizar en un cuaderno las actividades de refuerzo

Más detalles

1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático.

1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático. 1. Para α = 75º, determinar la magnitud de la fuerza F y el ángulo β para que exista equilibrio estático. 2. El bloque A, cuyo peso es de 90N, se sostiene en la posición mostrada. Determinar el peso del

Más detalles

GUIA Nº5: Cuerpo Rígido

GUIA Nº5: Cuerpo Rígido GUIA Nº5: Cuerpo Rígido Problema 1. La figura muestra una placa que para el instante representado se mueve de manera que la aceleración del punto C es de 5 cm/seg2 respecto de un sistema de referencia

Más detalles

Examen Final - Fisi 3161/3171 Nombre: miércoles 5 de diciembre de 2007

Examen Final - Fisi 3161/3171 Nombre: miércoles 5 de diciembre de 2007 Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Física Examen Final - Fisi 3161/3171 Nombre: miércoles 5 de diciembre de 2007 Sección: Prof.: Lea cuidadosamente las instrucciones.

Más detalles

MOVIMIENTO CIRCULAR - MCU - MCUV MOVIMIENTO CIRCULAR - MCU - MCUV

MOVIMIENTO CIRCULAR - MCU - MCUV MOVIMIENTO CIRCULAR - MCU - MCUV FISICA PREUNIERSITARIA MOIMIENTO CIRCULAR - MCU - MCU MOIMIENTO CIRCULAR - MCU - MCU CONCEPTO Es el movimiento de trayectoria circular en donde el valor de la velocidad del móvil se mantiene constante

Más detalles

Guía para oportunidades extraordinarias de Física 2

Guía para oportunidades extraordinarias de Física 2 Guía para oportunidades extraordinarias de Física 2 Capitulo 1 Vectores a) Introducción b) Cantidades vectoriales c) Métodos analíticos Capitulo 2 Dinámica a) Fuerza b) Leyes de Newton sobre el movimiento

Más detalles

Segundo Taller Unificado de Mecánica. Dinámica, Trabajo y Energía Para todos los grupos de Mecánica I_Sem_2009

Segundo Taller Unificado de Mecánica. Dinámica, Trabajo y Energía Para todos los grupos de Mecánica I_Sem_2009 Movimiento Parabólico 1. Un cañón antitanques está ubicado en el borde de una meseta a una altura de 60 m. sobre la llanura que la rodea, como se observa en la figura. La cuadrilla del cañón avista un

Más detalles

6. REPRESENTACIÓN DE LAS FUERZAS (DIAGRAMA DE FUERZAS) QUE ACTÚAN SOBRE EL(LOS) SISTEMA(S) DE INTERÉS

6. REPRESENTACIÓN DE LAS FUERZAS (DIAGRAMA DE FUERZAS) QUE ACTÚAN SOBRE EL(LOS) SISTEMA(S) DE INTERÉS Fuerza que ejerce el cenicero sobre el libro (Fuerza Normal): N 1 Fuerza que ejerce la mesa sobre el libro (Fuerza Normal): N 2 Fuerza de atracción que ejerce el planeta tierra sobre el libro (Peso del

Más detalles

Folleto Física Ing. Zarate. Remasterizado en el Cursillo Pi

Folleto Física Ing. Zarate. Remasterizado en el Cursillo Pi Folleto Física Ing. Zarate Reasterizado en el Cursillo Pi Física VECTORES 1. Deterínese la fuerza resultante en el reache de la figura. 60 N 40 N 30 60 50 N Rta.: 70,03 N ; 31,61 2. En la figura Qué fuerza

Más detalles

Capítulo 6 Momentum lineal y colisiones

Capítulo 6 Momentum lineal y colisiones Capítulo 6 Moentu lineal y colisiones 10 Probleas de selección - página 87 (soluciones en la página 124) 9 Probleas de desarrollo - página 92 (soluciones en la página 125) 85 6.A PROBLEMAS DE SELECCIÓN

Más detalles

CERTAMEN GLOBAL FIS110 FORMA R (Jueves 7 de diciembre 2006) FORMULARIO

CERTAMEN GLOBAL FIS110 FORMA R (Jueves 7 de diciembre 2006) FORMULARIO AEIDO ATENO, ATENO, NOBES O US CETAEN GOBA FIS11 FOA (Jueves 7 de diciembre 6) DESAOO O FUNDAENTACIÓN O ESCITO. alas y omitidas NO dan puntaje arcar las OITIDAS en Hoja de espuestas FOUAIO g 1 [m/s dy

Más detalles

6. Un hombre de 70 kg de masa se encuentra en la cabina de un ascensor, cuya altura es de 3 m.

6. Un hombre de 70 kg de masa se encuentra en la cabina de un ascensor, cuya altura es de 3 m. 1 1. De los extremos de una cuerda que pasa por la garganta de una polea sin rozamiento y de masa despreciable, cuelgan dos masas iguales de 200 gramos cada una. Hallar la masa que habrá de añadirse a

Más detalles

Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r

Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r IES Menéndez Tolosa (La Línea) Física y Química - º Bach - Movimientos Calcula la velocidad de un móvil a partir de la siguiente gráfica: El móvil tiene un movimiento uniforme. Pasa de la posición x 4

Más detalles

Taller de Fuerzas. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Taller de Fuerzas. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Taller de Fuerzas MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Una pelota de plástico en un líquido se comporta de acuerdo a su peso y a la

Más detalles

Grado en Química. Física General I DEPARTAMENTO DE FÍSICA FACULTAD DE CIENCIAS EXPERIMENTALES. Mecánica del sólido rígido. UNIVERSIDAD DE JAÉN

Grado en Química. Física General I DEPARTAMENTO DE FÍSICA FACULTAD DE CIENCIAS EXPERIMENTALES. Mecánica del sólido rígido. UNIVERSIDAD DE JAÉN Grado en Química DEPARTAMENTO DE FÍSICA FACULTAD DE CIENCIAS EXPERIMENTALES UNIVERSIDAD DE JAÉN Física General I Mecánica del sólido rígido. 1.- Dos puntos se encuentran sobre un disco que gira, en torno

Más detalles

FISICA I HOJA 8 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 8. ELASTICIDAD FORMULARIO

FISICA I HOJA 8 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 8. ELASTICIDAD FORMULARIO 8. ELASTICIDAD FORMULARIO Tmf de carga? 8.1) Que diámetro mínimo debe tener un cable de acero para poder aguantar 1 Resistencia a la rotura E R = 7,85x10 8 N.m -2 8.2) Desde un barco se lanzó una pesa

Más detalles

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m.

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m. Nombre: Curso:_3 Cuando un cuerpo están sometidos a una fuerzas neta nula es posible que el cuerpo este en reposo de traslación pero no en reposo de rotación, por ejemplo es posible que existan dos o más

Más detalles

CONVERSIONES: 2.- UN CUERPO ESTA SOMETIDO A LA ACCION DE UNA FUERZA DE 15 N Cuántos kgf ESTAN SIENDO APLICADOS?

CONVERSIONES: 2.- UN CUERPO ESTA SOMETIDO A LA ACCION DE UNA FUERZA DE 15 N Cuántos kgf ESTAN SIENDO APLICADOS? EQUIVALENCIAS 1 kgf = 9.8 N 1 kp = 1 kgf 1 kp = 9.8 N 1 dina = 1x10-5 N 1 lbf = 4.44 N 1 pdl = 0.1382 N Kgf = kilogramos fuerza kp = kilopondio N = Newton dina = dina lbf = libra fuerza pdl = poundal CONVERSIONES:

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Física General 1 Proyecto PE - Curso 008 Instituto de Física Facultad de Ingeniería UdelaR TITULO D I N Á I C A D E P A R T Í C U L A AUTORES Santiago Góez, Anthony éndez, Eduardo Lapaz INTRODUCCIÓN Analizaos

Más detalles

FISICA FUNDAMENTAL I TALLER 4 Problemas tomados del Hipertexto de Juan C. Inzuza, Universidad de Concepción, Chile.

FISICA FUNDAMENTAL I TALLER 4 Problemas tomados del Hipertexto de Juan C. Inzuza, Universidad de Concepción, Chile. FISICA FUNDAMENTAL I TALLER 4 Problemas tomados del Hipertexto de Juan C. Inzuza, Universidad de Concepción, Chile. 1. De acuerdo con la leyenda, un caballo aprendió las leyes de Newton. Cuando se le pidió

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Cinemática

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Cinemática 1(7) Ejercicio nº 1 Los vectores de posición de un móvil en dos instantes son Calcula el vector desplazamiento y el espacio recorrido. R1 = -i + 10j y R2 = 2i + 4 j Ejercicio nº 2 Un móvil, que tiene un

Más detalles

GUIA FISICA MOVIMIENTO CIRCULAR UNIFORME. T f V TA =V TB. F CP = m R F CP =

GUIA FISICA MOVIMIENTO CIRCULAR UNIFORME. T f V TA =V TB. F CP = m R F CP = GUIA FISICA MOVIMIENO CICULA UNIFOME NOMBE: FECHA: FÓMULAS PAA MOVIMIENO CICULA UNIFOME El periodo y la frecuencia son recíprocos Velocidad Lineal o angencial( V ) Velocidad Angular( ) elación entre Velocidad

Más detalles

Departamento de Física TALLER DE MECÁNICA

Departamento de Física TALLER DE MECÁNICA TALLER DE MECÁNICA 1. Usted esta de pie sobre un asiento de una silla, y luego salta de ella. Durante el tiempo que usted esta en el aire y cae al piso, la Tierra hacia arriba con usted, (a) con una aceleración

Más detalles

IES Menéndez Tolosa Física y Química - 1º Bach Principios de Newton II

IES Menéndez Tolosa Física y Química - 1º Bach Principios de Newton II IES Menéndez Tolosa Física y Quíica - 1º Bach Principios de Newton II 1 Un cuerpo de asa 10 kg se desplaza por una supericie horizontal sin rozaiento. Si la uerza que lo ipulsa es paralela al plano. Cuánto

Más detalles

EL GIRÓSCOPO. Determinación experimental del momento de inercia del giróscopo y de la velocidad angular de precesión.

EL GIRÓSCOPO. Determinación experimental del momento de inercia del giróscopo y de la velocidad angular de precesión. EL GIRÓSCOPO 1. OBJETIVOS Determinación experimental del momento de inercia del giróscopo y de la velocidad angular de precesión. 2. FUNDAMENTO TEÓRICO. Un giróscopo es un disco en rotación construido

Más detalles

Capítulo VII CENTRO DE GRAVEDAD, CENTRO DE MASA Y CENTROIDE

Capítulo VII CENTRO DE GRAVEDAD, CENTRO DE MASA Y CENTROIDE Capítulo II CENTRO DE GREDD, CENTRO DE MS Y CENTROIDE 7. INTRODUCCIÓN Todo cuerpo que se halla en las inediaciones de la tierra interactúa con ella coo resultado de esta interacción actúa sore el cuerpo

Más detalles

SEGUNDA EVALUACIÓN. FÍSICA Marzo 12 del 2014 (08h30-10h30)

SEGUNDA EVALUACIÓN. FÍSICA Marzo 12 del 2014 (08h30-10h30) SEGUNDA EVALUACIÓN DE FÍSICA Marzo 12 del 2014 (08h30-10h30) COMPROMISO DE HONOR Yo,. (Escriba aquí sus cuatro nombres) al firmar este compromiso, reconozco que el presente examen está diseñado para ser

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A FEBRERO 18 DE 2015 COMPROMISO DE HONOR Yo,.. al firmar este compromiso,

Más detalles

Guía complementaria / PTL Guía de Ejercicios Vectores y algunas Aplicaciones.

Guía complementaria / PTL Guía de Ejercicios Vectores y algunas Aplicaciones. Guía de Ejercicios Vectores y algunas plicaciones. 1 Notabene : Todas las agnitudes vectoriales se presentan en esta guía con negrita y cursiva. Por distracción, puede haberse oitido tal cosa en algún

Más detalles

COLEGIO DE LA SAGRADA FAMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE FÍSICA II PERIODO ACADEMICO

COLEGIO DE LA SAGRADA FAMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE FÍSICA II PERIODO ACADEMICO 1 COLEGIO DE LA SAGRADA AMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE ÍSICA II PERIODO ACADEMICO MECANICA CLASICA DINAMICA: UERZA LAS LEYES DE NEWTON Y CONSECUENCIAS DE LAS LEYES DE

Más detalles

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010 VERSIÓN 0 NOMBRE: Este examen consta de 25 preguntas,

Más detalles

TALLER DE MOMENTO LINEAL, IMPULSO Y COLISIONES MOMENTO LINEAL E IMPULSO

TALLER DE MOMENTO LINEAL, IMPULSO Y COLISIONES MOMENTO LINEAL E IMPULSO TALLER DE MOMENTO LINEAL, IMPULSO Y COLISIONES MOMENTO LINEAL E IMPULSO 1. Una bola de boliche de 7 kg se mueve en línea recta a 3 m/s. Qué tan rápido debe moverse una bola de ping-pong de 2.45 gr. en

Más detalles

EXPRESION MATEMATICA

EXPRESION MATEMATICA TEMA: MOVIMIENTO CIRCULAR UNIFORME COMPETENCIA: Analiza, describe y resuelve ejercicios y problemas del movimiento circular uniforme. CONCEPTUALIZACION Es el movimiento cuyo móvil recorre arcos iguales

Más detalles

CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS Un volante cuyo diámetro es de 3 m está girando a 120 r.p.m. Calcular: a) su frecuencia, b) el periodo, c) la velocidad angular, d) la velocidad

Más detalles

Examen de TEORIA DE MAQUINAS Junio 07 Nombre...

Examen de TEORIA DE MAQUINAS Junio 07 Nombre... Examen de TEORIA DE MAQUINAS Junio 07 Nombre... La figura muestra un mecanismo biela-manivela. La manivela posee masa m y longitud L, la biela masa 3 m y longitud 3 L, y el bloque masa 2m. En la posición

Más detalles

PROBLEMAS DINÁMICA DE LA PARTÍCULA. 1. Ecuación básica de la dinámica en referencias inerciales y no inerciales

PROBLEMAS DINÁMICA DE LA PARTÍCULA. 1. Ecuación básica de la dinámica en referencias inerciales y no inerciales PRBLEMS DE DINÁMIC DE L PRTÍCUL. Ecuación básica de la dináica en referencias inerciales y no inerciales. Leyes de conservación del ipulso, del oento cinético y del trabajo 3. Fuerzas centrales 4. Gravitación

Más detalles

U (0) + K (0) = U ( ) + K ( ) mgh cm. (0) = m g h cm ( ) + ½ I 2. m g L/2 = m g L/2 cos + ½ I 2

U (0) + K (0) = U ( ) + K ( ) mgh cm. (0) = m g h cm ( ) + ½ I 2. m g L/2 = m g L/2 cos + ½ I 2 PROBLEMA 1 Un lapiz de largo L se deja caer desde la posición ertical. Su base no se desplaza en tanto que su extreo superior cae describiendo un cuarto de círculo. Calcule: (a Su elocidad angular, cuando

Más detalles

CINEMÁTICA. r(t)= (3t 3 - t -78) i + (18-2t 2 ) j + (t 4-81)k

CINEMÁTICA. r(t)= (3t 3 - t -78) i + (18-2t 2 ) j + (t 4-81)k CINEMÁTIC 1.- Se lanza un cuerpo hacia arriba en dirección vertical con una velocidad inicial de 98 /s desde la azotea de un edificio de 100 de altura. Calcula: a) la áxia altura que alcanza sobre el suelo,

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

CONTESTAR: 1 ó 2; 3 ó 4; 6 ó 7; 8 ó 9 ó 10; 5 ó 11

CONTESTAR: 1 ó 2; 3 ó 4; 6 ó 7; 8 ó 9 ó 10; 5 ó 11 NOMBRE APELLIDOS FÍSICA y QUÍMICA 1º DE BACHILLERATO NA 1DA GLOBAL 1ª EVALUACIÓN 015-16 CONTESTAR: 1 ó ; 3 ó 4; 6 ó 7; 8 ó 9 ó 10; 5 ó 11 1- Sobre un cuerpo cuya masa es m = 5,0 kg, actúan una fuerza hacia

Más detalles

TALLER # 1 ESTÁTICA. Figura 1

TALLER # 1 ESTÁTICA. Figura 1 TALLER # 1 ESTÁTICA 1. Una barra homogénea de 00N de peso y longitud L se apoya sobre dos superficies como se muestra en la figura 1. Determinar: a. El valor de la fuerza F para mantener la barra en la

Más detalles

II Evaluación. Física 11. Sección 01. Semestre A-2004.

II Evaluación. Física 11. Sección 01. Semestre A-2004. II Ealuación. Física. Sección. Seestre A-4..- Un náurago de 7 [N] que lota en el ar, es rescatado por edio de una guaya, desde un helicóptero que se encuentra estacionario a 5 [] sobre el agua. Toando

Más detalles

Serie de Dinámica MOVIMIENTO RECTILÍNEO

Serie de Dinámica MOVIMIENTO RECTILÍNEO Serie de Dinámica MOVIMIENTO RECTILÍNEO 1. En un ascensor en movimiento se pesa un cuerpo de 5 kg con una balanza de resorte. La balanza indica 5.1 kg. Halle la aceleración del ascensor. 2. Los pesos de

Más detalles

I. Objetivos. II. Introducción.

I. Objetivos. II. Introducción. Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Física Laboratorio de Mecánica II Práctica #: Dinámica rotacional: Cálculo del Momento de Inercia I. Objetivos. Medir el momento

Más detalles

PROBLEMAS RESUELTOS TEMA: 5

PROBLEMAS RESUELTOS TEMA: 5 PROBLEMAS RESUELTOS TEMA: 5 1. Dos masas puntuales m 1 y m 2 están separadas por una barra sin masa de longitud L: a) Deducir una expresión para el momento de inercia del sistema respecto a un eje perpendicular

Más detalles

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA NOMBRE... APELLIDOS... CALLE... POBLACIÓN... PROVINCIA... C. P.... SISTEMAS MECÁNICOS E.T.S. de Ingenieros Industriales PRUEBA DE EVALUACIÓN A DISTANCIA /

Más detalles

Problemas sobre Trabajo y Energía. Trabajo hecho por una fuerza constante

Problemas sobre Trabajo y Energía. Trabajo hecho por una fuerza constante Problemas sobre Trabajo y Energía Trabajo hecho por una fuerza constante 1. Si una persona saca de un pozo una cubeta de 20 g y realiza un trabajo equivalente a 6.00 J, Cuál es la profundidad del pozo?

Más detalles

UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA FACULTAD DE INGENIERIA DE MINAS, GEOLOGÍA Y CIVIL

UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA FACULTAD DE INGENIERIA DE MINAS, GEOLOGÍA Y CIVIL UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA FACULTAD DE INGENIERIA DE MINAS, GEOLOGÍA Y CIVIL ESCUELA DE FORMACION PROFESIONAL DE INGENIERIA CIVIL DO TRABAJO SEMESTRAL SOLUCION DE EJERCICIOS PROPUESTOS

Más detalles

Ejercicios de Física. Dinámica. J. C. Moreno Marín y S. Heredia Avalos, DFISTS Escuela Politécnica Superior Universidad de Alicante

Ejercicios de Física. Dinámica. J. C. Moreno Marín y S. Heredia Avalos, DFISTS Escuela Politécnica Superior Universidad de Alicante Ejercicios de Física Dinámica, . Un bloque de 5 kg está sostenido por una cuerda y se tira de él hacia arriba con una aceleración de m/ s. a) Cuál es la tensión de la cuerda? b) Una vez que el bloque se

Más detalles

III OLIMPIADA DE FÍSICA CHECOSLOVAQUIA, 1969

III OLIMPIADA DE FÍSICA CHECOSLOVAQUIA, 1969 OLIMPID INTERNCIONL DE FÍSIC Probleas resueltos y coentados por: José Luis Hernández Pérez y gustín Lozano Pradillo III OLIMPID DE FÍSIC CHECOSLOVQUI, 1969 1.- El sistea ecánico de la figura inferior consta

Más detalles

Ejercicio nº 1 Los vectores de posición y velocidad de un móvil en función del tiempo son:

Ejercicio nº 1 Los vectores de posición y velocidad de un móvil en función del tiempo son: Ejercicio nº 1 Los vectores de posición y velocidad de un móvil en función del tiempo son: R 2 = (20 + 10t)i + (100 4t )j y V = 10i 8t j Calcula: a) osición y velocidad en el instante inicial y a los 4

Más detalles

GUIA DE EJERCICIOS DE FISICA TERCER PARCIAL

GUIA DE EJERCICIOS DE FISICA TERCER PARCIAL GUIA DE EJERCICIOS DE FISICA TERCER PARCIAL 1.- Un helicóptero contra incendios transporta un recipiente para agua de 620kg en el extremo de un cable de 20m de largo, al volar de regreso de un incendio

Más detalles

1. Palanca 2. Poleas: Polea simple o fija Polea móvil Polipastos

1. Palanca 2. Poleas: Polea simple o fija Polea móvil Polipastos 1. Palanca 2. Poleas: Polea simple o fija Polea móvil Polipastos Una palanca es una máquina constituida por una barra simple que puede girar en torno a un punto de apoyo o fulcro. Según donde se aplique

Más detalles

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N Ejercicios de dinámica, fuerzas (4º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: 4 kg. º Calcular la masa de un cuerpo

Más detalles

TALLER DE OSCILACIONES Y ONDAS

TALLER DE OSCILACIONES Y ONDAS TALLER DE OSCILACIONES Y ONDAS Departamento De Fı sica y Geologı a, Universidad De Pamplona DOCENTE: Fı sico Amando Delgado. TEMAS: Todos los desarrollados el primer corte. 1. Determinar la frecuencia

Más detalles

PRACTICA 4: CÁLCULOS DE ACTUADORES NEUMÁTICOS

PRACTICA 4: CÁLCULOS DE ACTUADORES NEUMÁTICOS PRACTCA : CÁLCULOS DE ACTUADORES NEUMÁTCOS Se trata de seleccionar los actuadores adecuados para un anipulador de un proceso de epaquetado de latas de atún. Coo se puede apreciar en el dibujo, en prier

Más detalles

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r Junio 2013. Pregunta 2A.- Una bobina circular de 20 cm de radio y 10 espiras se encuentra, en el instante inicial, en el interior de un campo magnético uniforme de 0,04 T, que es perpendicular al plano

Más detalles

ROTACIÓN. Datos: v, ω y x. Calcular: n. Solución:

ROTACIÓN. Datos: v, ω y x. Calcular: n. Solución: 1. Una bola de béisbol se lanza a 88 mi/h y con una velocidad de giro de 1.500 rev/min. Si la distancia entre el punto de lanzamiento y el receptor es de 61 pies, estimar las revoluciones completadas por

Más detalles

INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR

INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR Dinámica y Leyes de Newton INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR DINÁMICA: Es la rama de la mecánica que estudia las causas del movimiento de los cuerpos. FUERZA: Es toda acción ejercida capaz

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado

Más detalles

SISTEMA DE PARTÍCULAS

SISTEMA DE PARTÍCULAS SISTEMA DE PARTÍCULAS 1. Una masa de arcilla de 0,2kg se lanza horizontalmente con una rapidez de 5m/s contra un bloque de 2,3kg que está inicialmente en reposo sobre una superficie lisa. Si la arcilla

Más detalles

Problemas de Física 1º Bachillerato 2011

Problemas de Física 1º Bachillerato 2011 Un móvil describe un movimiento rectilíneo. En la figura, se representa su velocidad en función del tiempo. Sabiendo que en el instante, parte del origen a. Dibuja una gráfica de la aceleración en función

Más detalles

BOLETÍN EJERCICIOS TEMA 4 TRABAJO Y ENERGÍA

BOLETÍN EJERCICIOS TEMA 4 TRABAJO Y ENERGÍA Curso 2011-2012 BOLETÍN EJERCICIOS TEMA 4 TRABAJO Y ENERGÍA 1. Halla la energía potencial gravitatoria de un libro de 500 gramos que se sitúa a 80 cm de altura sobre una mesa. Calcula la energía cinética

Más detalles

TALLER SOBRE SISTEMA DE PARTÍCULAS Y CUERPO RÍGIDO

TALLER SOBRE SISTEMA DE PARTÍCULAS Y CUERPO RÍGIDO UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS- ESCUELA DE FÍSICA FÍSICA MECÁNICA (00000) TALLER SOBRE SISTEMA DE PARTÍCULAS Y CUERPO RÍGIDO Preparado por: Diego Luis Aristizábal Ramírez

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 6 EQUILIBRIO DEL CUERPO RÍGIDO

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 6 EQUILIBRIO DEL CUERPO RÍGIDO APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 6 EQUILIBRIO DEL CUERPO RÍGIDO Cuerpo rígido Como ya se ha señalado, un cuerpo rígido, es aquel que no se deforman cuando es sometido a fuerzas

Más detalles

B: DINAMICA. & r, y la

B: DINAMICA. & r, y la 10 Escuela de Ineniería. Facultad de Ciencias Físicas y Mateáticas. Universidad de Chile. B: DINAMICA B.1.-Un bloque B de asa desliza con roce despreciable por el interior de un tubo, el cual a su vez

Más detalles

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica OSCILACIONES - PROBLEMAS RESUELTOS PROBLEMA Nº 1 Un cuerpo oscila con movimiento armónico simple a lo largo del eje x.

Más detalles

TALLER DE ENERGÍA, MOMENTO LINEAL, IMPULSO Y COLISIONES

TALLER DE ENERGÍA, MOMENTO LINEAL, IMPULSO Y COLISIONES TALLER DE ENERGÍA, MOMENTO LINEAL, IMPULSO Y COLISIONES 1. Un pequeño bloque de masa m se desliza sin fricción a lo largo de una pista en rizo como se muestra en la figura. a. Si el bloque se suelta desde

Más detalles

Problemas. 1. Un barco se balancea arriba y abajo y su desplazamiento vertical viene dado por la ecuación y = 1,2 cos

Problemas. 1. Un barco se balancea arriba y abajo y su desplazamiento vertical viene dado por la ecuación y = 1,2 cos Probleas. Un barco se balancea arriba y abajo y su desplazaiento vertical viene dado por t π la ecuación y, cos +. Deterinar la aplitud, frecuencia angular, 6 constante de fase, frecuencia y periodo del

Más detalles

El momento tiende a provocar una aceleración angular (cambio en la velocidad de giro) en el cuerpo sobre el cual se aplica (puerta, molinete, etc.).

El momento tiende a provocar una aceleración angular (cambio en la velocidad de giro) en el cuerpo sobre el cual se aplica (puerta, molinete, etc.). 1 ESTATICA MOMENTO DE UNA FUERZA Dada una fuerza F situada a una distancia d de un punto o, se denomina (definición matemática) momento de la fuerza con respecto a un punto o, al producto de la intensidad

Más detalles

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones.

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Movimiento de rotación. Cuerpos rígidos un cuerpo con una forma definida, que no cambia en forma que las partículas que lo componen permanecen

Más detalles

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R TEMA PE9 PE.9.1. Los campos magnéticos de los que estamos rodeados continuamente representan un riesgo potencial para la salud, en Europa se han establecido recomendaciones para limitar la exposición,

Más detalles

tecnun INDICE Volantes de Inercia

tecnun INDICE Volantes de Inercia VOLANTES DE INERCIA INDICE 7. VOLANTES DE INERCIA... 113 7.1 INTRODUCCIÓN.... 113 7. ECUACIÓN DEL MOVIMIENTO.... 113 7.3 CÁLCULO DE UN VOLANTE DE INERCIA.... 116 Eleentos de Máquinas 11 7. VOLANTES DE

Más detalles

1RA PRÁCTICA CALIFICADA (CINEMÁTICA DE UNA PARTÍCULA Y CUERPO RÍGIDO)

1RA PRÁCTICA CALIFICADA (CINEMÁTICA DE UNA PARTÍCULA Y CUERPO RÍGIDO) 1RA PRÁCTICA CALIFICADA (CINEMÁTICA DE UNA PARTÍCULA Y CUERPO RÍGIDO) DINÁMICA (IC 244) ALUMNOS : CARITAS BARRIENTOS, Ronald ROBLES ROCHA, Hamilton TORRES PÉREZ, Walter A. TORO VELARDE, William DOCENTE

Más detalles

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas UIVERSIDAD TECOLÓGICA ACIOAL Facultad Regional Rosario UDB Física Cátedra FÍSICA I Resolución de problemas aplicando lees de ewton consideraciones energéticas 1º) Aplicando lees de ewton (Dinámica) Pasos

Más detalles

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía Física y Química 1º Bachillerato LOMCE IES de Castuera Tema 10 Trabajo y Energía FyQ 1 2015 2016 Rev 01 Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre

Más detalles

Universidad de Sonora Departamento de Física. Mecánica II. Dr. Roberto Pedro Duarte Zamorano 2016

Universidad de Sonora Departamento de Física. Mecánica II. Dr. Roberto Pedro Duarte Zamorano 2016 Universidad de Sonora Departamento de Física Mecánica II Dr. Roberto Pedro Duarte Zamorano 2016 Temario 1. Cinemática rotacional. 2. Dinámica rotacional. 3. Las leyes de Newton en sistemas de referencia

Más detalles

SOLUCIÓN PROBLEMAS DE MOVIMIENTO CIRCULAR (ROTACIONAL Y TRASLACIONAL)

SOLUCIÓN PROBLEMAS DE MOVIMIENTO CIRCULAR (ROTACIONAL Y TRASLACIONAL) SOLUCIÓN PROBLEMAS DE MOVIMIENTO CIRCULAR (ROTACIONAL Y TRASLACIONAL). Expresa los siguientes ángulos en radianes: a) 30º b) 57º c) 90º d) 360º e) 420º. 2. El sol subtiende un ángulo de aproximadamente

Más detalles

CURSO CERO DE FÍSICA DINÁMICA

CURSO CERO DE FÍSICA DINÁMICA CURSO CERO DE ÍSICA Departaento de ísica COTEIDO. Principios fundaentales de la dináica. Priera ley de ewton: Ley de la inercia. Segunda ley de ewton: Ley fundaental de la dináica. Tercera ley de ewton:

Más detalles

1. El movimiento circular uniforme (MCU)

1. El movimiento circular uniforme (MCU) FUNDACIÓN INSTITUTO A DISTANCIA EDUARDO CABALLERO CALDERON Espacio Académico: Física Docente: Mónica Bibiana Velasco Borda mbvelascob@uqvirtual.edu.co CICLO: VI INICADORES DE LOGRO MOVIMIENTO CIRCULAR

Más detalles

EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES.

EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES. EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES. LA TORCA (O MOMENTUM) alrededor de un eje, debida a una fuerza, es una medida de la efectividad de la fuerza para que esta produzca

Más detalles

TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012

TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012 TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 ÁREA: FÍSICA CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012 INSTRUCCIONES: LEA DETENIDAMENTE LOS ENUNCIADOS DE CADA UNO DE LOS

Más detalles

GUÍA Nº4: Sistema de partículas

GUÍA Nº4: Sistema de partículas Junio - 014 GUÍA Nº4: Sistema de partículas PROBLEMA 1: Tres partículas inicialmente ocupan las posiciones determinadas por los extremos de un triángulo equilátero, tal como se muestra en la figura. a)

Más detalles

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación CONTENIDO Definición de sólido rígido Cálculo de la posición del centro de masas Movimiento de rotación y de traslación Movimiento del sólido rígido en el plano Momento de inercia Teorema de Steiner Tema

Más detalles