Análisis de imágenes digitales

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Análisis de imágenes digitales"

Transcripción

1 Análisis de imágenes digitales SEGMENTACIÓN DE LA IMAGEN Segmentación basada en texturas

2 INTRODUCCIÓN La textura provee información sobre la distribución espacio-local del color o niveles de intensidades en una imagen y se puede definir como: 1. La estructura física característica de un objeto de acuerdo a su tamaño, forma, arreglo y proporciones de sus partes constituyentes. 2. Las variaciones pequeñas y repetitivas de los datos en escalas menores a las escalas de interés. En el ejemplo, las imágenes poseen la misma distribución de intensidades (50% blanco y 50% negro) aunque sus texturas son diferentes. 2

3 INTRODUCCIÓN El análisis de texturas se puede aplicar en dos tareas de análisis de imágenes: 1. Segmentación: identificar automáticamente las regiones de textura similares en una imagen. 2. Reconocimiento: clasificar una región de textura entre un conjunto de clases de texturas conocidas. Existen tres aproximaciones para el análisis de texturas: 1. Estructural: conjunto de texturas primitivas (patrones básicos) con una relación regular o repetitiva. 2. Estadístico: medida cuantitativa del arreglo de intensidades en una imagen con lo cual se generan vectores de patrones. 3. Modelado: técnicas que construyen modelos para texturas específicas (e.g., simulación del speckle ultrasónico). 3

4 INTRODUCCIÓN Análisis estadístico Análisis estructural con texturas primitivas R1 R5 R2 R4 R3 Matrices de coocurrencia Modelado de speckle ultrasónico 4

5 INTRODUCCIÓN La segmentación de texturas se puede realizar mediante las siguientes técnicas: Segmentación de texturas Imágenes binarias Imágenes escala de gris Patrones regulares Modelos booleanos Morfología matemática Funciones de Gabor Fractales Campos aleatorios de Markov Morfología matemática Wavelets Etc. 5

6 FUNCIONES DE GABOR Malik y Perona (1989) * propusieron un algoritmo de segmentación de texturas no supervisado basado en filtros de Gabor, el cual consta de 4 pasos básicos: 1. Descomposición multi-canal: se aplica un banco de filtros de Gabor a la imagen de entrada para realzar las diferentes texturas que se sintonicen algún filtro en particular. 2. Suavizado: se aplica un banco de filtros de Gaussianos a los canales de textura para homogeneizar regiones de textura similares. 3. Selección de características: no todos los filtros producen realce texturas, de modo que se seleccionan aquellas respuestas con mayor información de textura para reducir el espacio de características. 4. Agrupamiento: se aplica una técnica de clustering (e.g., k-means) al espacio de características reducido, de modo que se agrupen aquellos puntos que sean similares. * Perona and Malik, Preattentive texture discrimination with early vision mechanisms, J. Opt. Soc. Am. A, vol. 7, no. 5,

7 FUNCIONES DE GABOR PASO 1: DESCOMPOSICIÓN MULTI-CANAL Recordemos que en el dominio de la frecuencia, la función de Gabor está definida como la suma de dos funciones Gaussianas desplazadas a partir del origen, con frecuencia radial (u k y u k ) y orientación (θ, en el rango [0, π]) específicas, y se expresa como: H (u,v) = exp 1 2 (û u k ) 2 σ u 2 + ˆv 2 σ v 2 + exp 1 2 (û + u k ) 2 σ u 2 + ˆv 2 σ v 2 donde û = u cos(θ) + v sin(θ) y ˆv = v cos(θ) u sin(θ), 1 σ u = y σ v = 2πσ x 1 con σ x = σ y = 1 2πσ y 2u k ln2 2 2 b +1 2 b 1 donde b es el ancho de banda del filtro y la frecuencia radial (u k ) se calcula como: 1 2, 2 2, 4 2,, log 2 ( N c 4) 2 ciclos / ancho - imagen donde Nc es el ancho de la imagen. 7

8 FUNCIONES DE GABOR PASO 1: DESCOMPOSICIÓN MULTI-CANAL Imagen de entrada 0º Descomposición multicanal F F 1 135º Banco de filtros con θ=45º 45º 8 90º

9 FUNCIONES DE GABOR PASO 2: SUAVIZADO Una vez que se hace la descomposición multi-canal, se realiza un suavizado Gaussiano a cada canal de textura, de modo que las regiones de textura parecidas sean más homogéneas. Las varianzas del banco de filtros Gaussianos dependen de las frecuencias radiales (u k ) del banco de filtros de Gabor, de modo que a medida que un filtro de Gabor se aleja del centro del espectro el suavizado es mayor. En el dominio de la frecuencia, el filtro Gaussiano está definido como: H (u,v) = exp u 2 + v 2 2σ 2 donde la desviación estándar se calcula como: σ = κ N c donde κ es una constante que controla el ancho del filtro. 9 u k

10 FUNCIONES DE GABOR PASO 2: SUAVIZADO Tomando como ejemplo las imágenes filtradas a 0º y κ = 1: Imágenes de Gabor Transformada de Fourier F F F F F F F Banco de filtros Gaussianos Transformada inversa de Fourier F 1 F 1 F 1 F 1 F 1 F 1 F 1 Imágenes suavizadas 10

11 FUNCIONES DE GABOR PASO 3: SELECCIÓN DE CARACTERÍSTICAS Para reducir el costo computacional del proceso de agrupamiento, se debe seleccionar un subconjunto de filtros que mejor aproxime las variaciones de textura. Entonces, sea s(x,y) la suma de todos los canales de textura y sea ŝ(x,y) la suma de un subconjunto de canales de textura, la suma de cuadrados del error (SSE) entre ambas imágenes puede medirse como: SSE = x,y [ ŝ(x,y) s(x,y) ] 2 La tasa de variación de texturas en s(x,y) dado ŝ(x,y) puede medir con el coeficiente de determinación: R = 1 SSE ST x,y donde ST = s(x,y) 2 11

12 FUNCIONES DE GABOR PASO 3: SELECCIÓN DE CARACTERÍSTICAS El subconjunto de canales de textura se obtiene mediante el siguiente algoritmo incremental: 1. Al inicio, el subconjunto de canales de textura que representará a ŝ(x,y) está vacío, entonces, se selecciona el canal de textura que más aproxime a s(x,y), es decir, aquel con el mayor valor de R, y se retira dicho canal del conjunto original. 2. Seleccionar un canal de textura a partir del conjunto original que sumado, ŝ(x,y), con todos los canales de textura existentes en el subconjunto aproxime mejor a s(x,y) y retirar dicho canal del conjunto original. 3. Repetir el paso 2 hasta que R

13 FUNCIONES DE GABOR PASO 3: SELECCIÓN DE CARACTERÍSTICAS Primero Canales de textura seleccionados s(x,y) s (x,y) 13 Último

14 FUNCIONES DE GABOR PASO 4: AGRUPAMIENTO El último paso consiste en el agrupamiento de los píxeles en un número k de grupos predefinidos que representen las diferentes texturas que se desean detectar en la imagen. Antes de realizar el agrupamiento, se debe preparar el espacio de atributos mediante los siguientes procesos: 1. Transformar cada canal de textura a un vector columna, el cual representará un atributo de un espacio d-dimensional de características te tamaño MN d, donde M y N son el ancho y el alto de la imagen y d el número canales de textura. 2. Agregar las coordenadas espaciales (x,y) de los píxeles como dos atributos adicionales que proveen información de conectividad espacial en el proceso de agrupamiento. 14 Canales de textura Espacio de atributos

15 FUNCIONES DE GABOR PASO 4: AGRUPAMIENTO 3. Normalizar en el rango [ 1,1] cada atributo del espacio de características mediante la función sigmoidal: x = 1 exp( α ) 1+ exp( α ) con α = x µ i σ i donde x es un punto perteneciente el i-ésimo atributo, µi y σi son la media y desviación estándar del i-ésimo atributo. El proceso de agrupamiento se puede realizar con el algoritmo k-means, el cual consta de cuatro pasos básicos: 1. Inicializar los centroides de los k-grupos aleatoriamente. 2. Asignar cada muestra al centroide más cercano (e.g., distancia Euclideana). 3. Calcular los nuevos centroides (medias) de los k-grupos. 4. Ir al paso 2 hasta que los centroides no cambien más de posición. 15

16 FUNCIONES DE GABOR PASO 4: AGRUPAMIENTO La salida del algoritmo k-means es un vector de etiquetas, que indica la pertenencia de cada píxel a una región de textura. Espacio de atributos Etiquetas k = 4 Imagen segmentada k-means 16

17 FUNCIONES DE GABOR Imagen original b κ Segmentación verdadera Para todos θ=45º

18 FUNCIONES DE GABOR Imagen original b θ 15º 30º 45º 90º Segmentación verdadera Para todos κ=2

19 FUNCIONES DE GABOR Segmentación de imágenes reales. Imagen segmentada Imagen original K=4 K=4 K=2 K=2 Para todos b=3, κ=2, θ=15 19

20 MORFOLOGÍA MATEMÁTICA Los operadores morfológicos de apertura y cerradura pueden ser utilizados para el análisis estructural de regiones que presentan texturas primitivas. Por ejemplo, las siguientes dos imágenes ruidosas contienen círculos oscuros de tamaños diferentes sobre un fondo claro, de modo que se desea encontrar el borde que separe ambas regiones. 20

21 MORFOLOGÍA MATEMÁTICA Procedimiento utilizando operadores morfológicos: Imagen original Apertura disco 30 píxeles Cerradura disco 60 píxeles 21 Gradiente morfológico Imagen segmentada

22 MORFOLOGÍA MATEMÁTICA La granulometría estudia la distribución de las partículas con diferentes tamaños dentro de la imagen. El análisis granulométrico puede ser realizado a través de los operadores de apertura y cerradura. La idea básica es realizar operaciones de apertura o cerradura sobre una muestra de textura individual, aumentado gradualmente el tamaño del elemento estructurante (EE). Para cada escala del EE, todos los valores de intensidad de la imagen resultante se suman para obtener su respectivo valor de granulometría. Aperturas, EE Cerraduras, EE Muestras 22

23 MORFOLOGÍA MATEMÁTICA Pasos para el entrenamiento y clasificación de texturas utilizando análisis granulométrico: 1. Seleccionar el operador morfológico (apertura o cerradura) y la forma del EE. 2. Calcular la curva granulométrica para cada muestra de textura de tamaño N N, variando el tamaño del EE desde un valor mínimo hasta un valor máximo. 3. Determinar el tamaño del EE donde todas las curvas granulométricas convergen. En ese punto, obtener los respectivos valores de granulometría para cada muestra de textura, los cuales serán utilizados como referencia, y asignarles una etiqueta diferente a cada una. 4. Aplicar el operador morfológico seleccionado a una imagen de prueba utilizando el EE con la forma seleccionada en el paso 1 cuyo tamaño fue obtenido en el paso Desplazar una ventana de tamaño N N sobre cada píxel de la imagen resultante y calcular el valor de granulometría de dentro de la ventana (i.e., sumar todos los valores de intensidad). 6. Calcular la diferencia absoluta entre el valor granulométrico del píxel y cada valor referencia de granulometría. Entonces, el píxel será asignado (o clasificado) con la etiqueta de la muestra de textura que presentó la menor diferencia de granulometría. 23

24 MORFOLOGÍA MATEMÁTICA Curvas granulométricas por cerradura con EE cuadrado Muestras de textura Convergencia (valores referencia) Imagen de prueba Diferencias absolutas Imagen segmentada 24

Filtros digitales dominio del espacio dominio de la frecuencia

Filtros digitales dominio del espacio dominio de la frecuencia Tema 3: Filtros 1 Filtros digitales Los filtros digitales constituyen uno de los principales modos de operar en el procesamiento de imágenes digitales. Pueden usarse para distintos fines, pero en todos

Más detalles

Tema 4. Reducción del ruido

Tema 4. Reducción del ruido Div. Ingeniería de Sistemas y Automática Universidad Miguel Hernández GRUPO DE TECNOLOGÍA INDUSTRIAL Tabla de Contenidos Definición Filtros Lineales Filtros Temporales Realce Espacial Definición Ruido:

Más detalles

License Plate Detection using Neural Networks

License Plate Detection using Neural Networks License Plate Detection using Neural Networks Luis Carrera, Marco Mora Les Fous du Pixel Image Processing Research Group Department of Computer Science Catholic University of Maule http://www.lfdp-iprg.net

Más detalles

GRADIENTE La laplaciana es un buen filtro paso alto, pero no es una buena herramienta para resaltar o detectar los bordes. En muchos casos, los bordes o límites de las figuras o de las regiones aparecen

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

CONTROL DE ROBOTS Y SISTEMAS SENSORIALES 4º Ingeniería Industrial

CONTROL DE ROBOTS Y SISTEMAS SENSORIALES 4º Ingeniería Industrial Escuela Politécnica Superior de Elche CONTROL DE ROBOTS Y SISTEMAS SENSORIALES 4º Ingeniería Industrial PRÁCTICAS DE VISIÓN ARTIFICIAL [Títere] Práctica 4: Segmentación. Localización y Reconocimiento de

Más detalles

ANEXO 1. CALIBRADO DE LOS SENSORES.

ANEXO 1. CALIBRADO DE LOS SENSORES. ANEXO 1. CALIBRADO DE LOS SENSORES. Las resistencias dependientes de la luz (LDR) varían su resistencia en función de la luz que reciben. Un incremento de la luz que reciben produce una disminución de

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

CLASIFICACIÓN DE LA IMAGEN. Escuela de Ingeniería Civil y Geomática Francisco Luis Hernández Torres

CLASIFICACIÓN DE LA IMAGEN. Escuela de Ingeniería Civil y Geomática Francisco Luis Hernández Torres CLASIFICACIÓN DE LA IMAGEN TÉCNICA QUE PERMITE LA IDENTIFICACIÓN DE LOS DIFERENTES OBJETOS O GRUPOS PRESENTES EN UNA IMAGEN MULTI-ESPECTRAL. MÉTODO NO SUPERVISADO MÉTODO SUPERVISADO El Desarrollo De Las

Más detalles

Laboratorio de Visión para Robots. Práctica 2

Laboratorio de Visión para Robots. Práctica 2 1. Preparación del entorno de trabajo Laboratorio de Visión para Robots Práctica 2 La manera en la que trabajaremos será primero utilizando Eclipse para prototipar nuestro programa. Cuando podamos procesar

Más detalles

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016 ANEXO ESTADÍSTICO 1 : COEFICIENTES DE VARIACIÓN Y ERROR ASOCIADO AL ESTIMADOR ENCUESTA NACIONAL DE EMPLEO (ENE) INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 9 de Abril de 016 1 Este anexo estadístico es una

Más detalles

REDUCCIÓN DEL RUIDO EN UNA IMAGEN DIGITAL

REDUCCIÓN DEL RUIDO EN UNA IMAGEN DIGITAL Div. Ingeniería de Sistemas y Automática Universidad Miguel Hernández REDUCCIÓN DEL RUIDO EN UNA IMAGEN DIGITAL Tabla de Contenidos Definición Filtros No Lineales Filtros Temporales Definición 3 G = Ruido:

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA Medidas de tendencia central y de dispersión Giorgina Piani Zuleika Ferre 1. Tendencia Central Son un conjunto de medidas estadísticas que determinan un único valor que define el

Más detalles

2.- Tablas de frecuencias

2.- Tablas de frecuencias º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 3.- ESTADÍSTICA DESCRIPTIVA PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------

Más detalles

Matemáticas 2.º Bachillerato. Intervalos de confianza. Contraste de hipótesis

Matemáticas 2.º Bachillerato. Intervalos de confianza. Contraste de hipótesis Matemáticas 2.º Bachillerato Intervalos de confianza. Contraste de hipótesis Depto. Matemáticas IES Elaios Tema: Estadística Inferencial 1. MUESTREO ALEATORIO Presentación elaborada por el profesor José

Más detalles

Cursada Segundo Cuatrimestre 2012 Guía de Trabajos Prácticos Nro. 1

Cursada Segundo Cuatrimestre 2012 Guía de Trabajos Prácticos Nro. 1 Temas: Ambiente de trabajo MATLAB. Creación de matrices y vectores. Matrices pre-definidas. Operador dos puntos. Operaciones con matrices y vectores. Direccionamiento de elementos de matrices y vectores.

Más detalles

Sistemas de Ecuaciones Lineales

Sistemas de Ecuaciones Lineales Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a

Más detalles

Medidas de dispersión

Medidas de dispersión Medidas de dispersión Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. Las medidas de dispersión son: Rango o recorrido El rango es la diferencia

Más detalles

MÓDULO 1: GESTIÓN DE CARTERAS

MÓDULO 1: GESTIÓN DE CARTERAS MÓDULO 1: GESTIÓN DE CARTERAS TEST DE EVALUACIÓN 1 Una vez realizado el test de evaluación, cumplimenta la plantilla y envíala, por favor, antes del plazo fijado. En todas las preguntas sólo hay una respuesta

Más detalles

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada. ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos

Más detalles

conocida comúnmente, como la Campana de Gauss ".

conocida comúnmente, como la Campana de Gauss . CURSO DE ESTADÍSTICA INFERENCIAL EJERCICIOS Y PROBLEMAS RESUELTOS DE DISTRIBUCIÓN NORMAL Prof.:MSc. Julio R. Vargas A. La Distribución Normal: La distribución normal N (μ, σ): es un modelo matemático que

Más detalles

Porqué analizar imágenes?

Porqué analizar imágenes? Porqué analizar imágenes? Medidas que requieren estudiar un número demasiado elevado de imágenes. Análisis cuantitativo: La visión humana no cuantifica por si sola. El análisis automático es más repetitivo

Más detalles

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA

CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA El cálculo y los problemas se irán trabajando y evaluando a lo largo de todo el año. 1ª EVALUACIÓN CONTENIDOS. o Los números de siete y

Más detalles

CAPÍTULO 4 TÉCNICA PERT

CAPÍTULO 4 TÉCNICA PERT 54 CAPÍTULO 4 TÉCNICA PERT Como ya se mencionó en capítulos anteriores, la técnica CPM considera las duraciones de las actividades como determinísticas, esto es, hay el supuesto de que se realizarán con

Más detalles

Tema 3: Filtros SEGUNDA PARTE

Tema 3: Filtros SEGUNDA PARTE Tema 3: Filtros SEGUNDA PARTE FILTROS En el dominio del espacio: Filtros de suavizado. Filtros de realce. En el dominio de la recuencia: Filtros de suavizado. Filtros de realce. Filtros espaciales de realce

Más detalles

Tema 3. Electrónica Digital

Tema 3. Electrónica Digital Tema 3. Electrónica Digital 1.1. Definiciones Electrónica Digital La Electrónica Digital es la parte de la Electrónica que estudia los sistemas en los que en cada parte del circuito sólo puede haber dos

Más detalles

ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ

ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ Probabilidad - Período de retorno y riesgo La probabilidad de ocurrencia de un fenómeno en hidrología puede citarse de varias Formas: El

Más detalles

OPTIMIZACIÓN VECTORIAL

OPTIMIZACIÓN VECTORIAL OPTIMIZACIÓN VECTORIAL Métodos de Búsqueda Directa Utilizan sólo valores de la función Métodos del Gradiente Métodos de Segundo Orden Requieren valores aproimados de la primera derivada de f) Además de

Más detalles

Herramientas computacionales para la matemática MATLAB: Análisis de datos.

Herramientas computacionales para la matemática MATLAB: Análisis de datos. Herramientas computacionales para la matemática MATLAB:. Verónica Borja Macías Junio 2012 1 Analizar datos estadísticos en MATLAB es sencillo. Máximo y mínimo max(x) si x es vector encuentra el valor más

Más detalles

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL.

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL. LECTURA 1: LA DISTRIBUCIÓN NORMAL GENERAL LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I) TEMA 1: LA DISTRIBUCION NORMAL GENERAL PROPIEDADES 1 INTRODUCCION La distribución de probabilidad continua más importante

Más detalles

UNIDAD V: ARR R EGL G OS O BIDI D MENS N IONALE L S

UNIDAD V: ARR R EGL G OS O BIDI D MENS N IONALE L S UNIDAD V: ARREGLOS BIDIMENSIONALES DIMENSIONALES UNIDAD V: ARREGLOS BIDIMENSIONALES 1.1 GENERALIDADES: Las matrices son una colección finita, homogénea y ordenada de datos. Su información está organizada

Más detalles

4. NÚMEROS PSEUDOALEATORIOS.

4. NÚMEROS PSEUDOALEATORIOS. 4. NÚMEROS PSEUDOALEATORIOS. En los experimentos de simulación es necesario generar valores para las variables aleatorias representadas estas por medio de distribuciones de probabilidad. Para poder generar

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Probabilidad Conceptos como probabilidad, azar, aleatorio son tan viejos como la misma civilización. Y es que a diario utilizamos el concepto de probabilidad: Quizá llueva mañana

Más detalles

Estimación de homografías

Estimación de homografías Estimación de homografías Visión en Robótica 1er cuatrimestre de 2013 1 Introducción del problema Una homografía es una transformación proyectiva que determina una correspondencia entre puntos El problema

Más detalles

UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro)

UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro) UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro) 1. ESTADÍSTICA: CLASES Y CONCEPTOS BÁSICOS En sus orígenes históricos, la Estadística estuvo ligada a cuestiones de Estado (recuentos, censos,

Más detalles

Análisis de datos Categóricos

Análisis de datos Categóricos Introducción a los Modelos Lineales Generalizados Universidad Nacional Agraria La Molina 2016-1 Introducción Modelos Lineales Generalizados Introducción Componentes Estimación En los capítulos anteriores

Más detalles

Curso de Estadística Básica

Curso de Estadística Básica Curso de SESION 3 MEDIDAS DE TENDENCIA CENTRAL Y MEDIDAS DE DISPERSIÓN MCC. Manuel Uribe Saldaña MCC. José Gonzalo Lugo Pérez Objetivo Conocer y calcular las medidas de tendencia central y medidas de dispersión

Más detalles

Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT

Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT Representación en el espacio de estado Representación en espacio de estado Control clásico El modelado y control de sistemas basado en la transformada de Laplace, es un enfoque muy sencillo y de fácil

Más detalles

Generación de Variables Aleatorias. UCR ECCI CI-1453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Generación de Variables Aleatorias. UCR ECCI CI-1453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides Generación de Variables Aleatorias UCR ECCI CI-453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción Las variables aleatorias se representan por medio de distribuciones

Más detalles

Sobre funciones reales de variable real. Composición de funciones. Función inversa

Sobre funciones reales de variable real. Composición de funciones. Función inversa Sobre funciones reales de variable real. Composición de funciones. Función inversa Cuando en matemáticas hablamos de funciones pocas veces nos paramos a pensar en la definición rigurosa de función real

Más detalles

CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS

CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS MATEMÁTICAS 1º ESO U.D. 1 Números Naturales El conjunto de los números naturales. Sistema de numeración decimal. Aproximaciones

Más detalles

1 Curvas planas. Solución de los ejercicios propuestos.

1 Curvas planas. Solución de los ejercicios propuestos. 1 Curvas planas. Solución de los ejercicios propuestos. 1. Se considera el lugar geométrico de los puntos del plano tales que la suma del cuadrado de las distancias a los puntos P 1 = (, 0) y P = (, 0)

Más detalles

Tomamos como imagen de prueba la figura 4.17 en escala de grises. Figura Imagen de prueba.

Tomamos como imagen de prueba la figura 4.17 en escala de grises. Figura Imagen de prueba. 4.3 PARÁMETRO DE ESCALADO Para el caso del parámetro de escalado se va a proceder de la siguiente forma. Partimos de una imagen de referencia (imagen A), a la cual se le aplican cambios de translación

Más detalles

Minería Multimedia Minería de datos NO estructurados (Textos, Imágenes, Audios y Videos)

Minería Multimedia Minería de datos NO estructurados (Textos, Imágenes, Audios y Videos) Minería Multimedia Minería de datos NO estructurados (Tetos, Imágenes, Audios y Videos) Ana Isabel Oviedo Docente Universidad Pontificia Bolivariana ana.oviedo@upb.edu.co Medellín, noviembre 13 de 2014

Más detalles

El pipeline de visualización es el conjunto de

El pipeline de visualización es el conjunto de Sistemas de Visualización Pipeline de visualización 3D Definición del modelo geométrico Transformaciones geométricas Transformaciones de visualización Volumen de visualización Proyecciones Pipeline de

Más detalles

Taller de Introducción a R 2. Manipulación de datos

Taller de Introducción a R 2. Manipulación de datos Taller de Introducción a R 2. Manipulación de datos Ricardo Alvarado Rodolfo Mora Ricardo Román ralvarado@cenat.ac.cr rmora@cenat.ac.cr rroman@cenat.ac.cr Noviembre, 2015 Contenido 1 Estructuras de datos

Más detalles

Trabajo Práctico n 2. Robotización de un Puente Grúa. Presentación. Restricciones. Curso 2011

Trabajo Práctico n 2. Robotización de un Puente Grúa. Presentación. Restricciones. Curso 2011 Trabajo Práctico n 2 Robotización de un Puente Grúa Presentación Este problema consiste en desarrollar un sistema de control automático que permita robotizar la operación de un puente grúa para la carga

Más detalles

Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática

Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: fhq@ciencias.unam.mx

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Proyecto de Fin de Cursos

Proyecto de Fin de Cursos Universidad de la República Oriental del Uruguay Proyecto de Fin de Cursos ELECTROFORESIS EN GEL DE MOLÉCULAS DE ADN Noviembre de 2006 Carolina Etchart C.I. 3.757.708-8 Marcelo Lavagna C.I. 3.508.715-8

Más detalles

5. Clasificación de las formas del relieve. Modelización y análisis del terreno

5. Clasificación de las formas del relieve. Modelización y análisis del terreno 5. Clasificación de las formas del relieve los elementos del relieve pozo cresta planicie pico canal collado ladera formas elementales: crestas la pendiente no es un curvatura nula convexidad criterio

Más detalles

Modelos Estadísticos de Crimen

Modelos Estadísticos de Crimen Universidad de los Andes Modelos Estadísticos de Crimen 27 de Mayo de 2015 Motivacion Conocer la densidad de probabilidad del crimen sobre una ciudad, a distintas horas del día, permite Modelos Estadísticos

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares

Más detalles

Otra característica poblacional de interés es la varianza de la población, 2, y su raíz cuadrada, la desviación estándar de la población,. La varianza

Otra característica poblacional de interés es la varianza de la población, 2, y su raíz cuadrada, la desviación estándar de la población,. La varianza CARACTERÍSTICAS DE LA POBLACIÓN. Una pregunta práctica en gran parte de la investigación de mercado tiene que ver con el tamaño de la muestra. La encuesta, en principio, no puede ser aplicada sin conocer

Más detalles

Límites de funciones de varias variables.

Límites de funciones de varias variables. Límites continuidad de funciones de varias variables Límites de funciones de varias variables. En este apartado se estudia el concepto de límite de una función de varias variables algunas de las técnicas

Más detalles

Microsoft Project 2013

Microsoft Project 2013 Microsoft Project 2013 SALOMÓN CCANCE Project 2013 Salomón Ccance www.ccance.net CCANCE WEBSITE ANEXO 2. MANEJO DE VISTAS Y TABLAS. 2.1. ELEMENTOS DE VISUALIZACIÓN DE MICROSOFT OFFICE PROJECT PROFESSIONAL

Más detalles

FACULTAD DE INGENIERÍA UNAM PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro irenev@servidor.unam.m T E M A S DEL CURSO. Análisis Estadístico de datos muestrales.. Fundamentos de la Teoría de

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA 1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,

Más detalles

Diseño de Bloques al azar. Diseño de experimentos p. 1/25

Diseño de Bloques al azar. Diseño de experimentos p. 1/25 Diseño de Bloques al azar Diseño de experimentos p. 1/25 Introducción En cualquier experimento, la variabilidad proveniente de un factor de ruido puede afectar los resultados. Un factor de ruido es un

Más detalles

Técnicas de mejora de imágenes

Técnicas de mejora de imágenes Técnicas de mejora de imágenes Mejora o enhancement Restauración Reconstrucción Mejora de la imagen Dominio espacial Opera directamente sobre los píxeles g(x,y)=t entorno (f(x,y)) Dominio en el espacio

Más detalles

Texturas. Descripción y aplicaciones

Texturas. Descripción y aplicaciones Texturas Descripciónyaplicaciones Motivación Segmentación de texturas. Clasificación de texturas. Síntesis de texturas. Extracción de características. Reconocimiento de patrones. Reconocimiento de objetos.

Más detalles

El Producto escalar para las comunicaciones (parte 1) Luca Mar9no Apuntes no revisados Cuidado!

El Producto escalar para las comunicaciones (parte 1) Luca Mar9no Apuntes no revisados Cuidado! El Producto escalar para las comunicaciones (parte ) Luca Mar9no Apuntes no revisados Cuidado! Producto Escalar El producto escalar, también conocido como producto interno o producto punto, es una operación

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS CC SOCIALES CAPÍTULO 2 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Tema 6: Descriptores topológicos, geométricos y estadísticos de las imágenes digitales

Tema 6: Descriptores topológicos, geométricos y estadísticos de las imágenes digitales Tema 6: Descriptores topológicos, geométricos y estadísticos de las imágenes digitales de imágenes (después de realizar una segmentación) Componentes conexas Agujeros (2D) Túneles y cavidades (3D) Característica

Más detalles

Números reales Conceptos básicos Algunas propiedades

Números reales Conceptos básicos Algunas propiedades Números reales Conceptos básicos Algunas propiedades En álgebra es esencial manejar símbolos con objeto de transformar o reducir expresiones algebraicas y resolver ecuaciones algebraicas. Debido a que

Más detalles

Funciones y Condicionales Introducción a la Programación

Funciones y Condicionales Introducción a la Programación Funciones y Condicionales Introducción a la Programación Departamento de Ciencias e Ingeniería de la Computación Pontificia Universidad Javeriana Santiago de Cali 2011-2 Resumen En el mundo existen gran

Más detalles

Colegio Decroly Americano Matemática 7th Core, Contenidos I Período

Colegio Decroly Americano Matemática 7th Core, Contenidos I Período Matemática 7th Core, 2015-2016 Contenidos I Período 1. Sentido Numérico a. Identificar y escribir patrones. b. Escribir números en forma de exponentes. c. Escribir cantidades en notación científica. d.

Más detalles

Se llama adjunto de un elemento de una matriz A, al número resultante de multiplicar por el determinante de la matriz complementaria

Se llama adjunto de un elemento de una matriz A, al número resultante de multiplicar por el determinante de la matriz complementaria T.3: MATRICES Y DETERMINANTES 3.1 Determinantes de segundo orden Se llama determinante de a: 3.2 Determinantes de tercer orden Se llama determinante de a: Ejercicio 1: Halla los determinantes de las siguientes

Más detalles

Polinomios y Estadística

Polinomios y Estadística Funciones polinomiales Universidad de Concepción, Chile Departamento de Geofísica Programación Científica con Software libre Primavera, 2011 Universidad de Concepción Contenidos Funciones polinomiales

Más detalles

DEPARTAMENTO DE MATEMÁTICAS. IES GALLICUM

DEPARTAMENTO DE MATEMÁTICAS. IES GALLICUM UNIDAD I: NÚMEROS (6 Horas) 1.- Repasar el cálculo con números racionales y potencias de exponente entero. 2.- Resolver problemas de la vida cotidiana en los que intervengan los números racionales. 1.-

Más detalles

3 Curvas alabeadas. Solución de los ejercicios propuestos.

3 Curvas alabeadas. Solución de los ejercicios propuestos. 3 Curvas alabeadas. Solución de los ejercicios propuestos.. Se considera el conjunto C = {(x, y, z R 3 : x y + z = x 3 y + z = }. Encontrar los puntos singulares de la curva C. Solución: Llamemos f (x,

Más detalles

Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut

Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut 8.1 Para cada uno de los siguientes conjuntos, encontrar una desigualdad válida que agregada a la formulación

Más detalles

Álgebra Booleana y Simplificación Lógica

Álgebra Booleana y Simplificación Lógica Álgebra Booleana y Simplificación Lógica M. en C. Erika Vilches Parte 2 Simplificación utilizando Álgebra Booleana Simplificar la expresión AB + A(B + C) + B(B + C) 1. Aplicar la ley distributiva al segundo

Más detalles

SEGMENTACIÓN AUTOMÁTICA DE TEJIDOS CEREBRALES EN MRI MULTIESPECTRALES MEDIANTE CLASIFICACIÓN POR MÍNIMA DISTANCIA EUCLÍDEA

SEGMENTACIÓN AUTOMÁTICA DE TEJIDOS CEREBRALES EN MRI MULTIESPECTRALES MEDIANTE CLASIFICACIÓN POR MÍNIMA DISTANCIA EUCLÍDEA 42 Jornadas Argentinas de Informática 4 Congreso Argentino de Informática y Salud Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba Córdoba, Argentina SEGMENTACIÓN AUTOMÁTICA

Más detalles

II Unidad Diagramas en bloque de transmisores /receptores

II Unidad Diagramas en bloque de transmisores /receptores 1 Diagramas en bloque de transmisores /receptores 10-04-2015 2 Amplitud modulada AM Frecuencia modulada FM Diagramas en bloque de transmisores /receptores Amplitud modulada AM En la modulación de amplitud

Más detalles

NÚMEROS COMPLEJOS: C

NÚMEROS COMPLEJOS: C NÚMEROS COMPLEJOS: C Alejandro Lugon 21 de mayo de 2010 Resumen Este es un pequeño estudio de los números complejos con el objetivo de poder usar las técnicas de solución de ecuaciones y sistemas diferenciales

Más detalles

A. Menéndez Taller CES 15_ Confiabilidad. 15. Confiabilidad

A. Menéndez Taller CES 15_ Confiabilidad. 15. Confiabilidad 15. Confiabilidad La confiabilidad se refiere a la consistencia de los resultados. En el análisis de la confiabilidad se busca que los resultados de un cuestionario concuerden con los resultados del mismo

Más detalles

Algebra Lineal: Transformaciones Lineales. Departamento de Matemáticas. Intro. T. Matricial. T. Lineal. Rango

Algebra Lineal: Transformaciones Lineales. Departamento de Matemáticas. Intro. T. Matricial. T. Lineal. Rango Algebra ducción Des el punto vista l Algebra Lineal, las funciones más importantes son las que preservan las combinaciones lineales. Estas funciones se llamarán. Es esta presentación se tratan con los

Más detalles

SISTEMAS DE ECUACIONES LINEALES Y MATRICES Dos ecuaciones lineales con dos

SISTEMAS DE ECUACIONES LINEALES Y MATRICES Dos ecuaciones lineales con dos de SISTEMAS DE ECUACIONES ES Y MATRICES Dos m con n Sergio Stive Solano 1 Febrero de 2015 1 Visita http://sergiosolanosabie.wikispaces.com de SISTEMAS DE ECUACIONES ES Y MATRICES Dos m con n Sergio Stive

Más detalles

Calculadora. Navegar Historial. Separar Expresiones. Graficar Ecuaciones. Abrir Página OXY. Notación SCI/ENG. Deshacer (hasta 30 pasos)

Calculadora. Navegar Historial. Separar Expresiones. Graficar Ecuaciones. Abrir Página OXY. Notación SCI/ENG. Deshacer (hasta 30 pasos) Calculadora Tecla Navegar Historial Separar Expresiones Deshacer (hasta 30 pasos) Rehacer (hasta 30 pasos) Graficar Ecuaciones Asignar Ecuaciones Personalizadas. Abrir Página OXY Conversión Fracción/Grado

Más detalles

Introducción. Autoencoders. RBMs. Redes de Convolución. Deep Learning. Eduardo Morales INAOE (INAOE) 1 / 60

Introducción. Autoencoders. RBMs. Redes de Convolución. Deep Learning. Eduardo Morales INAOE (INAOE) 1 / 60 Deep Learning Eduardo Morales INAOE (INAOE) 1 / 60 Contenido 1 2 3 4 (INAOE) 2 / 60 Deep Learning El poder tener una computadora que modele el mundo lo suficientemente bien como para exhibir inteligencia

Más detalles

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 09

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 09 Procesamiento Digital de Imágenes Pablo Roncagliolo B. Nº 09 TRATAMIENTO DE IMÁGENES EN EL DOMINIO DE LAS FRECUENCIAS prb@2007 2 A principios del siglo XIX, Joseph Fourier indica que toda función periódica

Más detalles

BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA R. Artacho Dpto. de Física y Química ÍNDICE 1. Áreas y volúmenes de figuras geométricas. Funciones trigonométricas 3. Productos de vectores

Más detalles

Tema 1: Matrices y Determinantes

Tema 1: Matrices y Determinantes Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz

Más detalles

Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa

Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa Materia: Estadística I Maestro: Dr. Francisco Javier Tapia Moreno Semestre: 015- Hermosillo, Sonora, a 14 de septiembre de

Más detalles

FUNDAMENTO MATERIAL Y EQUIPOS

FUNDAMENTO MATERIAL Y EQUIPOS González,E.yAlloza,A.M. Ensayos para determinar las propiedades geométricas de los áridos. Determinación de la granulometría de las partículas. Métodos del tamizado. Tamizado en vía seca como método alternativo

Más detalles

Tomografía Computada. Introducción. Juan Pablo Graffigna. Características Principales. El Tomógrafo. Fundamento.

Tomografía Computada. Introducción. Juan Pablo Graffigna. Características Principales. El Tomógrafo. Fundamento. Tomografía Computada Juan Pablo Graffigna Características Principales. El Tomógrafo. Fundamento. Adquisición de Datos. Procesamiento de Datos. Tratamiento de Imágenes. Diagrama General. Aspectos Tecnológicos.

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

Tema 2. Descripción Conjunta de Varias Variables

Tema 2. Descripción Conjunta de Varias Variables Tema 2. Descripción Conjunta de Varias Variables Cuestiones de Verdadero/Falso 1. La covarianza mide la relación lineal entre dos variables, pero depende de las unidades de medida utilizadas. 2. El análisis

Más detalles

Tema 2.- Formas Cuadráticas.

Tema 2.- Formas Cuadráticas. Álgebra. 004 005. Ingenieros Industriales. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema.- Formas Cuadráticas. Definición y representación matricial. Clasificación de las formas

Más detalles

Aprendizaje basado en ejemplos.

Aprendizaje basado en ejemplos. Aprendizaje basado en ejemplos. In whitch we describe agents that can improve their behavior through diligent study of their own experiences. Porqué queremos que un agente aprenda? Si es posible un mejor

Más detalles

INTELIGENCIA ARTIFICAL COMO HERRAMIENTA EN LA TOMA DE DECISIONES. Tecnología i3b

INTELIGENCIA ARTIFICAL COMO HERRAMIENTA EN LA TOMA DE DECISIONES. Tecnología i3b INTELIGENCIA ARTIFICAL COMO HERRAMIENTA EN LA TOMA DE DECISIONES Tecnología i3b G R U P O I B E R M Á T I C A Introducción Objetivos Puntos de información y de estudio Tipos de análisis Análisis proactivo

Más detalles

MICROSOFT EXCEL PARA DIRECCIÓN FINANCIERA I. 1. Resolución de problemas de simulación de Montecarlo mediante el uso de la hoja de cálculo.

MICROSOFT EXCEL PARA DIRECCIÓN FINANCIERA I. 1. Resolución de problemas de simulación de Montecarlo mediante el uso de la hoja de cálculo. MICROSOFT EXCEL PARA DIRECCIÓN FINANCIERA I. 1. Resolución de problemas de simulación de Montecarlo mediante el uso de la hoja de cálculo. Mediante el modelo de Hertz o Simulación de Montecarlo, trataremos

Más detalles

Tema 2 Datos multivariantes

Tema 2 Datos multivariantes Aurea Grané Máster en Estadística Universidade Pedagógica 1 Aurea Grané Máster en Estadística Universidade Pedagógica 2 Tema 2 Datos multivariantes 1 Matrices de datos 2 Datos multivariantes 2 Medias,

Más detalles

ESTADÍSTICA CON EXCEL

ESTADÍSTICA CON EXCEL ESTADÍSTICA CON EXCEL 1. INTRODUCCIÓN La estadística es la rama de las matemáticas que se dedica al análisis e interpretación de series de datos, generando unos resultados que se utilizan básicamente en

Más detalles

Mapas de Puntos. Cartografía a Temática Cuantitativa. Cartografía de superficie

Mapas de Puntos. Cartografía a Temática Cuantitativa. Cartografía de superficie Cartografía a Temática Cuantitativa Cartografía de superficie En la cartografía a temática tica cuantitativa existe el concepto de superficie estadística. stica. La superficie estadística stica es una

Más detalles

Electromagnetismo I. Semestre: TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado

Electromagnetismo I. Semestre: TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado Electromagnetismo I Semestre: 01- TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado Solución por Carlos Andrés Escobar Ruí 1.- Problema: (5pts) (a) Doce cargas iguales q se encuentran localiadas en los vérices

Más detalles

Tema 1.- Correlación Lineal

Tema 1.- Correlación Lineal Tema 1.- Correlación Lineal 3.1.1. Definición El término correlación literalmente significa relación mutua; de este modo, el análisis de correlación mide e indica el grado en el que los valores de una

Más detalles