Pontificia Universidad Católica del Perú ICA624: Control Robusto. 2. Características de los Sistemas MIMO Valores Singulares Normas Matriciales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Pontificia Universidad Católica del Perú ICA624: Control Robusto. 2. Características de los Sistemas MIMO Valores Singulares Normas Matriciales"

Transcripción

1 Pontificia Universidad Católica del Perú ICA624: Control Robusto 2. Características de los Sistemas Valores Singulares Matriciales Hanz Richter, PhD Profesor Visitante Cleveland State University Mechanical Engineering Department 1 / 18

2 Descripción en Espacio de Estados p En éste curso trabajaremos con la siguiente representación para la planta nominal: ẋ = Ax+Bu y = Cx+Du donde x R n, u R m, y R p. Cuáles son las dimensiones de las matrices A, B, C y D? Algunas definiciones y técnicas requieren D = 0. Nos limitamos a sistemas lineales, dejando efectos no-lineales como parte de la incertidumbre estructual. Este paso es una decisión de orden práctico. Este curso se limita a métodos lineales. Tomar en cuenta que existen otras técnicas robustas y rigurosas que pueden ser usadas para sistemas no-lineales. 2 / 18

3 Fórmulas Básicas p Solución general: donde y(t) = G(t) u(t) = G(t) = t 0 G(t τ)u(τ)dτ { Ce At B +Dδ(t), t 0 0, t < 0 Matriz de transferencia G(s) = Y(s) U(s) = C(sI A) 1 B +D (1) G ij (s) representa el efecto de la ( )-ésima entrada en la ( )-ésima salida (completar). 3 / 18

4 Polos y Matriz de Fórmulas Básicas p Notaciones: (A,B,C,D); [ A B C D Previamente a cualquier cancelación de polos y ceros, las componentes G ij (s) tienen los mismos polos. A su vez éstos polos coinciden con los autovalores de A. Para detalles ver Kailath, Linear Systems. ] 4 / 18

5 Ceros SIS0 - Revisión Fórmulas Básicas p Qué son los ceros? - Ejemplo ilustrativo. Consideremos G(s) = s+z s(s+p) para z y p constantes reales. Obtengamos una representacion en espacio de estados, con y = Cx+Du. Determinemos la dinámica del estado bajo la restricción y(t) = 0 para todo t. Otra interpretación: Supongamos que u = e zt. Usar la ecuación diferencial para determinar y(t) cuando y(0) = ẏ(0) = 0. En sistemas vibratorios, las frecuencias de los ceros y ciertas condiciones iniciales dan lugar a nodos (antiresonancia). Discusión. 5 / 18

6 Ceros vs. SISO - Ejemplo* Fórmulas Básicas p u 1 y 1 1 s 1 s+2 s+5 s 2 u 2 y 2 s 1 (s+1) 2 [ Y1 (s) Y 2 (s) ] = [ s+1 s(s+2) 0 0 s+2 (s+1)(s+3) ] [ U1 (s) U 2 (s) Polos: 0, -1, -2, -3. Ceros SIS0: -1, -2. Estos ceros son un subconjunto de los polos, pero no se cancelan! * Ejemplo tomado de notas de clase, MAE6483, Eduardo A. Misawa, Oklahoma State University, Mechanical Engineering Dept., ] 6 / 18

7 Ceros Fórmulas Básicas p Lema 3.10 (Zhou y Doyle): Sea G(p) una matriz de transferencia y (A,B,C,D) una realización mínima. Si la entrada es de la forma u(t) = u 0 e λt con u 0 arbitrario, λ no es un polo de G(s) y la condición inicial es x(0) = (λi A) 1 Bu 0, la salida es y(t) = G(λ)u 0 e λt para t 0. Notar que y(t) = 0 cuando λ es un cero de G(s). El estudio de los ceros pertenece a un curso en sistemas lineales o a un curso semestral de control multivariado. En éste curso, basta notar que el conjunto de ceros (ceros de transmisión) no es el mismo que el conjunto de ceros SISO. 7 / 18

8 p Lazo general (planta nominal con ruido y disturbios): r u K d p u p G d y n Ganancia de lazo abierto (salida): L = GK (entrada: L i = KG) Sensibilidad de entrada: S i = (I +L i ) 1. Entonces: u p = S i d p Sensibilidad de salida: S = (I +L) 1. Entonces: y = Sd Sensibilidad complementaria de entrada: T i = I S i = L i (I +L i ) 1 Sensibilidad complementaria de salida: T = I S = L(I +L) 1 Ejercicio: Demostrar: L(I L) 1 = (I L) 1 L (I L) 1 = I +L(I L) 1 8 / 18

9 ... p Respuesta general (verificar cada relación): y = T(r n)+sgd p +Sd e = S(r d)+tn SGd p u = KS(r n) KSd T i d p u p = KS(r n) KSd+S i d p Las características de S requeridas para una respuesta satisfactoria, estabilidad y robustez se pueden delinear intuitivamente a partir de éstas ecuaciones. Por ejemplo, S debe ser pequeña para lograr errores e pequeños. Cómo dar sentido a pequeño o grande a funciones de transferencia como S y a señales como e? 9 / 18

10 Valores Singulares - Revisión/Introducción p Los valores singulares (σ) son muy útiles para entender los efectos direccionales de los sistemas y para precisar las nociones de tamaño de señales y sistemas. Consideremos una transformacion lineal T definida en un espacio vectorial sobre un campo F. Sea A la matriz m n de T con respecto a alguna base. Dado un vector v F n, la imagen de T viene dada por u = T(v) = Av, donde u F m. Recordar: La operación de transposición de una matriz compleja consiste en transponer las filas y columnas y tomar la conjugada de los elementos de la matriz. ( Porqué se hace ésto?) Notación: A. Matlab: A. Para forzar la transposición convencional (importante en cómputo simbólico) usar A.. Una matriz cuadrada en F n n se denota unitaria si A A = A A = I. 10 / 18

11 Descomposición en Valores Singulares p Dada una matriz A F m n, existen matrices unitarias U m m y V n n tales que A = UΣV donde Σ = [ Σ ], donde: Σ 1 = σ σ σ p con σ 1 σ 2...σ p > 0 y p = mín{m,n}. 11 / 18

12 Interpretación Geométrica p Tomemos F = R. La transformación u = Av toma un vector v R n y devuelve un vector u R m. Si variamos v arbitrariamente bajo la restricción v = 1, las imágenes u adoptarán diversas direcciones y magnitudes. Se puede mostrar que: 1. Las imágenes u describen un elipsoide. 2. La longitud del semieje mayor coincide con σ 1 y la del semieje menor con σ p. 3. El vector singular derecho v 1 es la dirección para la cual la amplificación ( u / v = σ 1 ) es máxima. 4. El vector singular v n es la dirección para la cual la amplificación ( u / v = σ p ) es mínima. En Matlab, tt [U,S,V]=svd(A) se usa para obtener la descomposición. 12 / 18

13 Ejemplo p Tomar n = 3 y m = 2. Escribir un programa en Matlab que barra la esfera unidad usando coordenadas esféricas y calcule su imagen bajo una transformacíon con A 2 3 cualquiera. El programa deberá graficar la imagen en 2D y aproximar las direcciones y valores singulares para su verificación con svd. Notación: Usaremos (igual que el resto del mundo) σ para el máximo valor singular y σ para el mínimo. Notar también que los σ 2 i son los autovalores de A A y AA. 13 / 18

14 y Inducidas p Dado un espacio vectorial X, una función real. definida en X es una norma si para todo x,y X se cumplen: 1. x 0 2. x = 0 sólo si x = 0 3. αx = α x, α escalar. 4. x+y x + y p: Para x C n y p 1 definimos: x p = ( n x p i i=1 )1 p Se pueden verificar los 4 requisitos para la definición de norma. 14 / 18

15 p p Las tres siguientes normas de vectores son de uso común: 1. Norma 1: Suma de valores absolutos 2. Norma 2 : Norma euclidiana usual (longitud) 3. Norma : Se define como x = máx x i 4. En Matlab, simplemente: norm(x,p), donde se admite inf para p. Propiedades importantes (ver Zhou & Doyle, Prob. 2.10): x 2 x n x 2 1 n x 2 x 1 x 2 1 n x x 1 x 15 / 18

16 p Sea A C m n. La norma p inducida de A se define como A p = sup x 0 Ax p x p Recordando la interpretación geométrica de los valores singulares vemos que para p = 2, si restringimos x en la definición anterior al conjunto x = 1: máx x =1 Ax = σ(a) Como σ 2 i son autovalores de A A, vemos que la norma 2 inducida se calcula como: A 2 = λmax(a A) = σ(a) En Matlab se usa norm(a,p). 16 / 18

17 p Propiedades Utiles Nota:Para normas 2, se omite el subíndice: x, A. AB A B Para matrices cuadradas A y : σ(a+ ) σ(a) σ( ) σ(a ) σ(a)σ( ) σ(a 1 ) = 1 σ(a) si A es invertible Ejercicio: Seguir la demostración en Zhou y Doyle. 17 / 18

18 Norma de Frobenius p Propiedades Utiles La norma de Frobenius se define como A F = traza (A A) = m i=1 n a ij 2 j=1 En Matlab usamos norm(a, fro ). Notar que I p = 1 para p 1, pero I F 1. La norma de Frobenius no es una norma inducida. 18 / 18

Pontificia Universidad Católica del Perú ICA624: Control Robusto. 4. Síntesis H con Sensibilidad Ponderada. Caso SISO

Pontificia Universidad Católica del Perú ICA624: Control Robusto. 4. Síntesis H con Sensibilidad Ponderada. Caso SISO Pontificia Universidad Católica del Perú ICA624: Control Robusto 4. Síntesis H con Ponderada Caso SISO Hanz Richter, PhD Profesor Visitante Cleveland State University Mechanical Engineering Department

Más detalles

Pontificia Universidad Católica del Perú ICA624: Control Robusto. 3. Normas de Señales y Sistemas. Normas H 2,H y su cálculo.

Pontificia Universidad Católica del Perú ICA624: Control Robusto. 3. Normas de Señales y Sistemas. Normas H 2,H y su cálculo. Pontificia Universidad Católica del Perú ICA624: Control Robusto 3. Señales y Sistemas Normas,H y su cálculo. Hanz Richter, PhD Profesor Visitante Cleveland State University Mechanical Engineering Department

Más detalles

Pontificia Universidad Católica del Perú ICA624: Control Robusto. 7. Incertidumbre Estructurada Introducción al Análisis µ

Pontificia Universidad Católica del Perú ICA624: Control Robusto. 7. Incertidumbre Estructurada Introducción al Análisis µ Pontificia Universidad Católica del Perú ICA624: Control Robusto 7. al Análisis µ Hanz Richter, PhD Profesor Visitante Cleveland State University Mechanical Engineering Department 1 / 20 vs. No con µ K

Más detalles

Clase 7 Herramientas de Álgebra Lineal

Clase 7 Herramientas de Álgebra Lineal Clase 7 Herramientas de Álgebra Lineal 1 Formas cuadráticas La descomposición en valores singulares 3 Normas de matrices 4 Ejercicios Dada una matriz M R n n, la función escalar x T Mx, donde x R n, es

Más detalles

Pontificia Universidad Católica del Perú ICA624: Control Robusto. 11. Factorización Prima Sobre RH. Parametrización de Controles Estabilizantes

Pontificia Universidad Católica del Perú ICA624: Control Robusto. 11. Factorización Prima Sobre RH. Parametrización de Controles Estabilizantes Pontificia Universidad Católica del Perú ICA624: Control Robusto 11. Factorización Prima Sobre Hanz Richter, PhD Profesor Visitante Cleveland State University Mechanical Engineering Department 1 / 14 Polinomios

Más detalles

Gustavo Rodríguez Gómez. Agosto Dicembre 2011

Gustavo Rodríguez Gómez. Agosto Dicembre 2011 Computación Científica Gustavo Rodríguez Gómez INAOE Agosto Dicembre 2011 1 / 44 Capítulo III Descomposición de Matrices 2 / 44 1 Descomposición de Matrices Notación Matrices Operaciones con Matrices 2

Más detalles

Pontificia Universidad Católica del Perú ICA624: Control Robusto. 1.Introducción

Pontificia Universidad Católica del Perú ICA624: Control Robusto. 1.Introducción Pontificia Universidad Católica del Perú ICA624: 1.Introducción Hanz Richter, PhD Profesor Visitante Cleveland State University Mechanical Engineering Department 1 / 19 Objetivos básicos del control realimentado

Más detalles

VALORES PROPIOS (AUTOVALORES) VECTORES PROPIOS (AUTOVECTORES)

VALORES PROPIOS (AUTOVALORES) VECTORES PROPIOS (AUTOVECTORES) VALORES PROPIOS (AUTOVALORES) Y VECTORES PROPIOS (AUTOVECTORES) Autovalores y Autovectores Los vectores propios o autovectores de una matriz A son todos los vectores x i 0, a los que la transformación

Más detalles

2.1 Descripción en espacio de estado de sistemas dinámicos

2.1 Descripción en espacio de estado de sistemas dinámicos 2 Análisis de sistemas lineales 2.1 Descripción en espacio de estado de sistemas dinámicos El objetivo de este capítulo es formular una teoría general de describir los sistemas dinámicos en funcion de

Más detalles

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República ALN Repaso matrices In. Co. Facultad de Ingeniería Universidad de la República Definiciones básicas - Vectores Definiciones básicas - Vectores Construcciones Producto interno: ( x, y n i x y i i ' α Producto

Más detalles

Control Moderno. Ene.-Jun Diseño de controlador con referencia a la entrada, servosistemas. Dr. Rodolfo Salinas. mayo 2007

Control Moderno. Ene.-Jun Diseño de controlador con referencia a la entrada, servosistemas. Dr. Rodolfo Salinas. mayo 2007 UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Facultad de Ingeniería Mecánica y Eléctrica Control Moderno Ene.-Jun. 2007 Diseño de controlador con referencia a la entrada, servosistemas Dr. Rodolfo Salinas mayo 2007

Más detalles

Subespacios de espacios vectoriales

Subespacios de espacios vectoriales Subespacios de espacios vectoriales Objetivos. Estudiar la definición, el criterio y algunos ejemplos de subespacios vectoriales. Muchos espacios vectoriales importantes (por ejemplo, espacio de soluciones

Más detalles

6.8. Descomposición mediante valores singulares. v 2 =

6.8. Descomposición mediante valores singulares. v 2 = 68 Descomposición mediante valores singulares Los valores singulares de una matriz m n Supongamos que A es una matriz real cualquiera Los autovalores de A T A tienen la siguiente propiedad A T Ax = λx

Más detalles

APÉNDICE A. Algebra matricial

APÉNDICE A. Algebra matricial APÉNDICE A Algebra matricial El estudio de la econometría requiere cierta familiaridad con el álgebra matricial. La teoría de matrices simplifica la descripción, desarrollo y aplicación de los métodos

Más detalles

3.1. Operaciones con matrices. (Suma, resta, producto y traspuesta)

3.1. Operaciones con matrices. (Suma, resta, producto y traspuesta) Operaciones con matrices Suma, resta, producto y traspuesta Suma, resta y multiplicación por escalares Las matrices de un tamaño fijo m n se pueden sumar entre sí y esta operación de sumar se puede definir

Más detalles

Incertidumbre No Estructurada y Estabilidad Robusta

Incertidumbre No Estructurada y Estabilidad Robusta Pontificia Universidad Católica del Perú ICA624: Control Robusto 5. No y Robusta Hanz Richter, PhD Profesor Visitante Cleveland State University Mechanical Engineering Department 1 / 18 Lazo Bien Definido

Más detalles

ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2

ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2 ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2 Abstract Estas notas conciernen al álgebra de matrices y serán actualizadas conforme el material se cubre Las notas no son substituto de la clase pues solo contienen

Más detalles

Matriz asociada a una transformación lineal respecto a un par de bases

Matriz asociada a una transformación lineal respecto a un par de bases Matriz asociada a una transformación lineal respecto a un par de bases Ejercicios Objetivos Comprender cómo se describe una transformación lineal (que actúa en espacios vectoriales de dimensiones finitas)

Más detalles

Descomposición en valores singulares Notas para los cursos 21 y 22 (J.L. Mancilla Aguilar)

Descomposición en valores singulares Notas para los cursos 21 y 22 (J.L. Mancilla Aguilar) Valores Singulares Descomposición en valores singulares Notas para los cursos y (JL Mancilla Aguilar) Tanto los valores singulares como la descomposición en valores singulares de una matriz son conceptos

Más detalles

Matrices Inversas. Rango Matrices Elementales

Matrices Inversas. Rango Matrices Elementales Matrices Inversas. Rango Matrices Elementales Araceli Guzmán y Guillermo Garro Facultad de Ciencias UNAM Semestre 2018-1 doyouwantmektalwar.wordpress.com Matrices Matrices identidad La matriz identidad

Más detalles

Definición (matriz): Definición (dimensión de una matriz): Si una matriz tiene m renglones y n columnas se dice que es de dimensión m n.

Definición (matriz): Definición (dimensión de una matriz): Si una matriz tiene m renglones y n columnas se dice que es de dimensión m n. Índice general 1. Álgebra de Matrices 1 1.1. Conceptos Fundamentales............................ 1 1.1.1. Vectores y Matrices........................... 1 1.1.2. Transpuesta................................

Más detalles

VALORES Y VECTORES PROPIOS

VALORES Y VECTORES PROPIOS VALORES Y VECTORES PROPIOS En diversos campos de la ingeniería y las matemáticas surge el problema de calcular los valores escalares λ y los vectores x 0 tales que para la matriz cuadrada A se cumple Ax

Más detalles

Álgebra Lineal. Tema 6. Transformaciones lineales y matrices

Álgebra Lineal. Tema 6. Transformaciones lineales y matrices Álgebra Lineal Tema 6. Transformaciones lineales y matrices Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S.

Más detalles

SISTEMAS DE ECUACIONES LINEALES Y MATRICES

SISTEMAS DE ECUACIONES LINEALES Y MATRICES y SISTEMAS DE ECUACIONES ES Y MATRICES Sergio Stive Solano 1 Febrero de 2015 1 Visita http://sergiosolanosabie.wikispaces.com y SISTEMAS DE ECUACIONES ES Y MATRICES Sergio Stive Solano 1 Febrero de 2015

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios

Más detalles

Clase 8 Matrices Álgebra Lineal

Clase 8 Matrices Álgebra Lineal Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas

Más detalles

Valores y vectores propios

Valores y vectores propios Valores y vectores propios Tareas adicionales Algunos de estos problemas compuso Gustavo Antonio Sandoval Angeles (como parte de su servicio social). Estos problemas son más difíciles o más laboriosos

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes.

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes. Una forma fácil de recordar esta suma (regla de Sarrus): Ejemplos: Tarea: realizar al menos tres ejercicios de cálculo de determinantes de matrices de 2x2 y otros tres de 3x3. PARA DETERMINANTES DE MATRICES

Más detalles

TEMA 8.- NORMAS DE MATRICES Y

TEMA 8.- NORMAS DE MATRICES Y Álgebra II: Tema 8. TEMA 8.- NORMAS DE MATRICES Y NúMERO DE CONDICIóN Índice. Introducción 2. Norma vectorial y norma matricial. 2 2.. Norma matricial inducida por normas vectoriales......... 4 2.2. Algunos

Más detalles

VALORES PROPIOS (AUTOVALORES) VECTORES PROPIOS (AUTOVECTORES) Fernando di Sciascio (2017)

VALORES PROPIOS (AUTOVALORES) VECTORES PROPIOS (AUTOVECTORES) Fernando di Sciascio (2017) VALORES PROPIOS (AUTOVALORES) Y VECTORES PROPIOS (AUTOVECTORES) Fernando di Sciascio (2017) Autovalores y Autovectores Los vectores propios o autovectores de una matriz A son todos los vectores x i ¹0,

Más detalles

4.6 EFECTO DE LAS PERTURBACIONES EN EL CASO SIMPLE ENTRADA SIMPLE SALIDA.

4.6 EFECTO DE LAS PERTURBACIONES EN EL CASO SIMPLE ENTRADA SIMPLE SALIDA. 4.6 EFECTO DE LAS PERTURBACIONES EN EL CASO SIMPLE ENTRADA SIMPLE SALIDA. Supongamos que: 1.- La variable de perturbación v p (t) es un proceso estocástico que no está correlacionado con la variable de

Más detalles

Cálculo numérico. Sistemas de ecuaciones lineales.

Cálculo numérico. Sistemas de ecuaciones lineales. José Luis Morales http://allman.rhon.itam.mx/ jmorales Departamento de Matemáticas. ITAM. 2010. Las raíces de x 2 bx + c = 0. r = b ± b 2 4c 2 b = 3.6778, c = 0.0020798 r 1 = 3.67723441190... r 2 = 0.00056558809...

Más detalles

SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES HOMOGÉNEAS DE PRIMER ORDEN

SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES HOMOGÉNEAS DE PRIMER ORDEN SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES HOMOGÉNEAS DE PRIMER ORDEN Alejandro Lugon 26 de mayo de 2010 1. Ecuaciones planares: dos dimensiones El sistema homogéneo: ẋ a 11 x + a 12 y (1) ẏ a 21 x

Más detalles

Descomposición en valores singulares de una matriz

Descomposición en valores singulares de una matriz Descomposición en valores singulares de una matriz Estas notas están dedicadas a demostrar una extensión del teorema espectral conocida como descomposición en valores singulares (SVD en inglés) de gran

Más detalles

Norma de Frobenius. Estos apuntes están escritos por Darío Coutiño Aquino y Egor Maximenko.

Norma de Frobenius. Estos apuntes están escritos por Darío Coutiño Aquino y Egor Maximenko. Norma de Frobenius Estos apuntes están escritos por Darío Coutiño Aquino y Egor Maximenko. Objetivos. Dada una matriz A M m n (C), su norma de Frobenius (llamada también la norma de Hilbert Schmidt) se

Más detalles

1. Problema clásico de EDO

1. Problema clásico de EDO FACULTAD CS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE MA57C Control Óptimo Semestre 27-2 Profesor: Rafael Correa Auxiliar: Oscar Peredo Clase Auxiliar #1 31 de julio de 27 1 Problema clásico de EDO Problema

Más detalles

Capítulo VI. Diferenciabilidad de funciones de varias variables

Capítulo VI. Diferenciabilidad de funciones de varias variables Capítulo VI Diferenciabilidad de funciones de varias variables La definición de diferenciabilidad para funciones el cociente no tiene sentido, puesto que no está definido, porque el cociente entre el vector

Más detalles

Tema 11.- Autovalores y Autovectores.

Tema 11.- Autovalores y Autovectores. Álgebra 004-005 Ingenieros Industriales Departamento de Matemática Aplicada II Universidad de Sevilla Tema - Autovalores y Autovectores Definición, propiedades e interpretación geométrica La ecuación característica

Más detalles

Valores singulares. Producto escalar y ortogonalidad. Proposición. Curso < x, y >= si F = C. Si x C n x i=1

Valores singulares. Producto escalar y ortogonalidad. Proposición. Curso < x, y >= si F = C. Si x C n x i=1 Valores singulares Curso 2017-18 1 Producto escalar y ortogonalidad < x, y >= n y i x i = y T x si F = R, n y i x i = y x Si x C n x x = n x i 2 = x 2 2. si F = C Si x, y C n x y = y x, pero si x, y R

Más detalles

Eigenvalores y eigenvectores

Eigenvalores y eigenvectores Eigenvalores y eigenvectores Los dos problemas principales del álgebra lineal son: resolver sistemas lineales de la forma Ax = b y resolver el problema de eigenvalores. En general, una matriz actúa sobre

Más detalles

Espacios Vectoriales, Valores y Vectores Propios

Espacios Vectoriales, Valores y Vectores Propios , Valores y Vectores Propios José Juan Rincón Pasaye, División de Estudios de Postgrado FIE-UMSNH Curso Propedéutico de Matemáticas para la Maestría en Ciencias opciones: Sistemas de Control y Sistemas

Más detalles

GF = I V. G(v ) = v 1

GF = I V. G(v ) = v 1 7- Inversas a Izquierda y Derecha Sea F : V V una transformación lineal. G : V V lineal se denomina inversa a izquierda de F si GF = I V donde I V : V V denota el operador identidad en V. En tal caso F

Más detalles

RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS

RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS 1. Determinantes El determinante de una matriz cuadrada n n A = a 21 a 22 a 2n a n1 a n2 a nn es un número real, y se representa por: A = a 21 a 22 a 2n a

Más detalles

58 7. ESPACIOS COCIENTE

58 7. ESPACIOS COCIENTE CAPíULO 7 Espacios cociente En esta sección estudiamos el cociente de un espacio vectorial por un subespacio W. Este cociente se define como el conjunto cociente de por una relación de equivalencia conveniente.

Más detalles

Control Moderno. Ene.-Jun UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas.

Control Moderno. Ene.-Jun UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas. UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Facultad de Ingeniería Mecánica y Eléctrica Control Moderno Ene.-Jun. 27 Dr. Rodolfo Salinas abril 27 Control Moderno N abril 27 Dr. Rodolfo Salinas Respuesta en el tiempo

Más detalles

Tema 1. 1 Álgebra lineal. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. 1.1 Vectores de R n. 1. Vectores. 2.

Tema 1. 1 Álgebra lineal. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. 1.1 Vectores de R n. 1. Vectores. 2. Aurea Grané. Máster en Estadística. Universidade Pedagógica. 1 Aurea Grané. Máster en Estadística. Universidade Pedagógica. 2 Tema 1 Álgebra lineal 1. Vectores 2. Matrices 1 Álgebra lineal Aurea Grané

Más detalles

Capítulo V. Valores y vectores propios. Diagonalización de operadores lineales.

Capítulo V. Valores y vectores propios. Diagonalización de operadores lineales. Capítulo V Valores y vectores propios. Diagonalización de operadores lineales. Hemos visto que la aplicaciones lineales de en están definidas a través de una expresión de la forma ; pero esta fórmula puede

Más detalles

Modelado en el dominio de la frecuencia Utilizar la transformada Laplace para representar ecuaciones diferenciales lineales

Modelado en el dominio de la frecuencia Utilizar la transformada Laplace para representar ecuaciones diferenciales lineales 2.3 OBJETIVOS Transformada Laplace (Repaso) Modelado en el dominio de la frecuencia Utilizar la transformada Laplace para representar ecuaciones diferenciales lineales CONTENIDOS Transformada de Laplace

Más detalles

Trabajo Práctico N 5: ESPACIOS VECTORIALES

Trabajo Práctico N 5: ESPACIOS VECTORIALES Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique

Más detalles

Lección 8. Matrices y Sistemas de Ecuaciones Lineales

Lección 8. Matrices y Sistemas de Ecuaciones Lineales Lección 8 Matrices y Sistemas de Ecuaciones Lineales MIGUEL ANGEL UH ZAPATA 1 Análisis Numérico I Facultad de Matemáticas, UADY Septiembre 2014 1 Centro de Investigación en Matemáticas, Unidad Mérida En

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

Grado en Ciencias Ambientales. Matemáticas. Curso 10/11.

Grado en Ciencias Ambientales. Matemáticas. Curso 10/11. Grado en Ciencias Ambientales. Matemáticas. Curso 0/. Problemas Tema 2. Matrices y Determinantes. Matrices.. Determinar dos matrices cuadradas de orden 2, X e Y tales que: 2 2X 5Y = 2 ; X + 2Y = 4.2. Calcular

Más detalles

Vectores y matrices. v 1 v 2. = [v. v = v n. Herramientas de A.L. p.1/64

Vectores y matrices. v 1 v 2. = [v. v = v n. Herramientas de A.L. p.1/64 Vectores y matrices Los elementos básicos en teoría de sistemas lineales son vectores n 1 (columna) o 1 n (fila) y matrices n m con elementos reales (i.e. v R n y A R n m ). Denotamos el elemento i del

Más detalles

Determinantes. Definiciones básicas sobre determinantes. José de Jesús Angel Angel.

Determinantes. Definiciones básicas sobre determinantes.  José de Jesús Angel Angel. Determinantes Definiciones básicas sobre determinantes wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 2007-2008 Contenido 1 Determinantes 2 11 Propiedades de determinantes 4 2 Inversa

Más detalles

Métodos Matemáticos: Análisis Funcional

Métodos Matemáticos: Análisis Funcional Licenciatura en Ciencias y Técnicas Estadísticas Universidad de Sevilla http://euler.us.es/ renato/clases.html Espacios eucĺıdeos Definición Se dice que un espacio vectorial E es un espacio eucĺıdeo si

Más detalles

Control Moderno. Ene.-Jun Observabilidad y Observadores de Estado. Dr. Rodolfo Salinas. mayo 2007

Control Moderno. Ene.-Jun Observabilidad y Observadores de Estado. Dr. Rodolfo Salinas. mayo 2007 UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Facultad de Ingeniería Mecánica y Eléctrica Control Moderno Ene.-Jun. 2007 Observabilidad y Observadores de Estado Dr. Rodolfo Salinas mayo 2007 Control Moderno N1 mayo

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Transformaciones lineales autoadjuntas (hermíticas)

Transformaciones lineales autoadjuntas (hermíticas) Transformaciones lineales autoadjuntas (hermíticas) Objetivos. Estudiar propiedades elementales de transformaciones lineales autoadjuntas. Demostrar que para toda transformación lineal autoadjunta en un

Más detalles

Departamento de Ingeniería Matemática - Universidad de Chile

Departamento de Ingeniería Matemática - Universidad de Chile Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 8-7 Formas cuadráticas SEMANA 4: FORMAS CUADRÁTICAS 7 Formas cuadráticas y matrices definidas positivas

Más detalles

Rango de una matriz. Jana Rodriguez Hertz GAL 1. 2 de abril de 2013 IMERL

Rango de una matriz. Jana Rodriguez Hertz GAL 1. 2 de abril de 2013 IMERL Rango de una matriz Jana Rodriguez Hertz GAL IMERL 2 de abril de 203 rango rango recordemos: rango si A = {A, A 2,..., A n } conjunto de vectores de K n llamamos rango(a) a la máxima cantidad de vectores

Más detalles

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE 3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE ECUACIONES LINEALES Y MATRICES COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2011-2012 3.1.1. Resolución de sistemas de ecuaciones lineales. Método

Más detalles

Matemáticas. Álgebra lineal (parte final ampliada)

Matemáticas. Álgebra lineal (parte final ampliada) Master en Estadística e Investigación Operativa Matemáticas Álgebra lineal (parte final ampliada) Vera Sacristán Departament de Matemàtica Aplicada II Facultat de Matemàtiques i Estadística Universitat

Más detalles

2 Espacios vectoriales

2 Espacios vectoriales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 2 Espacios vectoriales 2.1 Espacio vectorial Un espacio vectorial sobre un cuerpo K (en general R o C) es un conjunto V sobre el que hay

Más detalles

Matrices y Determinantes.

Matrices y Determinantes. Tema II Capítulo 1 Matrices Álgebra Lineal I Departamento de Métodos Matemáticos y de Representación UDC Tema II Matrices y Determinantes 1 Matrices 1 Definiciones básicas Definición 11 Una matriz A de

Más detalles

Valores y Vectores Propios

Valores y Vectores Propios Valores y Vectores Propios Iván Huerta Facultad de Matemáticas Pontificia Universidad Católica de Chile ihuerta@mat.puc.cl Segundo Semestre, 1999 Definición Valores y Vectores Propios Valores y Vectores

Más detalles

Espacios vectoriales con producto interno

Espacios vectoriales con producto interno Espacios vectoriales con producto interno Problemas teóricos En todos los problemas relacionados con el caso complejo se supone que el producto interno es lineal con respecto al segundo argumento. Definición

Más detalles

3. Matrices. 1 Definiciones básicas. 2 Operaciones con matrices. 2.2 Producto de una matriz por un escalar. 2.1 Suma de matrices.

3. Matrices. 1 Definiciones básicas. 2 Operaciones con matrices. 2.2 Producto de una matriz por un escalar. 2.1 Suma de matrices. Tema I Capítulo 3 Matrices Álgebra Departamento de Métodos Matemáticos y de Representación UDC 3 Matrices 1 Definiciones básicas Definición 11 Una matriz A de dimensión m n es un conjunto de escalares

Más detalles

Podemos pues formular los dos problemas anteriores en términos de matrices.

Podemos pues formular los dos problemas anteriores en términos de matrices. Tema 5 Diagonalización 51 Introducción Valores y vectores propios 511 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V de dimensión

Más detalles

Matrices. Álgebra de matrices.

Matrices. Álgebra de matrices. Matrices. Álgebra de matrices. 1. Definiciones generales Definición 1.1 Si m y n son dos números naturales, se llama matriz de números reales de orden m n a una aplicación A : {1, 2, 3,..., m} {1, 2, 3,...,

Más detalles

Espacios Vectoriales www.math.com.mx

Espacios Vectoriales www.math.com.mx Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................

Más detalles

MMAF: Espacios normados y espacios de Banach

MMAF: Espacios normados y espacios de Banach MMAF: Espacios normados y espacios de Banach Licenciatura en Estadística R. Álvarez-Nodarse Universidad de Sevilla Curso 2011/2012 Espacios vectoriales Definición Sea V un conjunto de elementos sobre el

Más detalles

Determinantes. Reducción de matrices. Caso diagonalizable

Determinantes. Reducción de matrices. Caso diagonalizable Tema 4 Determinantes Reducción de matrices Caso diagonalizable En este tema consideraremos matrices cuadradas y, para ellas, introduciremos el concepto de autovalor de una matriz Veremos también cómo algunas

Más detalles

Descomposición en Valores singulares(svd)

Descomposición en Valores singulares(svd) Descomposición en Valores singulares(svd) Año 200 Referencias [] R.L. Burden, J.Douglas Faires, Análisis Numérico, Grupo Editorial Iberoamericana, México, 985. [2] J. Demmel, Applied Numerical Linear Algebra,

Más detalles

Deducción de las fórmulas del método del gradiente conjugado

Deducción de las fórmulas del método del gradiente conjugado Deducción de las fórmulas del método del gradiente conjugado Objetivos. Demostrar el teorema sobre los subespacios de Krylov en el método del gradiente conjugado. Requisitos. Subespacios generados por

Más detalles

Diagonalización de matrices

Diagonalización de matrices Capítulo 6 Diagonalización de matrices 6.. Introducción 6... Un ejemplo preliminar Antes de plantearlo de manera general, estudiaremos un ejemplo que servirá para situar el problema. Supongamos que, en

Más detalles

2. Álgebra matricial. Inversa de una matriz O B 1 O B 1. Depto. de Álgebra, curso

2. Álgebra matricial. Inversa de una matriz O B 1 O B 1. Depto. de Álgebra, curso Depto de Álgebra, curso 2017-2018 2 Álgebra matricial Inversa de una matriz Ejercicio 21 Calcule la matriz inversa de cada una de las matrices siguientes: a 2 1 1 3 2 1 h e, b 2 1 1 5 2 3 2 0 1 1 2 1 1

Más detalles

2. El Teorema del Valor Medio

2. El Teorema del Valor Medio 2.24 45 2. El Teorema del Valor Medio Comenzaremos esta sección recordando dos versiones del teorema del valor medido para funciones de 1-variable y por tanto ya conocidas: 2.22 Sea f : [a, b] R R una

Más detalles

Aplicaciones bilineales y formas cuadráticas (Curso )

Aplicaciones bilineales y formas cuadráticas (Curso ) ÁLGEBRA Práctica 8 Aplicaciones bilineales y formas cuadráticas (Curso 2008 2009) 1. Comprobar si las siguientes aplicaciones son o no bilineales y en las que resulten serlo, dar la matriz que las representa

Más detalles

10. Diseño avanzado de controladores SISO

10. Diseño avanzado de controladores SISO 10. Diseño avanzado de controladores SISO Parte 2 Panorama de la Clase: Repaso: Parametrización Afín (PA) Consideraciones de diseño: grado relativo rechazo de perturbaciones esfuerzo de control robustez

Más detalles

Transformaciones lineales y matrices

Transformaciones lineales y matrices CAPíTULO 5 Transformaciones lineales y matrices 1 Matriz asociada a una transformación lineal Supongamos que V y W son espacios vectoriales de dimensión finita y que T : V W es una transformación lineal

Más detalles

Algebra Lineal * Working draft: México, D.F., a 17 de noviembre de 2010.

Algebra Lineal * Working draft: México, D.F., a 17 de noviembre de 2010. Algebra Lineal * José de Jesús Ángel Ángel jjaa@mathcommx Working draft: México, DF, a 17 de noviembre de 2010 Un resumen de los principales temas tratados en un curso de Álgebra Lineal Contenido 1 Sistemas

Más detalles

4. Aplicaciones: rango de una matriz y ecuaciones de un subespacio

4. Aplicaciones: rango de una matriz y ecuaciones de un subespacio TEMA 2 ESPACIOS VECTORIALES 35 4 Aplicaciones: rango de una matriz y ecuaciones de un subespacio Terminaremos este tema aprovechando la teoría de espacios vectoriales que hemos estudiado para obtener algunas

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

Sistemas lineales de ecuaciones diferenciales. Juan-Miguel Gracia

Sistemas lineales de ecuaciones diferenciales. Juan-Miguel Gracia Sistemas lineales de ecuaciones diferenciales Juan-Miguel Gracia Índice Sistemas lineales 2 Búsqueda de una solución especial 3 Aplicación a sistemas 4 Problema de condiciones iniciales 2 / 2 Sistemas

Más detalles

TEORIA MATEMATICAS 5 PRIMER PARCIAL

TEORIA MATEMATICAS 5 PRIMER PARCIAL Def: Grafica de una función TEORIA MATEMATICAS 5 PRIMER PARCIAL Sea:. Definimos la grafica de f como el subconjunto de formado por los puntos, de en los que es un punto de U. Simbólicamente grafica es:

Más detalles

TEMA V. Pues bien, a estas caracterizaciones de los sistemas de ecuaciones lineales se las llamó matrices. En el caso del sistema considerado tenemos:

TEMA V. Pues bien, a estas caracterizaciones de los sistemas de ecuaciones lineales se las llamó matrices. En el caso del sistema considerado tenemos: TEMA V 1. MATRICES Y SISTEMAS DE ECUACIONES LINEALES. Sea el siguiente sistema de ecuaciones lineales: Realmente quien determina la naturaleza y las soluciones del sistema, no son las incógnitas: x, y,

Más detalles

Subspacios Vectoriales

Subspacios Vectoriales Subspacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Subspacios Vectoriales 1 / 25 Objetivos Al finalizar este tema tendrás que: Saber si un subconjunto es

Más detalles

3.3. Número de condición de una matriz.

3.3. Número de condición de una matriz. 96 33 Número de condición de una matriz Consideremos el sistema Ax = b, de solución u Queremos controlar qué cambios se producen en la solución cuando hacemos pequeños cambios en las componentes de b o

Más detalles

Aplicaciones Lineales. Diagonalización de matrices.

Aplicaciones Lineales. Diagonalización de matrices. Tema 2 Aplicaciones Lineales. Diagonalización de matrices. 2.1. Definiciones y propiedades Nota 2.1.1. En este tema trabajaremos con los Espacios Vectoriales R n y R m definidos sobre el cuerpo R. Definición

Más detalles

IDENTIFICACIÓN DE SISTEMAS MÉTODOS POR SUB-ESPACIOS

IDENTIFICACIÓN DE SISTEMAS MÉTODOS POR SUB-ESPACIOS IDENTIFICACIÓN DE SISTEMAS MÉTODOS POR SUB-ESPACIOS Ing. Fredy Ruiz Ph.D. ruizf@javeriana.edu.co Maestría en Ingeniería Electrónica Pontificia Universidad Javeriana 2013 Introduccion La teoría de sistemas

Más detalles

Formulación del problema de la ruta más corta en programación lineal

Formulación del problema de la ruta más corta en programación lineal Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,

Más detalles

dx = x El tensor x/ X se denomina tensor gradiente de la deformación F = x

dx = x El tensor x/ X se denomina tensor gradiente de la deformación F = x Capítulo 2 Cinemática El desarrollo de las expresiones contenidas en este capítulo se lleva a cabo en un sistema de referencia general cartesiano {I 1 I 2 I 3 }. La notación es, con algunas diferencias,

Más detalles

ALGEBRA LINEAL Y GEOMETRÍA. REPASO DE ÁLGEBRA LINEAL-2: CAMBIOS DE BASE GRADO DE MATEMÁTICAS. CURSO

ALGEBRA LINEAL Y GEOMETRÍA. REPASO DE ÁLGEBRA LINEAL-2: CAMBIOS DE BASE GRADO DE MATEMÁTICAS. CURSO ALGEBRA LINEAL Y GEOMETRÍA. REPASO DE ÁLGEBRA LINEAL-2: CAMBIOS DE BASE GRADO DE MATEMÁTICAS. CURSO 2012-2013 José García-Cuerva Universidad Autónoma de Madrid 11 de febrero de 2013 JOSÉ GARCÍA-CUERVA

Más detalles

Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES

Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES Prof. Rafael López Camino Universidad de Granada 1 Matrices Definición 1.1 Una matriz (real) de n filas y m columnas es una expresión de la forma a 11...

Más detalles

MODELACION EN VARIABLES DE ESTADO

MODELACION EN VARIABLES DE ESTADO CAPÍTULO VIII INGENIERÍA DE SISTEMAS I MODELACION EN VARIABLES DE ESTADO 8.1. DEFINICIONES Estado: El estado de un sistema dinámico es el conjunto más pequeño de variables de modo que el conocimiento de

Más detalles

Espacios de una Matriz

Espacios de una Matriz Espacios de una Matriz Departamento de Matemáticas, CSI/ITESM 31 de enero de 2008 Índice 4.1. Espacios de una Matriz........................................ 1 4.2. Espacios Lineales............................................

Más detalles

Estabilidad entrada-salida LTI

Estabilidad entrada-salida LTI Estabilidad p. 1/24 Estabilidad entrada-salida LTI En un sistema inestable cualquier perturbación, por pequeña que sea, llevará a estados y/o salidas a crecer sin límite o hasta que el sistema se queme,

Más detalles

Ejemplo 1 Sea V un espacio con producto interno sobre un cuerpo K. A las transformaciones lineales T : V K las llamamos funcionales lineales.

Ejemplo 1 Sea V un espacio con producto interno sobre un cuerpo K. A las transformaciones lineales T : V K las llamamos funcionales lineales. Facultad de Ingeniería - IMERL - Geometría y Álgebra Lineal 2 - Curso 2008. 1 Transformaciones lineales en espacios con producto interno Notas para el curso de Geometría y Algebra Lineal 2 de la Facultad

Más detalles

GF = I V. G(v ) = v 1

GF = I V. G(v ) = v 1 7- Inversas a Izquierda y Derecha Sea F : V V una transformación lineal. G : V V lineal se denomina inversa a izquierda de F si GF = I V donde I V : V V denota el operador identidad en V. En tal caso F

Más detalles