PRUEBA OBJETIVA. Encierre con un círculo la letra o letras que correspondan a las alternativas válidas de entre las propuestas.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PRUEBA OBJETIVA. Encierre con un círculo la letra o letras que correspondan a las alternativas válidas de entre las propuestas."

Transcripción

1 PRUEBA OBJETIVA Encierre con un círculo la letra o letras que correspondan a las alternativas válidas de entre las propuestas. 1. Capital financiero es: a) Es la edida de un bien econóico referida al oento de su disponibilidad b) Queda deterinado conociendo únicaente la cuantía. c) Se representa ediante un par ordenado de núeros reales (C,t) 2. Dados dos capitales (C 1,t 1 ) y (C 2,t 2 ) a) Si C 1 > C 2, el prier capital siepre es preferido. b) Si C 1 = C 2 y t 1 < t 2, es preferido el priero. c) Si C 1 > C 2 y t 1 > t 2, siepre es preferido el priero. 3. Se entiende por ley financiera: a) La expresión que perite, dado un capital (C,t), obtener su equivalente en otro punto cualquiera t. b) El odelo ateático representativo de un criterio de sustitución de capitales. c) La expresión ateática que perite deterinar la cuantía equivalente a cualquier capital (C,t) en un punto p. 4. Para que una función F(C,t,p) pueda ser utilizada coo ley financiera debe verificar: a) Ser linealente proporcional a la cuantía C. b) Puede toar valores positivos y negativos. c) Que si cuple la propiedad reflexiva no es preciso que sea continua. 5. Para que el capital (S,τ) sea sua financiera de (C 1,t 1 ) y (C 2,t 2 ) utilizando una ley de capitalización L(t,p) debe verificarse que: a) t 1 < τ < t 2 b) S = C 1 L(t 1,p) + C 2 L(t 2,p) c) S = C 1 + C 2 6. En toda operación financiera, se verifica que: a) Fijada la ley financiera de valoración, la sua financiera de los capitales de la prestación ha de coincidir con la sua financiera de los capitales de la contraprestación. b) Si es de crédito recíproco el últio capital lo entrega necesariaente la contraprestación. c) El saldo financiero en τ es aquel capital que equilibra financieraente los coproisos de las partes.

2 7. Cuál es la interpretación financiera del factor de capitalización aplicado al intervalo (t 1,t 2 ) con t 1 < t 2? a) Es el núero por el que hay que ultiplicar la cuantía disponible en t 1 para obtener su equivalente en t 2. b) L( t2, p) Es el cociente L( t1, p) c) Coincide con la ley financiera cuando t 2 = p. 8. Rédito financiero asociado al intervalo (t 1,t 2 ): a) El rédito de capitalización y el de contracapitalización coinciden en valor absoluto. b) Si el factor de descuento es v(t 1,t 2 ) = 0,08, el rédito de contradescuento es d*(t 1,t 2 ) = 0,25. c) El rédito acuulado es igual a la diferencia de las leyes financieras L(t 1,p) - L(t 2,p) 9. Tantos asociados al intervalo (t 1,t 2 ): a) Se obtienen dividiendo el rédito correspondiente entre la aplitud del intervalo. b) Si el factor de descuento es v(1987,1991) = 0,8, los tantos de descuento y de contradescuento son de 0,05 y 0,0625, respectivaente. c) Los tantos son de diensión -1 respecto al tiepo. 10. Intereses y Descuentos: a) Son cuantías que iden la diferencia entre cuantías. b) Son capitales que iden la diferencia entre dos capitales de la isa cuantía y diferentes venciientos. c) Si el factor de capitalización es u(t 1,t 2 ) = 1,25, el interés ordinario correspondiente al capital (C,t 2 ) es: (I,t 2 ) = (0,25C,t 2 ) 11. Una ley financiera F(t,p) es estacionaria cuando: a) La equivalencia de capitales depende de p. b) El tanto instantáneo resulta función exclusiva de z = p-t. c) Se verifica F(t,p) = F(t+h,p+h) h. 12. En las leyes suativas: a) La ecuación funcional, en capitalización, es L(t,s) + L(s,p) = L(t,p) para t<s<p. b) El tanto instantáneo acuulado no depende de p. c) El factor de descuento es independiente de p. 13. Las leyes ultiplicativas cuplen que:

3 a) La equivalencia de capitales es independiente de p. b) En algunos casos son a la vez suativas y ultiplicativas. c) El tanto instantáneo ordinario y el acuulado coinciden. 14. En las leyes unificables: a) Si hay infinitas soluciones de capital unificado, la ley es suativa. b) Las leyes ultiplicativas son unificables con una única solución de capital unificado. c) Una ley puede ser a la vez estacionaria y unificable. 15. La capitalización siple: a) Es una ley financiera estacionaria, suativa y unificable. b) Se escribe en fora estacionaria: L(z) = 1+i z, siendo i el tanto instantáneo acuulado. c) Los factores, réditos y tantos ordinarios son independientes de p. 16. La solución edia (C,τ) de capital unificado de (C 1,t 1 ) y (C 2,t 2 ) en capitalización siple y en descuento coercial se caracteriza por: C1t1+ C2 t a) C = C1 + C2 y τ = C1+ C2 C1+ C2 b) C = y t1< τ < t 2 2 t1+ 2 t 2 c) C = 3C1 y τ = Con la ley de capitalización copuesta L(t,p) = (1+i) p-t 2 a) Cuando i=10%, el tanto instantáneo es igual a Ln 1,1. b) El factor de capitalización correspondiente al intervalo (t 2,t 3 ) es: t 2 - t 3 (1 + i ) siendo t2 <t3 c) Se obtienen ontantes ás elevados que con la capitalización siple en el intervalo (0,1) cuando el valor nuérico del paráetro i coincide. 18. Conocida la ley de descuento coercial A(t,p) = 1-0,1(t-p) con t<p y p = 1995 a) El valor descontado de un illón de pesetas disponible en t = 1997 es ptas. b) El rédito triestral equivalente es 0,025. c) El tanto de capitalización siple equivalente para un intervalo seestral se obtiene: 0,1 i= 1+ 0, En capitalización copuesta las relaciones de tantos equivalentes periten afirar que:

4 a) Si J 4 = 10%, entonces i 4 = 4% e i = 1,1 0,25, siendo J 4 el tanto noinal de frecuencia triestral, e i 4 el rédito triestral. b) El tanto efectivo anual es i = 10%, el tanto noinal de frecuencia ensual es J 12 = 12(1,1 1/12-1) y el rédito ensual i 12 = 0,1/12 J c) Se verifica: (1 + i)=(1+i ) =(1+ ) 20. Procesos financieros: a) El producto financiero sucesivo de varias leyes se denoina proceso financiero y genera una nueva ley financiera. b) En todo proceso estacionario, la aplitud de los intervalos de aplicación ha de ser siepre la isa. c) El llaado convenio lineal consiste en aplicar únicaente la capitalización siple. PRUEBA DE ENSAYO

5 1. Coprobar si las siguientes funciones pueden ser utilizadas coo leyes financieras de descuento. a) F(t, p)= 1- b) F(t, p)= k(t - p) 1 1+ k(t - p) -(t - p) t c) F(t, p)=(1+i ) =(1- d ) - p 2. Dada la ley financiera L(t,p) = 1 + 0,1(p-t), con p = 1998 y el intervalo teporal (1994,1997), obtener: a) Factores, réditos y tantos asociados al citado intervalo. b) Montante e Intereses que en 1997 habrá producido un capital de un illón de ptas disponibles en c) Tanto instantáneo en 1994 y en En cierta operación financiera, pactada con la ley de capitalización siple, a un tanto de interés del 24%, se intercabian los siguientes capitales: Prestación: ( ; 0) y ( ; 4 eses) Contraprestación: ( ; 2 eses) y (X; 6 eses) con p = 6 eses Se pide: a) Deterinar la cuantía X del últio capital de la contraprestación. b) Obtener el saldo financiero a los tres eses del origen. c) Interpretar el saldo obtenido anteriorente. 4. El día de hoy, 3 de arzo, se acuerda sustituir dos efectos, el priero de ptas que vence el 10 de abril y el segundo de ptas que vence el 2 de agosto por otro único con venciiento el 30 de ayo. ) Cuál debe ser su cuantía si se utiliza la ley de descuento coercial al 15% anual? (año coercial). 5. Un capital de tres illones de pesetas se coloca en capitalización copuesta a plazo de 5 años. Durante los tres prieros se abonan intereses al 4% seestral y durante los

6 dos últios se abonan triestralente a un tanto noinal del 10% anual. Obtener: a) El ontante al finalizar los cinco años. b) Los tantos efectivos anuales. 6. Coparación entre las leyes de descuento coercial y racional para un iso valor nuérico del tanto aplicado, y una isa duración. a) Obtener el valor descontado, o valor actual, y el descuento efectuado a un capital de un illón de ptas que vence dentro de 3 eses, si el tanto utilizado es el 10% anual. b) Con los datos del apartado anterior: b1) Cuál es el tanto de descuento racional que proporciona el iso resultado que el obtenido con el 10% en descuento coercial. b2) Cuál es el tanto de descuento coercial que proporciona el iso resultado que el obtenido con el 10% en descuento racional.

GESTION FINANCIERA. TEMA 4º. El INTERES COMPUESTO. 1.- Capitalización compuesta.

GESTION FINANCIERA. TEMA 4º. El INTERES COMPUESTO. 1.- Capitalización compuesta. GESTION FINANCIERA. TEMA 4º. El INTERES COMPUESTO. 1.- Capitalización copuesta. Concepto de capitalización copuesta. Térinos a utilizar en la capitalización copuesta. Cálculo del capital final o ontante.

Más detalles

ANUALIDADES SIMPLES CIERTAS ORDINARIAS

ANUALIDADES SIMPLES CIERTAS ORDINARIAS UNIVERSIDAD DE ORIENTE UNIVO FACULTAD DE CIENCIAS ECONOMICAS CATEDRA: MATEMÁTICAS FINANCIERAS GUIA DE EJERCICIOS SOBRE: ANUALIDADES SIMPLES CIERTAS ORDINARIAS ELABORADO POR: LIC. LUIS EDUARDO BENITEZ SOLIS

Más detalles

TEMA 3 SISTEMAS FINANCIEROS

TEMA 3 SISTEMAS FINANCIEROS Matemática Financiera Diapositiva 1 TEMA 3 SISTEMAS FINANCIEROS 1. Sistemas financieros. Tipología 2. Capitalización Simple. Propiedades e interpretación financiera 3. Capitalización Compuesta. Propiedades.

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN AUTOR: ANTONIO CAMARGO MARTÍNEZ Mateáticas financieras Clave: 1154 Plan: 2005 Créditos: 8 Licenciatura: Contaduría Seestre:

Más detalles

CAPÍTULO VI AMORTIZACIONES

CAPÍTULO VI AMORTIZACIONES CAPÍTULO VI AMORTIZACIONES 324 6.1.- AMORTIZACIONES 6.1.1.- CONCEPTOS BÁSICOS En el ábito de las finanzas y el coercio, el concepto aortización está asociado a deuda, es decir, se refiere al pago gradual

Más detalles

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Apuntes de Matemáticas Financieras

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Apuntes de Matemáticas Financieras COLEGIO UNIVERSITARIO CARDENAL CISNEROS Apuntes de Matemáticas Financieras Manuel León Navarro 2 Índice general 1. Conceptos Básicos 7 1.1. Lección 1 - Introducción......................... 7 1.1.1. Actividad

Más detalles

Matemáticas Financieras

Matemáticas Financieras Matemáticas Financieras Francisco Pérez Hernández Departamento de Financiación e Investigación de la Universidad Autónoma de Madrid Objetivo del curso: Profundizar en los fundamentos del cálculo financiero,

Más detalles

EXAMEN UNIDADES 3 Y 4 (16 DE DICIEMBRE DE 2010)

EXAMEN UNIDADES 3 Y 4 (16 DE DICIEMBRE DE 2010) Resuelve los siguientes ejercicios: 1. Una empresa desea sustituir 3 efectos de nominal 2.000 cada uno de ellos, y con vencimiento a los 30, 45 y 60 días, por un capital único igual a la suma de los nominales

Más detalles

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Financieras

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Financieras COLEGIO UNIVERSITARIO CARDENAL CISNEROS Libro de Ejercicios de Matemáticas Financieras Manuel León Navarro 2 Capítulo 1 Ejercicios lección 2 1. Determinar el capital equivalente a (1000000,2020) en 2012

Más detalles

1.6 TEORÍA DE IMÁGENES, APLICADA A LOS RADIADORES ELECTROMAGNÉTICOS: MONOPOLOS Y

1.6 TEORÍA DE IMÁGENES, APLICADA A LOS RADIADORES ELECTROMAGNÉTICOS: MONOPOLOS Y 1.6 TEORÍA DE IMÁGENES, APLICADA A LOS RADIADORES ELECTROMAGNÉTICOS: MONOPOLOS Y Un dipolo es una antena con alientación central epleada para transitir o recibir ondas de radiofrecuencia, es decir, es

Más detalles

Gestión Financiera. 2 > Capitalización y descuento simple

Gestión Financiera. 2 > Capitalización y descuento simple . 2 > Capitalización y descuento simple Juan Carlos Mira Navarro Juan Carlos Mira Navarro 1 / 25. 2 > Capitalización y descuento simple 1 2 Definición Ley financiera de capitalización simple Factor de

Más detalles

1. Lección 5 - Comparación y Sustitución de capitales

1. Lección 5 - Comparación y Sustitución de capitales Apuntes: Matemáticas Financieras 1. Lección 5 - Comparación y Sustitución de capitales 1.1. Comparación de Capitales Se dice que dos capitales son equivalentes cuando tienen el mismo valor en la fecha

Más detalles

Matemáticas II Grado en Economía

Matemáticas II Grado en Economía Matemáticas II Grado en Economía Curso 2011-2012 Tema 1 Universidad devalladolid Departamento de Economía Aplicada 1. Introducción a las matemáticas de las operaciones financieras 1.1 Leyes financieras

Más detalles

1. Lección 4 - Leyes de Descuento

1. Lección 4 - Leyes de Descuento 1. Lección 4 - Leyes de Descuento Apuntes: Matemáticas Financieras 1.1. El descuento comercial La expresión matemática del descuento comercial es: A 1 (t) = 1 d t para d > 0 Por lo que una u.m. en el instante

Más detalles

1. Lección 10 - Operaciones Financieras - Introducción a los préstamos

1. Lección 10 - Operaciones Financieras - Introducción a los préstamos 1. Lección 10 - Operaciones Financieras - Introducción a los préstamos Las operaciones financieras son intercambios no simultáneos de capitales financieros entre las partes de tal forma que ambos compromisos

Más detalles

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA Universidad de Valladolid Facultad de Ciencias Económicas y Empresariales Departamento de Economía Aplicada (Matemáticas Empresariales y para Economistas) Esquemas teóricos de la asignatura de las licenciaturas

Más detalles

Capitalización y descuento compuesto

Capitalización y descuento compuesto Unidad 4 Capitalización y descuento compuesto 4.1. Capitalización compuesta 4.1.1. Magnitudes derivadas 4.2. Comparación entre la capitalización simple y compuesta 4.3. Equivalencia de tantos en capitalización

Más detalles

DETERMINACIÓN DE LA RESISTENCIA A COMPRESIÓN Y DEL MÓDULO DE ELASTICIDAD DE PILAS DE MAMPOSTERÍA DE BARRO Y DE CONCRETO

DETERMINACIÓN DE LA RESISTENCIA A COMPRESIÓN Y DEL MÓDULO DE ELASTICIDAD DE PILAS DE MAMPOSTERÍA DE BARRO Y DE CONCRETO DETERMINACIÓN DE LA RESISTENCIA A COMPRESIÓN Y DEL MÓDULO DE ELASTICIDAD DE PILAS DE MAMPOSTERÍA DE BARRO Y DE CONCRETO 1. OBJETIVO Y CAMPO DE APLICACIÓN Esta Nora Mexicana establece los étodos de prueba

Más detalles

TEMA I: Modelación Experimental de Procesos

TEMA I: Modelación Experimental de Procesos TEMA I: Modelación Experiental de Procesos Métodos Clásicos para Modelación o Identificación de Procesos. Introducción La puesta en funcionaiento de un deterinado proceso que opera en lazo cerrado, requiere

Más detalles

EL MUELLE. LAS FUERZAS ELÁSTICAS

EL MUELLE. LAS FUERZAS ELÁSTICAS EL MUELLE. LAS FUERZAS ELÁSTICAS En una pista horizontal copletaente lisa, se encuentra un uelle de 30 c de longitud y de constante elástica 100 N/. Se coprie 0 c y se sitúa una asa de 500 g frente a él.

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS I

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS I Facultad de Ciencias Económicas Convocatoria de Febrero Primera Semana Material Auxiliar: Calculadora financiera MATEMÁTICA DE LAS OPERACIONES FINANCIERAS I 23 de Enero de 2007-9,00 horas Duración: 2 horas.

Más detalles

3 TRABAJO Y ENERGIA. BERNARDO ARENAS GAVIRIA Universidad de Antioquia Instituto de Física

3 TRABAJO Y ENERGIA. BERNARDO ARENAS GAVIRIA Universidad de Antioquia Instituto de Física 3 TRJ Y ENERGI ERNRD RENS GVIRI Universidad de ntioquia Instituto de ísica 2010 Índice general 3. Trabajo y energía 1 3.1. Introducción.......................................... 1 3.2. Ipulso (I)...........................................

Más detalles

MATEMÁTICA FINANCIERA I

MATEMÁTICA FINANCIERA I Facultad de Ciencias Económicas Convocatoria de Febrero Primera Semana Material Auxiliar: Calculadora financiera MATEMÁTICA FINANCIERA I 23 de Enero de 28-8,3 horas Duración: 2 horas. a) Comparar las leyes

Más detalles

PARTE 2 OPERACIONES FINANCIERAS A INTERÉS COMPUESTO T E M A S

PARTE 2 OPERACIONES FINANCIERAS A INTERÉS COMPUESTO T E M A S PARTE 2 OPERACIONES FINANCIERAS A INTERÉS COMPUESTO T E M A S Interés Copuesto: Concepto y factores Fórulas Fundaentales Operación cuando hay Intervalos Irregulares Tasa Noinal Anual y Tasa Efectiva 2.1

Más detalles

CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 2 CAPITALIZACIÓN SIMPLE

CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 2 CAPITALIZACIÓN SIMPLE CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 2 CAPITALIZACIÓN SIMPLE Javier Bilbao García 1 1.- Capitalización Simple Definición: Se pretende sustituir un capital presente por otro equivalente en

Más detalles

1) Calcular el montante o capital final obtenido al invertir un capital de 1.000 al 8% de interés anual simple durante 8 años. 2) Calcular el capital

1) Calcular el montante o capital final obtenido al invertir un capital de 1.000 al 8% de interés anual simple durante 8 años. 2) Calcular el capital 1) Calcular el montante o capital final obtenido al invertir un capital de 1.000 al 8% de interés anual simple durante 8 años. 2) Calcular el capital inicial necesario para obtener un capital de 20.000

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE 4 MOVIMIENO ARMÓNICO SIMPLE 4.. MOVIMIENOS PERIÓDICOS. Conocido el período de rotación de la Luna alrededor de la ierra, y sabiendo que la Luna no eite luz propia, sino que refleja la que recibe del Sol,

Más detalles

UNIDAD 1 LAS LEYES FINANCIERAS DE CAPITALIZACIÓN DESCUENTO

UNIDAD 1 LAS LEYES FINANCIERAS DE CAPITALIZACIÓN DESCUENTO - 1 - UNIDAD 1 LAS LEYES FINANCIERAS DE CAPITALIZACIÓN Y DESCUENTO Tema 1: Operaciones financieras: elementos Tema 2: Capitalización y descuento simple Tema 3: Capitalización y descuento compuesto Tema

Más detalles

1. Lección 3 - Leyes de Capitalización

1. Lección 3 - Leyes de Capitalización 1. Lección 3 - Leyes de Capitalización Apuntes: Matemáticas Financieras 1.1. Capitalización Simple 1.1.1. Expresión matemática La expresión matemática de la capitalización simple es: L 1 (t) = 1 + i t

Más detalles

5.7.- ESTUDIO GRANULOMETRICO DE LOS ARIDOS. 5.7.1.- Análisis granulométrico

5.7.- ESTUDIO GRANULOMETRICO DE LOS ARIDOS. 5.7.1.- Análisis granulométrico 5.7.- ESTUDIO GRANULOMETRICO DE LOS ARIDOS 5.7.1.- Análisis granuloétrico La granuloetría de los áridos es uno de los paráetros ás iportantes epleados para la dosificación del horigón (La ayoría de los

Más detalles

De la expresión que caracteriza al régimen financiero de interés simple vencido, se obtiene:

De la expresión que caracteriza al régimen financiero de interés simple vencido, se obtiene: Regímenes Financieros. Ejercicios solucionados REGÍMENES FINANCIEROS. EJERCICIOS SOLUCIONADOS. Para disponer dentro de 9 meses de 0.500, cuál es la cuantía que debe ingresarse hoy en una cuenta bancaria

Más detalles

De Metro a... APRENDO JUGANDO. Para medir longitudes, la unidad de medida es el metro. Y por qué el metro?, a quién se le ocurrió?

De Metro a... APRENDO JUGANDO. Para medir longitudes, la unidad de medida es el metro. Y por qué el metro?, a quién se le ocurrió? 07 Lección Refuerzo Mateáticas De Metro a... APRENDO JUGANDO Copetencia Resuelve probleas de conversiones de superficie de anera autónoa y ediante el odelo realiza tareas de conversión. Diseño instruccional

Más detalles

FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: ( ) ( )

FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: ( ) ( ) Isbel Nóvo Arechg FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: El tnto i y el tiepo n, tienen que estr correlciondos, es decir, referidos l iso período de tiepo, generlente

Más detalles

MATEMÁTICA FINANCIERA I. 1. a) Capital financiero. Concepto. Componentes. Representación gráfica. (1 punto).

MATEMÁTICA FINANCIERA I. 1. a) Capital financiero. Concepto. Componentes. Representación gráfica. (1 punto). Facultad de Ciencias Económicas Convocatoria de Febrero Primera Semana Material Auxiliar: Calculadora financiera MATEMÁTICA FINANCIERA I 29 de Enero de 2010-9 horas Duración: 2 horas 1. a) Capital financiero.

Más detalles

Gestión Financiera 2º AF 1

Gestión Financiera 2º AF 1 LEY FINANCIERA DE INTERÉS SIMPLE Gestión Financiera 2º AF 1 1.1 Concepto Operación financiera cuyo objeto es la sustitución de un capital presente por otro equivalente con vencimiento posterior, mediante

Más detalles

Siendo el plazo de inversión de 0 a n, el capital inicial Co y el tanto de interés i.

Siendo el plazo de inversión de 0 a n, el capital inicial Co y el tanto de interés i. Tema 2 Leyes Financieras Ley financiera de Capitalización Simple La ley financiera de capitalización simple se caracteriza porque los intereses son directamente proporcionales al capital que se invierte,

Más detalles

PRACTICA 4: CÁLCULOS DE ACTUADORES NEUMÁTICOS

PRACTICA 4: CÁLCULOS DE ACTUADORES NEUMÁTICOS PRACTCA : CÁLCULOS DE ACTUADORES NEUMÁTCOS Se trata de seleccionar los actuadores adecuados para un anipulador de un proceso de epaquetado de latas de atún. Coo se puede apreciar en el dibujo, en prier

Más detalles

Tema 6. Análisis de Circuitos en Régimen Sinusoidal Permanente

Tema 6. Análisis de Circuitos en Régimen Sinusoidal Permanente Tea 6. Análisis de Circuitos en Régien Sinusoidal Peranente 6. ntroducción 6. Fuentes sinusoidales 6.3 Respuesta sinusoidal en estado estable 6.4 Fasores 6.5 Relaciones fasoriales para R, L y C 6.6 pedancia

Más detalles

Curso de Matemáticas Financieras. AulaFacil.com. Valor temporal del dinero

Curso de Matemáticas Financieras. AulaFacil.com. Valor temporal del dinero 2ª CLASE Capitalización Simple 3ª CLASE Capitalización Simple: Ejercicios 4ª CLASE Capitalización Compuesta 5ª CLASE Capitalización Compuesta Lección 1 Lección 2 Lección 3 Lección 4 Lección 5 Lección 6

Más detalles

Es un sistema de dos vectores deslizables de la misma magnitud que están en distintas rectas sostén con la misma dirección pero sentido contrario

Es un sistema de dos vectores deslizables de la misma magnitud que están en distintas rectas sostén con la misma dirección pero sentido contrario MECANICA TEORÍA Moento Entonces Sistea Par o Cupla de Vectores Es un sistea de dos vectores deslizables de la isa agnitud que están en distintas rectas sostén con la isa dirección pero sentido contrario

Más detalles

ELEMENTOS Y ÁMBITO DE LAS OPERACIONES FINANCIERAS

ELEMENTOS Y ÁMBITO DE LAS OPERACIONES FINANCIERAS INTRODUCCION OBJETIVO: Estudiar los medios que facilitan el análisis de las operaciones financieras y sus técnicas de cálculo. ELEMENTOS Y ÁMBITO DE LAS OPERACIONES FINANCIERAS En las operaciones financieras

Más detalles

Matemática Financiera

Matemática Financiera Matemática Financiera Patricia Kisbye Profesorado en Matemática Facultad de Matemática, Astronomía y Física 2011 Patricia Kisbye (FaMAF) 2011 1 / 79 Presentación de la materia Matemática financiera: ambiente

Más detalles

1.- Se obtiene un credito de $200,000 a 40 dias con el 4% de interes anual simple; que cantidad debe pagar al vencerce la deuda?

1.- Se obtiene un credito de $200,000 a 40 dias con el 4% de interes anual simple; que cantidad debe pagar al vencerce la deuda? 1.- Se obtiene un credito de $200,000 a 40 dias con el 4% de interes anual simple; que cantidad debe pagar al vencerce la deuda? Ajustes Formula C 200,000.00 La tasa de interes es 4% anual trasportada

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE LAS PALMAS JUNIO 2014. (RESUELTOS por Antonio Menguiano)

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE LAS PALMAS JUNIO 2014. (RESUELTOS por Antonio Menguiano) IES CSTELR DJOZ PRUE DE CCESO (LOGSE) UNIVERSIDD DE LS PLS JUNIO (RESUELTOS por ntonio enguiano) TEÁTICS II Tiepo áio: horas inutos Elija una de las dos opciones, o, conteste a las cuatro cuestiones que

Más detalles

1.- EL CAMPO MAGNÉTICO

1.- EL CAMPO MAGNÉTICO 1.- EL CAMPO MAGNÉTICO Las cargas en oviiento foran una corriente eléctrica I; y estas generan una nueva perturbación en el espacio que se describe por edio de una agnitud nueva llaada capo agnético B.

Más detalles

7.1. Conceptos básicos. Clasificación

7.1. Conceptos básicos. Clasificación Unidad 7 Préstamos 7.1. Conceptos básicos. Clasificación 7.1.1. Elementos de un préstamo 7.1.2. El tipo de interés. Componentes 7.1.3. Clasificación 7.2. Préstamos amortizables con reembolso único 7.2.1.

Más detalles

TERCERA RELACIÓN LEYES FINANCIERAS DE DESCUENTO COMPUESTO

TERCERA RELACIÓN LEYES FINANCIERAS DE DESCUENTO COMPUESTO TERCERA RELACIÓN LEYES FINANCIERAS DE DESCUENTO COMPUESTO 1.- Tenemos que pagar una deuda de 1.500 dentro de 3 años. Si se adelanta su pago al momento presente, qué cantidad tendremos que pagar sabiendo

Más detalles

El Valor Dinámico Borroso de la Empresa a Partir del Cálculo del Coste Unitario Estándar Que Proporciona el Sistema MRP II

El Valor Dinámico Borroso de la Empresa a Partir del Cálculo del Coste Unitario Estándar Que Proporciona el Sistema MRP II El Valor Dináico Borroso de la Epresa a Partir del Cálculo del Coste Unitario Estándar Que Proporciona el Sistea MRP II Antoni Vidal Suñé, Albert Fonts Ribas El trabajo que se presenta desarrolla, en la

Más detalles

La Handtmann Armaturenfabrik. Seguridad sin compromisos. Válvulas de seguridad para líquidos, gases y vapores. Ideas con futuro.

La Handtmann Armaturenfabrik. Seguridad sin compromisos. Válvulas de seguridad para líquidos, gases y vapores. Ideas con futuro. La Handtann Araturenfabrik Seguridad sin coproisos para líquidos, gases y vapores Ideas con futuro. FoodSafe Tradición encuentra innovación f Las válvulas de seguridad Handtann son la priera opción en

Más detalles

TORNILLOS Y UNIONES ATORNILLADAS

TORNILLOS Y UNIONES ATORNILLADAS TORNILLOS Y UNIONES ATORNILLADAS INDICE 8. TORNILLOS Y UNIONES ATORNILLADAS... 120 8.1 INTRODUCCIÓN... 120 8.2 MECÁNICA DE LOS TORNILLOS DE FUERZA O POTENCIA.... 122 8.3 ESFUERZOS EN LA ROSCA... 125 8.4

Más detalles

vamos a conocer... 1. Descuento o actualización 2. Descuento simple comercial o bancario 5. Equivalencia financiera: Capitales equivalentes.

vamos a conocer... 1. Descuento o actualización 2. Descuento simple comercial o bancario 5. Equivalencia financiera: Capitales equivalentes. 5 Interés simple: actualización simple vamos a conocer... 1. Descuento o actualización 2. Descuento simple comercial o bancario 5. Equivalencia financiera: Capitales equivalentes. Vencimiento común y vencimiento

Más detalles

ecotec pro Con Vaillant es más fácil Vaillant, especialistas en Condensación www.vaillant.es info@vaillant.es Asistencia Técnica 902 43 42 44

ecotec pro Con Vaillant es más fácil Vaillant, especialistas en Condensación www.vaillant.es info@vaillant.es Asistencia Técnica 902 43 42 44 Con Vaillant es ás fácil Vaillant, especialistas en Condensación ecotec pro Atención al Profesional 902 11 63 56 Vaillant S. L. Oficina Coercial Central Polígono Ugaldeguren III Parcela 22 48170 ZAMUDIO

Más detalles

CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 3 CAPITALIZACIÓN COMPUESTA

CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 3 CAPITALIZACIÓN COMPUESTA CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 3 CAPITALIZACIÓN COMPUESTA Javier Bilbao García 1 1.- Capitalización Compuesta Definición: Operación financiera que persigue sustituir un capital por

Más detalles

INTRODUCCIÓN-CONCEPTOS BÁSICOS

INTRODUCCIÓN-CONCEPTOS BÁSICOS INTRODUCCIÓN-CONCEPTOS BÁSICOS Cuando se dispone de una cantidad de dinero (capital) se puede destinar o bien a gastarlo, o bien a invertirlo para recuperarlo en un futuro más o menos próximo. De la misma

Más detalles

ÍNDICE. Prólogo... 4. Tema 1. BIOMETRÍA... 5. Tema 2. VALORACIÓN FINANCIERA... 15. Tema 3. RENTAS FINANCIERAS... 22. Tema 4. RENTAS ACTUARIALES...

ÍNDICE. Prólogo... 4. Tema 1. BIOMETRÍA... 5. Tema 2. VALORACIÓN FINANCIERA... 15. Tema 3. RENTAS FINANCIERAS... 22. Tema 4. RENTAS ACTUARIALES... ÍNDICE Prólogo......................................................................................................... 4 Tema 1. BIOMETRÍA..........................................................................................

Más detalles

Guía complementaria / PTL Guía de Ejercicios Vectores y algunas Aplicaciones.

Guía complementaria / PTL Guía de Ejercicios Vectores y algunas Aplicaciones. Guía de Ejercicios Vectores y algunas plicaciones. 1 Notabene : Todas las agnitudes vectoriales se presentan en esta guía con negrita y cursiva. Por distracción, puede haberse oitido tal cosa en algún

Más detalles

Gestión Financiera. 7 > Préstamos

Gestión Financiera. 7 > Préstamos . 7 > Préstamos Juan Carlos Mira Navarro Juan Carlos Mira Navarro 1 / 64. 7 > Préstamos 1 2 Préstamo americano Préstamo americano con fondo de amortización «sinking fund» 3 Anualidad Capital pendiente

Más detalles

Vamos a ver algunos conceptos básicos de solfeo. La progresión de la escala de las notas musicales va de la siguiente manera:

Vamos a ver algunos conceptos básicos de solfeo. La progresión de la escala de las notas musicales va de la siguiente manera: Conceptos Básicos aos a ver algunos conceptos básicos de solfeo. La progresión de la escala de las notas usicales va de la siguiente anera: # Re# Fa# # La# Re i Fa La Si / / Qué quiere decir esto? Figura

Más detalles

ADMINISTRACION FINANCIERA. Cálculo Financiero. CPN. Juan Pablo Jorge Ciencias Económicas Tel. (02954) 456124/433049 jpjorge@speedy.com.

ADMINISTRACION FINANCIERA. Cálculo Financiero. CPN. Juan Pablo Jorge Ciencias Económicas Tel. (02954) 456124/433049 jpjorge@speedy.com. ADMINISTRACION FINANCIERA Cálculo Financiero CPN. Juan Pablo Jorge Ciencias Económicas Tel. (02954) 456124/433049 jpjorge@speedy.com.ar 1 Cálculo Financiero - Sumario 1. La tasa de interés. Valor del dinero

Más detalles

L U M I N O T E C N I A: Cálculo según el método de los lúmenes

L U M I N O T E C N I A: Cálculo según el método de los lúmenes L U M I N O T E C N I A: Cálculo según el étodo de los lúenes Profesores: Departaento: Centro: Castilla Cabanes, Nuria (ncastilla@csa.upv.es) Blanca Giénez, Vicente (vblanca@csa.upv.es) Martínez Antón,

Más detalles

colaboración gestora

colaboración gestora Colaboración Gestora Procediiento y Tráites Fieles a nuestra En esta ocasión, se intención de increentar los trata de una propuesta para vínculos counicativos evitar los conflictos que, en entre la Mutua

Más detalles

Introducción a las Operaciones Financieras. Juan Carlos Mira Navarro

Introducción a las Operaciones Financieras. Juan Carlos Mira Navarro Introducción a las Operaciones Financieras i Juan Carlos Mira Navarro Introducción a las Operaciones Financieras Introducción a las Operaciones Financieras Juan Carlos Mira Navarro Publicado por: Juan

Más detalles

GUÍA DE PROBLEMAS F 10º

GUÍA DE PROBLEMAS F 10º Unidad 3: Dináica de la partícula GUÍ DE PROBLEMS 1)-Una partícula de asa igual a kg esta tirada hacia arriba por una plano inclinado liso ediante una fuerza de 14,7 N. Deterinar la fuerza de reacción

Más detalles

Interés simple: capitalización simple vamos a conocer...

Interés simple: capitalización simple vamos a conocer... 4 Interés simple: capitalización simple vamos a conocer... 0. Leyes y operaciones financieras (Tema 3). 1. La capitalización simple anual 2. Tantos equivalentes. Tantos proporcionales 3. Formulación del

Más detalles

Unidad 6. Descuento Simple

Unidad 6. Descuento Simple Unidad 6 Descuento Simple Descuento es la disminución que se concede a un pago o deuda por diferentes circunstancias. Entre las más frecuentes se tienen a las promociones, liquidaciones, etc. Descuentos

Más detalles

Unidad didáctica: Electricidad, electromagnetismo y medidas

Unidad didáctica: Electricidad, electromagnetismo y medidas Unidad didáctica: Electricidad, electroagnetiso y edidas CURSO 3º ESO versión 1.0 1 Unidad didáctica: Electricidad, electroagnetiso y edidas ÍNDICE 1.- Introducción..- Corriente eléctrica..1.- Corriente

Más detalles

LOS SISTEMAS DE INFORMACIÓN EN SALUD LABORAL

LOS SISTEMAS DE INFORMACIÓN EN SALUD LABORAL LOS SISTEMAS DE INFORMACIÓN EN SALUD LABORAL Francisco José López Carona Subdirector General de Tecnologías de la Inforación. Ministerio de Sanidad y Consuo. PRÊT-À-PORTER, ALTA COSTURA Y SISTEMAS DE INFORMACIÓN

Más detalles

TEMA 2: LA OPERACIÓN FINANCIERA

TEMA 2: LA OPERACIÓN FINANCIERA TEMA 2: LA OPERACIÓN FINANCIERA 1. Concepto 2. Estudio estático: Equivalencia financiera. 3. Estudio dinamico: Reserva matemática. 4. Tantos efectivos. Coste, rendimiento, TAE. 5. Ejercicios tema 2. 1.

Más detalles

II.3. Dinero y política monetaria

II.3. Dinero y política monetaria II.3. Dinero y política onetaria II.3.1. Dinero y orden onetario Coo heos visto anteriorente, la econoía de ercado oderna requiere del dinero para que los individuos, los grupos y las epresas realicen

Más detalles

OPERACIONES EN RÉGIMEN DE COMPUESTA

OPERACIONES EN RÉGIMEN DE COMPUESTA OPERACIONES EN RÉGIMEN DE COMPUESTA Las operaciones en régimen de compuesta se caracterizan porque los intereses, a diferencia de lo que ocurre en régimen de simple, a medida que se van generando pasan

Más detalles

3. OPERACIONES CON MATRICES: DIBUJANDO EL CAMINO

3. OPERACIONES CON MATRICES: DIBUJANDO EL CAMINO 3. OPERACIONES CON MATRICES: DIBUJANDO EL CAMINO La transforación de las coordenadas se realiza internaente en OpenGL a partir de las atrices de transforación y de las coordenadas de odelado del objeto.

Más detalles

Capital. Finanzas y capitalización compuesta (primera parte) Autor: Editorial McGraw-Hill

Capital. Finanzas y capitalización compuesta (primera parte) Autor: Editorial McGraw-Hill Capital. Finanzas y capitalización compuesta (primera parte) Autor: Editorial McGraw-Hill 1 Presentación del curso En este curso aprenderás acerca de la capitalización compuesta, que viene a ser la ley

Más detalles

SUMARIO: 1. LANZAMIENTO EN PRESIDENCIA ESPAÑOLA DE LA UNIÓN EUROPEA

SUMARIO: 1. LANZAMIENTO EN PRESIDENCIA ESPAÑOLA DE LA UNIÓN EUROPEA LA TARJETA SANITARIA EUROPEA Vicente Pérez Menayo Consejero de Trabajo y Asuntos Sociales en la Representación Peranente de España ante la Unión Europea Colaboraciones Externas SUMARIO: 1. LANZAMIENTO

Más detalles

ALUMNO: AUTOR: Prof. Lic. CLAUDIO NASO

ALUMNO: AUTOR: Prof. Lic. CLAUDIO NASO ALUMNO: AUTOR: Prof. Lic. CLAUDIO NASO 3.1.1- Introducción 3.1- Coo discutios en el Trabajo Práctico Nº 1, el coponente coún a todos los cuerpos es la ateria. Todo ente aterial ocupa un lugar en el espacio

Más detalles

Capítulo 1 Interés Simple

Capítulo 1 Interés Simple Capítulo 1 Interés Simple 1.1 Tanto por ciento En matemáticas el tanto por ciento es una forma de expresar un número en proporción cien (de ahí el nombre por ciento ), y se denota con el símbolo %. El

Más detalles

ced Au Au Au f Cu Cu Cu f

ced Au Au Au f Cu Cu Cu f Probleas calorietria Ejeplo 1.- 100 g de una aleación de oro y cobre, a la teperatura de 75.5ºC se introducen en un caloríetro con 502 g de agua a 25ºC, la teperatura del equilibrio es de 25.5ºC. Calcular

Más detalles

Regulación de los A.T. y de las E.P. en la Unión Europea

Regulación de los A.T. y de las E.P. en la Unión Europea REGULACIÓN DE LOS ACCIDENTES DE TRABAJO Y DE LAS ENFERMEDADES PROFESIONALES EN LOS PAÍSES DE LA UNIÓN EUROPEA Ana González Góez Jefe de Servicio de Relaciones Sociales Internacionales del Ministerio de

Más detalles

ANÁLISIS Y APLICACIÓN DE LAS EXPRESIONES DEL CONTENIDO DE HUMEDAD EN SÓLIDOS

ANÁLISIS Y APLICACIÓN DE LAS EXPRESIONES DEL CONTENIDO DE HUMEDAD EN SÓLIDOS Siposio de Metrología 010 ANÁLISIS Y APLICACIÓN DE LAS EXPRESIONES DEL CONTENIDO DE UMEDAD EN SÓLIDOS Enrique Martines L., Leonel Lira C. k 4.5 Carretera a los Cués, Municipio el Marqués, Querétaro Teléfono:

Más detalles

Operaciones a corto plazo

Operaciones a corto plazo Unidad 3 Operaciones a corto plazo 3.1. Introducción 3.2. Crédito comercial 3.3. Descuento bancario 3.3.1. Descuento de efectos comerciales 3.3.2. Descuento financiero 3.4. Cuentas corrientes 3.4.1. Métodos

Más detalles

Física y Mecánica de las Construcciones ETS Arquitectura/ Curso 2008-09

Física y Mecánica de las Construcciones ETS Arquitectura/ Curso 2008-09 Física y Mecánica de las Construcciones ETS Arquitectura/ Curso 8-9 C) VIBRACIONES Y ONDAS 1. VIBRACIONES MECÁNICAS 1. 1. INTRODUCCIÓN Una vibración ecánica es la oscilación repetida de un punto aterial

Más detalles

CINEMÁTICA Y DINÁMICA. PRACTICA DE LABORATORIO No. 6 LEY DE HOOKE - MOVIMIENTO ARMÓNICO SIMPLE

CINEMÁTICA Y DINÁMICA. PRACTICA DE LABORATORIO No. 6 LEY DE HOOKE - MOVIMIENTO ARMÓNICO SIMPLE 1. INTRODUCCIÓN CINEMÁTICA Y DINÁMICA PRACTICA DE LABORATORIO No. 6 LEY DE HOOKE - MOVIMIENTO ARMÓNICO SIMPLE La ley de Hooe describe fenóenos elásticos coo los que exhiben los resortes. Esta ley afira

Más detalles

CAPÍTULO II INTRODUCCION A LA MATEMÁTICA FINANCIERA EN LA GESTIÓN

CAPÍTULO II INTRODUCCION A LA MATEMÁTICA FINANCIERA EN LA GESTIÓN CAPÍTULO II INTRODUCCION A LA MATEMÁTICA FINANCIERA EN LA GESTIÓN Introducción. En la bibliografía dreferida a la matemática financiera el primer término que aparece es el de "Capital financiero". Se entiende

Más detalles

colaboración gestora

colaboración gestora Colaboración Gestora Procediiento y Tráites Fieles a nuestra En esta ocasión, se intención de increentar los trata de una propuesta para vínculos counicativos la gestión y control de la entre la Mutua

Más detalles

FEE02-15 FÓRMULAS Y EJEMPLOS. Incluye a los productos:

FEE02-15 FÓRMULAS Y EJEMPLOS. Incluye a los productos: FEE02-5 FÓRMULAS Y EJEMPLOS cluye a los productos: - Epresariales - Credifácil - El tiepo vale oro - Micro agropecuario - Agro crédito - Credigaadero - Credicostruye - Mi terreito - Multioficios - Crédito

Más detalles

denota el intervalo cerrado por izquierda y no acotado por derecha, corresponde al conjunto de todos los números reales mayores o iguales que a.

denota el intervalo cerrado por izquierda y no acotado por derecha, corresponde al conjunto de todos los números reales mayores o iguales que a. Intervalos no acotados. Las definiciones anteriores se pueden generalizar, para ello usareos los síbolos (se lee ás infinito) y (se lee enos infinito). Con debeos entender supera cualquier núero por grande

Más detalles

EJERCICIOS DE DESCUENTO.

EJERCICIOS DE DESCUENTO. EJERCICIOS DE DESCUENTO. 1.- Calcular la cantidad que se descuenta comercialmente a una letra cuyo nominal es de 2.000, que vence dentro de 60 días y a la que se aplica un tanto simple de descuento del

Más detalles

Cierre fiscal Impuesto sobre Sociedades 2011

Cierre fiscal Impuesto sobre Sociedades 2011 Cierre fiscal Ipuesto sobre Sociedades 2011 Miguel Ángel Serra Guasch Ibiza, 30 de noviebre de 2011 V Jornada de Fiscalitat Esquea liquidatorio del Ipuesto sobre Sociedades RESULTADO CONTABLE (+ / -) Correcciones

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

REGÍMENES FINANCIEROS

REGÍMENES FINANCIEROS EGÍMEES FIAIEOS are Badía, Hortèsia Fotaals, Merche Galisteo, José Mª Lecia, Mª Agels Pos, Teresa Preixes, Dídac aírez, F. Javier Sarrasí y Aa Mª Sucarrats DEPATAMETO DE MATEMÁTIA EOÓMIA, FIAIEA Y ATUAIAL

Más detalles

Inducción electromagnética. Ecuaciones de Maxwell

Inducción electromagnética. Ecuaciones de Maxwell Inducción electroagnética. Física II Grado en Ingeniería de Organización Industrial Prier Curso Joaquín Bernal Méndez/Ana Marco Raírez Curso 2011-2012 Departaento de Física Aplicada III Universidad de

Más detalles

7.1. Conceptos básicos. Clasificación

7.1. Conceptos básicos. Clasificación Unidad 7 Préstamos 7.1. Conceptos básicos. Clasificación 7.1.1. Elementos de un préstamo 7.1.2. El tipo de interés. Componentes 7.1.3. Clasificación 7.2. Préstamos amortizables con reembolso único 7.2.1.

Más detalles

Unidad didáctica: Electricidad y Electrónica

Unidad didáctica: Electricidad y Electrónica Unidad didáctica: Electricidad y Electrónica CURSO 1º ESO versión 1.0 Electricidad y Electrónica - 1 Unidad didáctica: Electricidad y Electrónica ÍNDICE 1.- El átoo y sus partículas..- Materiales conductores,

Más detalles

6 El movimiento ondulatorio

6 El movimiento ondulatorio 6 El oiiento ondulatorio EJERCCOS ROUESTOS 6. Son ondas las olas del ar? or qué? Sí, porque se propaga una perturbación: la altura de la superficie del agua sobre su niel edio. 6. uede haber un oiiento

Más detalles

TEMA 4: APLICACIONES DE LA CAPITALIZACIÓN SIMPLE: LETRA DE CAMBIO Y CUENTA CORRIENTE ÍNDICE

TEMA 4: APLICACIONES DE LA CAPITALIZACIÓN SIMPLE: LETRA DE CAMBIO Y CUENTA CORRIENTE ÍNDICE TEMA 4: APLICACIONES DE LA CAPITALIZACIÓN SIMPLE: LETRA DE CAMBIO Y CUENTA CORRIENTE ÍNDICE 1. DESCUENTO DE EFECTOS... 1 1.1. CONCEPTO DE DESCUENTO DE EFECTOS... 1 1.2. CLASIFICACIÓN DE LOS DESCUENTOS...

Más detalles

Beneficios de este tipo de descuento

Beneficios de este tipo de descuento SESION 8 4.3. Descuento en cadena o en serie 4.4. Descuento por pronto pago 4.5. Comisiones Los descuentos por pronto pago, también conocidos como descuentos en efectivo, tienen como objetivo estimular

Más detalles

1.- La función financiera definición y objetivos. 2.- Clasificación de los recursos financieros según su titularidad

1.- La función financiera definición y objetivos. 2.- Clasificación de los recursos financieros según su titularidad 1.- La función financiera definición y objetivos 2.- Clasificación de los recursos financieros según su titularidad 3.- Instrumentos de financiación externa a c.p. 4.- Principales fuentes de financiación

Más detalles

Un método eficiente para la simulación de curvas de tasas de interés

Un método eficiente para la simulación de curvas de tasas de interés BANCO DE MEXICO Un étodo eficiente para la siulación de curvas de tasas de interés Javier Márquez Diez-Canedo Carlos E. Nogués Nivón Viviana Vélez Grajales Febrero-3 Resuen El objetivo de este trabajo

Más detalles

CONSERVACIÓN DE LA ENERGIA

CONSERVACIÓN DE LA ENERGIA CONSERVACIÓN DE LA ENERGIA ASIMOV - 8 - ENERGÍA MECÁNICA - CONSERVACIÓN DE LA ENERGÍA ENERGÍA POTENCIAL Suponé que sostengo una cosa a del piso y la suelto. Al principio la cosa tiene velocidad inicial

Más detalles

EJERCICIOS DE PRÉSTAMOS (I)

EJERCICIOS DE PRÉSTAMOS (I) - 1 - EJERCICIOS DE PRÉSTAMOS (I) SUPUESTO 1 Un particular tiene concertado un préstamo de 50.000 euros de principal amortizable en l0 años, mediante mensualidades constantes a un tanto de interés nominal

Más detalles

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(

Más detalles