APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 6 EL CAMPO ELECTROSTÁTICO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 6 EL CAMPO ELECTROSTÁTICO"

Transcripción

1 CAMPO ELÉCTRICO REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 6 EL CAMPO ELECTROSTÁTICO El concepto físico de campo El concepto campo surge ante la necesidad de explicar la forma de interacción entre cuerpos en ausencia de contacto físico y sin medios de sustentación para las posibles interacciones. La acción a distancia se explica, entonces, mediante efectos provocados por la entidad causante de la interacción, sobre el espacio mismo que la rodea, permitiendo asignar a dicho espacio propiedades medibles. Así, será posible hacer corresponder a cada punto del espacio valores que dependerán de la magnitud del cuerpo que provoca la interacción y de la ubicación del punto que se considera. Las cargas eléctricas no precisan de ningún medio material para ejercer su influencia sobre otras, de ahí que las fuerzas eléctricas sean consideradas fuerzas de acción a distancia, es por eso que se recurre a la idea de campo para facilitar la descripción en términos físicos. El campo eléctrico El campo eléctrico asociado a una carga aislada o a un conjunto de cargas es aquella región del espacio en donde se dejan sentir sus efectos. Así, si en un punto cualquiera del espacio en donde está definido un campo eléctrico se coloca una carga de prueba, surgirán fuerzas eléctricas de atracción o de repulsión sobre ella. Una vez conocido el campo en un punto no necesitamos saber quién lo origina para calcular la fuerza sobre una carga u otra propiedad relacionada con él.

2 Considérese la figura, la carga Q está fija en una determinada posición, si se coloca otra carga q en un punto P 1, a cierta distancia de Q, aparecerá una fuerza eléctrica actuando sobre q. Si la carga q se ubica en otros puntos cualesquiera, tales como P2, P3 etc., evidentemente, en cada uno de ellos también estaría actuando sobre q una fuerza eléctrica, ejercida por Q. Para describir este hecho, se dice que en cualquier punto del espacio en torno a Q existe un campo eléctrico originado por esta carga. El campo eléctrico puede representarse, en cada punto del espacio, por un vector, usualmente simbolizado por y que se denomina vector campo eléctrico, su módulo se denomina intensidad del campo eléctrico, está dado por la esta expresión. E = F q La unidad de intensidad de campo E es el cociente entre la unidad de fuerza y la unidad de carga; en el SI equivale, por tanto, al newton (N)/coulomb (C). LÍNEA DE FUERZA Una forma muy útil de esquematizar gráficamente un campo, es trazar líneas que vayan en la misma dirección que dicho campo en varios puntos, estas se realiza a través de las llamadas líneas de fuerza. Estas son líneas imaginarias que describen los cambios en dirección de las fuerzas al pasar de un punto a otro. En el caso del campo eléctrico, puesto que tiene magnitud y sentido, se trata de una cantidad vectorial, y las líneas de fuerza o líneas de campo eléctrico indican las trayectorias que seguirían las partículas si se las abandonase libremente a la influencia de las fuerzas del campo. Por tanto, el campo eléctrico será un vector tangente a la línea de fuerza en cualquier punto considerado. Propiedades: 1. El vector campo eléctrico es tangente a las líneas de fuerza en cada punto. Como el número de puntos en el espacio es infinito, sólo se dibujan algunas líneas representativas y que indican el campo, dibujando líneas continuas que empiezan o terminan en las cargas. Parten de cargas positivas y llegan a cargas negativas.

3 2. En consecuencia el número de líneas de fuerza por unidad de superficie disminuye en forma inversamente proporcional a r 2 al igual que disminuye el campo eléctrico. Características de las líneas de fuerza: El número de líneas que parten de una carga positiva o llegan a una negativa es proporcional a la carga. Las líneas se dibujan simétricamente saliendo o entrando en la carga puntual. Las líneas empiezan o terminan solamente en las cargas. La densidad de líneas es proporcional a la intensidad de campo eléctrico. El campo es tangente a la línea de fuerza. Las líneas de fuerza no se cortan nunca. (unicidad del campo).

4 CÁLCULO DEL CAMPO ELÉCTRICO E Campo creado por una Carga Puntual Tomando en cuenta la siguiente figura: Y partiendo de la expresión del campo eléctrico y de la ley de Coulomb, se obtiene: Como E = F y F = k q. q 0 sustituyendo F en E se tiene: q 0 r2 E = k q. q 0 r 2 = k. q. q 0 finalmente se tiene: q 0 q 0. r2 E = k. q r 2 Campo debido a un grupo de cargas puntuales. Observemos la figura, en este caso el campo eléctrico en el punto P es la suma vectorial de los campos debido a cada una de las cargas, es decir: E = E 1 + E 2 + E E n = k n i=1 q i r i 2

5 Campo debido a una distribución continua de carga. En este caso, el campo debido a un elemento diferencial de carga dq es: de modo que el campo total se obtiene por integración en dq: donde dq esta dado por, ρ=densidad de volumen, dv= elemento diferencial de volumen, σ=densidad de superficie, ds=elemento diferencial de superficie, λ= densidad de longitud, dl=elemento diferencial de longitud. DIPOLO EN UN CAMPO ELÉCTRICO En algunos átomos y moléculas, la nube electrónica es esféricamente simétrica, un átomo o molécula de este tipo se dice que es no polar. Sin embargo, en presencia de un campo eléctrico externo, las cargas positivas y negativas se separan y se comporta como un dipolo eléctrico, y presenta momento dipolar inducido. En algunas moléculas, el centro de la carga positiva no coincide con el centro de la carga negativa, incluso en ausencia de un campo eléctrico externo. Estas moléculas polares se dice que tienen un momento dipolar permanente.

6 Cuando se coloca una molécula de este tipo dentro de un campo eléctrico uniforme, no existe sobre ella fuerza neta, pero sí un par que tiende a hacer girar la molécula, de modo que el dipolo se alinea con el campo. En la figura vemos que el momento alrededor de la carga negativa tiene la magnitud F. L. senθ = q. E. L senθ = p. E. senθ El vector momento está dirigido normalmente al papel, hacia dentro, de tal modo que tiende a situar el momento dipolar p en la dirección del campo eléctrico E. El momento del par puede escribirse convenientemente como el producto vectorial del momento dipolar p y el campo eléctrico E: τ = p x E Cuando el dipolo gira un ángulo dθ el campo eléctrico realiza un trabajo: dw = τdθ = p. E. senθ. dθ El signo menos es debido a que el momento tiende a disminuir dθ. Igualando este trabajo con la disminución de energía potencial, resulta: du = dw = τdθ = p. E. senθ. dθ e integrando U = p. E. cosθ U o Es costumbre elegir como energía potencial cero la energía potencial correspondiente a una situación en la que el dipolo es perpendicular al campo eléctrico, es decir, cuando θ = 0 o. Entonces U o = 0, y la energía potencial del dipolo es: FLUJO DEL CAMPO ELÉCTRICO U = p. E. cosθ = p x E Conociendo el campo eléctrico podemos determinar pues por medio de una cierta convención el número de líneas de fuerza por unidad de superficie, esto es el flujo eléctrico, es decir, la medida del número de líneas de campo que atraviesan cierta superficie. Cuando la superficie que está siendo atravesada encierra alguna carga neta, el número total de líneas que pasan

7 a través de tal superficie es proporcional a la carga neta que está en el interior de ella. El número de líneas que se cuenten es independiente de la forma de la superficie que encierre a la carga. Supongamos un campo uniforme en una región del espacio, el número de líneas de fuerza por unidad de superficie es proporcional al valor del campo eléctrico y el número de líneas que atraviesa esta superficie es proporcional al producto E x A. Siendo N el número de líneas de fuerza N E x A y el producto E.A se le denomina flujo Φ perpendicular al campo. Φ = E. A y la unidad N. m 2 C La constante de proporcionalidad entre Φ y N depende de la selección del número de líneas de fuerza que entren o salgan de la carga unidad. Cuando existe un ángulo entre el plano y las líneas de fuerza disminuye el campo y sucede que: A n = A. cosθ Donde A n es la superficie normal al campo. Como Φ = E. A n = E. A. cosθ por lo tanto Φ = E. A. cosθ Siendo θ el ángulo formado entre la normal al plano y las líneas de fuerza. LEY DE GAUSS La ley de Gauss desempeña un papel importante dentro de la electrostática y del electromagnetismo por dos razones básicas: En primer lugar, porque permite calcular de forma simple el campo eléctrico debido a una distribución de cargas cuando ésta presenta buenas propiedades de simetría. En estos casos, suele resultar mucho más simple usar la ley de Gauss que obtener E por integración directa sobre la distribución de cargas. En segundo lugar, porque la ley de Gauss constituye una ley básica, no sólo de la electrostática, sino del electromagnetismo en general. De hecho, constituye una de las ecuaciones de Maxwell. Como veremos, la ley de Gauss es esencialmente una ecuación matemática que relaciona el campo eléctrico sobre una superficie cerrada con la carga eléctrica encerrada en su interior.

8 Ley de Gauss: el flujo eléctrico neto a través de una superficie cerrada cualquiera es igual a la carga neta que se encuentra dentro de ella dividida por ε 0 : Φ = E. da = Q int ε 0 Donde Q int es la carga neta dentro de la superficie. Φ = Q int ε 0 Desde el punto de vista físico, lo que nos dice la ley de Gauss es que la carga eléctrica constituye la fuente del flujo eléctrico o, lo que es lo mismo, la fuente de las líneas de campo.

CAMPO ELECTRICO. Campo Eléctrico. Introducción.

CAMPO ELECTRICO. Campo Eléctrico. Introducción. CAMPO ELECTRICO Introducción. El campo eléctrico es la zona del espacio donde cargas eléctricas ejercen su influencia. Es decir que cada carga eléctrica con su presencia modifica las propiedades del espacio

Más detalles

Temario 4.Campo Eléctrico

Temario 4.Campo Eléctrico Campo Eléctrico 1 1 Temario 4.Campo Eléctrico 4.1 Concepto y definición de campo eléctrico 4.2 Campo eléctrico producido por una y varias cargas puntuales. 4.3 Lineas de Campo 4.4 Un conductor eléctrico

Más detalles

1. INTRODUCCIÓN HISTÓRICA. Gilbert ( ) descubrió que la electrificación era un fenómeno de carácter general.

1. INTRODUCCIÓN HISTÓRICA. Gilbert ( ) descubrió que la electrificación era un fenómeno de carácter general. ELECTROSTÁTICA 1 Introducción. 2 Carga eléctrica. 3 Ley de Coulomb. 4 Campo eléctrico y principio de superposición. 5 Líneas de campo eléctrico. 6 Flujo eléctrico. 7 Teorema de Gauss. Aplicaciones.. 1.

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

Campo Eléctrico. Es el portador de la fuerza eléctrica. q 2. q 1

Campo Eléctrico. Es el portador de la fuerza eléctrica. q 2. q 1 Campo Eléctrico Es el portador de la fuerza eléctrica. q 1 q 2 E1 E2 Por qué se usa el campo eléctrico? Porque es útil simplificar el problema separándolo en partes. Porque nos permite pensar en una situación

Más detalles

Última modificación: 1 de agosto de

Última modificación: 1 de agosto de Contenido CAMPO ELÉCTRICO EN CONDICIONES ESTÁTICAS 1.- Naturaleza del electromagnetismo. 2.- Ley de Coulomb. 3.- Campo eléctrico de carga puntual. 4.- Campo eléctrico de línea de carga. 5.- Potencial eléctrico

Más detalles

Física 2º Bacharelato

Física 2º Bacharelato Física 2º Bacharelato DPARTAMNTO D FÍSICA QUÍMICA lectrostática 11/02/08 Nombre: Problemas 1. n la región comprendida entre dos placas cargadas, x véase la figura, existe un campo eléctrico uniforme de

Más detalles

TEMA 3: CAMPO ELÉCTRICO

TEMA 3: CAMPO ELÉCTRICO TEMA 3: CAMPO ELÉCTRICO o Naturaleza electrica de la materia. o Ley de Coulomb. o Principio de superposicion. o Intensidad del campo eléctrico. o Lineas del campo electrico. o Potencial eléctrico. o Energia

Más detalles

CAMPO ELÉCTRICO ÍNDICE

CAMPO ELÉCTRICO ÍNDICE CAMPO ELÉCTRICO ÍNDICE 1. Introducción 2. Ley de Coulomb 3. Campo eléctrico 4. Líneas de campo eléctrico 5. Distribuciones continuas de carga eléctrica 6. Flujo del campo eléctrico. Ley de Gauss 7. Potencial

Más detalles

Física 2º Bach. Campo eléctrico 19/02/ Calcula: a) La intensidad del campo eléctrico en el centro M de la base de un triángulo

Física 2º Bach. Campo eléctrico 19/02/ Calcula: a) La intensidad del campo eléctrico en el centro M de la base de un triángulo Física 2º Bach. Campo eléctrico 19/02/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [3 PUNTOS /UNO] 1. Dos conductores esféricos concéntricos huecos, de radios 6,00 y 10,0 cm, están cargados con

Más detalles

Intensidad del campo eléctrico

Intensidad del campo eléctrico Intensidad del campo eléctrico Intensidad del campo eléctrico Para describir la interacción electrostática hay dos posibilidades, podemos describirla directamente, mediante la ley de Coulomb, o través

Más detalles

Concepto de Campo. Homogéneo No homogéneo. 4Un campo de temperaturas (Escalar) 4Un campo de velocidades (Vectorial) 4Campo gravitacional (Vectorial)

Concepto de Campo. Homogéneo No homogéneo. 4Un campo de temperaturas (Escalar) 4Un campo de velocidades (Vectorial) 4Campo gravitacional (Vectorial) CAMPO ELECTRICO Concepto de Campo l El concepto de Campo es de una gran importancia en Ciencias y, particularmente en Física. l l La idea consiste en atribuirle propiedades al espacio en vez de considerar

Más detalles

Exceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética.

Exceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética. 1 Carga eléctrica Campo léctrico xceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética. Un culombio es la

Más detalles

Tema 7: Polarización. Índice

Tema 7: Polarización. Índice Tema 7: Polarización 1 Índice Introducción Vector polarización Vector desplazamiento Leyes constitutivas Energía en presencia de dieléctricos Fuerzas sobre dieléctricos 2 Introducción Conductores: poseen

Más detalles

Instituto de Física Universidad de Guanajuato Agosto 2007

Instituto de Física Universidad de Guanajuato Agosto 2007 Instituto de Física Universidad de Guanajuato Agosto 2007 Física III Capítulo I José Luis Lucio Martínez El material que se presenta en estas notas se encuentra, en su mayor parte, en las referencias que

Más detalles

INTENSIDAD DE CAMPO ELECTRICO (E)

INTENSIDAD DE CAMPO ELECTRICO (E) CAMPO ELECTRICO Región donde se produce un campo de fuerzas. Se representa con líneas que indican la dirección de la fuerza eléctrica en cada punto. Una carga de prueba observa la aparición de fuerzas

Más detalles

Módulo 1: Electrostática Campo eléctrico

Módulo 1: Electrostática Campo eléctrico Módulo 1: Electrostática Campo eléctrico 1 Campo eléctrico Cómo puede ejercerse una fuerza a distancia? Para explicarlo se introduce el concepto de campo eléctrico Una carga crea un campo eléctrico E en

Más detalles

Fuerzas eléctricas y campo eléctrico

Fuerzas eléctricas y campo eléctrico Fuerzas eléctricas y campo eléctrico Física II Grado en Ingeniería de Organización Industrial Primer Curso Joaquín Bernal Méndez Curso 011-01 Departamento de Física Aplicada III Universidad de Sevilla

Más detalles

Flujo Eléctrico. Hemos aprendido a calcular el E establecido por un sistema de cargas puntuales o una distribución de carga uniforme o continua.

Flujo Eléctrico. Hemos aprendido a calcular el E establecido por un sistema de cargas puntuales o una distribución de carga uniforme o continua. Ley de Gauss Presentación basada en el material contenido en: R. Serway,; Physics for Scientists and Engineers, Saunders College Publishers, 3 rd edition. Flujo Eléctrico Hemos aprendido a calcular el

Más detalles

El Campo Eléctrico INTRODUCCIÓN

El Campo Eléctrico INTRODUCCIÓN INTRODUCCIÓN En este tema introduciremos el campo eléctrico y veremos cómo puede describirse mediante las líneas de campo, las cuales indican la magnitud y dirección del campo, discutiremos el comportamiento

Más detalles

Campo Eléctrico en el vacío

Campo Eléctrico en el vacío Campo Eléctrico en el vacío Electrostática: Interacción entre partículas cargadas q1 q2 Ley de Coulomb En el vacío: K = 8.99 109 N m2/c2 0 = 8.85 10 12 C2/N m2 Balanza de torsión Electrostática: Interacción

Más detalles

FISICA 2º BACHILLERATO CAMPO ELECTRICO

FISICA 2º BACHILLERATO CAMPO ELECTRICO ) CMPO ELÉCTRICO Cuando en el espacio vacío se introduce una partícula cargada, ésta lo perturba, modifica, haciendo cambiar su geometría, de modo que otra partícula cargada que se sitúa en él, estará

Más detalles

Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers.

Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition. Campo eléctrico, definición Se dice que

Más detalles

Interacciones Eléctricas La Ley de Coulomb

Interacciones Eléctricas La Ley de Coulomb Interacciones Eléctricas La Ley de Coulomb 1. Introducción La Electrostática se ocupa del estudio de las interacciones entre cargas eléctricas en reposo. Las primeras experiencias relativas a los fenómenos

Más detalles

El flujo de un campo vectorial

El flujo de un campo vectorial Ley de Gauss Ley de Gauss Hasta ahora todo lo que hemos hecho en electrostática se basa en la ley de Coulomb. A partir de esa ley hemos definido el campo eléctrico de una carga puntual. Al generalizar

Más detalles

29.1. El flujo de un campo vectorial. Capítulo 29

29.1. El flujo de un campo vectorial. Capítulo 29 29 La ley de Gauss La ley de Coulomb se puede usar para calcular E para cualquier distribución discreta o continua de cargas en reposo. Cuando se presenten casos con alta simetría será más conveneinte

Más detalles

Unidad Nº 10. Magnetismo

Unidad Nº 10. Magnetismo Unidad Nº 10 Magnetismo 10.1. Definición y propiedades del campo magnético. Fuerza magnética en una corriente. Movimiento de cargas en un campo magnético. 10.2. Campos magnéticos creados por corrientes.

Más detalles

Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura

Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura Módulo 2. Campo electrostático 4. Consideremos dos superficies gaussianas esféricas, una de radio r y otra de radio 2r, que

Más detalles

Física II. La ley de Gauss

Física II. La ley de Gauss Física II. La ley de Gauss Flujo del vector campo eléctrico El flujo eléctrico ( más correctamente, flujo del vector campo eléctrico) es el producto de la magnitud del campo eléctrico y el área superficial,

Más detalles

CAPÍTULO III Electrostática

CAPÍTULO III Electrostática CAPÍTULO III Electrostática Fundamento teórico I.- Ley de Coulomb Ia.- Ley de Coulomb La fuerza electrostática F que una carga puntual q con vector posición r ejerce sobre una carga puntual q con vector

Más detalles

CAMPO ELÉCTRICO. Un campo eléctrico es una región en la cual se manifiestan fuerzas de atracción o repulsión entre cargas.

CAMPO ELÉCTRICO. Un campo eléctrico es una región en la cual se manifiestan fuerzas de atracción o repulsión entre cargas. CAMPO LÉCTRICO 1. INTRODUCCIÓN Un campo eléctrico es una región en la cual se manifiestan fuerzas de atracción o repulsión entre cargas. Una carga de prueba es una carga considerada siempre positiva, ue

Más detalles

II. ELECTROSTÁTICA. Carga eléctrica:

II. ELECTROSTÁTICA. Carga eléctrica: FÍSICA II TELECOM Profesor BRUNO MAGALHAES II. ELECTROSTÁTICA La electrostática es la rama de la física que estudia los efectos mutuos que se producen entre los cuerpos como consecuencia de su carga eléctrica.

Más detalles

Física II. Electrostática

Física II. Electrostática Física II Electrostática Electrostática Concepto de Electrostática Conservación de la Carga Fuerzas y Cargas Eléctricas Ley de Coulomb & Cualitativa Conductores & Aislantes Electrostática Carga por Fricción

Más detalles

INTERACCIÓN ELÉCTRICA

INTERACCIÓN ELÉCTRICA INTERACCIÓN ELÉCTRICA 1. La carga eléctrica. 2. La ley de Coulomb. 3. El campo eléctrico. 4. La energía potencial. 5. El potencial electroestático. 6. El campo eléctrico uniforme. 7. El flujo de campo

Más detalles

Magnitud. E Intensidad de campo eléctrico N/C Q Carga que crea el campo eléctrico C

Magnitud. E Intensidad de campo eléctrico N/C Q Carga que crea el campo eléctrico C Fuerza entre dos Cargas (Ley de Coulomb) Fuerza total sobre una determinada carga Intensidad de campo eléctrico creado por una carga puntual en un punto F= K Q. q /r 2. Ko = 1/(4πε o )= = 9. 10 9 N. m

Más detalles

Notas para la asignatura de Electricidad y Magnetismo Unidad 1: Electrostática

Notas para la asignatura de Electricidad y Magnetismo Unidad 1: Electrostática Notas para la asignatura de Electricidad y Magnetismo Unidad 1: Electrostática Presenta: M. I. Ruiz Gasca Marco Antonio Instituto Tecnológico de Tláhuac II Agosto, 2015 Marco Antonio (ITT II) México D.F.,

Más detalles

A. No existe. B. Es una elipse. C. Es una circunferencia. D. Es una hipérbola equilátera.

A. No existe. B. Es una elipse. C. Es una circunferencia. D. Es una hipérbola equilátera. CUESTIONES SOBRE CAMPO ELECTROSTÁTICO 1.- En un campo electrostático, el corte de dos superficies equiescalares con forma de elipsoide, con sus centros separados y un mismo eje mayor: No existe. B. Es

Más detalles

Campo y potencial eléctrico de una carga puntual

Campo y potencial eléctrico de una carga puntual Campo y potencial eléctrico de una carga puntual La ley de Coulomb nos describe la interacción entre dos cargas eléctricas del mismo o de distinto signo. La fuerza que ejerce la carga Q sobre otra carga

Más detalles

Electricidad y Magnetismo. Dr. Arturo Redondo Galván 1

Electricidad y Magnetismo. Dr. Arturo Redondo Galván 1 lectricidad y Magnetismo 1 UNIDAD I Conocer y comprender la teoría básica de la electrostática, la carga eléctrica, la materia, sus manifestaciones microscópicas y macroscópicas, la fuerza, el campo, el

Más detalles

Conferencia Nº1 Sumario. Objetivos. Desarrollo. Carga eléctrica. Propiedades. Distribución continua de cargas.

Conferencia Nº1 Sumario. Objetivos. Desarrollo. Carga eléctrica. Propiedades. Distribución continua de cargas. Conferencia Nº1. Carga eléctrica. Ley de Coulomb. Ley de Gauss. Sumario. Carga eléctrica. Propiedades de la carga eléctrica. Ley de Coulomb. Principio de superposición. Campo eléctrico. Vector intensidad

Más detalles

ELECTRICIDAD Y MAGNETISMO

ELECTRICIDAD Y MAGNETISMO 26-9-2011 UNAM ELECTRICIDAD Y MAGNETISMO TEMA DOS ING. SANTIAGO GONZÁLEZ LÓPEZ CAPITULO DOS CAPACITORES Un capacitor es un elemento que almacena carga y capacitancia la propiedad que la determina cuanta

Más detalles

Tema 3: Campos estáticos

Tema 3: Campos estáticos Tema 3: Campos estáticos 1 Índice Ecuaciones en el caso estacionario Electrostática Solución del problema electrostático Cálculo de campos mediante Ley de Gauss Energía electrostática Desarrollo multipolar

Más detalles

El término magnetismo

El término magnetismo El término magnetismo tiene su origen en el nombre que en Grecia clásica recibía una región del Asia Menor, entonces denominada Magnesia (abundaba una piedra negra o piedra imán capaz de atraer objetos

Más detalles

1. Defina la ley de Coulom (escriba su ecuación, unidades y a cuanto equivale K y la )

1. Defina la ley de Coulom (escriba su ecuación, unidades y a cuanto equivale K y la ) 1. Defina la ley de Coulom (escriba su ecuación, unidades y a cuanto equivale K y la ) Ley de Coulomb La fuerza entre cargas eléctricas es directamente proporcional al producto de dichas cargas e inversamente

Más detalles

Experimento 1. Líneas de fuerza y líneas equipotenciales. Objetivos. Teoría

Experimento 1. Líneas de fuerza y líneas equipotenciales. Objetivos. Teoría Experimento 1. Líneas de fuerza y líneas equipotenciales Objetivos 1. Describir el concepto de campo, 2. Describir el concepto de líneas de fuerza, 3. Describir el concepto de líneas equipotenciales, 4.

Más detalles

ds = ds = 4πr2 Kq r 2 φ = q ε

ds = ds = 4πr2 Kq r 2 φ = q ε 1 El teorema de Gauss. Supongamos una superficie que es atravesada por las líneas de fuerza de un campo eléctrico. Definimos flujo de dicho campo eléctrico a través de la superficie como φ = E S = E S

Más detalles

Carga Eléctrica. Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento.

Carga Eléctrica. Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento. ELECTROSTATICA Carga Eléctrica Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento. Aparecen fuerzas de atracción n o repulsión

Más detalles

Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers.

Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition. Forma vectiorial de un campo eléctrico

Más detalles

Cálculo de campos eléctricos por medio del principio de superposición.

Cálculo de campos eléctricos por medio del principio de superposición. Cálculo de campos eléctricos por medio del principio de superposición. En la clase anterior hemos introducido varios conceptos: Carga. Interacción entre cargas (Ley de Coulomb). Campo campo eléctrico.

Más detalles

Física 2º Bach. Campo eléctrico 11/02/09

Física 2º Bach. Campo eléctrico 11/02/09 Física 2º ach ampo eléctrico 11/02/09 EPRTMENTO E FÍSI E QUÍMI Problemas Nombre: [3 PUNTO /UNO] 1 Una partícula de 2,00 µg y 5,00 p entra perpendicularmente a un campo eléctrico constante producido por

Más detalles

NORMAL SUPERIOR LA HACIENDA

NORMAL SUPERIOR LA HACIENDA NORMAL SUPERIOR LA HACIENDA DPTO. DE CIENCIAS NATURALES ASIGNATURA: FISICA NIVEL 11 o GRADO DOCENTE: MATÍAS ENRIQUE PUELLO CHAMORRO 1 1. Campo eléctrico Las cargas eléctricas no precisan de ningún medio

Más detalles

TEMA 3:ELECTROSTATICA

TEMA 3:ELECTROSTATICA TEMA 3:ELECTROSTATICA Escribir y aplicar la ley de Coulomb y aplicarla a problemas que involucran fuerzas eléctricas. Definir el electrón, el coulomb y el microcoulomb como unidades de carga eléctrica.

Más detalles

Ley de GAUSS y Aplicaciones

Ley de GAUSS y Aplicaciones Fisica III -9 Cátedra de Física Experimental II Fisica III Ley de GAUSS y Aplicaciones Prof. Dr. Victor H. Rios 9 Fisica III -9 Contenidos - Fundamentos básicos - Flujo de campo eléctrico. - Ley de Gauss.

Más detalles

Campo Magnético en un alambre recto.

Campo Magnético en un alambre recto. Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar

Más detalles

Los lugares geométricos de todos los puntos del espacio en los cuales la magnitud escalar tiene un mismo valor.

Los lugares geométricos de todos los puntos del espacio en los cuales la magnitud escalar tiene un mismo valor. 2. 2. Introducción A lo largo del estudio de la Física surgen una serie de propiedades, tanto de magnitudes escalares como vectoriales, que se expresan por medio de nuevos conceptos tales como gradiente,

Más detalles

Ley de Gauss. Ley de Gauss

Ley de Gauss. Ley de Gauss Objetivo: Ley de Gauss Hasta ahora, hemos considerado cargas puntuales Cómo podemos tratar distribuciones más complicadas, por ejemplo, el campo de un alambre cargado, una esfera cargada, o un anillo cargado?

Más detalles

Capítulo 10. Rotación de un Cuerpo Rígido

Capítulo 10. Rotación de un Cuerpo Rígido Capítulo 10 Rotación de un Cuerpo Rígido Contenido Velocidad angular y aceleración angular Cinemática rotacional Relaciones angulares y lineales Energía rotacional Cálculo de los momentos de inercia Teorema

Más detalles

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q.

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q. 1.4. Trabajo en un campo eléctrico. Potencial Clases de Electromagnetismo. Ariel Becerra Al desplazar una carga de prueba q en un campo eléctrico, las fuerzas eléctricas realizan un trabajo. Este trabajo

Más detalles

Departamento de Ingenierías Eléctrica y Electrónica Universidad del Norte

Departamento de Ingenierías Eléctrica y Electrónica Universidad del Norte christianq@uninorte.edu.co Departamento de Ingenierías Eléctrica y Electrónica Universidad del Norte Ejemplo: Considere el sistema de la figura: G(s) tiene un par de polos complejos conjugados en s = 1

Más detalles

2- El flujo de un campo vectorial se define para una superficie abierta o cerrada?

2- El flujo de un campo vectorial se define para una superficie abierta o cerrada? ASIGNATURA FISICA II AÑO 2012 GUIA NRO. 2 LEY DE GAUSS Bibliografía Obligatoria (mínima) Capítulo 24 Física de Serway Tomo II Apunte de la cátedra: Capìtulo III PREGUNTAS SOBRE LA TEORIA Las preguntas

Más detalles

GUÍA N o 1 FÍSICA GENERAL II LEY DE COULOMB Y CAMPO ELÉCTRICO

GUÍA N o 1 FÍSICA GENERAL II LEY DE COULOMB Y CAMPO ELÉCTRICO GUÍA N o 1 FÍSICA GENERAL II LEY DE COULOMB Y CAMPO ELÉCTRICO Objetivos de aprendizaje: Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Entender los fenómenos de

Más detalles

Ley de Gauss. Líneas de fuerza

Ley de Gauss. Líneas de fuerza Ley de Gauss Líneas de fuerza El campo eléctrico se formula a partir de la fuerza que experimentaría, en cada punto del espacio, una carga de pruebas. En esta forma, se define cuantitativamente la intensidad

Más detalles

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que

Más detalles

DIELÉCTRICO (material no conductor o aislante) en el

DIELÉCTRICO (material no conductor o aislante) en el II. Propiedades Eléctricas de la Materia Estructura Molecular de un Dieléctrico: Cuando un cuerpo conductor se coloca dentro de un campo eléctrico, los electrones libres situados dentro de él se mueven

Más detalles

Unidad I: Electrostática.

Unidad I: Electrostática. Unidad I: Electrostática. I. Naturaleza eléctrica de la sustancia. En la electrostática se aborda el estudio de las propiedades estáticas de las cargas eléctricas. La palabra electricidad procede del griego

Más detalles

Campos Electromagnéticos Estáticos

Campos Electromagnéticos Estáticos Capítulo 3: Campos Electromagnéticos Estáticos Flujo de un campo vectorial Superficie cerrada Ley de Gauss Karl Friedrich Gauss (1777-1855) Flujo de E generado por una carga puntual Superficie arbitraria

Más detalles

Calcular la diferencia de potencial entre el centro de la esfera y el infinito.

Calcular la diferencia de potencial entre el centro de la esfera y el infinito. Problema 2.1 Carga volumétrica, principio de superpo- sición Figura 2.1. Esfera con distribución de carga no simétrica (Problema 2.1) Una esfera no conductora de radio R está dividida es dos semiesferas.

Más detalles

Electricidad y Magnetismo. Ley de Coulomb.

Electricidad y Magnetismo. Ley de Coulomb. Electricidad y Magnetismo. Ley de Coulomb. Electricidad y Magnetismo. 2 Electricidad y Magnetismo. 3 Electricidad y Magnetismo. 4 Electricidad y Magnetismo. 5 Electricidad y Magnetismo. Electrización es

Más detalles

flujo de campo magnético Φ

flujo de campo magnético Φ El flujo de campo magnético Φ (representado por la letra griega fi Φ), es el número total de líneas de inducción magnética que atraviesa una superficie y se calcula a través del campo magnético. Definimos

Más detalles

Operadores diferenciales

Operadores diferenciales Apéndice A Operadores diferenciales A.1. Los conceptos de gradiente, divergencia y rotor Sobre el concepto de gradiente. Si f r) es una función escalar, entonces su gradiente, en coordenadas cartesianas

Más detalles

1. V F El producto escalar de dos vectores es siempre un número real y positivo.

1. V F El producto escalar de dos vectores es siempre un número real y positivo. TEORIA TEST (30 %) Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo la opción que crea correcta. Acierto=1 punto; blanco=0; error= 1. 1. V F El producto escalar de

Más detalles

Essential University Physics

Essential University Physics Essential University Physics Richard Wolfson 20 Carga Eléctrica, Fuerza, y Campo PowerPoint Lecture prepared by Richard Wolfson Slide 20-1 En esta exposición usted aprenderá Como la materia y muchas de

Más detalles

Capítulo 2. Ley de Gauss

Capítulo 2. Ley de Gauss Capítulo 2. Ley de Gauss En estos apuntes se presenta un resumen de los contenidos tratados en más detalle en el libro: Física para la Ciencia y la Tecnología (Volumen 2) Autors P. A. Tipler i E. Mosca

Más detalles

Problema 16: Condensador Plano

Problema 16: Condensador Plano UNIVERSIDAD DE MURCIA Miguel Albaladejo Serrano Licenciatura en Física mas4@alu.um.es Problema 6: Condensador Plano Miguel Albaladejo Serrano. Enunciado Dos placas infinitas, paralelas, conductoras, están

Más detalles

28.1. Los campos. Capítulo 28

28.1. Los campos. Capítulo 28 28 El campo eléctrico El 25 de agosto de 1989, doce años después de su lanzamiento, la nave espacial Voyager 2 pasó cerca del planeta Neptuno, a una distancia de 4.4 10 9 km. de la Tierra. Entre otros

Más detalles

Unidad I: Electrostática.

Unidad I: Electrostática. Unidad I: Electrostática. I. Naturaleza eléctrica de la sustancia. En la electrostática se aborda el estudio de las propiedades estáticas de las cargas eléctricas. La palabra electricidad procede del griego

Más detalles

1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES.

1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES. 1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES. a) CONCEPTO DE FUERZA La fuerza es una magnitud asociada a las interacciones entre los sistemas materiales (cuerpos). Para que se

Más detalles

AUXILIAR 1 PROBLEMA 1

AUXILIAR 1 PROBLEMA 1 AUXILIAR 1 PROBLEMA 1 Calcular el campo eléctrico en cualquier punto del espacio, producido por una recta de carga infinita (con densidad lineal de carga λ0). Luego, aplicar el teorema de Gauss para obtener

Más detalles

a) La distancia que ha recorrido el electrón cuando su velocidad se ha reducido a 0' m/s

a) La distancia que ha recorrido el electrón cuando su velocidad se ha reducido a 0' m/s 1- Un electrón es lanzado con una velocidad de 2.10 6 m/s paralelamente a las líneas de un campo eléctrico uniforme de 5000 V/m. Determinar: a) La distancia que ha recorrido el electrón cuando su velocidad

Más detalles

CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA

CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA Este documento enuncia de forma más detallada la formulación matemática que permite el estudio de campos eléctricos debido a distribuciones

Más detalles

4.3 Almacenamiento de energía eléctrica.

4.3 Almacenamiento de energía eléctrica. CAPÍTULO 4 Energía electrostática y capacidad Índice del capítulo 4 4 4. Energía potencial electrostática. 4. Capacidad. 4.3 Almacenamiento de energía eléctrica. 4.4 Asociación de condensadores. 4.5 Dieléctricos.

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

TEMA 2. CAMPO ELECTROSTÁTICO

TEMA 2. CAMPO ELECTROSTÁTICO TEMA 2. CAMPO ELECTROSTÁTICO CUESTIONES TEÓRICAS RELACIONADAS CON ESTE TEMA. Ejercicio nº1 Indica qué diferencias respecto al medio tienen las constantes K, de la ley de Coulomb, y G, de la ley de gravitación

Más detalles

CAMPO ELÉCTRICO Nm 2

CAMPO ELÉCTRICO Nm 2 CAMPO ELÉCTRICO 1. Dos cargas eléctricas positivas e iguales de valor 3x10-6 C están situadas en los puntos A(0,2) y B(0,-2) del plano XY. Otras dos cargas iguales Q están localizadas en los puntos C(4,2)

Más detalles

Momento angular de una partícula. Momento angular de un sólido rígido

Momento angular de una partícula. Momento angular de un sólido rígido Momento angular de una partícula Se define momento angular de una partícula respecto de del punto O, como el producto vectorial del vector posición r por el vector momento lineal mv L=r mv Momento angular

Más detalles

Condensador. Un condensador o capacitor es un dispositivo que sirve para almacenar carga y energía.

Condensador. Un condensador o capacitor es un dispositivo que sirve para almacenar carga y energía. Energía Eléctrica Presentación basada en el material contenido en: R. Serway,; Physics for Scientists and Engineers, Saunders College Publishers, 3 rd edition. Condensador Un condensador o capacitor es

Más detalles

Con frecuencia, existe un modo fácil y un modo difícil de resolver un problema.

Con frecuencia, existe un modo fácil y un modo difícil de resolver un problema. Teorema de Gauss. Notación: Los vectores se indicarán en negrita. Con frecuencia, existe un modo fácil y un modo difícil de resolver un problema. El modo fácil tal vez sólo requiera el empleo de las herramientas

Más detalles

Definición. Tema 12: Teoremas de Integración del Cálculo Vectorial. Gradiente de un campo escalar. Rotacional de un campo vectorial.

Definición. Tema 12: Teoremas de Integración del Cálculo Vectorial. Gradiente de un campo escalar. Rotacional de un campo vectorial. Tema 12: Teoremas de Integración del Cálculo Vectorial El operador nabla e conoce como operador nabla al pseudo-vector = ( x, y, ) Juan Ignacio Del Valle Gamboa ede de Guanacaste Universidad de Costa Rica

Más detalles

q 1 q 3 r12 r13 q Energía potencial electrostática

q 1 q 3 r12 r13 q Energía potencial electrostática 3.4 nergía potencial electrostática q q r 3 r r q q q q 3 r 3 Primero colocamos una carga q en el punto. No hay más cargas, no cuesta energía Traemos del infinito una carga q al punto. llo cuesta una igual

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

Teoría electromagnética: fotones y luz. Leyes bá sicas de la Teoría Electromagnética.

Teoría electromagnética: fotones y luz. Leyes bá sicas de la Teoría Electromagnética. Teoría electromagnética: fotones y luz. Leyes bá sicas de la Teoría Electromagnética. Teoría electromagnética. El electromagnetismo es una teoría de campos que estudia y unifica los fenómenos eléctricos

Más detalles

Tema 3 : Campo Eléctrico

Tema 3 : Campo Eléctrico Tema 3 : Campo Eléctrico Esquema de trabajo: 1.- Carga eléctrica 2.- Ley de Colulomb 3.- Campo eléctrico. Intensidad de campo eléctrico. 4.- Energía potencial eléctrica. 5.- Potencial eléctrico. Superficies

Más detalles

Efecto del dieléctrico en un capacitor

Efecto del dieléctrico en un capacitor Efecto del dieléctrico en un capacitor La mayor parte de los capacitores llevan entre sus placas conductoras una sustancia no conductora o dieléctrica. Efecto del dieléctrico en un capacitor Un capacitor

Más detalles

Física II Ecuaciones de Maxwell. Ingeniería Electrónica Departamento de Ciencias Aplicadas y Tecnología Universidad Nacional de Moreno

Física II Ecuaciones de Maxwell. Ingeniería Electrónica Departamento de Ciencias Aplicadas y Tecnología Universidad Nacional de Moreno Departamento de Ciencias Aplicadas y Tecnología 30 de noviembre de 2015 Índice 1. Repaso de las ecuaciones 1 1.1. ey de Gauss para el campo electrostático....................... 1 1.2. ey de Gauss para

Más detalles

8 Se tienen tres cargas situadas en los vértices de un triángulo equilátero cuyas coordenadas (expresadas en cm) son: A (0,2) ; B ( 3, 1) ; C ( 3, 1).

8 Se tienen tres cargas situadas en los vértices de un triángulo equilátero cuyas coordenadas (expresadas en cm) son: A (0,2) ; B ( 3, 1) ; C ( 3, 1). 1 Se tienen dos cargas puntuales sobre el eje X: 1 = 0,2 μc está situada a la derecha del origen y dista de él 1 m; 2 = +0,4 μc está a la izuierda del origen y dista de él 2 m. a) En ué puntos del eje

Más detalles

Campo magnético. En la clase anterior estudiamos el efecto de campos magnéticos sobre cargas en

Campo magnético. En la clase anterior estudiamos el efecto de campos magnéticos sobre cargas en Campo magnético. Leyes de Biot Savart y Ampere. En la clase anterior estudiamos el efecto de campos magnéticos sobre cargas en movimiento. i Ahoranosconcentraremosen las fuentesdel dl campo magnético.

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO FÍSICA C Primera evaluación SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO FÍSICA C Primera evaluación SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2012-2013 FÍSICA C Primera evaluación SOLUCIÓN Ejercicio 1 (4 puntos) Un par de cargas eléctricas de igual magnitud q y

Más detalles

Campo magnético. Ciertas rocas se atraen entre sí y también atraen algunos metales como el hierro. ) Magnes O 4

Campo magnético. Ciertas rocas se atraen entre sí y también atraen algunos metales como el hierro. ) Magnes O 4 Campo magnético Los fenómenos magnéticos son conocidos desde la antigüedad. Ciertas rocas se atraen entre sí y también atraen algunos metales como el hierro. Brújula China, siglo IX (origen árabe o Indú).

Más detalles

Rotacional del campo magnético creado por corrientes estacionarias. Ley de Ampère

Rotacional del campo magnético creado por corrientes estacionarias. Ley de Ampère c Rafael R. Boix y Francisco Medina 1 Rotacional del campo magnético creado por corrientes estacionarias. Ley de Ampère Consideremos un conductor que ocupa un volumen τ. Sea r el vector de posición de

Más detalles

UNIDAD N 2: VECTORES Y FUERZAS

UNIDAD N 2: VECTORES Y FUERZAS PROFESORADO EN EDUCACIÓN SECUNDARIA DE LA MODALIDAD TÉCNICO PROFESIONAL EN CONCURRENCIA CON EL TÍTULO DE BASE. ESPACIO CURRICULAR : FÍSICA AÑO: 2010 PROFESORES: BERTONI, JUAN; ; CATALDO JORGE; ; GARCÍA,

Más detalles