Análisis de imágenes digitales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Análisis de imágenes digitales"

Transcripción

1 Análisis de imágenes digitales SEGMENTACIÓN DE LA IMAGEN Segmentación basada en texturas

2 INTRODUCCIÓN La textura provee información sobre la distribución espacio-local del color o niveles de intensidades en una imagen y se puede definir como: 1. La estructura física característica de un objeto de acuerdo a su tamaño, forma, arreglo y proporciones de sus partes constituyentes. 2. Las variaciones pequeñas y repetitivas de los datos en escalas menores a las escalas de interés. En el ejemplo, las imágenes poseen la misma distribución de intensidades (50% blanco y 50% negro) aunque sus texturas son diferentes. 2

3 INTRODUCCIÓN El análisis de texturas se puede aplicar en dos tareas de análisis de imágenes: 1. Segmentación: identificar automáticamente las regiones de textura similares en una imagen. 2. Reconocimiento: clasificar una región de textura entre un conjunto de clases de texturas conocidas. Existen tres aproximaciones para el análisis de texturas: 1. Estructural: conjunto de texturas primitivas (patrones básicos) con una relación regular o repetitiva. 2. Estadístico: medida cuantitativa del arreglo de intensidades en una imagen con lo cual se generan vectores de patrones. 3. Modelado: técnicas que construyen modelos para texturas específicas (e.g., simulación del speckle ultrasónico). 3

4 INTRODUCCIÓN Análisis estadístico Análisis estructural con texturas primitivas R1 R5 R2 R4 R3 Matrices de coocurrencia Modelado de speckle ultrasónico 4

5 INTRODUCCIÓN La segmentación de texturas se puede realizar mediante las siguientes técnicas: Segmentación de texturas Imágenes binarias Imágenes escala de gris Patrones regulares Modelos booleanos Morfología matemática Funciones de Gabor Fractales Campos aleatorios de Markov Morfología matemática Wavelets Etc. 5

6 FUNCIONES DE GABOR Malik y Perona (1989) * propusieron un algoritmo de segmentación de texturas no supervisado basado en filtros de Gabor, el cual consta de 4 pasos básicos: 1. Descomposición multi-canal: se aplica un banco de filtros de Gabor a la imagen de entrada para realzar las diferentes texturas que se sintonicen algún filtro en particular. 2. Suavizado: se aplica un banco de filtros de Gaussianos a los canales de textura para homogeneizar regiones de textura similares. 3. Selección de características: no todos los filtros producen realce texturas, de modo que se seleccionan aquellas respuestas con mayor información de textura para reducir el espacio de características. 4. Agrupamiento: se aplica una técnica de clustering (e.g., k-means) al espacio de características reducido, de modo que se agrupen aquellos puntos que sean similares. * Perona and Malik, Preattentive texture discrimination with early vision mechanisms, J. Opt. Soc. Am. A, vol. 7, no. 5,

7 FUNCIONES DE GABOR PASO 1: DESCOMPOSICIÓN MULTI-CANAL Recordemos que en el dominio de la frecuencia, la función de Gabor está definida como la suma de dos funciones Gaussianas desplazadas a partir del origen, con frecuencia radial (u k y u k ) y orientación (θ, en el rango [0, π]) específicas, y se expresa como: H (u,v) = exp 1 2 (û u k ) 2 σ u 2 + ˆv 2 σ v 2 + exp 1 2 (û + u k ) 2 σ u 2 + ˆv 2 σ v 2 donde û = u cos(θ) + v sin(θ) y ˆv = v cos(θ) u sin(θ), 1 σ u = y σ v = 2πσ x 1 con σ x = σ y = 1 2πσ y 2u k ln2 2 2 b +1 2 b 1 donde b es el ancho de banda del filtro y la frecuencia radial (u k ) se calcula como: 1 2, 2 2, 4 2,, log 2 ( N c 4) 2 ciclos / ancho - imagen donde Nc es el ancho de la imagen. 7

8 FUNCIONES DE GABOR PASO 1: DESCOMPOSICIÓN MULTI-CANAL Imagen de entrada 0º Descomposición multicanal F F 1 135º Banco de filtros con θ=45º 45º 8 90º

9 FUNCIONES DE GABOR PASO 2: SUAVIZADO Una vez que se hace la descomposición multi-canal, se realiza un suavizado Gaussiano a cada canal de textura, de modo que las regiones de textura parecidas sean más homogéneas. Las varianzas del banco de filtros Gaussianos dependen de las frecuencias radiales (u k ) del banco de filtros de Gabor, de modo que a medida que un filtro de Gabor se aleja del centro del espectro el suavizado es mayor. En el dominio de la frecuencia, el filtro Gaussiano está definido como: H (u,v) = exp u 2 + v 2 2σ 2 donde la desviación estándar se calcula como: σ = κ N c donde κ es una constante que controla el ancho del filtro. 9 u k

10 FUNCIONES DE GABOR PASO 2: SUAVIZADO Tomando como ejemplo las imágenes filtradas a 0º y κ = 1: Imágenes de Gabor Transformada de Fourier F F F F F F F Banco de filtros Gaussianos Transformada inversa de Fourier F 1 F 1 F 1 F 1 F 1 F 1 F 1 Imágenes suavizadas 10

11 FUNCIONES DE GABOR PASO 3: SELECCIÓN DE CARACTERÍSTICAS Para reducir el costo computacional del proceso de agrupamiento, se debe seleccionar un subconjunto de filtros que mejor aproxime las variaciones de textura. Entonces, sea s(x,y) la suma de todos los canales de textura y sea ŝ(x,y) la suma de un subconjunto de canales de textura, la suma de cuadrados del error (SSE) entre ambas imágenes puede medirse como: SSE = x,y [ ŝ(x,y) s(x,y) ] 2 La tasa de variación de texturas en s(x,y) dado ŝ(x,y) puede medir con el coeficiente de determinación: R = 1 SSE ST x,y donde ST = s(x,y) 2 11

12 FUNCIONES DE GABOR PASO 3: SELECCIÓN DE CARACTERÍSTICAS El subconjunto de canales de textura se obtiene mediante el siguiente algoritmo incremental: 1. Al inicio, el subconjunto de canales de textura que representará a ŝ(x,y) está vacío, entonces, se selecciona el canal de textura que más aproxime a s(x,y), es decir, aquel con el mayor valor de R, y se retira dicho canal del conjunto original. 2. Seleccionar un canal de textura a partir del conjunto original que sumado, ŝ(x,y), con todos los canales de textura existentes en el subconjunto aproxime mejor a s(x,y) y retirar dicho canal del conjunto original. 3. Repetir el paso 2 hasta que R

13 FUNCIONES DE GABOR PASO 3: SELECCIÓN DE CARACTERÍSTICAS Primero Canales de textura seleccionados s(x,y) s (x,y) 13 Último

14 FUNCIONES DE GABOR PASO 4: AGRUPAMIENTO El último paso consiste en el agrupamiento de los píxeles en un número k de grupos predefinidos que representen las diferentes texturas que se desean detectar en la imagen. Antes de realizar el agrupamiento, se debe preparar el espacio de atributos mediante los siguientes procesos: 1. Transformar cada canal de textura a un vector columna, el cual representará un atributo de un espacio d-dimensional de características te tamaño MN d, donde M y N son el ancho y el alto de la imagen y d el número canales de textura. 2. Agregar las coordenadas espaciales (x,y) de los píxeles como dos atributos adicionales que proveen información de conectividad espacial en el proceso de agrupamiento. 14 Canales de textura Espacio de atributos

15 FUNCIONES DE GABOR PASO 4: AGRUPAMIENTO 3. Normalizar en el rango [ 1,1] cada atributo del espacio de características mediante la función sigmoidal: x = 1 exp( α ) 1+ exp( α ) con α = x µ i σ i donde x es un punto perteneciente el i-ésimo atributo, µi y σi son la media y desviación estándar del i-ésimo atributo. El proceso de agrupamiento se puede realizar con el algoritmo k-means, el cual consta de cuatro pasos básicos: 1. Inicializar los centroides de los k-grupos aleatoriamente. 2. Asignar cada muestra al centroide más cercano (e.g., distancia Euclideana). 3. Calcular los nuevos centroides (medias) de los k-grupos. 4. Ir al paso 2 hasta que los centroides no cambien más de posición. 15

16 FUNCIONES DE GABOR PASO 4: AGRUPAMIENTO La salida del algoritmo k-means es un vector de etiquetas, que indica la pertenencia de cada píxel a una región de textura. Espacio de atributos Etiquetas k = 4 Imagen segmentada k-means 16

17 FUNCIONES DE GABOR Imagen original b κ Segmentación verdadera Para todos θ=45º

18 FUNCIONES DE GABOR Imagen original b θ 15º 30º 45º 90º Segmentación verdadera Para todos κ=2

19 FUNCIONES DE GABOR Segmentación de imágenes reales. Imagen segmentada Imagen original K=4 K=4 K=2 K=2 Para todos b=3, κ=2, θ=15 19

20 MORFOLOGÍA MATEMÁTICA Los operadores morfológicos de apertura y cerradura pueden ser utilizados para el análisis estructural de regiones que presentan texturas primitivas. Por ejemplo, las siguientes dos imágenes ruidosas contienen círculos oscuros de tamaños diferentes sobre un fondo claro, de modo que se desea encontrar el borde que separe ambas regiones. 20

21 MORFOLOGÍA MATEMÁTICA Procedimiento utilizando operadores morfológicos: Imagen original Apertura disco 30 píxeles Cerradura disco 60 píxeles 21 Gradiente morfológico Imagen segmentada

22 MORFOLOGÍA MATEMÁTICA La granulometría estudia la distribución de las partículas con diferentes tamaños dentro de la imagen. El análisis granulométrico puede ser realizado a través de los operadores de apertura y cerradura. La idea básica es realizar operaciones de apertura o cerradura sobre una muestra de textura individual, aumentado gradualmente el tamaño del elemento estructurante (EE). Para cada escala del EE, todos los valores de intensidad de la imagen resultante se suman para obtener su respectivo valor de granulometría. Aperturas, EE Cerraduras, EE Muestras 22

23 MORFOLOGÍA MATEMÁTICA Pasos para el entrenamiento y clasificación de texturas utilizando análisis granulométrico: 1. Seleccionar el operador morfológico (apertura o cerradura) y la forma del EE. 2. Calcular la curva granulométrica para cada muestra de textura de tamaño N N, variando el tamaño del EE desde un valor mínimo hasta un valor máximo. 3. Determinar el tamaño del EE donde todas las curvas granulométricas convergen. En ese punto, obtener los respectivos valores de granulometría para cada muestra de textura, los cuales serán utilizados como referencia, y asignarles una etiqueta diferente a cada una. 4. Aplicar el operador morfológico seleccionado a una imagen de prueba utilizando el EE con la forma seleccionada en el paso 1 cuyo tamaño fue obtenido en el paso Desplazar una ventana de tamaño N N sobre cada píxel de la imagen resultante y calcular el valor de granulometría de dentro de la ventana (i.e., sumar todos los valores de intensidad). 6. Calcular la diferencia absoluta entre el valor granulométrico del píxel y cada valor referencia de granulometría. Entonces, el píxel será asignado (o clasificado) con la etiqueta de la muestra de textura que presentó la menor diferencia de granulometría. 23

24 MORFOLOGÍA MATEMÁTICA Curvas granulométricas por cerradura con EE cuadrado Muestras de textura Convergencia (valores referencia) Imagen de prueba Diferencias absolutas Imagen segmentada 24

Análisis de imágenes digitales

Análisis de imágenes digitales Análisis de imágenes digitales FILTRADO DE LA IMAGEN Filtros espaciales suavizantes INTRODUCCIÓN El uso de máscaras espaciales para el procesamiento de imágenes se denomina filtrado espacial y a las propias

Más detalles

Análisis de imágenes digitales

Análisis de imágenes digitales Análisis de imágenes digitales EXTRACCIÓN DE PATRONES Transformada de Hough La transformada de Hough es método de extracción de características patentado por Paul Hough en 1962 *, para la detección de

Más detalles

Tema 2: PROCESAMIENTO EN EL DOMINIO ESPACIAL (Parte 2)

Tema 2: PROCESAMIENTO EN EL DOMINIO ESPACIAL (Parte 2) Tema 2: PROCESAMIENTO EN EL DOMINIO ESPACIAL (Parte 2) 1 I N G E N I E R Í A I N F O R M Á T I C A D P T O. M A T E M Á T I C A A P L I C A D A I 2 ÍNDICE: Filtrado espacial Filtros de suavizado Filtros

Más detalles

Figura 1: Propiedades de textura: (a) Suavidad, (b) Rugosidad y (c) Regularidad

Figura 1: Propiedades de textura: (a) Suavidad, (b) Rugosidad y (c) Regularidad 3 TEXTURA 3.1 CONCEPTO DE LA TEXTURA La textura es una característica importante utilizada en segmentación, identificación de objetos o regiones de interés en una imagen y obtención de forma. El uso de

Más detalles

Análisis de imágenes digitales

Análisis de imágenes digitales Análisis de imágenes digitales MEJORAMIENTO DE LA IMAGEN Transformaciones de intensidad INTRODUCCIÓN Mejoramiento es el proceso de manipulación de la imagen tal que el resultado sea más útil que la imagen

Más detalles

Procesamiento de Imágenes. Curso 2011 Clase 3 Eliminación del ruido mediante filtrado espacial

Procesamiento de Imágenes. Curso 2011 Clase 3 Eliminación del ruido mediante filtrado espacial Procesamiento de Imágenes Curso 2 Clase 3 Eliminación del ruido mediante filtrado espacial Eliminación del ruido Entendemos por ruido en imágenes digitales cualquier valor de un píxel de una imagen que

Más detalles

Contenido Capítulo 1 Introducción Capítulo 2 Conceptos Básicos Capítulo 3 Procesamiento de Imágenes en el Dominio Espacial

Contenido Capítulo 1 Introducción Capítulo 2 Conceptos Básicos Capítulo 3 Procesamiento de Imágenes en el Dominio Espacial Contenido Capítulo 1 Introducción 1.Introducción 1 1.1 Sistema Visual Humano 1 1.2 Modelo de Visión por Computadora 3 1.3 Procesamiento Digital de Imágenes 3 1.4 Definición de Imagen Digital 4 Problemas

Más detalles

Análisis de imágenes digitales

Análisis de imágenes digitales Análisis de imágenes digitales REPRESENTACIÓN Y DESCRIPCIÓN Momentos INTRODUCCIÓN En general, la relación entre una imagen ideal f(x,y) y una imagen observada g(x,y) se describe como g =D( f ) donde D

Más detalles

Análisis de imágenes digitales

Análisis de imágenes digitales Análisis de imágenes digitales FILTRADO DE LA IMAGEN Filtros en frecencia INTRODUCCIÓN x (0, 0) El filtrado en el dominio de la frecencia se basa en la transformada de Forier (TF), la cal asocia cambios

Más detalles

Análisis de imágenes digitales

Análisis de imágenes digitales Análisis de imágenes digitales SEGMENTACIÓN DE LA IMAGEN Segmentación basada en color INTRODUCCIÓN La segmentación de imágenes a color se puede realizar mediante técnicas de clasificación supervisada.

Más detalles

Procesamiento digital de imágenes

Procesamiento digital de imágenes Procesamiento digital de imágenes Querejeta Simbeni, Pedro Estudiante de Ingeniería Electricista Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina querejetasimbenipedro@gmail.com

Más detalles

Análisis de imágenes digitales

Análisis de imágenes digitales Análisis de imágenes digitales SEGMENTACIÓN DE LA IMAGEN Transformada watershed CONCEPTOS BÁSICOS En la morfología matemática, se define una técnica de segmentación basada en regiones denominada transformada

Más detalles

Tema 5: Morfología. Segunda parte

Tema 5: Morfología. Segunda parte Tema 5: Morfología Segunda parte 1. Imágenes binarias Morfología Operaciones morfológicas:» Dilatación, erosión, Transformada Hit-or-Miss, apertura y cierre. Aplicaciones:» Extracción de fronteras y componentes

Más detalles

Redes de Neuronas de Base Radial

Redes de Neuronas de Base Radial Redes de Neuronas de Base Radial 1 Introducción Redes multicapa con conexiones hacia delante Única capa oculta Las neuronas ocultas poseen carácter local Cada neurona oculta se activa en una región distinta

Más detalles

Análisis de imágenes digitales

Análisis de imágenes digitales Análisis de imágenes digitales REPRESENTACIÓN Y DESCRIPCIÓN Preparación de regiones INTRODUCCIÓN Después que la imagen fue segmentada, los objetos deben ser representados y descritos en una forma conveniente

Más detalles

Realzado de Imagen. 11 de junio de El histograma de una imagen digital con niveles de gris en la amplitud de [0, L 1], es función discreta

Realzado de Imagen. 11 de junio de El histograma de una imagen digital con niveles de gris en la amplitud de [0, L 1], es función discreta Realzado de Imagen 11 de junio de 2001 Una operación clásica en el procesado de imagen es realzar una imagen de entrada de alguna manera para que la imagen de salida sea más fácil de interpretarla. La

Más detalles

Redes neuronales con funciones de base radial

Redes neuronales con funciones de base radial Redes neuronales con funciones de base radial Diego Milone y Leonardo Rufiner Inteligencia Computacional Departamento de Informática FICH-UNL Organización: RBF-NN Motivación y orígenes RBF Arquitectura

Más detalles

Filtros digitales dominio del espacio dominio de la frecuencia

Filtros digitales dominio del espacio dominio de la frecuencia Tema 3: Filtros 1 Filtros digitales Los filtros digitales constituyen uno de los principales modos de operar en el procesamiento de imágenes digitales. Pueden usarse para distintos fines, pero en todos

Más detalles

Análisis de imágenes digitales

Análisis de imágenes digitales Análisis de imágenes digitales FILTRADO DE LA IMAGEN Ruido en imágenes FORMACIÓN DE LA IMAGEN La formación de una imagen (s) puede modelarse de la siguiente manera: s = p o + n PSF (point-spread function)

Más detalles

Aplicación de un Filtro Stack en Imágenes con Ruido Speckle

Aplicación de un Filtro Stack en Imágenes con Ruido Speckle Aplicación de un Filtro Stack en Imágenes con Ruido Speckle María E Buemi, Juliana Gambini, Marta Mejail y Julio Jacobo Berllés Departamento de Computación,FCEyN,UBA,Buenos Aires,Argentina {mebuemi; jgambini;

Más detalles

Examen correspondiente a la evaluación alternativa. Procesamiento de imágenes digitales curso 2007/2008

Examen correspondiente a la evaluación alternativa. Procesamiento de imágenes digitales curso 2007/2008 Examen correspondiente a la evaluación alternativa Procesamiento de imágenes digitales curso 2007/2008 Cada respuesta correcta puntúa 0.25. Cada respuesta incorrecta puntúa -0.05. 1. Cuál de las siguientes

Más detalles

Herramientas matemáticas básicas para el procesamiento de imágenes

Herramientas matemáticas básicas para el procesamiento de imágenes Herramientas matemáticas básicas para el procesamiento de imágenes Fundamentos de procesamiento de imágenes IIC / IEE 3713 1er semestre 2011 Cristián Tejos Basado en material desarrollado por Marcelo Guarini,

Más detalles

Tema 4. Reducción del ruido

Tema 4. Reducción del ruido Div. Ingeniería de Sistemas y Automática Universidad Miguel Hernández GRUPO DE TECNOLOGÍA INDUSTRIAL Tabla de Contenidos Definición Filtros Lineales Filtros Temporales Realce Espacial Definición Ruido:

Más detalles

Matemática Computacional

Matemática Computacional Matemática Computacional Filtrado en el dominio de la Frecuencia MATEMÁTICA COMPUTACIONAL - MA475 1 Logro El alumno, al término de la sesión, será capaz de entender el filtrado en el dominio de la frecuencia

Más detalles

1. Sistemas Lineales e Invariantes a la Traslación 1.1 Motivación de las imágenes digitales Qué es una imagen digital? Sistema: Suma: Escalamiento:

1. Sistemas Lineales e Invariantes a la Traslación 1.1 Motivación de las imágenes digitales Qué es una imagen digital? Sistema: Suma: Escalamiento: 1. Sistemas Lineales e Invariantes a la Traslación 1.1 Motivación de las imágenes digitales 1.2 Sistemas lineales 1.2.1 Ejemplo de Sistemas Lineales Qué es una imagen digital? a) Sistema: un sistema realiza

Más detalles

Análisis de imágenes digitales

Análisis de imágenes digitales Análisis de imágenes digitales REPRESENTACIÓN Y DESCRIPCIÓN Rasgos morfológicos RASGOS GEOMÉTRICOS El área y perímetro de un objeto son dos rasgos primarios que se utilizan cuando el tamaño de las regiones

Más detalles

Tema 5: SEGMENTACIÓN (II) I N G E N I E R Í A I N F O R M Á T I C A

Tema 5: SEGMENTACIÓN (II) I N G E N I E R Í A I N F O R M Á T I C A Tema 5: SEGMENTACIÓN (II) 1 I N G E N I E R Í A I N F O R M Á T I C A Tema 5: Segmentación Los algoritmos de segmentación se basan en propiedades básicas de los valores del nivel de gris: 2 - Discontinuidad:

Más detalles

FILTRO DE COLOR FUZZY BASADO EN EL HISTOGRAMA PARA LA RESTAURACIÓN DE IMÁGENES. Jesús López de la Cruz Grupo 10

FILTRO DE COLOR FUZZY BASADO EN EL HISTOGRAMA PARA LA RESTAURACIÓN DE IMÁGENES. Jesús López de la Cruz Grupo 10 FILTRO DE COLOR FUZZY BASADO EN EL HISTOGRAMA PARA LA RESTAURACIÓN DE IMÁGENES Jesús López de la Cruz Grupo 10 Problema Soluciones anteriores Algoritmo HFC Explicación visual Problema Tenemos una imagen

Más detalles

Procesamiento de Imágenes

Procesamiento de Imágenes 3. Procesamiento de Imágenes 3.1 Transformada discreta de Fourier en 2D Una señal periódica con períodos N 1 y N 2 en sus coordenadas x 1 y x 2, respectivamente, tiene una trasformada de Fourier definida

Más detalles

Caracterización de Imágenes

Caracterización de Imágenes de Imágenes Visión Artificial Andrea Rueda Pontificia Universidad Javeriana Departamento de Ingeniería de Sistemas Caracterizar: "determinar los atributos peculiares de alguien o de algo, de modo que claramente

Más detalles

Introducción al Procesamiento de Imágenes Satelitales con Software Libre. Módulo 03

Introducción al Procesamiento de Imágenes Satelitales con Software Libre. Módulo 03 Introducción al Procesamiento de Imágenes Satelitales con Software Libre Módulo 03 Dirección de Formación de Capital Humano Especializado en el Campo Espacial Agencia Espacial Mexicana www.gob.mx/aem Plan

Más detalles

Formulación del problema de la ruta más corta en programación lineal

Formulación del problema de la ruta más corta en programación lineal Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,

Más detalles

PROCESAMIENTO DIGITAL DE IMÁGENES

PROCESAMIENTO DIGITAL DE IMÁGENES PROCESAMIENTO DIGITAL DE IMÁGENES Nombre de la materia: Procesamiento Digital de Imágenes Profesor: Dr. Wilfrido Gómez Flores Número de horas: 60 horas (4 horas semanales). Sitio web: http://www.tamps.cinvestav.mx/~wgomez/teaching.html

Más detalles

Métodos Avanzados para Análisis y Representación de Imágenes

Métodos Avanzados para Análisis y Representación de Imágenes Morfología Matemática p. 1/24 Métodos Avanzados para Análisis y Representación de Imágenes Morfología Matemática en niveles de gris Departamento de Informática - FICH Universidad Nacional del Litoral Septiembre

Más detalles

Extracción de Bordes

Extracción de Bordes Visión por Computadora Unidad IV Extracción de Bordes Rogelio Ferreira Escutia Contenido 1) Conceptos sobre Bordes 2) Extracción de bordes por Derivadas 3) Operadores de Primera Derivada 1) Conceptos sobre

Más detalles

Introducción. Distribución Gaussiana. Procesos Gaussianos. Eduardo Morales INAOE (INAOE) 1 / 47

Introducción. Distribución Gaussiana. Procesos Gaussianos. Eduardo Morales INAOE (INAOE) 1 / 47 Eduardo Morales INAOE (INAOE) 1 / 47 Contenido 1 2 3 (INAOE) 2 / 47 Normalmente, en los algoritmos de aprendizaje que hemos visto, dado un conjunto de ejemplos de entrenamiento se busca encontrar el mejor

Más detalles

Presenta: Norma Atriano Pérez

Presenta: Norma Atriano Pérez Presenta: Norma Atriano Pérez Introducción Es posible que desee cambiar la resolución de un la imagen, reducir el tamaño de la imagen, ampliarla o en otro caso no se sabe que resolución poner en la imagen

Más detalles

Conceptos básicos de Geometría

Conceptos básicos de Geometría Dr. Eduardo A. RODRÍGUEZ TELLO CINVESTAV-Tamaulipas 15 de enero del 2013 Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) 15 de enero del 2013 1 / 25 1 Geometría Afín Geometría Euclidiana Áreas y ángulos Dr. Eduardo

Más detalles

Sistemas de Reconocimiento de Patrones

Sistemas de Reconocimiento de Patrones Sistemas de Reconocimiento de Patrones p. 1/33 Sistemas de Reconocimiento de Patrones Luis Vázquez GTI - IIE Facultad de Ingeniería Universidad de la República Sistemas de Reconocimiento de Patrones p.

Más detalles

Análisis de imágenes digitales

Análisis de imágenes digitales Análisis de imágenes digitales FILTRADO DE LA IMAGEN Operadores morfológicos INTRODUCCIÓN La palabra morfología comúnmente denota una rama de la biología que trata de la forma y estructuras de plantas

Más detalles

Análisis Bioseñales I

Análisis Bioseñales I Análisis Bioseñales I Prepaso Práctico 4 Mauricio Farías Gerardo Fasce Rodrigo Ortiz Gustavo Zomosa IMAGEN Colección de componentes de frecuencia Formación de imagen : Pixel, valor : luminosidad del punto

Más detalles

transmisión de señales

transmisión de señales Introducción al análisis y transmisión de señales La transmisión de información La información se puede transmitir por medio físico al variar alguna de sus propiedad, como el voltaje o la corriente. Este

Más detalles

3. ANÁLISIS DE SEÑALES

3. ANÁLISIS DE SEÑALES 3. ANÁLISIS DE SEÑALES 3.1 REGISTRO Y TRATAMIENTO DE SEÑALES Una señal se define como la historia de los valores de aceleración que mide un acelerómetro en determinado tiempo para un punto específico.

Más detalles

Apéndice A: Funciones del programa LightPAP

Apéndice A: Funciones del programa LightPAP Apéndice A: Funciones del programa LightPAP A continuación se van a explicar las funciones principales que se han desarrollado para esta aplicación. 1 calcula_prop.m function [nc,cv,posicion,tinta,saturacion,luminancia]

Más detalles

Procesamiento de imágenes

Procesamiento de imágenes Procesamiento de imágenes Técnicas de realce de imágenes Técnicas de realce de imágenes Las imágenes digitalizadas no presentan siempre una calidad adecuada para su utilización, ello puede ser debido a

Más detalles

Procesamiento Morfológico de Imágenes

Procesamiento Morfológico de Imágenes Procesamiento Morfológico de Imágenes Morfología Matemática Se usa para extraer componentes de imágenes útiles para la representación y descripción de forma de regiones, tales como Extracción de límites

Más detalles

REDUCCIÓN DEL RUIDO EN UNA IMAGEN DIGITAL

REDUCCIÓN DEL RUIDO EN UNA IMAGEN DIGITAL Div. Ingeniería de Sistemas y Automática Universidad Miguel Hernández REDUCCIÓN DEL RUIDO EN UNA IMAGEN DIGITAL Tabla de Contenidos Definición Filtros No Lineales Filtros Temporales Definición 3 G = Ruido:

Más detalles

Uso de las estadísticas de los histogramas para el realce local de imágenes

Uso de las estadísticas de los histogramas para el realce local de imágenes Uso de las estadísticas de los histogramas para el realce local de imágenes Albornoz, Enrique Marcelo y Schulte, Walter Alfredo 5 de noviembre de 2004 Captura y Procesamiento Digital de Imágenes. Facultad

Más detalles

Análisis de imágenes digitales

Análisis de imágenes digitales Análisis de imágenes digitales TRANSFORMADAS BÁSICAS DE LA IMAGEN Otras transformada útiles FORMA GENERAL Recordando el concepto general de transformada lineal: T (u,v) = M 1 N 1 x=0 y=0 f (x,y)r(x,y,u,v)

Más detalles

Curso de Procesamiento Digital de Imágenes

Curso de Procesamiento Digital de Imágenes Curso de Procesamiento Digital de Imágenes Impartido por: Elena Martínez Departamento de Ciencias de la Computación IIMAS, UNAM, cubículo 408 http://turing.iimas.unam.mx/~elena/teaching/pdi-mast.html elena.martinez@iimas.unam.mx

Más detalles

Distribuciones de probabilidad bidimensionales o conjuntas

Distribuciones de probabilidad bidimensionales o conjuntas Distribuciones de probabilidad bidimensionales o conjuntas Si disponemos de dos variables aleatorias podemos definir distribuciones bidimensionales de forma semejante al caso unidimensional. Para el caso

Más detalles

Puntuación Z ESTADÍSTICA APLICADA A LA EDUCACIÓN I. L.A. y M.C.E. Emma Linda Diez Knoth

Puntuación Z ESTADÍSTICA APLICADA A LA EDUCACIÓN I. L.A. y M.C.E. Emma Linda Diez Knoth 1 Puntuación Z ESTADÍSTICA APLICADA A LA EDUCACIÓN I Qué es la Puntuación Z? 2 Los puntajes Z son transformaciones que se pueden hacer a los valores o puntuaciones de una distribución normal, con el propósito

Más detalles

Análisis de Datos. Introducción al aprendizaje supervisado. Profesor: Dr. Wilfrido Gómez Flores

Análisis de Datos. Introducción al aprendizaje supervisado. Profesor: Dr. Wilfrido Gómez Flores Análisis de Datos Introducción al aprendizaje supervisado Profesor: Dr. Wilfrido Gómez Flores 1 Conceptos básicos Reconocimiento de patrones (RP): clasificar objetos en un número de categorías o clases.

Más detalles

GRADIENTE La laplaciana es un buen filtro paso alto, pero no es una buena herramienta para resaltar o detectar los bordes. En muchos casos, los bordes o límites de las figuras o de las regiones aparecen

Más detalles

Identificación mediante el método de los mínimos cuadrados

Identificación mediante el método de los mínimos cuadrados Ingeniería de Control Identificación mediante el método de los mínimos cuadrados Daniel Rodríguez Ramírez Teodoro Alamo Cantarero Contextualización del tema Conocimientos relevantes aprendidos previamente:

Más detalles

Cinemática del Robot

Cinemática del Robot Cinemática del Robot La cinemática del robot estudia el movimiento del mismo con respecto a un sistema de referencia. En primer término, la cinemática se interesa por la descripción analítica del movimiento

Más detalles

Procesamiento de Imágenes. Prof. Alexandra La Cruz, PhD

Procesamiento de Imágenes. Prof. Alexandra La Cruz, PhD Procesamiento de Imágenes Prof. Alexandra La Cruz, PhD alacruz@ldc.usb.ve Contenido Conceptos básicos Modelo de una imagen Procesamiento digital de imágenes Operaciónes básicas Convolución Filtros Segmentación

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

Clustering. Departamento de Ingeniería Informática y de Sistemas Universidad de La Laguna

Clustering. Departamento de Ingeniería Informática y de Sistemas Universidad de La Laguna Clustering Christopher Expósito Izquierdo Airam Expósito Márquez Israel López Plata Belén Melián Batista J. Marcos Moreno Vega {cexposit, aexposim, ilopezpl, mbmelian, jmmoreno}@ull.edu.es Departamento

Más detalles

Diseño de experimentos

Diseño de experimentos Diseño de experimentos Quimiometría Por qué diseñar experimentos? Exploración: cuáles factores son importantes para realizar exitosamente un proceso Optimización: cómo mejorar un proceso Ahorro de tiempo:

Más detalles

Análisis de Datos. Validación de clasificadores. Profesor: Dr. Wilfrido Gómez Flores

Análisis de Datos. Validación de clasificadores. Profesor: Dr. Wilfrido Gómez Flores Análisis de Datos Validación de clasificadores Profesor: Dr. Wilfrido Gómez Flores 1 Introducción La mayoría de los clasificadores que se han visto requieren de uno o más parámetros definidos libremente,

Más detalles

Ejercicio 1. Ejercicio 2

Ejercicio 1. Ejercicio 2 Guía de Ejercicios Ejercicio. Calcular los momentos de primer y segundo orden (media y varianza) de una variable aleatoria continua con distribución uniforme entre los límites a y b.. Sabiendo que la función

Más detalles

Revista Aristas Investigación Básica y Aplicada

Revista Aristas Investigación Básica y Aplicada Contenido disponible en http://fcqi.tij.uabc.mx/usuarios/revistaaristas/ Revista Aristas Investigación Básica y Aplicada ELIMINACIÓN DE LA SOBRESEGMENTACIÓN DE IMÁGENES COLPOSCÓPICAS UTILIZANDO K-MEANS.

Más detalles

Unidad 1: Espacio de Probabilidad

Unidad 1: Espacio de Probabilidad Unidad 1: Espacio de Probabilidad 1.1 Espacios de Probabilidad. (1) Breve introducción histórica de las probabilidades (2) Diferencial entre modelos matemáticos deterministicos y probabilísticos (3) Identificar

Más detalles

License Plate Detection using Neural Networks

License Plate Detection using Neural Networks License Plate Detection using Neural Networks Luis Carrera, Marco Mora Les Fous du Pixel Image Processing Research Group Department of Computer Science Catholic University of Maule http://www.lfdp-iprg.net

Más detalles

Introducción a Aprendizaje no Supervisado

Introducción a Aprendizaje no Supervisado Introducción a Aprendizaje no Supervisado Felipe Suárez, Álvaro Riascos 25 de abril de 2017 2 / 33 Contenido 1. Motivación 2. k-medias Algoritmos Implementación 3. Definición 4. Motivación 5. Aproximación

Más detalles

2.- Tablas de frecuencias

2.- Tablas de frecuencias º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 3.- ESTADÍSTICA DESCRIPTIVA PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------

Más detalles

CLASIFICACIÓN DE IMÁGENES DE SATÉLITE MEDIANTE AUTÓMATAS CELULARES

CLASIFICACIÓN DE IMÁGENES DE SATÉLITE MEDIANTE AUTÓMATAS CELULARES 1 CLASIFICACIÓN DE IMÁGENES DE SATÉLITE MEDIANTE AUTÓMATAS CELULARES Antonio Moisés Espínola Pérez - PROYECTO SOLERES - 15 de febrero de 2010 2 INDICE DEL SEMINARIO CLASIFICACION DE IMÁGENES DE SATÉLITE

Más detalles

Tema 8. Análisis morfológico en imágenes

Tema 8. Análisis morfológico en imágenes 1 Div. Ingeniería de Sistemas y Automática Universidad Miguel Hernández Tema 8. Análisis morfológico en imágenes GRUPO DE TECNOLOGÍA INDUSTRIAL Tabla de Contenidos 2 Definición Nomenclatura Erosión Dilatación

Más detalles

Segmentación de imágenes. Procesamiento de imágenes biomédicas Curso 2011

Segmentación de imágenes. Procesamiento de imágenes biomédicas Curso 2011 Segmentación de imágenes Procesamiento de imágenes biomédicas Curso 2011 Introducción Hasta ahora el procesamiento digital de una imagen implicaba, una imagen de entrada y una imagen de salida. Ahora con

Más detalles

Procesamiento Digital de Imágenes

Procesamiento Digital de Imágenes Procesamiento Digital de Imágenes Operaciones Orientadas a Punto Contenido Fundamentos Operaciones Elementales Operador Identidad Negativo de una Imagen Transformaciones funcionales Filtros Fundamentos

Más detalles

Prof. Angel Zambrano ENERO 2009 Universidad de Los Andes Escuela de Estadística

Prof. Angel Zambrano ENERO 2009 Universidad de Los Andes Escuela de Estadística Prof. Angel Zambrano ENERO 009 Universidad de Los Andes Escuela de Estadística Muestreo: Es una metodología que apoyándose en la teoría estadística y de acuerdo a las características del estudio, indica

Más detalles

Capítulo. Procedimiento de transformación de intensidad.

Capítulo. Procedimiento de transformación de intensidad. Capítulo 6 Procedimiento de transformación de intensidad. En el presente capítulo se describe el cambio de contraste como una opción de preprocesamiento para mejorar la calidad de la imagen con lo que

Más detalles

Muestreo y Distribuciones en el Muestreo

Muestreo y Distribuciones en el Muestreo Muestreo y Distribuciones en el Muestreo Departamento de Estadística-FACES-ULA 03 de Abril de 2013 Introducción al Muestreo En algunas ocaciones es posible y práctico examinar a cada individuo en el Universo

Más detalles

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 18

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 18 Procesamiento Digital de Imágenes Pablo Roncagliolo B. Nº 18 Orden de las clases... CAPTURA, DIGITALIZACION Y ADQUISICION DE IMAGENES TRATAMIENTO ESPACIAL DE IMAGENES TRATAMIENTO EN FRECUENCIA DE IMAGENES

Más detalles

M.C. ENRIQUE MARTÍNEZ PEÑA

M.C. ENRIQUE MARTÍNEZ PEÑA Tema 4.5 Operaciones morfológicas fundamentales 2 1 3 Introducción Los filtros morfológicos fueron originalmente concebidos para ser usados sobre imágenes binarias (1/0; blanco/negro). Estas se encuentran

Más detalles

Filtrado no lineal: morfología

Filtrado no lineal: morfología Filtrado no lineal: morfología Gonzalez & Woods, cap 8.4 morfología 1 Fundamentada en la teoría de conjuntos: las imágenes se consideran como conjuntos. Imágenes binarias: conjuntos de pixels corresponden

Más detalles

Reconocimiento de Patrones

Reconocimiento de Patrones Reconocimiento de Patrones Técnicas de validación (Clasificación Supervisada) Jesús Ariel Carrasco Ochoa Instituto Nacional de Astrofísica, Óptica y Electrónica Clasificación Supervisada Para qué evaluar

Más detalles

Laboratorio de Visión para Robots. Práctica 2

Laboratorio de Visión para Robots. Práctica 2 1. Preparación del entorno de trabajo Laboratorio de Visión para Robots Práctica 2 La manera en la que trabajaremos será primero utilizando Eclipse para prototipar nuestro programa. Cuando podamos procesar

Más detalles

Tabla 7: Ejemplo matriz CaractE

Tabla 7: Ejemplo matriz CaractE 8 RESULTADOS EXPERIMENTALES 8.1 MATRICES DE CARACTERÍSTICAS Con el fin de dar una idea más precisa de cómo se conforman las matrices de características usadas en el reconocimiento de patrones y qué valores

Más detalles

Elementos de máquinas de vectores de soporte

Elementos de máquinas de vectores de soporte Elementos de máquinas de vectores de soporte Clasificación binaria y funciones kernel Julio Waissman Vilanova Departamento de Matemáticas Universidad de Sonora Seminario de Control y Sistemas Estocásticos

Más detalles

p = p 2 r 1 r r A = p 3

p = p 2 r 1 r r A = p 3 Unidad 5 Transformaciones 5. Introducción Un fabricante elabora cuatro tipos de productos distintos, de los cuales cada uno requiere tres tipos de materiales. Se identifican los cuatro productos como P,

Más detalles

Capitulo 1: Introducción al reconocimiento de patrones (Secciones )

Capitulo 1: Introducción al reconocimiento de patrones (Secciones ) Capitulo 1: Introducción al reconocimiento de patrones (Secciones 1.1-1.6) M A C H I N E P E R C E P T I O N U N E J E M P L O S I S T E M A S D E R E C O N O C I M I E N T O D E P A T R O N E S C I C

Más detalles

Aprendizaje para Clasificación con Factorización Matricial Basado en Listwise para Filtrado Colaborativo

Aprendizaje para Clasificación con Factorización Matricial Basado en Listwise para Filtrado Colaborativo 2012 Aprendizaje para Clasificación con Factorización Matricial Basado en Listwise para Filtrado Colaborativo Iván López Espejo 22/04/2012 2 Aprendizaje para Clasificación con Factorización Matricial Basado

Más detalles

Tema 8. Detección de líneas y esquinas

Tema 8. Detección de líneas y esquinas Tema 8. Detección de líneas y esquinas 4730 Visión Industrial Ingeniería Técnica Industrial especialidad en Electrónica Industrial Universitat de les Illes Balears Departament de Ciències Matemàtiques

Más detalles

Reconocimiento automático a través de visión artificial, correlación estadística y Matlab aplicado a las matrículas de vehículos

Reconocimiento automático a través de visión artificial, correlación estadística y Matlab aplicado a las matrículas de vehículos Reconocimiento automático a través de visión artificial, correlación estadística y Matlab aplicado a las matrículas de vehículos Orlando Barcia * obarcia@ups.edu.ec Introducción Existen muchas investigaciones

Más detalles

Eigenvalores y eigenvectores

Eigenvalores y eigenvectores Eigenvalores y eigenvectores Los dos problemas principales del álgebra lineal son: resolver sistemas lineales de la forma Ax = b y resolver el problema de eigenvalores. En general, una matriz actúa sobre

Más detalles

SEÑALES Y RUIDO. SEÑAL Dominios de los datos. SEÑAL Dominios eléctricos. Fuente de energía. Sistema objeto de estudio. Información analítica

SEÑALES Y RUIDO. SEÑAL Dominios de los datos. SEÑAL Dominios eléctricos. Fuente de energía. Sistema objeto de estudio. Información analítica SEÑALES Y RUIDO Estímulo Respuesta Fuente de energía Sistema objeto de estudio Información analítica SEÑAL Dominios de los datos Dominios no eléctricos SEÑAL Dominios eléctricos Intensidad de corriente

Más detalles

VISIÓN POR COMPUTADOR

VISIÓN POR COMPUTADOR VISIÓN POR COMPUTADOR Introducción Ingeniería de Sistemas y Automática Universidad Miguel Hernández Tabla de Contenidos 2 Definición de Visión por Computador Captación Información Luminosa Imagen Digital

Más detalles

Tareas de la minería de datos: clasificación. CI-2352 Intr. a la minería de datos Prof. Braulio José Solano Rojas ECCI, UCR

Tareas de la minería de datos: clasificación. CI-2352 Intr. a la minería de datos Prof. Braulio José Solano Rojas ECCI, UCR Tareas de la minería de datos: clasificación CI-2352 Intr. a la minería de datos Prof. Braulio José Solano Rojas ECCI, UCR Tareas de la minería de datos: clasificación Clasificación (discriminación) Empareja

Más detalles

ANÁLISIS DE DATOS. Jesús García Herrero

ANÁLISIS DE DATOS. Jesús García Herrero ANÁLISIS DE DATOS Jesús García Herrero ANALISIS DE DATOS EJERCICIOS Una empresa de seguros de automóviles quiere utilizar los datos sobre sus clientes para obtener reglas útiles que permita clasificar

Más detalles

Consideración del Margen de Desvanecimiento con ICS Telecom en Planeación de Redes de Microceldas (NLOS)

Consideración del Margen de Desvanecimiento con ICS Telecom en Planeación de Redes de Microceldas (NLOS) Consideración del Margen de Desvanecimiento con ICS Telecom en Planeación de Redes de Microceldas (NLOS) Agosto 2008 SEAN YUN Traducido por ANDREA MARÍN Modelando RF con Precisión 0 0 ICS Telecom ofrece

Más detalles

Tema 3: Filtros SEGUNDA PARTE

Tema 3: Filtros SEGUNDA PARTE Tema 3: Filtros SEGUNDA PARTE FILTROS En el dominio del espacio: Filtros de suavizado. Filtros de realce. En el dominio de la recuencia: Filtros de suavizado. Filtros de realce. Filtros espaciales de realce

Más detalles

Tema 6: Descriptores topológicos, geométricos y estadísticos de las imágenes digitales

Tema 6: Descriptores topológicos, geométricos y estadísticos de las imágenes digitales Tema 6: Descriptores topológicos, geométricos y estadísticos de las imágenes digitales de imágenes (después de realizar una segmentación) Componentes conexas Agujeros (2D) Túneles y cavidades (3D) Característica

Más detalles

Pattern Classification

Pattern Classification Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors

Más detalles

ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ

ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ Probabilidad - Período de retorno y riesgo La probabilidad de ocurrencia de un fenómeno en hidrología puede citarse de varias Formas: El

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

Ideas básicas del diseño experimental

Ideas básicas del diseño experimental Ideas básicas del diseño experimental Capítulo 4 de Analysis of Messy Data. Milliken y Johnson (1992) Diseño de experimentos p. 1/23 Ideas básicas del diseño experimental Antes de llevar a cabo un experimento,

Más detalles

Espacios Vectoriales

Espacios Vectoriales Leandro Marín Octubre 2010 Índice Definición y Ejemplos Paramétricas vs. Impĺıcitas Bases y Coordenadas Para definir un espacio vectorial tenemos que empezar determinando un cuerpo sobre el que esté definido

Más detalles

Distribuciones Bidimensionales.

Distribuciones Bidimensionales. Distribuciones Bidimensionales. 1.- Variables Estadísticas Bidimensionales. Las variables estadísticas bidimensionales se representan por el par (X, Y) donde, X es una variable unidimensional, e Y es otra

Más detalles