Departamento de Ingenierías Eléctrica y Electrónica Universidad del Norte

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Departamento de Ingenierías Eléctrica y Electrónica Universidad del Norte"

Transcripción

1 Departamento de Ingenierías Eléctrica y Electrónica Universidad del Norte

2 Ejemplo: Considere el sistema de la figura: G(s) tiene un par de polos complejos conjugados en s = 1 + j 2 s ( ) K s s + 3 PROCEDIMIENTO: 1. Determinar los lugares de las raíces sobre el eje real. Para cualquier punto de prueba s sobre el eje real, la suma de las contribuciones tib i angulares de lospoloscomplejosl lj conjugadoses de 360. El efecto neto de los polos complejos conjugados es cero sobre el eje real.

3 jω j 2 La localización del lugar de las raíces sobre el eje real se determina a partir del cero en lazo abierto sobre el eje real negativo. σ Una sección del eje real negativo que se encuentra entre 2 y es una parte del lugar de las raíces. j 2 Como existen dos polos en lazo abierto y un cero, hay una asíntota que coincide con el eje real negativo.

4 2. Determinar el ángulo de salida de los polos complejos conjugados en lazo abierto. El conocimiento de este ángulo es importante, debido a que el lugar de las raíces cerca de un polo complejo proporciona información con respecto a si el lugar geométrico que se origina en el polo complejo emigra hacia el eje real o tiende hacia la asíntota φ 1 ' S φ 1 θ 1 p 1 jω σ θ 2 p θ ' 2 2

5 jω Si el punto de prueba está sobre el lugar de las raíces: S θ 1 p 1 ( ) 180 ( 2 K 1 ) φ ' θ + θ ' =± θ = 180 θ ' + φ ' = 180 θ + φ φ ' 1 φ 1 σ El ángulo de salida es: θ = 180 θ + φ = = θ 2 Por simetría con respecto al eje real, el ángulo de p θ ' 2 2 salida del polo en s = p 2 es 145.

6 3. Determinar el punto de ingreso. Como + + K = s ( s 2s 3) ( s 2)( 2s 2) ( s 2 2s 3) dk = = 0 2 ds s + 2 ( ) s + s+ = s= o s= El punto s = está sobre el lugar de las raíces se trata de un punto de ingreso real. El valor de K en este punto es K =

7 4. Dibujar una gráfica del lugar de las raíces a partir de la información obtenida. Deben encontrarse varios puntos mediante prueba y error entre el punto de ingreso y los polos complejos lj en lazo abierto. jω 145 j2 j σ j1 1 j2

8 El valor de la ganancia K para cualquier punto sobre el lugar de las raíces se encuentra aplicando la condición de magnitud. Por ejemplo, el valor de K en el cual los polos complejos conjugados en lazo cerrado tienen el factor de amortiguamiento relativo ζ =0.7 se encuentra situando las raíces ycalculando el valor de K del modo siguiente: K ( s + 1 j 2 )( s j 2 ) = = 1.34 s + 2 s= j1.70

9 En este sistema, el lugar de las raíces en el plano complejo es parte de un círculo. Los lugares de las raíces circulares se obtienen en sistemas que contienen dos polos y un cero, dos polos y dos ceros, o un polo y dos ceros. Para el sistema actual, la condición de ángulo es: s+ 2 s+ 1 j 2 s+ 1+ j 2 =± 180 ( 2K + 1) Sustituyendo s = σ + jω ω ω 2 ω+ 2 =± + σ + 2 σ + 1 σ ω 2 1 ω+ 2 1 ω tan tan tan 180 2K 1 σ 1 + = ± + σ σ + 2 ( K ) tan tan tan ( )

10 Tomando la tangente a ambos lados y usando la relación: tan ( x y) tan x± tan y ± = 1 m tanxtan y 1 ω 2 1 ω+ 2 1 ω tan tan + tan = tan tan ± 180 ( 2K + 1) σ + 1 σ + 1 σ + 2 Simplificando 2ωσ ( + 1) ( ) ω 2 ω+ 2 ω + ± 0 σ + 1 σ +1 = σ + 2 ω 2 ω+ 2 ω 1 1m 0 σ + 1 σ + 1 σ + 2 ω = σ + 1 ω 2 2 σ + 2 ( ) ( ) Esta última ecuación es equivalente a: ( ) 2 2 ( ) ω σ ω 3 = ( ) ( ) 2 ω = 0 o σ ω = 3

11 2 2 ( ) ( ) 2 ω = 0 o σ ω = 3 La primera ecuación ω = 0 corresponde al eje real. El eje real desde s = 2as= corresponde a un lugar de las raíces para K 0. La parte restante corresponde a un lugar de las raíces cuando K es negativo (En el sistema actual K es no negativo). La segunda ecuación para el lugar de las raíces es una ecuación de un círculo con centro en σ = 2, ω = 0 y radio igual a 3. La parte del círculo a la izquierda de los polos complejos conjugados corresponde al lugar de las raíces para K 0. La parte restante del círculo corresponde al lugar de las raíces cuando K es negativo.

12 Como el método general del lugar de las raíces se basa esencialmente en una técnica de prueba y error, la cantidad de pruebas requeridas se reduce sustancialmente si se aplican estas reglas: Primero, obténgase la ecuación característica: G( s) H( s) 1+ = 0 Ordenar la ecuación para que el factor de interés aparezca como el factor multiplicativo en la forma: ( + 1)( + 2)...( + m ) ( s+ p )( s+ p )...( s+ p ) K s z s z s z 1+ = n

13 1. Situar los polos y ceros de G(s)H(s) en el plano s. Las ramas del lugar de las raíces empiezan en los polos en lazo abierto y terminan en los ceros (ceros finitos o ceros en infinito). Los lugares de las raíces son simétricos con respecto al eje real del plano s, debido a que los polos y ceros complejos sólo aparecen en pares conjugados. Una gráfica del lugar de las raíces tendrá tantas ramas como raíces tenga la ecuación característica. Si se incluyen los polos y los ceros en infinito, el número de polos en lazo abierto es igual al de ceros en lazo abierto. Por tanto, siempre se puede plantear que los lugares de las raíces empiezan en los polos de G(s)H(s) y terminan en los ceros de G(s)H(s) conforme K aumenta de cero a infinito.

14 2. Determinar los lugares de las raíces sobre el eje real. Los lugares de las raíces sobre el eje real se determinan a partir de los polos y los ceros en lazo abierto que se encuentran sobre él. Los polos y los ceros complejos conjugados de la función de transferencia en lazo abierto no afectan a la localizaciónli ió de los lugares de las raíces sobre el eje real, porque la contribución del ángulo de un par de polos o ceros complejos conjugados es 360 sobre el eje real. Si el número total de polos y ceros reales a la derecha de un punto de prueba ubicado sobre el eje real es impar, este punto se encuentra en el lugar de las raíces. Si los polos y ceros en lazo abierto son simples, el lugar de las raíces y su forma complementaria alternan segmentos a lo largo del eje real.

15 3. Determinar las asíntotas de los lugares de las raíces. Ángulos de las asíntotas = ( K ) ± ( K 01 0,1, 2,...) n m = Donde n = número de polos finitos de G(s)H(s) m = número de ceros finitos de G(s)H(s) La cantidad de asíntotas distintas es n m Todas las asíntotas cortan el eje real La abscisa de la intersección de las asíntotas y el eje real s = ( p p... p ) ( z... z ) n 1 n m m

16 4. Encontrar los puntos de ruptura y de ingreso. Debido a la simetría conjugada de los lugares de las raíces, los puntos de ruptura y de ingreso se encuentran sobre el eje real o bien aparecen en pares complejos conjugados. Si un lugar de las raíces se encuentra entre dos polos en lazo abierto adyacentes sobre el eje real, existe al menos un punto de ruptura entre dichos polos. Si el lugar de las raíces está entre dos ceros adyacentes (un cero puede localizarse en ) sobre el eje real, siempre existe al menos un punto de ingreso entre los dos ceros. Si el lugar de las raíces se encuentra entre un polo en lazo abierto y un cero (finito o infinito) sobre el eje real, pueden no existir puntos de ruptura o de ingreso, o bien pueden existir ambos.

17 Los puntos de ruptura y los puntos de ingreso corresponden a las raíces múltiples de la ecuación característica. Por tanto, los puntos de ruptura y de ingreso se determinan a partir de las raíces de ( ) ( ) ( ) '( ) 2 ( ) dk B' s A s B s A s = = 0 ds A s Los puntos de ruptura y los puntos de ingreso deben ser raíces de ( ) aunque no todas las raíces de ( ) son puntos de ruptura o de ingreso. Si una raíz real de la ecuación ( ) se encuentra en la parte del eje real del lugar de las raíces, es un punto de ruptura o de ingreso real. Si una raíz real de la ecuación ( ) no está en la parte del eje real del lugar de las raíces, esta raíz no corresponde a un punto de ruptura ni a un punto de ingreso. ( )

18 5. Determinar el ángulo de salida (ángulo de llegada) de un lugar de las raíces a partir de un polo complejo (un cero complejo). Si se selecciona un punto de prueba y se mueve en la cercanía precisa del polo complejo (o del cero complejo), se considera que no cambia la suma de las contribuciones angulares de todos los otros polos y ceros. El ángulo de llegada (o ángulo de salida) del lugar de las raíces de un polo complejo (odeuncerocomplejo) se encuentra restando a 180 la suma de todos los ángulos de vectores, desde todos los otros polos y ceros hasta el polo complejo (o cero complejo) en cuestión, incluyendo los signos apropiados.

19 Ángulo de salida desde un polo complejo = 180 (suma de los ángulos de vectores hacia el polo complejo en cuestión desde otros polos) + (suma de los ángulos de vectores hacia el polo complejo en cuestión desde los ceros) Ángulo de llegada a un cero complejo = 180 (suma de los ángulos de vectores hacia el cero complejo en cuestión desde otros ceros) + (suma de los ángulos de vectores hacia el cero complejo en cuestión desde los polos) jω θ 1 φ 0 σ θ 2

20 6. Encontrar los puntos donde el lugar de las raíces cruza el eje imaginario. Por medio de: (a) El criterio de estabilidad de Routh. (b) Suponiendo s = jω en la ecuación característica, igualando a cero la parte real y la parte imaginaria y despejando ω y K Los valores encontrados de ω representan las frecuencias a las cuales los lugares de las raíces cruzan el eje imaginario. El valor de K que corresponde a cada frecuencia de cruce proporciona la ganancia en el punto de cruce.

21 7. Tomando una serie de puntos de prueba en la cercanía del origen del plano s, dibujar los lugares de las raíces. La parte más importante de los lugares de las raíces no está sobre el eje real ni en las asíntotas, sino en la parte cercana al eje jω yalorigen. 8. Determinar los polos en lazo cerrado. Un punto específico de cada ramificación del lugar de las raíces será un poloenlazocerradosielvalordek en dicho punto satisface la condición de magnitud. La condición de magnitud permite determinar el valor de la ganancia K en cualquier localización de las raíces sobre el lugar. El valor de K que corresponde a cualquier punto S sobre el lugar de las raíces se obtiene a partir de la condición de magnitud o bien K = producto delaslongitudes entreel punto s y los polos producto delas longitudes entreel punto s y los ceros

22 Ejemplo: Dibuje los lugares de las raíces del sistema de control de la Figura. Determine el rango de valores de la ganancia K para la estabilidad. K ( s 1)( s 2 + 4s+ 7) Solución: Los polos en lazo abierto se localizan en s = 1, s = 2 + j 3, s = 2 j 3 Existe lugar de las raíces sobre el eje real entre los puntos s = 1 y s =. Las asíntotas de las ramas del lugar de las raíces se encuentran del modo siguiente: ± 180 ( 2 K + 1 ) Angulos delas asíntotas = = 60 ; 60 ;180 3

23 La intersección de las asíntotas y el eje real se obtiene como: s = = 1 3 Los puntos de ruptura y de ingreso se localizan a partir de dk/ds = 0 como: ( 1)( 4 7) ( 3 3 7) K = s s + s+ = s + s + s dk 2 2 = ( 3s + 6s+ 3) = 0= ( s + 2s+ 1) = 0 ds s + 1 = 0 ( ) 2 dk = 0 Tiene una raíz doble en s = 1 ds Esto significa que la ecuación característica tiene una raíz triple en s = 1. Elpuntoderuptura se localiza en s = 1. Las tres ramas del lugar de las raíces se encuentran en este punto de ruptura. Los ángulos de salida de las ramas en el punto de ruptura son ± 180 / 3 es decir, 60 y 60, 180.

24 Los puntos donde las ramas del lugar de las raíces cruzan el eje imaginario se calculan a partir de: 2 ( )( ) s 1 s + 4s+ 7 + K = s + s + s + K = Sustituyendo s por jω ( ω) ( ω) ( ω) j + 3 j + 3 j 7+ K = ( K ω ) + j ω ( ω ) = 0 Esta ecuación se satisface cuando: ω = ± = + ω = ω = = 2 3, k o 0, K 7 Las ramas del lugar de las raíces cruzan el eje imaginario en (donde K=16) y ω = 0 (donde K = 7) Como el valor de la ganancia K en el origen es 7, el rango de la ganancia K para la estabilidad es: 7 < K < 16

25 De la condición de ángulo K ( s 1)( s+ 2+ j 3)( s+ 2 j 3) ( K ) = ± Sustituyendo s = σ + jω ( ) σ 1+ jω+ σ j ω+ j 3 + σ jω j 3 =± ± 180 2K + 1 ( ) ( ) ( ) σ + 2+ j ω+ 3 + σ + 2+ j ω 3 = σ 1+ jω± 180 2K ω ω 3 1 ω tan tan tan 180 2K 1 σ 2 + = ± + σ σ 1 ( ) ω + 3 ω 3 + σ + 2 σ + 2 ω = ω+ 3 ω 3 σ 1 1 σ + 2 σ + 2 ( + ) 2ωσ 2 ω = 2 2 σ + 4σ + 4 ω + 3 σ 1

26 Que se puede simplificar: 2 2 ( + )( ) = ( + + ) 2 2 ( ) = 0 2ω σ 2 σ 1 ω σ 4σ 7 ω ω σ σ ω 1 1 ω σ + 1+ ω σ + 1 ω = Lo que define tres líneas: 1 1 ω = 0, σ + 1+ ω = 0, σ + 1 ω = Cada recta empieza a partir de un polo en lazo abierto y tiende a infinito en la dirección de 180, 60, 60 medidos a partir del eje real. La parte restante de cada recta corresponde a K < 0

27 Ejemplo: Dibuje el lugar de las raíces del sistema de la figura. ( ) K s +1 ( + 2) s s Solución: Los ceros en lazo abierto se localizan en s=±j Los polos en lazo abierto se localizan en s = 0 y s = 2 Este sistema contiene dos polos y dos ceros. Entonces, hay una posibilidad de que exista una rama circular del lugar de las raíces.

28 ( + )( ) s( s+ 2) K s j s j =± ( K ) ( ) s + j+ s j s s+ 2=± 180 2K + 1 Sustituyendo s = σ + jω ( σ + j ω + j ) + ( σ + j ω j ) ( σ + j ω ) ( σ j ω ) = ± 180 ( 2 K + 1 ) ω+ 1 ω 1 ω ω + = + ± + σ σ σ σ + 2 ( K ) tan tan tan tan Tomando las tangentes a ambos lados y considerando que: ω + 1 ω 1 ω ω ω ω tan tan 180 ± = σ 2 σ σ = σ σ σ + 2 ω+ 1 ω 1 ω ω 1 1 σ σ σ σ ω σ + ω = 0 2 4

29 2 2 = + = 1 5 ω 0 o σ ω 2 4 Corresponde al lugar de las raíces sobre el eje real. El segmento entre s = 0 y s = 2 corresponde al lugar de las raíces para 0 K <. El resto corresponde al lugar de las raíces para K < 0 jω La segunda ecuación corresponde a un lugar de las raíces circular con centro en σ=1/2, ω = 0 y radio 5/2 La parte circular del lugar de las raíces a la izquierda de los ceros imaginarios corresponde a K > 0. El resto corresponde a K < 0. σ

Departamento de Ingenierías Eléctrica y Electrónica Universidad del Norte

Departamento de Ingenierías Eléctrica y Electrónica Universidad del Norte christianq@uninorte.edu.co Departamento de Ingenierías Eléctrica y Electrónica Universidad del Norte La respuesta transitoria de un sistema en lazo cerrado se relaciona estrechamente con la localización

Más detalles

Lugar Geométrico de las Raíces

Lugar Geométrico de las Raíces ELC-33103 Teoría de Control Lugar Geométrico de las Raíces Prof. Francisco M. Gonzalez-Longatt fglongatt@ieee.org http://www.giaelec.org/fglongatt/sp.htm 1. Introducción La característica básica de la

Más detalles

GRAFICA DE LUGAR GEOMETRICO DE LAS RAICES

GRAFICA DE LUGAR GEOMETRICO DE LAS RAICES GRAFICA DE LUGAR GEOMETRICO DE LAS RAICES La idea básica detrás del método del lugar geométrico de las raíces es que los valores de s que hacen que la función de transferencia alrededor del lazo sea igual

Más detalles

1. Método del Lugar de las Raíces

1. Método del Lugar de las Raíces . Método del Lugar de las Raíces. MÉTODO DEL LUGAR DE LAS RAÍCES..... IDEA BÁSICA... 3.. LUGAR DE LAS RAÍCES DE SISTEMAS SIMPLES... 0.3. LUGAR DE GANANCIA CONSTANTE....4. REGLAS PARA LA CONSTRUCCIÓN DEL

Más detalles

6.1. Condición de magnitud y ángulo

6.1. Condición de magnitud y ángulo Capítulo 6 Lugar de las raíces La respuesta transitoria de un sistema en lazo cerrado, está ligada con la ubicación de los polos de lazo cerrado en el plano complejo S. Si el sistema tiene una ganancia

Más detalles

Control Analógico II M.I. Isidro Ignacio Lázaro Castillo

Control Analógico II M.I. Isidro Ignacio Lázaro Castillo UNIDAD I Método del lugar de las raíces Control Analógico II M.I. Isidro Ignacio Lázaro Castillo Antecedentes históricos En 1948 Walter R. Evans introdujo este método que es gráfico y elegante para la

Más detalles

El método del lugar de las raíces.

El método del lugar de las raíces. El método del lugar de las raíces. Las características de un sistema de lazo cerrado son determinadas por los polos de lazo cerrado. Los polos de lazo cerrado son las raíces de la ecuación característica.

Más detalles

9. Análisis en frecuencia: lugar de las raíces

9. Análisis en frecuencia: lugar de las raíces Ingeniería de Control I Tema 9 Análisis en frecuencia: lugar de las raíces 1 9. Análisis en frecuencia: lugar de las raíces Introducción: Criterios de argumento y magnitud Reglas de construcción Ejemplo

Más detalles

Un sistema con realimentación unitaria tiene una función de transferencia en lazo abierto

Un sistema con realimentación unitaria tiene una función de transferencia en lazo abierto Un sistema con realimentación unitaria tiene una función de transferencia en lazo abierto G p ( s) k s( s + )( s + 5) a)para el sistema en lazo abierto, y suponiendo el valor k : Obtener la expresión analítica

Más detalles

Lugar Geométrico de las Raíces Herramienta para diseño de sistemas de control

Lugar Geométrico de las Raíces Herramienta para diseño de sistemas de control Lugar Geométrico de las Raíces Herramienta para diseño de sistemas de control Elizabeth Villota Curso: Ingeniería de Control (MT221) Facultad de Ingeniería Mecánica UNI-FIM 1 Modelado Modelo: representación

Más detalles

4. Análisis de Sistemas Realimentados

4. Análisis de Sistemas Realimentados 4. Análisis de Sistemas Realimentados Panorama: Dados un controlador y una planta conectados en realimentación, vamos a plantear y contestar las siguientes preguntas: Es el lazo cerrado estable? Cuáles

Más detalles

Tema 5. Análisis de sistemas muestreados

Tema 5. Análisis de sistemas muestreados Ingeniería de Control Tema 5. Análisis de sistemas muestreados Daniel Rodríguez Ramírez Teodoro Alamo Cantarero Contextualización del tema Conocimientos que se adquieren en este tema: Relacionar la estabilidad

Más detalles

1 Lugar Geométrico de las Raíces (LGR)

1 Lugar Geométrico de las Raíces (LGR) Lugar Geométrico de las Raíces (LGR) En capítulos anteriores se desmostró la estrecha relación que existe entre la respuesta transitoria de un sistema y la ubicación de las raíces de su ecuación característica

Más detalles

SECO 2014-V ([1, 2, 3, 4])

SECO 2014-V ([1, 2, 3, 4]) SECO 214-V ([1, 2, 3, 4]) Félix Monasterio-Huelin y Álvaro Gutiérrez 2 de mayo de 214 Índice Índice 19 Índice de Figuras 19 Índice de Tablas 11 26.Lugar de Raíces: Introducción 111 26.1. Ejemplo de semiasíntotas

Más detalles

Método aproximado para conocer la localización de las raíces de la ecuación característica con respecto a los semiplanos izquierdo y derecho. (12.

Método aproximado para conocer la localización de las raíces de la ecuación característica con respecto a los semiplanos izquierdo y derecho. (12. 1. Criterio de estabilidad de Nyquist 1.1 Gráfica de Nyquist Gráfica de L(jω) G(jω)H(jω) en coordenadas polares de Im[L(jω)], Re[L(jω)] con ω variando desde hasta 0. Características: provee información

Más detalles

Serie 10 ESTABILIDAD

Serie 10 ESTABILIDAD Serie 0 ESTABILIDAD Condición de estabilidad U u Gu U R r + + - Gc Gv Gp C G V G P + c C H G( G (. G (. G (. H ( C V P + G( 0 G( G φ 80 Localización de las raíces Plano s E S T A B L E I N E S T A B L

Más detalles

UNIVERSIDAD POLITÉCNICA DE MADRID

UNIVERSIDAD POLITÉCNICA DE MADRID UNIVERSIDAD POLITÉCNICA DE MADRID DEPARTAMENTO DE ELECTRÓNICA, AUTOMÁTICA E INFORMÁTICA INDUSTRIAL Prácticas de Servosistemas Práctica 7 Lugar de las Raíces 7.2 Lugar de las Raíces (LDR) LUGAR DE LAS RAÍCES...3

Más detalles

1 Lugar Geométrico de las Raíces (LGR)

1 Lugar Geométrico de las Raíces (LGR) Lugar Geométrico de las Raíces (LGR) En capítulos anteriores se desmostró la estrecha relación que existe entre la respuesta transitoria de un sistema y la ubicación de las raíces de su ecuación característica

Más detalles

Respuesta transitoria

Respuesta transitoria Capítulo 4 Respuesta transitoria Una ves que los diagramas a bloques son desarrollados, el siguiente paso es llevar a cabo el análisis de los sistemas. Existen dos tipos de análisis: cuantitativo y cualitativo.

Más detalles

Como ejemplo, consideremos la función compleja P(s)= s 2 +1.

Como ejemplo, consideremos la función compleja P(s)= s 2 +1. Criterio de Estabilidad de Nyquist El criterio de Estabilidad de Nyquist está basado en un teorema de la variable compleja. Para entender este criterio primero se utilizarán los conceptos de transferencia

Más detalles

TEORÍA DE CIRCUITOS II 4 Año Ingeniería Electrónica F.R.T. U.T.N.

TEORÍA DE CIRCUITOS II 4 Año Ingeniería Electrónica F.R.T. U.T.N. TEORÍA DE CIRCUITOS II 4 Año Ingeniería Electrónica F.R.T. U.T.N. Funciones de variables complejas o funciones complejas (Colaboración JANET VALLAVELA) Planos complejos 3 4+j3 Todo número complejo del

Más detalles

Sistemas Realimentados Simples Estabilidad de Sistemas Contínuos Diagramas de Bode

Sistemas Realimentados Simples Estabilidad de Sistemas Contínuos Diagramas de Bode Sistemas Realimentados Simples Estabilidad de Sistemas Contínuos Diagramas de Bode p.1/40 Sistema Contínuo U(s) E(s) K G(s) Y + (s) H(s) Figura 1: Sistema contínuo retroalimentado simple F (s) = Y (s)

Más detalles

( s) ( ) CAPITULO II 2.1 INTRODUCCIÓN. 1 ss. θ θ K = θ θ. θ θ 0, ) 2-1. Fig.2.1: Diagrama de bloques de. : Amplificador + motor T

( s) ( ) CAPITULO II 2.1 INTRODUCCIÓN. 1 ss. θ θ K = θ θ. θ θ 0, ) 2-1. Fig.2.1: Diagrama de bloques de. : Amplificador + motor T -1 CAPITULO II.1 INTRODUCCIÓN Fig..1: Diagrama de bloque de donde: A J : Momento de inercia B : Coeficiente de roce T() Torque : Amplificador + motor T J B W G FTLC 1 J ( + ) θ θ o i B J. ( ) ( ) + + Donde

Más detalles

COMPENSACIÓN EN ADELANTO

COMPENSACIÓN EN ADELANTO COMPENSACIÓN EN ADELANTO Produce un mejoramiento razonable en la respuesta transitoria y un cambio pequeño en la precisión en estado estable. Puede acentuar los efectos del ruido de alta frecuencia. Aumenta

Más detalles

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA. Calcular las siguientes integrales definidas: b) d e d c) + d d) d e) sen d f) + d d ( ) En primer lugar se ha calculado una primitiva de f() Barrow. y después

Más detalles

Introducción. Por favor. No olvide bajar el tono a su. Franco E., Rosero E., Ramírez J.M. () SISTEMAS DE CONTROL II GICI / 42

Introducción. Por favor. No olvide bajar el tono a su. Franco E., Rosero E., Ramírez J.M. () SISTEMAS DE CONTROL II GICI / 42 Introducción Por favor No olvide bajar el tono a su teléfono móvil!. Franco E., Rosero E., Ramírez J.M. () SISTEMAS DE CONTROL II GICI 2008 1 / 42 Introducción UNIDAD I ESTABILIDAD DE SISTEMAS DINÁMICOS

Más detalles

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA LABORATORIO DE CONTROL CLÁSICO PRACTICA N 2 LUGAR DE LAS RAICES OBJETIVO: Hacer uso del comando rltool de matlab para analizar

Más detalles

Caso Resuelto 4 Análisis en el Dominio de la Frecuencia realizado con Excel

Caso Resuelto 4 Análisis en el Dominio de la Frecuencia realizado con Excel Caso Resuelto 4 Para realizar un análisis completo en el dominio de la frecuencia se necesita construir las gráficas: Polar de Nyquist, Diagramas de Bode de Lazo Abierto, Diagramas de Bode de Lazo Cerrado,

Más detalles

Es la elipse el conjunto de puntos fijos cuya suma de distancias a dos puntos fijos llamados focos es constante.

Es la elipse el conjunto de puntos fijos cuya suma de distancias a dos puntos fijos llamados focos es constante. ESQUEMA LAS CÓNICAS LA PARÁBOLA ECUACIONES DE LA PARÁBOLA ECUACIÓN DE LA TANGENTE A UNA PARÁBOLA ELIPSE ECUACIONES DE LA ELIPSE PROPIEDADES DE LA ELIPSE LA HIPÉRBOLA ECUACIONES DE LA HIPÉRBOLA 10 ASÍNTOTAS

Más detalles

2. Estabilidad en Sistemas Lineales Invariantes en el Tiempo.

2. Estabilidad en Sistemas Lineales Invariantes en el Tiempo. Capítulo 3 2. Estabilidad en Sistemas Lineales Invariantes en el Tiempo. 3.1 Introducción Un sistema estable se define como aquel que tiene una respuesta limitada. Es decir, un sistema es estable si estando

Más detalles

Lugar Geométrico de las Raíces o Método de Evans

Lugar Geométrico de las Raíces o Método de Evans Lugar Geométrico de las Raíces o Método de Evans Lugar de la Raíz El lugar de la raíz (root locus es un método gráfico de encontrar la posición de los polos de lazo cerrado de la función de transferencia:

Más detalles

Física 2º Bacharelato

Física 2º Bacharelato Física 2º Bacharelato DPARTAMNTO D FÍSICA QUÍMICA lectrostática 11/02/08 Nombre: Problemas 1. n la región comprendida entre dos placas cargadas, x véase la figura, existe un campo eléctrico uniforme de

Más detalles

ESTUDIO GRÁFICO DE LA ELIPSE.

ESTUDIO GRÁFICO DE LA ELIPSE. Curvas Cónicas para Dibujo y Matemáticas. Aplicación web Dibujo Técnico para ESO y Bachillerato Matemáticas para Bachillerato Educación Plástica y Visual Autor: José Antonio Cuadrado Vicente. ESTUDIO GRÁFICO

Más detalles

Apuntes de dibujo de curvas

Apuntes de dibujo de curvas Apuntes de dibujo de curvas El objetivo de estas notas es dar unas nociones básicas sobre dibujo de curvas definidas por medio de ecuaciones cartesianas explícitas o paramétricas y polares: 1. Curvas en

Más detalles

Las desigualdades absolutas son aquellas que se cumplen sea cual sea el valor real que se sustituye. Por ejemplo:

Las desigualdades absolutas son aquellas que se cumplen sea cual sea el valor real que se sustituye. Por ejemplo: MATEMÁTICAS BÁSICAS INECUACIONES INTERVALOS DE NÚMEROS REALES Una desigualdad es la epresión de dos cantidades tales que una es mayor que otra. Las desigualdades en general se clasifican en absolutas y

Más detalles

UCV FACULTAD DE INGENIERIA CALCULO I 16/04/2010. Solución al primer examen parcial. x - x 3 1

UCV FACULTAD DE INGENIERIA CALCULO I 16/04/2010. Solución al primer examen parcial. x - x 3 1 UCV FACULTAD DE INGENIERIA CALCULO I 16/04/010 Solución al primer eamen parcial 1. Encuentre el conjunto de todos los números reales que satisfacen el sistema de inecuaciones - 3 4 4 0 1 1 1 Solución:

Más detalles

Conceptos Básicos de Errores y Lugar de la Raíz

Conceptos Básicos de Errores y Lugar de la Raíz Departamento de Ingeniería Eléctrica Universidad de Magallanes Conceptos Básicos de Errores y Lugar de la Raíz Apuntes del curso de Control Automático Roberto Cárdenas Dobson Ingeniero Electricista Msc.

Más detalles

Los extremos iguales de dos imanes rectos se repelen; los extremos opuestos se atraen

Los extremos iguales de dos imanes rectos se repelen; los extremos opuestos se atraen Fuerza y campo magnético Física para ingeniería y ciencias Volumen 2, Ohanian y Markett Física para ingeniería y ciencias con física moderna Volumen 2, Bauer y Westfall El fenómeno del magnetismo se conoce

Más detalles

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 6 EL CAMPO ELECTROSTÁTICO

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 6 EL CAMPO ELECTROSTÁTICO CAMPO ELÉCTRICO REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 6 EL CAMPO ELECTROSTÁTICO El concepto físico de campo El concepto campo surge ante la

Más detalles

Las curvas cónicas son las secciones producidas por un plano secante sobre una superficie cónica de revolución. (Fig. 31)

Las curvas cónicas son las secciones producidas por un plano secante sobre una superficie cónica de revolución. (Fig. 31) Dibujo Trazado de Curvas cónicas Las curvas cónicas son las secciones producidas por un plano secante sobre una superficie cónica de revolución. (Fig. 31) Fig. 31 Una superficie cónica de revolución es

Más detalles

PROBLEMA 1 *( ) + SOLUCIÓN: Sea la superficie de la parte esférica superior, parametrizada con coordenadas cilíndricas de la siguiente manera:

PROBLEMA 1 *( ) + SOLUCIÓN: Sea la superficie de la parte esférica superior, parametrizada con coordenadas cilíndricas de la siguiente manera: PROBLEMA 1 A una esfera maciza de radio unidad se le hace una perforación cilíndrica siguiendo un eje diametral de la esfera. Suponiendo que el cilindro es circular de radio, con y que el eje que se usa

Más detalles

Los números complejos

Los números complejos 7 Los números complejos 1. Forma binómica del número complejo Piensa y calcula Halla mentalmente cuántas soluciones tienen las siguientes ecuaciones en el conjunto de los números reales. a) x 2 25 = 0

Más detalles

UNIVERSIDAD DIEGO PORTALES FACULTAD DE INGENIERÍA INSTITUTO DE CIENCIAS BASICAS

UNIVERSIDAD DIEGO PORTALES FACULTAD DE INGENIERÍA INSTITUTO DE CIENCIAS BASICAS UNIVERSIDAD DIEGO PORTALES FACULTAD DE INGENIERÍA INSTITUTO DE CIENCIAS BASICAS Álgebra Guía de Ejercicios º Elementos Elementos de Geometría Analítica Plana ELEME TOS DE GEOMETRÍA A ALÍTICA Distancia

Más detalles

ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES

ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES CAPITULO 3 ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES 3. INTRODUCCIÓN La etabilidad relativa y la repueta tranitoria de un itema de control en lazo cerrado etán directamente relacionada con la localización

Más detalles

4.6.- CRITERIO DE ESTABILIDAD DE NYQUIST. Se puede decir que un sistema es estable cuando al ser excitado, la parte transitoria

4.6.- CRITERIO DE ESTABILIDAD DE NYQUIST. Se puede decir que un sistema es estable cuando al ser excitado, la parte transitoria 4.6.- CRITERIO DE ESTABILIDAD DE NYQUIST. Se puede decir que un sistema es estable cuando al ser excitado, la parte transitoria de su respuesta decae conforme aumenta el tiempo. Para esto, se necesita

Más detalles

ANALISIS EN FRECUENCIA

ANALISIS EN FRECUENCIA ANALISIS EN FRECUENCIA Con el término respuesta en frecuencia, nos referimos a la respuesta de un sistema en estado estable a una entrada senoidal. En los métodos de la respuesta en frecuencia, la frecuencia

Más detalles

2. Distancia entre dos puntos. Punto medio de un segmento

2. Distancia entre dos puntos. Punto medio de un segmento Geometría 1 Geometría anaĺıtica Una ecuación de primer grado con dos incógnitas x e y tiene infinitas soluciones Por ejemplo x + y = 3 tiene como soluciones (0, 3), (1, ), ( 1, 4), etc Hasta ahora se han

Más detalles

Formulario: Geometría Analítica

Formulario: Geometría Analítica Universidad Autónoma del Estado de México UAEM Facultad de Ingeniería Formulario: Geometría Analítica Elaborado por: Estudiante en Ingeniería en Electrónica Formulario Geometría Analítica 1. VECTORES EN

Más detalles

Rectas y Cónicas. Sistema de Coordenadas Cartesianas. Guía de Ejercicios # Encuentre las coordenadas de los puntos mostrados en la figura.

Rectas y Cónicas. Sistema de Coordenadas Cartesianas. Guía de Ejercicios # Encuentre las coordenadas de los puntos mostrados en la figura. Universidad de Los Andes Facultad de Ciencias Forestales y Ambientales Escuela de ingeniería Forestal Departamento de Botánica y Ciencias Básicas Matemáticas I I 2014 Prof. K. Chang. Rectas y Cónicas Guía

Más detalles

Universidad Simón Bolívar Departamento de Procesos y Sistemas

Universidad Simón Bolívar Departamento de Procesos y Sistemas Universidad Simón Bolívar Departamento de Procesos y Sistemas Guía de Ejercicios de Sistemas de Control I PS-3 Prof. Alexander Hoyo Junio 00 http://prof.usb.ve/ahoyo ahoyo@usb.ve ÍNDICE Pág. Modelaje Matemático

Más detalles

Tecnicas de diseño y compensación

Tecnicas de diseño y compensación Capítulo 8 Tecnicas de diseño y compensación El objetivo primordial de esta sección es presentar algunos procedimientos para el diseño y compensación de sistemas de control lineales, invariantes en el

Más detalles

V. DISCUSIÓN DE ECUACIONES ALGEBRAICAS

V. DISCUSIÓN DE ECUACIONES ALGEBRAICAS V. DISCUSIÓN DE ECUACIONES ALGEBRAICAS 134 5.1. DISCUSIÓN DE UNA ECUACIÓN Discutir una ecuación algebraica representada por una epresión en dos variables de la forma f (, y) = 0, significa analizar algunos

Más detalles

0.1. Error en Estado Estacionario

0.1. Error en Estado Estacionario 0. Error en Estado Estacionario 0.. Error en Estado Estacionario La respuesta permanente es aquella que se alcanza cuando el sistema se establece y es muy importante su estudio pues informa lo que sucede

Más detalles

UNIDAD DE APRENDIZAJE V

UNIDAD DE APRENDIZAJE V UNIDAD DE APRENDIZAJE V Saberes procedimentales Emplea de manera sistemática conceptos algebraicos, geométricos, trigonométricos y de geometría analítica. Relaciona la ecuación de segundo grado en dos

Más detalles

Análisis de Sistemas Lineales. Sistemas Dinámicos y Control Facultad de Ingeniería Universidad Nacional de Colombia

Análisis de Sistemas Lineales. Sistemas Dinámicos y Control Facultad de Ingeniería Universidad Nacional de Colombia Análisis de Sistemas Lineales Sistemas Dinámicos y Control 2001772 Facultad de Ingeniería Universidad Nacional de Colombia Sistemas SISO (Single Input Single Output) Los sistemas de una sola entrada y

Más detalles

Análisis de redes II

Análisis de redes II Análisis de redes II Filtros activos (Diagramas de Bode) Universidad de Chile, 2009 Anlisis de redes II p. 1/3 En este tema veremos la respuesta en frecuencia sistemas lineales (redes elèctricas) en terminos

Más detalles

CURVAS TÉCNICAS CURVAS CÓNICAS

CURVAS TÉCNICAS CURVAS CÓNICAS 2º BACH CURVAS TÉCNICAS CURVAS CÓNICAS ANA BALLESTER JIMÉNEZ CURVAS TÉCNICAS 1. ÓVALOS. El óvalo es una curva cerrada, plana y convexa formada generalmente por cuatro arcos de circunferencia iguales dos

Más detalles

TANGENCIAS. Tangencias como aplicación de los conceptos de potencia e inversión TEMAR. Objetivos y orientaciones metodológicas. t.

TANGENCIAS. Tangencias como aplicación de los conceptos de potencia e inversión TEMAR. Objetivos y orientaciones metodológicas. t. TANGENCIAS Tangencias como aplicación de los conceptos de potencia e inversión TEMAR Objetivos y orientaciones metodológicas El objetivo de este tema es hacer aplicación de los conceptos de "potencia"

Más detalles

Bloque 2. Geometría. 4. Iniciación a las Cónicas

Bloque 2. Geometría. 4. Iniciación a las Cónicas Bloque 2. Geometría 4. Iniciación a las Cónicas 1. La circunferencia Se llama circunferencia al lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. Elevando al cuadrado

Más detalles

Respuesta transitoria

Respuesta transitoria Capítulo 4 Respuesta transitoria Una ves que los diagramas a bloques son desarrollados, el siguiente paso es llevar a cabo el análisis de los sistemas. Existen dos tipos de análisis: cuantitativo y cualitativo.

Más detalles

1 Problemas Resueltos

1 Problemas Resueltos 1) Con la intención de plantear mejoras en un sistema de control de composición, se realizaron experiencias sobre el sistema a lazo abierto y se obtuvo su respuesta frecuencial, la cual se muestra en la

Más detalles

. (4.5) 3. Obtener el módulo de G(jω): . (4.6) 4. Calcular el ángulo de fase : (4.7)

. (4.5) 3. Obtener el módulo de G(jω): . (4.6) 4. Calcular el ángulo de fase : (4.7) Problemas Resueltos de Análisis de Sistemas Lineales Continuos m j A 1 i1 ( ) zi j (45) r n j ( j) 1 j1 p j 3 Obtener el módulo de (jω): ( j) Aj 1 j 1 j 1 z z z 1 2 r ( j) j 1 j 1 j 1 p p p 1 2 m n (46)

Más detalles

APUNTES DE GEOMETRÍA ANALÍTICA

APUNTES DE GEOMETRÍA ANALÍTICA CAPÍTULO 1: LA RECTA EN EL PLANO Conceptos Primitivos: Punto, recta, plano. APUNTES DE GEOMETRÍA ANALÍTICA Definición 1 (Segmento) Llamaremos segmento a la porción de una línea recta comprendida entre

Más detalles

TEMA 5 AMPLIFICADORES OPERACIONALES

TEMA 5 AMPLIFICADORES OPERACIONALES TEMA 5 AMPLIFICADORES OPERACIONALES 1 F.V.Fernández-S.Espejo-R.Carmona Área de Electrónica, ESI 5.1 El amplificador operacional de tensiones ideal La operación de un amplificador operacional se describe

Más detalles

MATHEMATICA. Geometría - Recta. Ricardo Villafaña Figueroa. Material realizado con Mathematica. Ricardo Villafaña Figueroa

MATHEMATICA. Geometría - Recta. Ricardo Villafaña Figueroa. Material realizado con Mathematica. Ricardo Villafaña Figueroa MATHEMATICA Geometría - Recta Material realizado con Mathematica 2 Contenido Sistema de Coordenadas... 3 Distancia entre dos puntos... 3 Punto Medio... 5 La Recta... 8 Definición de recta... 8 Pendiente

Más detalles

18. DOMINIO FRECUENCIA CRITERIO DE NYQUIST

18. DOMINIO FRECUENCIA CRITERIO DE NYQUIST 18. DOMINIO FRECUENCIA CRITERIO DE NYQUIST 18.1. DIAGRAMAS POLARES En análisis dinámico de sistemas en el dominio de la frecuencia, además de emplearse los diagramas y el criterio de Bode, se utilizan

Más detalles

1. Conjuntos de números

1. Conjuntos de números 1.2. Números complejos 1.2.1. FORMA BINÓMICA Números complejos en forma binómica Se llama número complejo a cualquier expresión de la forma z = x + yi donde x e y son números reales cualesquiera e i =

Más detalles

CURSO CONTROL APLICADO- MARCELA VALLEJO VALENCIA-ITM RESPUESTA EN EL TIEMPO

CURSO CONTROL APLICADO- MARCELA VALLEJO VALENCIA-ITM RESPUESTA EN EL TIEMPO RESPUESTA EN EL TIEMPO BUENO, YA TENGO UN MODELO MATEMÁTICO. Y AHORA QUÉ? Vamos a analizar el comportamiento del sistema. ENTRADA PLANTA SALIDA NO SE COMO VA A SER. NO LO PUEDO PREDECIR. NO LA PUEDO DESCRIBIR

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Autores Introducción C O N S E R V A C I Ó N D E L M O M E N T O A N G U L A R Juan Andrés Diana, Fernando

Más detalles

TEMA 12: PROBLEMAS MÉTRICOS EN EL ESPACIO.

TEMA 12: PROBLEMAS MÉTRICOS EN EL ESPACIO. TEMA 12: PROBLEMAS MÉTRICOS EN EL ESPACIO. 1. Distancia entre dos puntos: Si A= (a 1, a 2, a 3 ) y B= (b 1, b 2, b 3 ), entonces: 2.Ángulo entre elementos del espacio: Ángulo entre dos rectas: d (A, B)

Más detalles

COLEGIO NUESTRA SEÑORA DEL BUEN CONSEJO. Melilla LUGARES GEOMÉTRICOS Y CÓNICAS

COLEGIO NUESTRA SEÑORA DEL BUEN CONSEJO. Melilla LUGARES GEOMÉTRICOS Y CÓNICAS LUGARES GEOMÉTRICOS Y CÓNICAS 01. Halla la ecuación de la circunferencia de centro ( 5, 12) y radio 13. Comprueba que pasa por el punto (0, 0). 02. Halla las ecuaciones de los siguientes lugares geométricos:

Más detalles

UNIDAD 13 LA CIRCUNFERENCIA Y LA PARÁBOLA

UNIDAD 13 LA CIRCUNFERENCIA Y LA PARÁBOLA UNIDAD 13 LA CIRCUNFERENCIA Y LA PARÁBOLA Objetivo general. Al terminar esta Unidad aplicarás las definiciones y los elementos que caracterizan a la circunferencia y a la parábola en las soluciones de

Más detalles

Volumen de Sólidos de Revolución

Volumen de Sólidos de Revolución 60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido

Más detalles

Coordenadas polares. Si P es un punto cualquiera del plano, su posición queda determinada con el par ( r, ), donde: Ejemplo

Coordenadas polares. Si P es un punto cualquiera del plano, su posición queda determinada con el par ( r, ), donde: Ejemplo Coordenadas polares Sobre el plano elijamos un punto O, que denominamos Polo (u origen) y un rayo con origen O, que denominamos Eje Polar 1 2 Si P es un punto cualquiera del plano, su posición queda determinada

Más detalles

B23 Curvas cónicas Curvas cónicas

B23 Curvas cónicas Curvas cónicas Geometría plana B23 Curvas cónicas Curvas cónicas Superficie cónica de revolución es la engendrada por una recta que gira alrededor de otra a la que corta. Curvas cónicas son las que resultan de la intersección

Más detalles

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6 LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE Capítulo 7 Sec. 7.5 y 7.6 El Plano Complejo Se puede utilizar un plano de coordenadas para representar números complejos. Si cada

Más detalles

Lugar Geométrico. Se llama lugar geométrico a un conjunto de puntos que cumplen una determinada propiedad. Mediatriz

Lugar Geométrico. Se llama lugar geométrico a un conjunto de puntos que cumplen una determinada propiedad. Mediatriz 1 Lugar Geométrico Se llama lugar geométrico a un conjunto de puntos que cumplen una determinada propiedad. Mediatriz Mediatriz de un segmento es el lugar geométrico de los puntos del plano que equidistan

Más detalles

ELIPSE. Muchos cometas tienen órbitas extremadamente excéntricas. Por ejemplo, el cometa Halley, tiene una excentricidad orbital de casi 0.97!

ELIPSE. Muchos cometas tienen órbitas extremadamente excéntricas. Por ejemplo, el cometa Halley, tiene una excentricidad orbital de casi 0.97! ELIPSE Las órbitas de los planetas son elípticas. La excentricidad de la órbita de la Tierra es muy pequeña (menor de 0.2), de manera que la órbita es casi circular. La órbita de Plutón es la más excéntrica

Más detalles

LUGAR GEOMÉTRICO DE LAS RAICES (LGR)

LUGAR GEOMÉTRICO DE LAS RAICES (LGR) LUGAR GEOMÉTRICO DE LAS RAICES (LGR) DEFINICIÓN: El lugar geométrico de las raíces es la trayectoria formada por las raíces de una ecuación polinómica cuando un parámetro de ésta varía. En el caso de Sistemas

Más detalles

TECNICAS DE DISEÑO Y COMPENSACION

TECNICAS DE DISEÑO Y COMPENSACION TECNICAS DE DISEÑO Y COMPENSACION Técnicas para sistemas SISO invariantes en el tiempo Basadas en el lugar de las raices y respuesta en frecuencia Especificaciones de funcionamiento Exactitud o precisión

Más detalles

Guía de estudio Nº 3: Ejercicios propuestos sobre Lugares geométricos. Secciones cónicas

Guía de estudio Nº 3: Ejercicios propuestos sobre Lugares geométricos. Secciones cónicas U.C.V. Facultad de Ingeniería CÁLCULO I (5) Guía de estudio Nº : Ejercicios propuestos sobre Lugares geométricos. Secciones cónicas.- Determine la ecuación del lugar geométrico de los puntos (, ) del plano

Más detalles

TEMA 5. CURVAS CÓNICAS.

TEMA 5. CURVAS CÓNICAS. 5.1. GENERALIDADES. TEMA 5. CURVAS CÓNICAS. Se denominan secciones cónicas a aquellas superficies que son producidas por la intersección de un plano con una superficie cónica de revolución (una superficie

Más detalles

GEOMETRÍA ANALÍTICA PROBLEMARIO GUÍA DE PROBLEMAS PARA LOS EXÁMENES DEPARTAMENTALES

GEOMETRÍA ANALÍTICA PROBLEMARIO GUÍA DE PROBLEMAS PARA LOS EXÁMENES DEPARTAMENTALES PROBLEMARIO GUÍA DE PROBLEMAS PARA LOS EXÁMENES DEPARTAMENTALES CONTENIDO: 1. Conceptos básicos (Problemas 1-18). Línea recta (Problemas 19-6). Circunferencia (Problemas 7-4) 4. Parábola (Problemas 44-6)

Más detalles

Planos y Rectas. 19 de Marzo de 2012

Planos y Rectas. 19 de Marzo de 2012 el Geometría en el Planos y Rectas Universidad Autónoma Metropolitana Unidad Iztapalapa 19 de Marzo de 2012 el Anteriormente vimos que es posible encontrar un número infinito de vectores, no paralelos

Más detalles

22 CURVAS CÓNICAS- HIPÉRBOLAS

22 CURVAS CÓNICAS- HIPÉRBOLAS 22 CURVAS CÓNICAS- HIPÉRBOLAS 22.1 Características generales. La hipérbola se obtiene al cortar la superficie cónica por un plano paralelo al eje que corta las dos hojas de la cónica. 22.2 Focos y directrices.

Más detalles

Respuesta en frecuencia. Elizabeth Villota

Respuesta en frecuencia. Elizabeth Villota Elizabeth Villota 1 Desempeño en el dominio de la frecuencia SLIT 2do orden (masa-resorte-amortiguador) Forma espacio de estados Forma función de transferencia respuesta a un escalón diagramas de Bode

Más detalles

FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS LA HIPÉRBOLA

FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS LA HIPÉRBOLA FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO 10 TALLER Nº 8 SEMESTRE LA HIPÉRBOLA RESEÑA HISTÓRICA Apolonio de Perge (c. 6 190 a. C.), geómetra griego nacido en Perga (hoy Murtina

Más detalles

15. LUGAR DE LAS RAICES - CONSTRUCCION

15. LUGAR DE LAS RAICES - CONSTRUCCION 15. LUGAR DE LAS RAICES - CONSTRUCCION 15.1 INTRODUCCION El lugar de las raíces es una construcción gráfica, en el plano imaginario, de las raíces de la ecuación característica de un lazo de control para

Más detalles

Tema 3. GEOMETRIA ANALITICA.

Tema 3. GEOMETRIA ANALITICA. Álgebra lineal. Curso 087-009. Tema. Hoja 1 Tema. GEOMETRIA ANALITICA. 1. Hallar la ecuación de la recta: a) que pase por ( 4, ) y tenga pendiente 1. b) que pase por (0, 5) y tenga pendiente. c) que pase

Más detalles

4. Análisis de Sistemas Realimentados

4. Análisis de Sistemas Realimentados 4. Análisis de Sistemas Realimentados Parte 2 Panorama: Estabilidad y respuesta en frecuencia El criterio de estabilidad de Nyquist Márgenes de estabilidad Robustez CAUT1 Clase 6 1 Estabilidad y respuesta

Más detalles

Dibujo Técnico Curvas cónicas

Dibujo Técnico Curvas cónicas 23. CURVAS CÓNICAS 23.1. Características generales. Las curvas cónicas son las secciones planas de un cono de revolución. El cono de revolución es la superficie que genera una recta r al girar alrededor

Más detalles

1.- Álgebra de números complejos.

1.- Álgebra de números complejos. .- Álgebra de números complejos. a) Definición y representación geométrica. b) Sumas y productos de números complejos. c) Vectores y módulos en el plano complejo. d) Representación en forma exponencial.

Más detalles

TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos

TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos 64 TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos Crecimiento y decrecimiento. Máimos y mínimos relativos; puntos de infleión. Dada la función

Más detalles

Puntos y Vectores. 16 de Marzo de 2012

Puntos y Vectores. 16 de Marzo de 2012 Geometría en Puntos y Vectores Universidad Autónoma Metropolitana Unidad Iztapalapa 16 de Marzo de 2012 Introducción En Geometría analítica plana las relaciones y las propiedades geométricas se expresan

Más detalles

Soluciones de la ecuación de onda ( ) ( ) ( ) ONDAS PLANAS. Ecuación de onda en coordenadas cartesianas. Separación de variables.

Soluciones de la ecuación de onda ( ) ( ) ( ) ONDAS PLANAS. Ecuación de onda en coordenadas cartesianas. Separación de variables. ONDAS PLANAS Soluciones de la ecuación de onda cuación de onda en coordenadas cartesianas Ω+ Ω Ω Ω Ω + + + Ω Separación de variables Ω X Y Z d X dy dz + + + X d Y d Z d X d Y d d X dy Z d dz + + cuaciones

Más detalles

ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de Circunferencia.

ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de Circunferencia. ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de 2012. Circunferencia. Elementos de la circunferencia. El segmento de recta es una cuerda. El segmento de recta es una cuerda que pasa por el centro, por lo tanto

Más detalles

Nombre: Carné Ordinal. Parte I preguntas (1 punto c/u) Escriba la respuesta en el espacio indicado o encierre en un círculo la respuesta correcta:

Nombre: Carné Ordinal. Parte I preguntas (1 punto c/u) Escriba la respuesta en el espacio indicado o encierre en un círculo la respuesta correcta: INSTITUTO TECNOLÓGICO DE COSTA RICA II SEMESTRE 2013 ESCUELA DE INGENIERIA EN ELECTRÓNICA CURSO: EL-5408 CONTROL AUTOMÁTICO MEDIO: Examen 3 PROF: ING. EDUARDO INTERIANO Nombre: Carné Ordinal Parte I preguntas

Más detalles

Departamento de Ingenierías Eléctrica y Electrónica Universidad del Norte

Departamento de Ingenierías Eléctrica y Electrónica Universidad del Norte christianq@uninorte.edu.co Departamento de Ingenierías Eléctrica y Electrónica Universidad del Norte Respuestaenfrecuencia: Hacereferenciaalarespuestadeunsistemaen estadoestacionario td t i a una entradasinusoidal.

Más detalles

Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS

Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS XII APLICACIÓN: CÁLCULO DE ÁREAS El estudiante, hasta este momento de sus estudios, está familiarizado con el cálculo de áreas de figuras geométricas regulares a través del uso de fórmulas, como el cuadrado,

Más detalles

1. Obtener las coordenadas cartesianas del punto B simétrico del punto A(5,30 ), respecto al polo.

1. Obtener las coordenadas cartesianas del punto B simétrico del punto A(5,30 ), respecto al polo. SEMESTRE 018-1 SERIE CURVAS EN EL PLANO POLAR 1. Obtener las coordenadas cartesianas del punto B simétrico del punto A(5,30 ), respecto al polo.. Determinar las coordenadas polares del punto C simétrico

Más detalles