ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 1"

Transcripción

1 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 1 Conjuntos y aplicaciones (Curso ) 1. Dados los siguientes conjuntos: A = {2, 3, 5, 7, 11} B = {x Z x 4} C = {x Z x < 5} D = {x N x es impar} Hallar: i) (A B) C. Tenemos: y de donde: A B = {5, 7, 11}. C = {0, 1, 1, 2, 2, 3, 3, 4, 4} (A B) C = {0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 7, 11}. ii) (Z D) C. Z D = {x Z x D} = {x Z x no es impar o no positivo} = = {x Z x es par o no positivo} Entonces: (Z D) C = {x C x D} = {0, 1, 2, 2, 3, 4, 4}. iii) (C A) B. C A = {0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 7, 11}. y entonces: (C A) B = {5, 7, 11}. iv) (A (Z B)) (C D). Podemos aplicar la propiedad distributiva y queda: (A (Z B)) (C D) = (A C) (A D) ((Z B) C) ((Z B) D)

2 Entonces: A C = {2, 3} A D = {3, 5, 7, 11} (Z B) C = {0, 1, 1, 2, 2, 3, 3, 4} (Z B) D = {2, 3} de donde: (A (Z B)) (C D) = { 4, 3, 2, 1, 0, 1, 2, 3, 5, 7, 11}. 3. Sean A, B, C tres conjuntos. Discutir razonadamente la veracidad o falsedad de las siguientes afirmacioens. (A C ó B C) = A B C. VERDADERO. Se tiene: Por tanto: A B A y A B B. (A C ó B C) (A B A C ó A B B C) A B C. (A C ó B C) = A B C. FALSO. Por ejemplo si A = C = {0}, B = {1}; entonces A C, pero A B = {0, 1} C = {0}. A B C = (A C ó B C). FALSO. Por ejemplo, si A = {0}, B = {1} y C = {2}, entonces A B = C, pero ni A C, ni B C. A B C = (A C y B C). FALSO. Como ejemplo pude tomarse el mismo del caso anterior. 4. Sean A, B, C tres conjuntos. Razona la falsedad o veracidad de las siguientes afirmaciones: (iii) Si A C = C entonces C A. VERDADERO. Supongamos que A C = C. Para probar que C A tomaremos x C y probaremos usando la hipóteiss que x A. Si x C y C = A C, entonces x A C y por tanto en particular x A. (iv) Si A B = A B entonces A = B. VERDADERO. Supongamos que A B = A B. Veamos primero que A B: Y análogamente B A: x A x A B = A B x B. x B x A B = A B x A.

3 5. Sea f : X Y una aplicación, y sean A, B dos subconjuntos de X. Decidir razonadamente si las siguientes afirmaciones son ciertas en general y para las que resulten no serlo, si son verdaderas bajo la hipótesis suplementaria de que f sea inyectiva o sobreyectiva. (a) f(a B) f(a) f(b) y f(a B) y = f(x), x A B y = f(x), x A ó x B y f(a) ó y f(b) y f(a) f(b) Por tanto ES CIERTO SIEMPRE. (b) f(a) f(b) f(a B) y f(a) f(b) y f(a) ó y f(b) y = f(x), x A ó y = f(x ), x B y = f(x), x A B y f(a B) Por tanto ES CIERTO SIEMPRE. Como consecuencia de (a) y (b): f(a B) = f(a) f(b) (e) f(x \ A) Y \ f(a) ( OJO!) y f(x \ A) y = f(x), x X, x A Vemos que y es imagen de un elemento x que no está en A. Pero?podemos asegurar entonces que y no está en f(a)?. En general NO podemos asegurarlo. De nuevo si f no es inyectiva, pudiera haber otro elemento x A, x x, tal que f(x ) = f(x) = y. Así la propiedad es cierta si f es INYECTIVA. En el ejemplo del apartado anterior. y por tanto f(x \ A) Y \ f(a). f(x \ A) = {0} f(a) = {0} Y \ f(a) = IR \ {0} (f) Y \ f(a) f(x \ A) ( OJO!) y Y \ f(a) y Y, y f(a) y f(x) para todo x A Sabemos que y no es imagen de ningún elemento de A. Sin embargo, si f NO es SOBREYECTIVA pudiera ocurrir que y no fuese imagen de ningún elemento de X y por tanto y f(x \ A). Así la propiedad NO es cierta en general. Si es cierta si f es sobreyectiva. En el ejemplo anterior tampoco se cumple Y \ f(a) f(x \ A).

4 6. Sea f : IR IR + definida por f(x) = x 2 y g : IR + IR definida por g(x) = + x. Es una aplicación inversa de la otra? Razonar la respuesta. Para que f y g sean una inversa de la otra, ha de cumplirse: f g = id IR +; g f = id IR ; Primero sea x IR +. Tenemos: luego se cumple g f = id IR +. Sea ahora x IR. Se tiene: (f g)(x) = f(g(x)) = f(+ x) = ( x) 2 = x (g f)(x) = g(f(x)) = g(x 2 ) = + x 2 = x Por tanto si x es negativo no se cumple que (g f)(x) = x y vemos que las aplicaciones no son inversas la una de la otra. En realidad ya sabíamos que esto tenía que ser así: sobreyectiva, luego nunca pueden tener inversa. f no es inyectiva y g no es Intuitivamente la raíz cuadrada es la inversa de la función elevar al cuadrado, pero para que las cosas funcionen bien, hemos de restringirnos únicamente a los números no negativos. 7. Dadas las siguientes aplicaciones estudiar si son inyectivas, sobreyectivas o biyectivas. Calcular también las aplicaciones inversas de las que resulten ser biyectivas (b) f 2 : IR + IR, x y, si y 2 = x. Estamos definiendo la aplicación que lleva un x en un número real que elevado al cuadrado nos de x. Sin embargo en realidad, f 2 NO es una aplicación, porque cada elemento x mayor que cero tendría dos imágenes, ya que hay dos números que elevados al cuadrado nos dan x: y = x ó y = x. (b ) f 2 : IR + IR +, x y, si y 2 = x. Ahora f 2 SI es una aplicación. La diferencia con el caso anterior es que ahora como conjunto final tomamos sólo los números NO negativos. Entonces para cada x IR + existe un único y IR + tal que y 2 = x; en concreto y = + x. Sabemos por tanto que la aplicación puede escribirse ahora como f 2 (x) = + (x). f 2 SI es inyectiva. Ya que dados x, z IR + cualesquiera, si f 2 (x) = f 2 (z) entonces (x) = (z) luego elevando al cuadrado obtenemos x = z. f 2 SI es sobreyectiva. Ya que cualquier y IR + es imagen de x = y 2, porque, f 2 (x) = f 2 (y 2 ) = y 2 = y = y.

5 f 2 SI es biyectiva. Por ser inyectiva y sobreyectiva. Por tanto tiene inversa. Su inversa es: f 1 2 : IR + IR +, y y 2 Es la inversa porque f2 1 (f(x)) = ( x) 2 = x y f 2 (f2 1 (y)) = + y 2 = y = y, para cualesquiera x IR +, y IR +. (c) f 3 : IR IR, x tg(x). De nuevo hay que tener cuidado. En realidad f 3 NO es una aplicación, porque hay puntos del conjunto inicial dónde no está definida la tangente. En concreto aquellos en los que se anula el coseno. Por ejemplo para x = π/2. (d) f 4 : IR IR, x x 9. f 4 es inyectiva, ya que si x 9 1 = x9 2 entonces x 1 = x 2 (OJO: esto no sería cierto si el exponente fuese par ya que x y x elevados a exponente par dan el mismo resultado). f 4 es sobreyectiva, ya que dado cualquier y R, tomando x = [9]y se cumple que f 4 (x) = ( [9]y) 9 = y. f 4 es biyectiva, porque es inyectiva y sobreyectiva. La aplicación inversa es: (e) f 5 : IN IN, n n!. f 1 4 : IR IR, x x 1/9 f 5 es inyectiva, ya que dos números distintos tienen distinto factorial. Veámoslo rigurosamente. Sean m, n IN. Supongamos que son distintos. Entonces uno es mayor que el otro. Suponemos por ejemplo m > n. Entonces: m! = n.(n + 1).....m = n!(n + 1).....m y por tanto m! > n! y f 5 (m) f 5 (n). f 5 NO es sobreyectiva, porque el conjunto final y el imagen son diferentes, ya que hay números naturales que no son factorial de ningún otro. De hecho, hemos visto que el factorial es una función creciente, es decir si m > n, m! > n!. Los factoriales de los primeros números son 1, 2, 6,... luego vemos que quedan números (p.ej. 3, 4, 5) que no son factorial de ningún otro. f 5 NO es biyectiva porque no es sobreyectiva. (f) f 6 : IR \ {3} IR \ {2}, x 2x 4 x 3.. ado y IR, vemos cuando existe un x tal que f 6 (x) = y, es decir, cuando tiene solución la ecuación: y = 2x 4 x 3 Despejando x obtenemos x = 3y 4. Vemos que esta expresión tiene sentido excepto y 2 cuando el denominador se anula, es decir, cuando y = 2. Por tanto: Conjunto imagen=ir \ {2}.

6 f 6 es inyectiva, ya que si f 6 (x 1 ) = f 6 (x 2 ), o equivalentemente, 2x 1 4 x 1 3 = 2x 2 4 x 2 3 ; operando obtenemos que x 1 = x 2. (OJO: hay que suponer x 1, x 2 3 para que las expresiones tengan sentido). f 6 es sobreyectiva, ya que dado y IR, existe un x tal que f 6 (x) = y. Para ello estudiamos cuando tiene solución la ecuación: y = 2x 4 x 3 Despejando x obtenemos x = 3y 4. Vemos que esta expresión tiene sentido excepto y 2 cuando el denominador se anula, es decir, cuando y = 2. Por tanto: Conjunto imagen=ir \ {2}. f 6 es biyectiva, porque es inyectiva y sobreyectiva. La aplicación inversa la hemos obtenido antes, cuando probábamos la sobreyectividad: f 1 6 : IR \ {2} IR \ {5}, x 3x 4 x 2 (i) f 9 : IR \ {0} IR 2, x (x, 1/x). f 9 es inyectiva. Es bastante claro porque en la primera componente la aplicación es la identidad. Es decir, si f 9 (x 1 ) = f 9 (x 2 ), entonces (x 1, 1/x 1 ) = (x 2, 1/x 2 ) y por tanto x 1 = x 2. f 9 NO es sobreyectiva, porque el conjunto imagen es diferente del conjunto final. En particular, no hay ningún elemento x IR \ {0} tal que su imagen sea (0, 0) ya que f(x) = (x, 1/x) y 1/x nunca es nulo. f 9 NO es biyectiva, porque no es sobreyectiva. 9. Sea h : X X una aplicación tal que existe un n IN con h n = id X. Demostrar que h es biyectiva. (Notas: h n = h. n.. h; id X es la aplicación identidad de X). Como la identidad es una aplicación biyectiva y h n = id X, entonces h n es biyectiva y sobreyectiva. Además h n se puede escribir como h h n 1, luego por las propiedades de la inyectividad con respecto a la composición deducimos que h es inyectiva. h n también se puede escribir como h n 1 h, luego por las propiedades de la sobreyectividad con respecto a la composición deducimos que h es sobreyectiva. Por tanto h es biyectiva. En realidad como id X = h n = h h n 1 = h n 1 h deducimos que la h n 1 es la función inversa de h y por tanto ésta es biyectiva.

7 10. Sea f : A B una aplicación. Demostrar que (a) f es inyectiva si y sólo si existe una aplicación g : B A tal que g f = i A. (b) f es sobreyectiva si y sólo si existe una aplicación h : B A tal que f h = i B. (a) Veamos que: f inyectiva g : B A/g f = i A Se trata de definir una aplicación g de B en A que, sobre elementos de la forma f(x) nos permita recuperar x. Sobre elementos que no sean de la forma f(x) nos da igual como funcione. Podemos por ejemplo enviarlos sobre un elemento fijo a 0 cualquiera de A. Definimos por tanto: g(y) = { x, si y = f(x) para algún x A; a 0, si y f(x) para todo x A. Primero hay que ver que es efectivamente una aplicación, es decir, que está definida de manera unívoca. Podría ocurrir que y = f(x 1 ) pero también y = f(x 2 ) con x 1, x 2 A. Pero por ser inyectiva si f(x 1 ) = f(x 2 ), entonces x 1 = x 2, luego está bien definida. Es claro además por construcción que: (g f)(x) = g(f(x)) = x y así g f = id A. Veamos el recíproco: g : B A/g f = i A f inyectiva Simplemente tenemos en cuenta que i A es biyectiva y en particular inyectiva. tanto si g f = i A, entonces f es inyectiva. Por (b) Veamos que: f sobreyectiva h : B A/f h = i B Ahora por ser f sobreyectiva, dado y B siempre podemos elegir un elemento x que verifica f(x) = y. Llamamos a este elemento h(y) y tenemos definida una aplicación h : B A. Es importante darse cuenta de que si f no es inyectiva no hay un único elemento que cumpla f(x) = y; ELIGIENDO UNO para cada y B, h está definida de manera unívoca. Por la propia construcción de h se cumple que, dado y B: y así f h = id B. (f h)(y) = f(h(y)) = y Veamos el recíproco: h : B A/f h = i B f sobreyectiva Simplemente tenemos en cuenta que i B es biyectiva y en particular sobreyectiva. Por tanto si f h = i A, entonces f es sobreyectiva.

8 11. Sean X e Y conjuntos y f : X Y una aplciación. Demostrar que las siguientes afirmaciones son equivalentes: (a) f es inyectiva. (b) Para cualesquiera subconjuntos A, B de X tales que A B =, se cumple f(a) f(b) =. - Supongamos primero que f es inyectiva. Veamos que se cumple la condición (b). Sean A, B subconjuntos de X tales que A B =. Si la condición no fuese cierta, entonces f(a) f(b), es decir, existiría y f(a) f(b). Por tanto y = f(a) = f(b) para algún a A y b B. Pero por ser inyectiva si f(a) = f(b) entonces a = b y A B, con lo cual llegaríamos a una contradicción. - Supongamos ahora que cumple la condición (b). Veamos que f es inyectiva. Sean a, b B; queremos ver que si a b entonces f(a) f(b). Pero si a b entonces tomamos los subconjuntos de X, A = {a} y B = {b} y se verifica que A B =. Entonces por la condición (b), f(a) f(b) = lo que significa que a y b tienen distinta imagen por f. (Primer parcial, febrero 2003)

ÁLGEBRA Ejercicios no resueltos de la Práctica 1

ÁLGEBRA Ejercicios no resueltos de la Práctica 1 ÁLGEBRA Ejercicios no resueltos de la Práctica 1 Correspondencias y aplicaciones (Curso 2007 2008) 1. Dadas las siguientes correspondencias, determinar sus conjuntos origen, imagen, decidir si no son aplicaciones

Más detalles

ÁLGEBRA Algunas soluciones a la Práctica 1

ÁLGEBRA Algunas soluciones a la Práctica 1 ÁLGEBRA Algunas soluciones a la Práctica 1 Correspondencias y aplicaciones (Curso 2004 2005) 1. Dadas las siguientes correspondencias, determinar sus conjuntos origen, imagen, decidir si no son aplicaciones

Más detalles

Semana03[1/17] Funciones. 16 de marzo de Funciones

Semana03[1/17] Funciones. 16 de marzo de Funciones Semana03[1/17] 16 de marzo de 2007 Introducción Semana03[2/17] Ya que conocemos el producto cartesiano A B entre dos conjuntos A y B, podemos definir entre ellos algún tipo de correspondencia. Es decir,

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 Matrices y determinantes (Curso 2011 2012) 2. Sea A una matriz diagonal n n y supongamos que todos los elementos de su diagonal son distintos entre sí.

Más detalles

Inyectivas, Suprayectivas, Biyectivas, Inversas. Relaciones Funcionales. f : A B se lee f es una función con dominio A y codominio B

Inyectivas, Suprayectivas, Biyectivas, Inversas. Relaciones Funcionales. f : A B se lee f es una función con dominio A y codominio B Relaciones Funcionales Sean A, B dos conjuntos no vacíos, que llamaremos dominio y contradominio respectivamente. Entenderemos por función de A en B toda regla que hace corresponder a cada elemento del

Más detalles

Conjuntos, relaciones y funciones Susana Puddu

Conjuntos, relaciones y funciones Susana Puddu Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también

Más detalles

P(f) : P(B) P(A) (A.2)

P(f) : P(B) P(A) (A.2) TEMA 2. APLICACIONES 227 Tema 2. Aplicaciones Definición A.2.1. Una correspondencia entre dos conjuntos A y B es un subconjunto del producto cartesiano A B. Una aplicación f entre dos conjuntos A y B es

Más detalles

Conjuntos finitos y conjuntos numerables

Conjuntos finitos y conjuntos numerables Tema 3 Conjuntos finitos y conjuntos numerables En este tema vamos a usar los números naturales para contar los elementos de un conjunto, o dicho con mayor precisión, para definir los conjuntos finitos

Más detalles

Terminaremos el capítulo con una breve referencia a la teoría de cardinales.

Terminaremos el capítulo con una breve referencia a la teoría de cardinales. TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. Regla de la cadena Derivada de la función compuesta. Regla de la cadena Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

FUNCIONES REALES 1º DE BACHILLERATO CURSO

FUNCIONES REALES 1º DE BACHILLERATO CURSO FUNCIONES REALES 1º DE BACHILLERATO CURSO 2007-2008 Funciones reales Definición Clasificación Igual de funciones Dominio Propiedades Monotonía Extremos relativos Acotación. Extremos absolutos Simetría

Más detalles

Reconocer y utilizar las propiedades sencillas de la topología métrica.

Reconocer y utilizar las propiedades sencillas de la topología métrica. 3 Funciones continuas De entre todas las aplicaciones que pueden definirse entre dos espacios métrico, las aplicaciones continuas ocupan un papel preponderante. Su estudio es fundamental no sólo en topología,

Más detalles

Cálculo Infinitesimal 1. Cuestiones de examen (2010/2011 a 2015/2016)

Cálculo Infinitesimal 1. Cuestiones de examen (2010/2011 a 2015/2016) Cálculo Infinitesimal 1. Cuestiones de examen (2010/2011 a 2015/2016) 1. Justifíquese la verdad o falsedad de la siguiente afirmación: La suma de dos números irracionales iguales es irracional (enero 2011).

Más detalles

SOLUCIONARIO Composición de funciones y función inversa

SOLUCIONARIO Composición de funciones y función inversa SOLUCIONARIO Composición de funciones y función inversa SGUICES04MT-A6V TABLA DE CORRECCIÓN GUÍA PRÁCTICA Composición de funciones y función inversa Ítem Alternativa E Comprensión A 3 D 4 B 5 C 6 D 7 A

Más detalles

Guía de Ejercicios: Funciones

Guía de Ejercicios: Funciones Guía de Ejercicios: Funciones Área Matemática Resultados de aprendizaje Determinar dominio y recorrido de una función. Analizar funciones: inyectivas, sobreyectivas y biyectivas. Determinar la función

Más detalles

Problemas resueltos de los teoremas de Rolle, valor medio y Cauchy

Problemas resueltos de los teoremas de Rolle, valor medio y Cauchy Problemas resueltos de los teoremas de Rolle, valor medio y Cauchy 1 Es aplicable el teorema de Rolle a la función f(x) = x 1 en el intervalo [0, 2]? 2 Estudiar si la función f(x) = x x 3 satisface las

Más detalles

MATEMÁTICAS BÁSICAS. Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano

MATEMÁTICAS BÁSICAS. Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano MATEMÁTICAS BÁSICAS Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad

Más detalles

Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones

Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones UNSL Repaso de Inducción, y Inducción Matemática (Sección 1.7 del libro) Supongamos que queremos demostrar enunciados del siguiente tipo: P(n) : La suma de los primeros n números naturales es n(n+1)

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 Matrices y determinantes (Curso 010 011). Sea A una matriz diagonal n n y supongamos que todos los elementos de su diagonal son distintos entre sí. Demostrar

Más detalles

Funciones elementales

Funciones elementales Tema Funciones elementales.1. Función real de variable real Una función real de variable real es cualquier aplicación f : D R! R. Se dice que el conjunto D es el dominio de f. El rango de f es el conjunto

Más detalles

Números Reales, Funciones e Inecuaciones.

Números Reales, Funciones e Inecuaciones. CAPÍTULO 1 Números Reales, Funciones e Inecuaciones. Estos apuntes corresponden a la preparación de clases de la sección 1. Pretenden complementar el texto guía y no lo reemplazan bajo ninguna circuntancia.

Más detalles

Funciones y Cardinalidad

Funciones y Cardinalidad Funciones y Cardinalidad Definición 1 Llamaremos función f entre dos conjuntos A y B a una relación que verifica las siguientes propiedades: i) Dom(f) = A ii) Si (a, b), (a, c) f entonces b = c Dicho de

Más detalles

Pregunta 1 Es correcta esta definición? Por qué?

Pregunta 1 Es correcta esta definición? Por qué? TEORÍA DE CONJUNTOS. En un libro de COU de 1975 puede leerse la siguiente definición de conjunto: Un conjunto es una colección de objetos, cualquiera que sea su naturaleza. Pregunta 1 Es correcta esta

Más detalles

COMPLEMENTO DEL TEÓRICO

COMPLEMENTO DEL TEÓRICO ÁLGEBRA I PRIMER CUATRIMESTRE - AÑO 2016 COMPLEMENTO DEL TEÓRICO El material de estas notas fue dictado en las clases teóricas pero no se encuentra en el texto que seguimos en las mismas ( Álgebra I -

Más detalles

El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.

El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D. Concepto de función Función real de variable real es toda correspondencia f que asocia a cada elemento de un determinado subconjunto de números reales, llamado dominio, otro número real (uno y sólo uno).

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos

Más detalles

DERIVADA DE UNA FUNCIÓN

DERIVADA DE UNA FUNCIÓN DERIVADA DE UNA FUNCIÓN 3URI/XLV~xH] Se estudia aquí uno de los conceptos fundamentales del cálculo diferencial: la derivada de una función. Además de la definición y su interpretación, se allarán las

Más detalles

4.2. Funciones inyectivas, sobreyectivas y biyectivas

4.2. Funciones inyectivas, sobreyectivas y biyectivas 4.. Funciones inyectivas, sobreyectivas y biyectivas En esta sección estudiaremos tres conceptos básicos sobre funciones. 4... Funciones inyectivas Definición 4.. Sea f una función de en. Diremos que f

Más detalles

Funciones reales de variable real

Funciones reales de variable real Capítulo 2 Funciones reales de variable real 2.. Definición. Dominio, imagen y gráfica. Informalmente, una función entre dos conjuntos A y B es una regla que a ciertos elementos del conjunto A les asigna

Más detalles

Relación de ejercicios. 1.1 Números reales. Ejercicio 1.1. Calcular para qué valores de x se verifica que 2x 3

Relación de ejercicios. 1.1 Números reales. Ejercicio 1.1. Calcular para qué valores de x se verifica que 2x 3 Números reales. Números reales Ejercicio.. Calcular para qué valores de se verifica que 3 + < 3. Solución.. Para quitar denominadores tenemos que multiplicar por +. a) Si >, entonces + > 0 y 3 + < 3 6

Más detalles

Tema II. Capítulo 5. Aplicaciones bilineales y formas cuadráticas.

Tema II. Capítulo 5. Aplicaciones bilineales y formas cuadráticas. Tema II Capítulo 5 Aplicaciones bilineales y formas cuadráticas Álgebra Departamento de Métodos Matemáticos y de Representación UDC 5 Aplicaciones bilineales y formas cuadráticas o simplemente f( x, ȳ)

Más detalles

1. Halle el dominio de la función f(x) = ln(25 x2 ) x 2 7x + 12 ; es decir, el conjunto más grande posible donde la función está definida.

1. Halle el dominio de la función f(x) = ln(25 x2 ) x 2 7x + 12 ; es decir, el conjunto más grande posible donde la función está definida. Cálculo I (Grado en Ingeniería Informática) Problemas resueltos, 0-3 y 03-4 (segunda parte) Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić (coordinadores), Luis Guijarro,

Más detalles

Conjuntos, relaciones de equivalencia y aplicaciones

Conjuntos, relaciones de equivalencia y aplicaciones CAPíTULO 1 Conjuntos, relaciones de equivalencia y aplicaciones 1. Conjuntos La idea de conjunto es una de las más significativas en Matemáticas. La mayor parte de los conceptos matemáticos están construidos

Más detalles

Conjuntos finitos y conjuntos numerables

Conjuntos finitos y conjuntos numerables Tema 3 Conjuntos finitos y conjuntos numerables En este tema vamos a usar los números naturales para contar los elementos de un conjunto, o dicho con mayor precisión, para definir los conjuntos finitos

Más detalles

Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas.

Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas. Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas. Beatriz Porras 1 Límites Las definiciones de ĺımite de funciones de varias variables son similares a las de los ĺımites de funciones

Más detalles

Propiedades de las funciones continuas

Propiedades de las funciones continuas Tema 13 Propiedades de las funciones continuas Estudiamos en este tema los dos resultados fundamentales sobre la continuidad de funciones reales de variable real, que se refieren a funciones continuas

Más detalles

Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.1. Generalidades sobre funciones reales de variable real

Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.1. Generalidades sobre funciones reales de variable real Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.1. Generalidades sobre funciones reales de variable real En la primera parte de este tema vamos a tratar con funciones reales de variable real, esto es, funciones

Más detalles

DERIV. DE UNA FUNC. EN UN PUNTO

DERIV. DE UNA FUNC. EN UN PUNTO DERIVADA DE UNA FUNCIÓN Se abre aquí el estudio de uno de los conceptos fundamentales del cálculo diferencial: la derivada de una función. En este tema, además de definir tal concepto, se mostrará su significado

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

Funciones de Variable Real

Funciones de Variable Real Tema 1 Funciones de Variable Real 1.1. La Recta Real Los números reales se pueden ordenar como los puntos de una recta. Los enteros positivos {1, 2, 3, 4,...} que surgen al contar, se llaman números naturales

Más detalles

Teorema de la Función Inversa y Extremos Condicionados

Teorema de la Función Inversa y Extremos Condicionados Teorema de la Función Inversa y Extremos Condicionados 1 de noviembre de 2016 1. Función inversa. Se usará el siguiente resultado, probado en el libro: Teorema (de la función implícita, primera versión).

Más detalles

ÁLGEBRA LINEAL I Práctica 3

ÁLGEBRA LINEAL I Práctica 3 ÁLGEBRA LINEAL I Práctica 3 Matrices y determinantes (Curso 2015 2016) 1. En el conjunto de las matrices n n de elementos reales, demostrar que el producto de matrices triangulares inferiores es otra matriz

Más detalles

(n, a)(m, b) = (nm, ma + nb) (a, b) + (c, d) = (a + c, b + d) y (a, b)(c, d) = (ac, bd)

(n, a)(m, b) = (nm, ma + nb) (a, b) + (c, d) = (a + c, b + d) y (a, b)(c, d) = (ac, bd) TEMA 3 Anillos. Dominios euclídeos. Ejercicio 3.1. Sea X un conjunto no vacío y R = P(X), el conjunto de partes de X. Si se consideran en R las operaciones: A + B = (A B) (A B) A B = A B demostrar que

Más detalles

Reglas de derivación. 4.1. Sumas, productos y cocientes. Tema 4

Reglas de derivación. 4.1. Sumas, productos y cocientes. Tema 4 Tema 4 Reglas de derivación Aclarado el concepto de derivada, pasamos a desarrollar las reglas básicas para el cálculo de derivadas o, lo que viene a ser lo mismo, a analizar la estabilidad de las funciones

Más detalles

Es claro que es una relación de equivalencia. Para ver que tener la misma cardinalidad y la cardinalidad están bien definidas queremos ver que

Es claro que es una relación de equivalencia. Para ver que tener la misma cardinalidad y la cardinalidad están bien definidas queremos ver que Capítulo II Cardinalidad Finita II.1. Cardinalidad Definimos I n para n N como I n = {k N : 1 k n}. En particular I 0 =, puesto que 0 < 1. Esto es equivalente a la definición recursiva { si n = 0 I n =

Más detalles

EL CUERPO ORDENADO REALES

EL CUERPO ORDENADO REALES CAPÍTULO I. EL CUERPO ORDENADO DE LOS NÚMEROS REALES SECCIONES A. Elementos notables en R. B. Congruencias. Conjuntos numerables. C. Método de inducción completa. D. Desigualdades y valor absoluto. E.

Más detalles

Unidad II. 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función.

Unidad II. 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función. Unidad II Funciones 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función. Función En matemática, una función (f) es una relación entre un conjunto dado X (llamado dominio)

Más detalles

1.3. El teorema de los valores intermedios

1.3. El teorema de los valores intermedios Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 07-2 Importante: Visita regularmente http://www.dim.uchile.cl/calculo. Ahí encontrarás

Más detalles

Aplicaciones de las derivadas. El teorema del valor medio

Aplicaciones de las derivadas. El teorema del valor medio Aplicaciones de las derivadas. El teorema del valor medio Ya hemos hablado en un par de artículos anteriores del concepto de derivada y de su interpretación tanto desde el punto de vista geométrico como

Más detalles

ÁLGEBRA I. Curso Grado en Matemáticas

ÁLGEBRA I. Curso Grado en Matemáticas ÁLGEBRA I. Curso 2012-13 Grado en Matemáticas Relación 1: Lógica Proposicional y Teoría de Conjuntos 1. Establecer las siguientes tautologías: (a) A A A (b) A A A (c) A B B A (d) A B B A (e) (A B) C A

Más detalles

Ejercicios resueltos de cálculo Febrero de 2016

Ejercicios resueltos de cálculo Febrero de 2016 Ejercicios resueltos de cálculo Febrero de 016 Ejercicio 1. Calcula los siguientes ites: x 5x 1. x + x + 1 x 1 x. x x. x + x + 1 x x 4. x 0 x cos x sen x x Solución: 1. Indeterminación del tipo. Tenemos:

Más detalles

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3 ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2. Transformaciones ortogonales (Curso 2010 2011) 1. Se considera el espacio vectorial euclídeo IR referido a una base ortonormal. Obtener la expresión

Más detalles

Teorema del Valor Medio

Teorema del Valor Medio Tema 6 Teorema del Valor Medio Abordamos en este tema el estudio del resultado más importante del cálculo diferencial en una variable, el Teorema del Valor Medio, debido al matemático italo-francés Joseph

Más detalles

TEMA 2. TEORÍA DE CONJUNTOS

TEMA 2. TEORÍA DE CONJUNTOS TEMA 2. TEORÍA DE CONJUNTOS 1. Introducciónalalógica de proposiciones 1.1 Definición. Una proposición es una oración declarativa de la cual se puede decir sin ambigüedad si es verdadera o falsa. 1.2 Definición.

Más detalles

3. Transformaciones ortogonales. En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U.

3. Transformaciones ortogonales. En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U. 3 Transformaciones ortogonales En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U 1 Definición Definición 11 Una transformación ortogonal f de un espacio eculídeo U es un endomorfismo

Más detalles

Capitulo VI: Funciones.

Capitulo VI: Funciones. Funciones o Aplicaciones: Capitulo VI: Funciones. Ejemplo de función: Sean: A = {, 2, 3 } B = { a, b, c, d, e } F = { (;a) (2;b) (3;e) } es una función de A en B, porque a cada elemento de A, le corresponde

Más detalles

Cálculo Diferencial: Enero 2016

Cálculo Diferencial: Enero 2016 Cálculo Diferencial: Enero 2016 Selim Gómez Ávila División de Ciencias e Ingenierías Universidad de Guanajuato 9 de febrero de 2016 / Conjuntos y espacios 1 / 21 Conjuntos, espacios y sistemas numéricos

Más detalles

EJERCICIOS RESUELTOS. NÚMEROS Y FUNCIONES. CONTINUIDAD Y LÍMITE FUNCIONAL.

EJERCICIOS RESUELTOS. NÚMEROS Y FUNCIONES. CONTINUIDAD Y LÍMITE FUNCIONAL. EJERCICIOS RESUELTOS. NÚMEROS Y FUNCIONES. CONTINUIDAD Y LÍMITE FUNCIONAL. 1. Estúdiese la continuidad de la función f : R R, definida por f (x) = xe(1/x) si x = 0, f (0) = 1.. Sea f : R R continua, mayorada

Más detalles

LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS

LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS Sea una estructura formada por un conjunto A, sobre cuyos elementos se ha definido una operación o ley interna, comúnmente denotada por " * ", que

Más detalles

ÁLGEBRA LINEAL I Práctica 5

ÁLGEBRA LINEAL I Práctica 5 ÁLGEBRA LINEAL I Práctica 5 Espacios vectoriales (Curso 2014 2015) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x y) IR 2 x 2 + y 2 = 1}. (b) B = {(x y) IR 2

Más detalles

TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 1º E.S.O. TEMA 08: Funciones. TEMA 08: FUNCIONES. 1. Correspondencia.

Más detalles

Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o

Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o DERIVADAS Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o El teorema de Lagrange dice que: f(3) - f(-1) =

Más detalles

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

ESTUDIO LOCAL DE LA FUNCIÓN

ESTUDIO LOCAL DE LA FUNCIÓN ESTUDIO LOCAL DE LA FUNCIÓN Dominio : x Calcular máximo, mínimo, Punto de Inflexión, intervalos crecimiento y decrecimiento e intervalos de curvatura de la y = (x 1) 3 y = 3 (x 1) 2 ; y = 0 3 (x 1) 2

Más detalles

FUNCIÓN. La Respuesta correcta es D

FUNCIÓN. La Respuesta correcta es D FUNCIONES FUNCIÓN La Respuesta correcta es D FUNCIÓN Función Continua: Es aquella en la que su gráfica se puede recorrer en forma ininterrumpida en toda su extensión. FUNCIÓN Función Discontinua: Es aquella

Más detalles

4 E.M. Curso: Unidad: Estadísticas Inferencial. Colegio SSCC Concepción. Depto. de Matemáticas. Nombre: CURSO: Unidad de Aprendizaje: FUNCIONES

4 E.M. Curso: Unidad: Estadísticas Inferencial. Colegio SSCC Concepción. Depto. de Matemáticas. Nombre: CURSO: Unidad de Aprendizaje: FUNCIONES Colegio SSCC Concepción Depto. de Matemáticas Unidad de Aprendizaje: FUNCIONES Capacidades/Destreza/Habilidad: Racionamiento Matemático/Calcular/ Resolver Valores/ Actitudes: Curso: E.M. 10 Respeto, Solidaridad,

Más detalles

Teoría Tema 2 Concepto de función

Teoría Tema 2 Concepto de función página 1/7 Teoría Tema Concepto de función Índice de contenido Función, dominio e imagen... Función inyectiva...4 Función sobreyectiva...6 Función biyectiva...7 página /7 Función, dominio e imagen Una

Más detalles

Funciones reales de variable real

Funciones reales de variable real 84 Matemáticas I : Cálculo diferencial en IR Tema 8 Funciones reales de variable real 8. Los números reales Los números reales son de sobra conocidos, sus operaciones básicas así como su identificación

Más detalles

Propiedades de las funciones continuas

Propiedades de las funciones continuas Tema 13 Propiedades de las funciones continuas Estudiamos en este tema los dos resultados fundamentales sobre funciones continuas, que se refieren a funciones continuas en intervalos. Primero veremos que

Más detalles

=, una sucesión de intervalos cerrados. f x una función continua en el punto x = x0. = 0, el teorema queda demostrado. Si ( )

=, una sucesión de intervalos cerrados. f x una función continua en el punto x = x0. = 0, el teorema queda demostrado. Si ( ) CONTINUIDAD DE FUNCIONES. TEOREMAS FUNDAMENTALES. Cuando una función es continua en un intervalo cerrado [ a, ] y en un extremo es positiva y en otro negativa, la intuición indica que, en algún punto intermedio

Más detalles

1. Funciones diferenciables

1. Funciones diferenciables 1. diferenciables Volvamos sobre el significado de la derivada de una función real de una variable real, Como vimos en el capítulo anterior, f : (a, b) R derivable en x 0, equivale a que f(x) f(x 0 ) =

Más detalles

Límites y continuidad

Límites y continuidad Límite funcional 6 6. Límite funcional 79 6.2 Límites infinitos y en el infinito 8 6.3 Cálculo de límites 83 6.4 Continuidad 84 6.5 Teorema del valor intermedio 87 6.6 Monotonía 89 6.7 Ejercicios 9 La

Más detalles

Geometría afín y proyectiva, 2016 SEMANA 4

Geometría afín y proyectiva, 2016 SEMANA 4 Geometría afín y proyectiva, 2016 SEMANA 4 Sonia L. Rueda ETS Arquitectura. UPM September 30, 2016 Geometría afín y proyectiva 1. Álgebra Lineal 2. Geometría afín y eucĺıdea 3. Cónicas y cuádricas Álgebra

Más detalles

Álgebra Lineal y Estructuras Matemáticas. J. C. Rosales y P. A. García Sánchez. Departamento de Álgebra, Universidad de Granada

Álgebra Lineal y Estructuras Matemáticas. J. C. Rosales y P. A. García Sánchez. Departamento de Álgebra, Universidad de Granada Álgebra Lineal y Estructuras Matemáticas J. C. Rosales y P. A. García Sánchez Departamento de Álgebra, Universidad de Granada Capítulo 1 Conjuntos, relaciones y aplicaciones 1. Conjuntos La idea de conjunto

Más detalles

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

Álgebra Básica C Grado en Matemáticas Examen 1

Álgebra Básica C Grado en Matemáticas Examen 1 Álgebra Básica C Grado en Matemáticas Examen 1 Lee detenidamente las preguntas antes de contestarlas. Justifica todas tus respuestas. Evita los cálculos innecesarios y las repeticiones. Nombre y apellido(s):

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

Problemas tipo examen

Problemas tipo examen Problemas tipo examen La división en temas no es exhaustiva. Las referencias (H n- m) indican el problema m de la hoja n y las referencias (A- cd), con A en números romanos indican un examen del mes A

Más detalles

PROPUESTA A. 3A. a) Despeja X en la ecuación matricial X A B = 2X donde A, B y X son matrices cuadradas

PROPUESTA A. 3A. a) Despeja X en la ecuación matricial X A B = 2X donde A, B y X son matrices cuadradas PROPUESTA A 1A a) Calcula el valor de a R, a > 0, para que la función sea continua en x = 0. b) Calcula el límite 2A. Calcula las siguientes integrales (1 25 puntos por cada integral) Observación: El cambio

Más detalles

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y). TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:

Más detalles

Teorema de la Función Implícita

Teorema de la Función Implícita Teorema de la Función Implícita Sea F : U R p+1 R U abierto F (x 1, x 2,..., x q, y) y un punto a (a 1, a 2,..., a q, b) en U tal que i)f (a 1, a 2,..., a q, b) 0 ii) 0 y continua, existe entonces una

Más detalles

1. Funciones Medibles

1. Funciones Medibles 1. Medibles Medibles simples... Hasta ahora hemos estudiado la medida de Lebesgue definida sobre los conjuntos de R n y sus propiedades. Vamos a aplicar ahora esta teoría al estudio de las funciones escalares

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

Extensiones normales.

Extensiones normales. 10. TEORÍA DE GALOIS Este capítulo, donde se establece el Teorema Principal de la Teoría de Galois, puede ser considerado como la culminación de la asignatura. Aquí se relacionarán las Teorías de Grupos

Más detalles

UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS

UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS UNIVERSIDAD DON BOSCO - DEPARTAMENTO DE CIENCIAS BÁSICAS UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS ÁLGEBRA LINEAL - GUIÓN DE CLASE - SEMANA 10 - CICLO 01-2015 Estudiante: Grupo: 1. Aplicaciones 1.1. Aplicaciones.

Más detalles

INTRODUCCIÓN. FUNCIONES. LÍMITES.

INTRODUCCIÓN. FUNCIONES. LÍMITES. INTRODUCCIÓN. FUNCIONES. LÍMITES. Este capítulo puede considerarse como una prolongación y extensión del anterior, límite de sucesiones, al campo de las funciones. Se inicia recordando el concepto de función

Más detalles

a de un conjunto S de R n si

a de un conjunto S de R n si 1 235 Máximos, mínimos y puntos de ensilladura Definición.- Se dice que una función real f( x) tiene un máximo absoluto en un punto a de un conjunto S de R n si f( x) f( a) (2) para todo x S. El número

Más detalles

GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES

GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES UNIDAD I FUNCIONES Una función es una correspondencia entre dos conjuntos, que asocia a cada elemento del primer conjunto exactamente un elemento del otro conjunto. Una función f definida entre dos conjuntos

Más detalles

Funciones Inversas. Derivada de funciones inversas

Funciones Inversas. Derivada de funciones inversas Capítulo 15 Funciones Inversas En este capítulo estudiaremos condiciones para la derivación de la inversa de una función de varias variables y, en particular, extenderemos a estas funciones la fórmula

Más detalles

CÁLCULO DE DERIVADAS.

CÁLCULO DE DERIVADAS. ANÁLISIS MATEMÁTICO BÁSICO. La Función Derivada. CÁLCULO DE DERIVADAS. Definición.. Sea una función f : R R derivable. Se llama función derivada a la función f : R R x f (x). Observación.. Domf { x R :

Más detalles

2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN

2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN 2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN 1.) Resuelve las siguientes derivadas: a) b) c) d) e) f) g) h) i) j) k) l) m) n) o) p) q) r) f(x) = arcsen 2.) Resuelve la siguiente derivada, simplificando

Más detalles

58 7. ESPACIOS COCIENTE

58 7. ESPACIOS COCIENTE CAPíULO 7 Espacios cociente En esta sección estudiamos el cociente de un espacio vectorial por un subespacio W. Este cociente se define como el conjunto cociente de por una relación de equivalencia conveniente.

Más detalles

Sucesiones monótonas Monotonía. Tema 6

Sucesiones monótonas Monotonía. Tema 6 Tema 6 Sucesiones monótonas Vamos a discutir ahora una importante propiedad de ciertas sucesiones de números reales: la monotonía. Como primer resultado básico, probaremos que toda sucesión monótona y

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 4 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos.

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos. Capítulo 1 Preliminares Vamos a ver en este primer capítulo de preliminares algunos conceptos, ideas y propiedades que serán muy útiles para el desarrollo de la asignatura. Se trata de resultados sobre

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Z = N {0} N Enteros Las operaciones + y. son cerradas en Z, es decir la suma de dos números enteros es un número entero y el producto

Más detalles

Dualidad. 1. Dual de una transformación lineal

Dualidad. 1. Dual de una transformación lineal CAPíTULO 8 Dualidad 1. Dual de una transformación lineal En este capítulo volveremos a considerar el tema de la dualidad de espacios vectoriales. Se recuerda que si V es un espacio vectorial, definimos

Más detalles

6 Vectores. Dependencia e independencia lineal.

6 Vectores. Dependencia e independencia lineal. 6 Vectores. Dependencia e independencia lineal. Introducción Hay fenómenos reales que se pueden representar adecuadamente mediante un número con su adecuada unidad de medida. Sin embargo para representar

Más detalles