Análisis de imágenes digitales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Análisis de imágenes digitales"

Transcripción

1 Análisis de imágenes digitales SEGMENTACIÓN DE LA IMAGEN Segmentación basada en texturas

2 INTRODUCCIÓN La textura provee información sobre la distribución espacio-local del color o niveles de intensidades en una imagen y se puede definir como: 1. La estructura física característica de un objeto de acuerdo a su tamaño, forma, arreglo y proporciones de sus partes constituyentes. 2. Las variaciones pequeñas y repetitivas de los datos en escalas menores a las escalas de interés. En el ejemplo, las imágenes poseen la misma distribución de intensidades (50% blanco y 50% negro) aunque sus texturas son diferentes. 2

3 INTRODUCCIÓN El análisis de texturas se puede aplicar en dos tareas de análisis de imágenes: 1. Segmentación: identificar automáticamente las regiones de textura similares en una imagen. 2. Reconocimiento: clasificar una región de textura entre un conjunto de clases de texturas conocidas. Existen tres aproximaciones para el análisis de texturas: 1. Estructural: conjunto de texturas primitivas (patrones básicos) con una relación regular o repetitiva. 2. Estadístico: medida cuantitativa del arreglo de intensidades en una imagen con lo cual se generan vectores de patrones. 3. Modelado: técnicas que construyen modelos para texturas específicas (e.g., simulación del speckle ultrasónico). 3

4 INTRODUCCIÓN Análisis estadístico Análisis estructural con texturas primitivas R1 R5 R2 R4 R3 Matrices de coocurrencia Modelado de speckle ultrasónico 4

5 INTRODUCCIÓN La segmentación de texturas se puede realizar mediante las siguientes técnicas: Segmentación de texturas Imágenes binarias Imágenes escala de gris Patrones regulares Modelos booleanos Morfología matemática Funciones de Gabor Fractales Campos aleatorios de Markov Morfología matemática Wavelets Etc. 5

6 FUNCIONES DE GABOR Malik y Perona (1989) * propusieron un algoritmo de segmentación de texturas no supervisado basado en filtros de Gabor, el cual consta de 4 pasos básicos: 1. Descomposición multi-canal: se aplica un banco de filtros de Gabor a la imagen de entrada para realzar las diferentes texturas que se sintonicen algún filtro en particular. 2. Suavizado: se aplica un banco de filtros de Gaussianos a los canales de textura para homogeneizar regiones de textura similares. 3. Selección de características: no todos los filtros producen realce texturas, de modo que se seleccionan aquellas respuestas con mayor información de textura para reducir el espacio de características. 4. Agrupamiento: se aplica una técnica de clustering (e.g., k-means) al espacio de características reducido, de modo que se agrupen aquellos puntos que sean similares. * Perona and Malik, Preattentive texture discrimination with early vision mechanisms, J. Opt. Soc. Am. A, vol. 7, no. 5,

7 FUNCIONES DE GABOR PASO 1: DESCOMPOSICIÓN MULTI-CANAL Recordemos que en el dominio de la frecuencia, la función de Gabor está definida como la suma de dos funciones Gaussianas desplazadas a partir del origen, con frecuencia radial (u k y u k ) y orientación (θ, en el rango [0, π]) específicas, y se expresa como: H (u,v) = exp 1 2 (û u k ) 2 σ u 2 + ˆv 2 σ v 2 + exp 1 2 (û + u k ) 2 σ u 2 + ˆv 2 σ v 2 donde û = u cos(θ) + v sin(θ) y ˆv = v cos(θ) u sin(θ), 1 σ u = y σ v = 2πσ x 1 con σ x = σ y = 1 2πσ y 2u k ln2 2 2 b +1 2 b 1 donde b es el ancho de banda del filtro y la frecuencia radial (u k ) se calcula como: 1 2, 2 2, 4 2,, log 2 ( N c 4) 2 ciclos / ancho - imagen donde Nc es el ancho de la imagen. 7

8 FUNCIONES DE GABOR PASO 1: DESCOMPOSICIÓN MULTI-CANAL Imagen de entrada 0º Descomposición multicanal F F 1 135º Banco de filtros con θ=45º 45º 8 90º

9 FUNCIONES DE GABOR PASO 2: SUAVIZADO Una vez que se hace la descomposición multi-canal, se realiza un suavizado Gaussiano a cada canal de textura, de modo que las regiones de textura parecidas sean más homogéneas. Las varianzas del banco de filtros Gaussianos dependen de las frecuencias radiales (u k ) del banco de filtros de Gabor, de modo que a medida que un filtro de Gabor se aleja del centro del espectro el suavizado es mayor. En el dominio de la frecuencia, el filtro Gaussiano está definido como: H (u,v) = exp u 2 + v 2 2σ 2 donde la desviación estándar se calcula como: σ = κ N c donde κ es una constante que controla el ancho del filtro. 9 u k

10 FUNCIONES DE GABOR PASO 2: SUAVIZADO Tomando como ejemplo las imágenes filtradas a 0º y κ = 1: Imágenes de Gabor Transformada de Fourier F F F F F F F Banco de filtros Gaussianos Transformada inversa de Fourier F 1 F 1 F 1 F 1 F 1 F 1 F 1 Imágenes suavizadas 10

11 FUNCIONES DE GABOR PASO 3: SELECCIÓN DE CARACTERÍSTICAS Para reducir el costo computacional del proceso de agrupamiento, se debe seleccionar un subconjunto de filtros que mejor aproxime las variaciones de textura. Entonces, sea s(x,y) la suma de todos los canales de textura y sea ŝ(x,y) la suma de un subconjunto de canales de textura, la suma de cuadrados del error (SSE) entre ambas imágenes puede medirse como: SSE = x,y [ ŝ(x,y) s(x,y) ] 2 La tasa de variación de texturas en s(x,y) dado ŝ(x,y) puede medir con el coeficiente de determinación: R = 1 SSE ST x,y donde ST = s(x,y) 2 11

12 FUNCIONES DE GABOR PASO 3: SELECCIÓN DE CARACTERÍSTICAS El subconjunto de canales de textura se obtiene mediante el siguiente algoritmo incremental: 1. Al inicio, el subconjunto de canales de textura que representará a ŝ(x,y) está vacío, entonces, se selecciona el canal de textura que más aproxime a s(x,y), es decir, aquel con el mayor valor de R, y se retira dicho canal del conjunto original. 2. Seleccionar un canal de textura a partir del conjunto original que sumado, ŝ(x,y), con todos los canales de textura existentes en el subconjunto aproxime mejor a s(x,y) y retirar dicho canal del conjunto original. 3. Repetir el paso 2 hasta que R

13 FUNCIONES DE GABOR PASO 3: SELECCIÓN DE CARACTERÍSTICAS Primero Canales de textura seleccionados s(x,y) s (x,y) 13 Último

14 FUNCIONES DE GABOR PASO 4: AGRUPAMIENTO El último paso consiste en el agrupamiento de los píxeles en un número k de grupos predefinidos que representen las diferentes texturas que se desean detectar en la imagen. Antes de realizar el agrupamiento, se debe preparar el espacio de atributos mediante los siguientes procesos: 1. Transformar cada canal de textura a un vector columna, el cual representará un atributo de un espacio d-dimensional de características te tamaño MN d, donde M y N son el ancho y el alto de la imagen y d el número canales de textura. 2. Agregar las coordenadas espaciales (x,y) de los píxeles como dos atributos adicionales que proveen información de conectividad espacial en el proceso de agrupamiento. 14 Canales de textura Espacio de atributos

15 FUNCIONES DE GABOR PASO 4: AGRUPAMIENTO 3. Normalizar en el rango [ 1,1] cada atributo del espacio de características mediante la función sigmoidal: x = 1 exp( α ) 1+ exp( α ) con α = x µ i σ i donde x es un punto perteneciente el i-ésimo atributo, µi y σi son la media y desviación estándar del i-ésimo atributo. El proceso de agrupamiento se puede realizar con el algoritmo k-means, el cual consta de cuatro pasos básicos: 1. Inicializar los centroides de los k-grupos aleatoriamente. 2. Asignar cada muestra al centroide más cercano (e.g., distancia Euclideana). 3. Calcular los nuevos centroides (medias) de los k-grupos. 4. Ir al paso 2 hasta que los centroides no cambien más de posición. 15

16 FUNCIONES DE GABOR PASO 4: AGRUPAMIENTO La salida del algoritmo k-means es un vector de etiquetas, que indica la pertenencia de cada píxel a una región de textura. Espacio de atributos Etiquetas k = 4 Imagen segmentada k-means 16

17 FUNCIONES DE GABOR Imagen original b κ Segmentación verdadera Para todos θ=45º

18 FUNCIONES DE GABOR Imagen original b θ 15º 30º 45º 90º Segmentación verdadera Para todos κ=2

19 FUNCIONES DE GABOR Segmentación de imágenes reales. Imagen segmentada Imagen original K=4 K=4 K=2 K=2 Para todos b=3, κ=2, θ=15 19

20 MORFOLOGÍA MATEMÁTICA Los operadores morfológicos de apertura y cerradura pueden ser utilizados para el análisis estructural de regiones que presentan texturas primitivas. Por ejemplo, las siguientes dos imágenes ruidosas contienen círculos oscuros de tamaños diferentes sobre un fondo claro, de modo que se desea encontrar el borde que separe ambas regiones. 20

21 MORFOLOGÍA MATEMÁTICA Procedimiento utilizando operadores morfológicos: Imagen original Apertura disco 30 píxeles Cerradura disco 60 píxeles 21 Gradiente morfológico Imagen segmentada

22 MORFOLOGÍA MATEMÁTICA La granulometría estudia la distribución de las partículas con diferentes tamaños dentro de la imagen. El análisis granulométrico puede ser realizado a través de los operadores de apertura y cerradura. La idea básica es realizar operaciones de apertura o cerradura sobre una muestra de textura individual, aumentado gradualmente el tamaño del elemento estructurante (EE). Para cada escala del EE, todos los valores de intensidad de la imagen resultante se suman para obtener su respectivo valor de granulometría. Aperturas, EE Cerraduras, EE Muestras 22

23 MORFOLOGÍA MATEMÁTICA Pasos para el entrenamiento y clasificación de texturas utilizando análisis granulométrico: 1. Seleccionar el operador morfológico (apertura o cerradura) y la forma del EE. 2. Calcular la curva granulométrica para cada muestra de textura de tamaño N N, variando el tamaño del EE desde un valor mínimo hasta un valor máximo. 3. Determinar el tamaño del EE donde todas las curvas granulométricas convergen. En ese punto, obtener los respectivos valores de granulometría para cada muestra de textura, los cuales serán utilizados como referencia, y asignarles una etiqueta diferente a cada una. 4. Aplicar el operador morfológico seleccionado a una imagen de prueba utilizando el EE con la forma seleccionada en el paso 1 cuyo tamaño fue obtenido en el paso Desplazar una ventana de tamaño N N sobre cada píxel de la imagen resultante y calcular el valor de granulometría de dentro de la ventana (i.e., sumar todos los valores de intensidad). 6. Calcular la diferencia absoluta entre el valor granulométrico del píxel y cada valor referencia de granulometría. Entonces, el píxel será asignado (o clasificado) con la etiqueta de la muestra de textura que presentó la menor diferencia de granulometría. 23

24 MORFOLOGÍA MATEMÁTICA Curvas granulométricas por cerradura con EE cuadrado Muestras de textura Convergencia (valores referencia) Imagen de prueba Diferencias absolutas Imagen segmentada 24

Tema 5: Morfología. Segunda parte

Tema 5: Morfología. Segunda parte Tema 5: Morfología Segunda parte 1. Imágenes binarias Morfología Operaciones morfológicas:» Dilatación, erosión, Transformada Hit-or-Miss, apertura y cierre. Aplicaciones:» Extracción de fronteras y componentes

Más detalles

Análisis de imágenes digitales

Análisis de imágenes digitales Análisis de imágenes digitales SEGMENTACIÓN DE LA IMAGEN Transformada watershed CONCEPTOS BÁSICOS En la morfología matemática, se define una técnica de segmentación basada en regiones denominada transformada

Más detalles

Caracterización de Imágenes

Caracterización de Imágenes de Imágenes Visión Artificial Andrea Rueda Pontificia Universidad Javeriana Departamento de Ingeniería de Sistemas Caracterizar: "determinar los atributos peculiares de alguien o de algo, de modo que claramente

Más detalles

Procesamiento de Imágenes

Procesamiento de Imágenes 3. Procesamiento de Imágenes 3.1 Transformada discreta de Fourier en 2D Una señal periódica con períodos N 1 y N 2 en sus coordenadas x 1 y x 2, respectivamente, tiene una trasformada de Fourier definida

Más detalles

Redes neuronales con funciones de base radial

Redes neuronales con funciones de base radial Redes neuronales con funciones de base radial Diego Milone y Leonardo Rufiner Inteligencia Computacional Departamento de Informática FICH-UNL Organización: RBF-NN Motivación y orígenes RBF Arquitectura

Más detalles

Tema 4. Reducción del ruido

Tema 4. Reducción del ruido Div. Ingeniería de Sistemas y Automática Universidad Miguel Hernández GRUPO DE TECNOLOGÍA INDUSTRIAL Tabla de Contenidos Definición Filtros Lineales Filtros Temporales Realce Espacial Definición Ruido:

Más detalles

Filtros digitales dominio del espacio dominio de la frecuencia

Filtros digitales dominio del espacio dominio de la frecuencia Tema 3: Filtros 1 Filtros digitales Los filtros digitales constituyen uno de los principales modos de operar en el procesamiento de imágenes digitales. Pueden usarse para distintos fines, pero en todos

Más detalles

Formulación del problema de la ruta más corta en programación lineal

Formulación del problema de la ruta más corta en programación lineal Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,

Más detalles

3. ANÁLISIS DE SEÑALES

3. ANÁLISIS DE SEÑALES 3. ANÁLISIS DE SEÑALES 3.1 REGISTRO Y TRATAMIENTO DE SEÑALES Una señal se define como la historia de los valores de aceleración que mide un acelerómetro en determinado tiempo para un punto específico.

Más detalles

Conceptos básicos de Geometría

Conceptos básicos de Geometría Dr. Eduardo A. RODRÍGUEZ TELLO CINVESTAV-Tamaulipas 15 de enero del 2013 Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) 15 de enero del 2013 1 / 25 1 Geometría Afín Geometría Euclidiana Áreas y ángulos Dr. Eduardo

Más detalles

Procesamiento Morfológico de Imágenes

Procesamiento Morfológico de Imágenes Procesamiento Morfológico de Imágenes Morfología Matemática Se usa para extraer componentes de imágenes útiles para la representación y descripción de forma de regiones, tales como Extracción de límites

Más detalles

Puntuación Z ESTADÍSTICA APLICADA A LA EDUCACIÓN I. L.A. y M.C.E. Emma Linda Diez Knoth

Puntuación Z ESTADÍSTICA APLICADA A LA EDUCACIÓN I. L.A. y M.C.E. Emma Linda Diez Knoth 1 Puntuación Z ESTADÍSTICA APLICADA A LA EDUCACIÓN I Qué es la Puntuación Z? 2 Los puntajes Z son transformaciones que se pueden hacer a los valores o puntuaciones de una distribución normal, con el propósito

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

FILTRO DE COLOR FUZZY BASADO EN EL HISTOGRAMA PARA LA RESTAURACIÓN DE IMÁGENES. Jesús López de la Cruz Grupo 10

FILTRO DE COLOR FUZZY BASADO EN EL HISTOGRAMA PARA LA RESTAURACIÓN DE IMÁGENES. Jesús López de la Cruz Grupo 10 FILTRO DE COLOR FUZZY BASADO EN EL HISTOGRAMA PARA LA RESTAURACIÓN DE IMÁGENES Jesús López de la Cruz Grupo 10 Problema Soluciones anteriores Algoritmo HFC Explicación visual Problema Tenemos una imagen

Más detalles

Métodos Avanzados para Análisis y Representación de Imágenes

Métodos Avanzados para Análisis y Representación de Imágenes Morfología Matemática p. 1/24 Métodos Avanzados para Análisis y Representación de Imágenes Morfología Matemática en niveles de gris Departamento de Informática - FICH Universidad Nacional del Litoral Septiembre

Más detalles

GRADIENTE La laplaciana es un buen filtro paso alto, pero no es una buena herramienta para resaltar o detectar los bordes. En muchos casos, los bordes o límites de las figuras o de las regiones aparecen

Más detalles

License Plate Detection using Neural Networks

License Plate Detection using Neural Networks License Plate Detection using Neural Networks Luis Carrera, Marco Mora Les Fous du Pixel Image Processing Research Group Department of Computer Science Catholic University of Maule http://www.lfdp-iprg.net

Más detalles

Procesamiento de imágenes

Procesamiento de imágenes Procesamiento de imágenes Técnicas de realce de imágenes Técnicas de realce de imágenes Las imágenes digitalizadas no presentan siempre una calidad adecuada para su utilización, ello puede ser debido a

Más detalles

REDUCCIÓN DEL RUIDO EN UNA IMAGEN DIGITAL

REDUCCIÓN DEL RUIDO EN UNA IMAGEN DIGITAL Div. Ingeniería de Sistemas y Automática Universidad Miguel Hernández REDUCCIÓN DEL RUIDO EN UNA IMAGEN DIGITAL Tabla de Contenidos Definición Filtros No Lineales Filtros Temporales Definición 3 G = Ruido:

Más detalles

Distribuciones de probabilidad bidimensionales o conjuntas

Distribuciones de probabilidad bidimensionales o conjuntas Distribuciones de probabilidad bidimensionales o conjuntas Si disponemos de dos variables aleatorias podemos definir distribuciones bidimensionales de forma semejante al caso unidimensional. Para el caso

Más detalles

Ejercicio 1. Ejercicio 2

Ejercicio 1. Ejercicio 2 Guía de Ejercicios Ejercicio. Calcular los momentos de primer y segundo orden (media y varianza) de una variable aleatoria continua con distribución uniforme entre los límites a y b.. Sabiendo que la función

Más detalles

Curso de Procesamiento Digital de Imágenes

Curso de Procesamiento Digital de Imágenes Curso de Procesamiento Digital de Imágenes Impartido por: Elena Martínez Departamento de Ciencias de la Computación IIMAS, UNAM, cubículo 408 http://turing.iimas.unam.mx/~elena/teaching/pdi-mast.html elena.martinez@iimas.unam.mx

Más detalles

Unidad 1: Espacio de Probabilidad

Unidad 1: Espacio de Probabilidad Unidad 1: Espacio de Probabilidad 1.1 Espacios de Probabilidad. (1) Breve introducción histórica de las probabilidades (2) Diferencial entre modelos matemáticos deterministicos y probabilísticos (3) Identificar

Más detalles

Tema 8. Análisis morfológico en imágenes

Tema 8. Análisis morfológico en imágenes 1 Div. Ingeniería de Sistemas y Automática Universidad Miguel Hernández Tema 8. Análisis morfológico en imágenes GRUPO DE TECNOLOGÍA INDUSTRIAL Tabla de Contenidos 2 Definición Nomenclatura Erosión Dilatación

Más detalles

Reconocimiento de Patrones

Reconocimiento de Patrones Reconocimiento de Patrones Técnicas de validación (Clasificación Supervisada) Jesús Ariel Carrasco Ochoa Instituto Nacional de Astrofísica, Óptica y Electrónica Clasificación Supervisada Para qué evaluar

Más detalles

ANÁLISIS DE DATOS. Jesús García Herrero

ANÁLISIS DE DATOS. Jesús García Herrero ANÁLISIS DE DATOS Jesús García Herrero ANALISIS DE DATOS EJERCICIOS Una empresa de seguros de automóviles quiere utilizar los datos sobre sus clientes para obtener reglas útiles que permita clasificar

Más detalles

Técnicas de Clasificación Supervisada DRA. LETICIA FLORES PULIDO

Técnicas de Clasificación Supervisada DRA. LETICIA FLORES PULIDO Técnicas de Clasificación Supervisada DRA. LETICIA FLORES PULIDO 2 Objetivo El objetivo principal de las técnicas de clasificación supervisada es obtener un modelo clasificatorio válido para permitir tratar

Más detalles

Consideración del Margen de Desvanecimiento con ICS Telecom en Planeación de Redes de Microceldas (NLOS)

Consideración del Margen de Desvanecimiento con ICS Telecom en Planeación de Redes de Microceldas (NLOS) Consideración del Margen de Desvanecimiento con ICS Telecom en Planeación de Redes de Microceldas (NLOS) Agosto 2008 SEAN YUN Traducido por ANDREA MARÍN Modelando RF con Precisión 0 0 ICS Telecom ofrece

Más detalles

Cálculo de Probabilidades II Preguntas Tema 1

Cálculo de Probabilidades II Preguntas Tema 1 Cálculo de Probabilidades II Preguntas Tema 1 1. Suponga que un experimento consiste en lanzar un par de dados, Sea X El número máximo de los puntos obtenidos y Y Suma de los puntos obtenidos. Obtenga

Más detalles

Tema 2 Primeros Modelos Computacionales

Tema 2 Primeros Modelos Computacionales Universidad Carlos III de Madrid OpenCourseWare Redes de Neuronas Artificiales Inés M. Galván - José Mª Valls Tema 2 Primeros Modelos Computacionales 1 Primeros Modelos Computacionales Perceptron simple

Más detalles

Espacios Vectoriales

Espacios Vectoriales Leandro Marín Octubre 2010 Índice Definición y Ejemplos Paramétricas vs. Impĺıcitas Bases y Coordenadas Para definir un espacio vectorial tenemos que empezar determinando un cuerpo sobre el que esté definido

Más detalles

2.- Tablas de frecuencias

2.- Tablas de frecuencias º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 3.- ESTADÍSTICA DESCRIPTIVA PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------

Más detalles

Laboratorio de Visión para Robots. Práctica 2

Laboratorio de Visión para Robots. Práctica 2 1. Preparación del entorno de trabajo Laboratorio de Visión para Robots Práctica 2 La manera en la que trabajaremos será primero utilizando Eclipse para prototipar nuestro programa. Cuando podamos procesar

Más detalles

Dr. Richard Mercado Rivera 18 de agosto de 2012 Matemática Elemental

Dr. Richard Mercado Rivera 18 de agosto de 2012 Matemática Elemental Universidad de Puerto Rico Recinto de Aguadilla Programa CeCiMat Elemental Definición de conceptos fundamentales de la Estadística y la Probabilidad y su aportación al mundo moderno Dr. Richard Mercado

Más detalles

Uso de las estadísticas de los histogramas para el realce local de imágenes

Uso de las estadísticas de los histogramas para el realce local de imágenes Uso de las estadísticas de los histogramas para el realce local de imágenes Albornoz, Enrique Marcelo y Schulte, Walter Alfredo 5 de noviembre de 2004 Captura y Procesamiento Digital de Imágenes. Facultad

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO CENTRO UNIVERSITARIO UAEM ZUMPANGO LICENCIATURA EN TURISMO UNIDAD DE APRENDIZAJE: ESTADISTICA TEMA 1.5 : ESTADISTICA DESCRIPTIVA M. EN C. LUIS ENRIQUE KU MOO FECHA:

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 Métodos Iterativos para Resolver Sistemas Lineales Departamento de Matemáticas ITESM Métodos Iterativos para Resolver Sistemas Lineales Álgebra Lineal - p. 1/30 En esta lectura veremos

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

1. Manipulación simple de imágenes

1. Manipulación simple de imágenes 1 ELO 385 Laboratorio de Procesamiento Digital de Señales Laboratorio 7: Procesamiento Digital de Imágenes En este laboratorio se introducirá el procesamiento digital de imágenes y se extenderán conceptos

Más detalles

ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ

ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ Probabilidad - Período de retorno y riesgo La probabilidad de ocurrencia de un fenómeno en hidrología puede citarse de varias Formas: El

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t).

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t). Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Álgebra Convocatoria de enero de 20 de enero de 20 (2.5 p.) ) Se considera la aplicación lineal f : R 4 R definida por: f(x y

Más detalles

Eigenvalores y eigenvectores

Eigenvalores y eigenvectores Eigenvalores y eigenvectores Los dos problemas principales del álgebra lineal son: resolver sistemas lineales de la forma Ax = b y resolver el problema de eigenvalores. En general, una matriz actúa sobre

Más detalles

Tareas de la minería de datos: clasificación. CI-2352 Intr. a la minería de datos Prof. Braulio José Solano Rojas ECCI, UCR

Tareas de la minería de datos: clasificación. CI-2352 Intr. a la minería de datos Prof. Braulio José Solano Rojas ECCI, UCR Tareas de la minería de datos: clasificación CI-2352 Intr. a la minería de datos Prof. Braulio José Solano Rojas ECCI, UCR Tareas de la minería de datos: clasificación Clasificación (discriminación) Empareja

Más detalles

Cursada Segundo Cuatrimestre 2012 Guía de Trabajos Prácticos Nro. 1

Cursada Segundo Cuatrimestre 2012 Guía de Trabajos Prácticos Nro. 1 Temas: Ambiente de trabajo MATLAB. Creación de matrices y vectores. Matrices pre-definidas. Operador dos puntos. Operaciones con matrices y vectores. Direccionamiento de elementos de matrices y vectores.

Más detalles

El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima. OPCIÓN A

El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima. OPCIÓN A Prueba de Acceso a la Universidad JUNIO Bachillerato de Ciencias Sociales El alumno debe responder a una de las dos opciones propuestas, A o B En cada pregunta se señala la puntuación máima OPCIÓN A Una

Más detalles

CONTROL DE ROBOTS Y SISTEMAS SENSORIALES 4º Ingeniería Industrial

CONTROL DE ROBOTS Y SISTEMAS SENSORIALES 4º Ingeniería Industrial Escuela Politécnica Superior de Elche CONTROL DE ROBOTS Y SISTEMAS SENSORIALES 4º Ingeniería Industrial PRÁCTICAS DE VISIÓN ARTIFICIAL [Títere] Práctica 4: Segmentación. Localización y Reconocimiento de

Más detalles

PRÁCTICA I. Ejercicios Teóricos

PRÁCTICA I. Ejercicios Teóricos PRÁCTICA I TEORÍA DE LA DECISIÓN BAYESIANA Ejercicios Teóricos Ejercicio. En el caso de dos categorías, en la regla de decisión de Bayes el error condicional está dado por la ecuación (7). Incluso si las

Más detalles

ANALISIS DE CLUSTER CON SPSS: INMACULADA BARRERA

ANALISIS DE CLUSTER CON SPSS: INMACULADA BARRERA ANALISIS DE CLUSTER CON SPSS: INMACULADA BARRERA ANALISIS DE CLUSTER EN SPSS Opción: Analizar Clasificar ANALISIS DE CLUSTER EN SPSS Tres posibles OPCIONES 1.- Cluster en dos etapas 2.- K-means 3.- Jerárquicos

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.

Más detalles

ANEXO 1. CALIBRADO DE LOS SENSORES.

ANEXO 1. CALIBRADO DE LOS SENSORES. ANEXO 1. CALIBRADO DE LOS SENSORES. Las resistencias dependientes de la luz (LDR) varían su resistencia en función de la luz que reciben. Un incremento de la luz que reciben produce una disminución de

Más detalles

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema: Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz

Más detalles

Tema 8. Detección de líneas y esquinas

Tema 8. Detección de líneas y esquinas Tema 8. Detección de líneas y esquinas 4730 Visión Industrial Ingeniería Técnica Industrial especialidad en Electrónica Industrial Universitat de les Illes Balears Departament de Ciències Matemàtiques

Más detalles

MANUAL DE USO PROGRAMA SENSIBAR

MANUAL DE USO PROGRAMA SENSIBAR MANUAL DE USO PROGRAMA SENSIBAR ANALSIS DE SENSIBILIDAD Y SIMULACION DE MONTECARLO JOSE FUENTES VALDES FACEA - UNIVERSIDAD DE CONCEPCION Facultad de Economía Universidad de Concepción 1 SensiBar. ANALSIS

Más detalles

Algoritmos genéticos

Algoritmos genéticos Algoritmos genéticos Introducción 2 Esquema básico 3 El problema de la mochila 7 Asignación de recursos 0 El problema del viajante 3 Variantes del esquema básico 5 Por qué funciona? 9 Observaciones finales

Más detalles

7.- Teorema integral de Fourier. Transformada de Fourier

7.- Teorema integral de Fourier. Transformada de Fourier 7.- Teorema integral de Fourier. Transformada de Fourier a) Introducción. b) Transformada de Fourier. c) Teorema integral de Fourier. d) Propiedades de la Transformada de Fourier. e) Teorema de Convolución.

Más detalles

Filtrado no lineal: morfología

Filtrado no lineal: morfología Filtrado no lineal: morfología Gonzalez & Woods, cap 8.4 morfología 1 Fundamentada en la teoría de conjuntos: las imágenes se consideran como conjuntos. Imágenes binarias: conjuntos de pixels corresponden

Más detalles

CLASIFICACIÓN DE LA IMAGEN. Escuela de Ingeniería Civil y Geomática Francisco Luis Hernández Torres

CLASIFICACIÓN DE LA IMAGEN. Escuela de Ingeniería Civil y Geomática Francisco Luis Hernández Torres CLASIFICACIÓN DE LA IMAGEN TÉCNICA QUE PERMITE LA IDENTIFICACIÓN DE LOS DIFERENTES OBJETOS O GRUPOS PRESENTES EN UNA IMAGEN MULTI-ESPECTRAL. MÉTODO NO SUPERVISADO MÉTODO SUPERVISADO El Desarrollo De Las

Más detalles

CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS

CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS MATEMÁTICAS 1º ESO U.D. 1 Números Naturales El conjunto de los números naturales. Sistema de numeración decimal. Aproximaciones

Más detalles

METODOS ESTADÍSTICOS

METODOS ESTADÍSTICOS METODOS ESTADÍSTICOS Introducción. Uno de los objetivos de la asignatura de Hidrología, es mostrar a los alumnos, las herramientas de cálculo utilizadas en Hidrología Aplicada para diseño de Obras Hidráulicas.

Más detalles

1º BCNySyT Distribuciones binomial y normal Excel

1º BCNySyT Distribuciones binomial y normal Excel 1º BCNySyT - 14. Distribuciones binomial y normal Excel PASO A PASO 1. Calcula los parámetros de la variable aleatoria número de hijas y haz el diagrama de barras de frecuencias relativas. Número de hijas:

Más detalles

Ideas básicas del diseño experimental

Ideas básicas del diseño experimental Ideas básicas del diseño experimental Capítulo 4 de Analysis of Messy Data. Milliken y Johnson (1992) Diseño de experimentos p. 1/23 Ideas básicas del diseño experimental Antes de llevar a cabo un experimento,

Más detalles

Tema 6: Descriptores topológicos, geométricos y estadísticos de las imágenes digitales

Tema 6: Descriptores topológicos, geométricos y estadísticos de las imágenes digitales Tema 6: Descriptores topológicos, geométricos y estadísticos de las imágenes digitales de imágenes (después de realizar una segmentación) Componentes conexas Agujeros (2D) Túneles y cavidades (3D) Característica

Más detalles

ANÁLISIS DE FRECUENCIAS

ANÁLISIS DE FRECUENCIAS ANÁLISIS DE FRECUENCIAS EXPRESIONES PARA EL CÁLCULO DE LOS EVENTOS PARA EL PERÍODO DE RETORNO T Y DE LOS RESPECTIVOS ERRORES ESTÁNDAR DE ESTIMACIÓN REQUERIDOS PARA LA DETERMINACIÓN DE LOS INTERVALOS DE

Más detalles

Tema 3: Filtros SEGUNDA PARTE

Tema 3: Filtros SEGUNDA PARTE Tema 3: Filtros SEGUNDA PARTE FILTROS En el dominio del espacio: Filtros de suavizado. Filtros de realce. En el dominio de la recuencia: Filtros de suavizado. Filtros de realce. Filtros espaciales de realce

Más detalles

Simulación. Problema del jardinero. Modelo de stock aleatorio. Camino crítico.

Simulación. Problema del jardinero. Modelo de stock aleatorio. Camino crítico. Simulación Temario de la clase Introducción. Generacion de variables aleatorias: método de la transformada inversa. Avance del tiempo de simulación. Determinación de la cantidad de iteraciones requeridas.

Más detalles

Segmentación de imágenes. Procesamiento de imágenes biomédicas Curso 2011

Segmentación de imágenes. Procesamiento de imágenes biomédicas Curso 2011 Segmentación de imágenes Procesamiento de imágenes biomédicas Curso 2011 Introducción Hasta ahora el procesamiento digital de una imagen implicaba, una imagen de entrada y una imagen de salida. Ahora con

Más detalles

Reconocimiento de Patrones

Reconocimiento de Patrones Reconocimiento de Patrones Jesús Ariel Carrasco Ochoa Instituto Nacional de Astrofísica Óptica y Electrónica ariel@inaoep.mx Contenido Introducción Enfoques Problemas Selección de Variables Clasificación

Más detalles

Tomografía Computada. Introducción. Juan Pablo Graffigna. Características Principales. El Tomógrafo. Fundamento.

Tomografía Computada. Introducción. Juan Pablo Graffigna. Características Principales. El Tomógrafo. Fundamento. Tomografía Computada Juan Pablo Graffigna Características Principales. El Tomógrafo. Fundamento. Adquisición de Datos. Procesamiento de Datos. Tratamiento de Imágenes. Diagrama General. Aspectos Tecnológicos.

Más detalles

Medidas de dispersión

Medidas de dispersión Medidas de dispersión Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. Las medidas de dispersión son: Rango o recorrido El rango es la diferencia

Más detalles

Problemas computacionales, intratabilidad y problemas NP completos. Febrero Facultad de Ingeniería. Universidad del Valle

Problemas computacionales, intratabilidad y problemas NP completos. Febrero Facultad de Ingeniería. Universidad del Valle Complejidad Complejidad, in NP completos Facultad de Ingeniería. Universidad del Valle Febrero 2017 Contenido Complejidad 1 2 3 Complejidad computacional Complejidad Introducción En ciencias de la computación

Más detalles

Distribuciones Probabilísticas. Curso de Estadística TAE,2005 J.J. Gómez Cadenas

Distribuciones Probabilísticas. Curso de Estadística TAE,2005 J.J. Gómez Cadenas Distribuciones Probabilísticas Curso de Estadística TAE,005 J.J. Gómez Cadenas Distribución Binomial Considerar N observaciones independientes tales que: El resultado de cada experimento es acierto o fallo

Más detalles

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada. ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos

Más detalles

Herramientas computacionales para la matemática MATLAB: Análisis de datos.

Herramientas computacionales para la matemática MATLAB: Análisis de datos. Herramientas computacionales para la matemática MATLAB:. Verónica Borja Macías Junio 2012 1 Analizar datos estadísticos en MATLAB es sencillo. Máximo y mínimo max(x) si x es vector encuentra el valor más

Más detalles

Conjuntos de Vectores y Matrices Ortogonales

Conjuntos de Vectores y Matrices Ortogonales Conjuntos de Vectores y Matrices Ortogonales Departamento de Matemáticas, CCIR/ITESM 28 de junio de 2011 Índice 21.1.Introducción............................................... 1 21.2.Producto interno............................................

Más detalles

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 5 Resumen Unidad n 3

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 5 Resumen Unidad n 3 Universidad Nacional de Colombia Departamento de Matemáticas 1000003-5 Álgebra Lineal - Grupo 5 Resumen Unidad n 3 Vectores en R n Definición. El conjunto de las n-tuplas ordenadas de números reales se

Más detalles

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas Part I unidimensionales de s de s Definición Dado un experimento aleatorio, con espacio muestral asociado Ω, una es cualquier función, X, X : Ω R que asocia a cada suceso elemental un número real, verificando

Más detalles

IMPLEMENTACIÓN DE TECNOLOGÍA ÓPTICA PARA EL CONTROL DE CALIDAD DE ALIMENTOS

IMPLEMENTACIÓN DE TECNOLOGÍA ÓPTICA PARA EL CONTROL DE CALIDAD DE ALIMENTOS ISSN:1692-7257 Volumen 1 No 3-2004 ISSN:1692-7257 Volumen 1-2003 IMPLEMENTACIÓN DE TECNOLOGÍA ÓPTICA PARA EL CONTROL DE CALIDAD DE ALIMENTOS Ph D JORGE ENRIQUE RUEDA Ph D. JAIME SALCEDO ABSTRACT: The granulometry

Más detalles

Análisis Inteligente de Datos: Introducción

Análisis Inteligente de Datos: Introducción Análisis Inteligente de Datos: cvalle@inf.utfsm.cl Departamento de Informática - Universidad Técnica Federico Santa María Santiago, Marzo 2009 Temario 1 Temario 1 Preguntas Relevantes Por qué análisis

Más detalles

MÉTODO DE ENSAYO PARA MEDIR EL DETERIORO DE GEOTEXTILES A LA EXPOSICIÓN DE LUZ ULTRAVIOLETA Y AGUA, (APARATO DEL TIPO ARCO XENON). I.N.V.

MÉTODO DE ENSAYO PARA MEDIR EL DETERIORO DE GEOTEXTILES A LA EXPOSICIÓN DE LUZ ULTRAVIOLETA Y AGUA, (APARATO DEL TIPO ARCO XENON). I.N.V. MÉTODO DE ENSAYO PARA MEDIR EL DETERIORO DE GEOTEXTILES A LA EXPOSICIÓN DE LUZ ULTRAVIOLETA Y AGUA, (APARATO DEL TIPO ARCO XENON). I.N.V. E 910 07 1. OBJETO 1.1 Esta norma de ensayo se puede utilizar para

Más detalles

Algebra de Boole: Teoremas

Algebra de Boole: Teoremas Teorema 1: A + A = A Teorema 2: A A = A Teorema 3: A + 0 = A Teorema 4: A 1 = A Teorema 5: A 0 = 0 Teorema 6: A + 1 = 1 Teorema 7: (A + B) = A B Teorema 8: (A B) = A + B Teorema 9: A + A B = A Teorema

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

Inteligencia Artificial. Aprendizaje neuronal. Ing. Sup. en Informática, 4º. Curso académico: 2011/2012 Profesores: Ramón Hermoso y Matteo Vasirani

Inteligencia Artificial. Aprendizaje neuronal. Ing. Sup. en Informática, 4º. Curso académico: 2011/2012 Profesores: Ramón Hermoso y Matteo Vasirani Inteligencia Artificial Aprendizaje neuronal Ing. Sup. en Informática, 4º Curso académico: 20/202 Profesores: Ramón Hermoso y Matteo Vasirani Aprendizaje Resumen: 3. Aprendizaje automático 3. Introducción

Más detalles

Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución.

Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. CONTENIDO: MEDIDAS DE DISPERSIÓN INDICADOR DE LOGRO: Determinarás y aplicarás, con perseverancia las medidas de dispersión para datos no agrupados y agrupados Guía de trabajo: Las medidas de dispersión

Más detalles

Sistemas de Ecuaciones Lineales

Sistemas de Ecuaciones Lineales Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a

Más detalles

Reconocimiento automático a través de visión artificial, correlación estadística y Matlab aplicado a las matrículas de vehículos

Reconocimiento automático a través de visión artificial, correlación estadística y Matlab aplicado a las matrículas de vehículos Reconocimiento automático a través de visión artificial, correlación estadística y Matlab aplicado a las matrículas de vehículos Orlando Barcia * obarcia@ups.edu.ec Introducción Existen muchas investigaciones

Más detalles

georreferenciación lección 11 correcciones geométricas Teledetección Dpto. de Ingeniería Cartográfica Carlos Pinilla Ruiz

georreferenciación lección 11 correcciones geométricas Teledetección Dpto. de Ingeniería Cartográfica Carlos Pinilla Ruiz 1 georreferenciación lección 11 sumario 2 Introducción. Corrección polinómica. Establecimiento de los puntos de control. Funciones de transformación. Transferencia de los ND. Desplazamiento debido al relieve.

Más detalles

VISIÓN POR COMPUTADOR

VISIÓN POR COMPUTADOR VISIÓN POR COMPUTADOR Introducción Ingeniería de Sistemas y Automática Universidad Miguel Hernández Tabla de Contenidos 2 Definición de Visión por Computador Captación Información Luminosa Imagen Digital

Más detalles

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Aniel Nieves-González Aniel Nieves-González () LSP 1 / 16 Considere el ejemplo en cual queremos modelar las ventas en una cadena de tiendas por departamento. La v.a. dependiente

Más detalles

Curso de Estadística Básica

Curso de Estadística Básica Curso de SESION 3 MEDIDAS DE TENDENCIA CENTRAL Y MEDIDAS DE DISPERSIÓN MCC. Manuel Uribe Saldaña MCC. José Gonzalo Lugo Pérez Objetivo Conocer y calcular las medidas de tendencia central y medidas de dispersión

Más detalles

Matrices. Observación: Es usual designar una matriz por letras mayúsculas: A, B, C,... 3 B =

Matrices. Observación: Es usual designar una matriz por letras mayúsculas: A, B, C,... 3 B = Definición: A una ordenación o arreglo rectangular de ciertos objetos se define como matriz (en este curso nos interesa que los objetos de la matriz sean numeros reales. Observación: Es usual designar

Más detalles

Teoría de muestras 2º curso de Bachillerato Ciencias Sociales

Teoría de muestras 2º curso de Bachillerato Ciencias Sociales TEORÍA DE MUESTRAS Índice: 1. Introducción----------------------------------------------------------------------------------------- 2 2. Muestras y población-------------------------------------------------------------------------------

Más detalles

Espacios de señales. 2 Espacios de señales

Espacios de señales. 2 Espacios de señales Procesamiento Digital Señales Licenciatura en Bioinformática FI-UER Agosto Procesamiento Digital Señales Espacio señales Agosto /44 Organización lineal 3 lineales Procesamiento Digital Señales Espacio

Más detalles

DOCENTE: JESÚS E. BARRIOS P.

DOCENTE: JESÚS E. BARRIOS P. DOCENTE: JESÚS E. BARRIOS P. DEFINICIONES Es larga la historia del uso de las matrices para resolver ecuaciones lineales. Un texto matemático chino que proviene del año 300 A. C. a 200 A. C., Nueve capítulos

Más detalles

Texturas. Descripción y aplicaciones

Texturas. Descripción y aplicaciones Texturas Descripciónyaplicaciones Motivación Segmentación de texturas. Clasificación de texturas. Síntesis de texturas. Extracción de características. Reconocimiento de patrones. Reconocimiento de objetos.

Más detalles

Colegio Decroly Americano Matemática 7th Core, Contenidos I Período

Colegio Decroly Americano Matemática 7th Core, Contenidos I Período Matemática 7th Core, 2015-2016 Contenidos I Período 1. Sentido Numérico a. Identificar y escribir patrones. b. Escribir números en forma de exponentes. c. Escribir cantidades en notación científica. d.

Más detalles

Mapa Curricular: Funciones y Modelos

Mapa Curricular: Funciones y Modelos A.PR.11.2.1 Determina el dominio y el alcance de las funciones a partir de sus diferentes representaciones. A.PR.11.2.2 Identifica y aplica las relaciones entre los puntos importantes de una función (ceros,

Más detalles

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL.

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL. LECTURA 1: LA DISTRIBUCIÓN NORMAL GENERAL LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I) TEMA 1: LA DISTRIBUCION NORMAL GENERAL PROPIEDADES 1 INTRODUCCION La distribución de probabilidad continua más importante

Más detalles

conocida comúnmente, como la Campana de Gauss ".

conocida comúnmente, como la Campana de Gauss . CURSO DE ESTADÍSTICA INFERENCIAL EJERCICIOS Y PROBLEMAS RESUELTOS DE DISTRIBUCIÓN NORMAL Prof.:MSc. Julio R. Vargas A. La Distribución Normal: La distribución normal N (μ, σ): es un modelo matemático que

Más detalles

Preguntas tema 4: MORFOLOGÍA

Preguntas tema 4: MORFOLOGÍA Preguntas tema 4: MORFOLOGÍA 1 I N G E N I E R Í A I N F O R M Á T I C A C U R S O 2 0 1 3-2 0 1 4 MORFOLOGÍA BINARIA 2 Ejemplo clausura: Corrección de texto escaneado - Imagen original: texto escaneado

Más detalles