Cálculo Diferencial: Enero 2016

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Cálculo Diferencial: Enero 2016"

Transcripción

1 Cálculo Diferencial: Enero 2016 Selim Gómez Ávila División de Ciencias e Ingenierías Universidad de Guanajuato 9 de febrero de 2016 / Conjuntos y espacios 1 / 21

2 Conjuntos, espacios y sistemas numéricos Nuestro objeto de estudio son las propiedades de funciones de una variable real. Vamos a discutir primero la segunda parte: qué son los números reales? Para ello, necesitamos algunas nociones elementales. Intuitivamente, un conjunto es una colección de objetos, que llamamos los elementos del conjunto. Cuando x es un elemento del conjunto A, escribimos x A; si no es un elemento, x A. Encontraremos frecuentemente conjuntos cuyos elementos son números de distintos tipos, pero también conjuntos de funciones, e incluso conjuntos cuyos elementos son otros conjuntos. De forma muy general, hay dos maneras de enriquecer la noción de conjunto. Una, es dandole propiedades relacionales para construir espacios La otra, es añadiendo operaciones para construir estructuras algebraicas. (Estas nociones se traslapan un poco). 2 / 21

3 Operaciones entre conjuntos Hay tres operaciones entre conjuntos 1. La intersección entre conjuntos A y B es el conjunto A B = {a a A a B}. 2. La unión entre conjuntos A y B es el conjunto A B = {a a A a B}. 3. El producto cartesiano de los conjuntos A y B es el conjunto A B = {(a, b) a A b B}. 3 / 21

4 Las funciones son relaciones entre conjuntos Si tenemos dos conjuntos A y B, una función f de A a B es una regla que le asigna a cada elemento a A un elemento de B. En tal caso, escribimos f : A B. Utilizamos f(a) para referirnos al elemento de B asociado con el elemento a A. Solemos referirnos a A como el dominio de f, y como rango al conjunto de elementos {b B b = f(a) para algún a A}. Esta noción de función, debida a Dirichlet, es mucho más general que la noción de una función como una fórmula. 1, if x Q g(x) = 0, if x Q 4 / 21

5 Los números naturales Definimos a los números naturales como el conjunto N junto con una función sucesora S(n) con las siguientes propiedades: 1. 1 es un elemento de N. 2. Si n pertenece a N, entonces su sucesor S(n) también pertenece a N no es el sucesor de ningún elemento de N. 4. Si n y m tienen el mismo sucesor, entonces n = m. 5. Un subconjunto de N que contiene a 1, y que contiene a n + 1 cuando contenga a n, es igual a N. Estos son los axiomas de Peano, que nos permiten probar las propiedades de N. Este es el conjunto de los enteros positivos {1, 2, 3,... }, donde cada número elemento n tiene un sucesor, n / 21

6 La adición proviene de la sucesión Vamos a definir la adición como una función Primero, fijamos + : N N N. 1 + n = S(n) Luego, suponemos que k + n está definido para 1 k m. Entonces, definimos S(m) + n = S(m + n). Esto nos permite calcular la suma de números naturales. Mostrar que, bajo esta definición, se cumplen las propiedades usuales de la adición. 6 / 21

7 La serie de Ackerman El producto es una composición de sumas; esto es, n m = n + n + n + + n. }{{} m veces Podemos igualmente definir la potencia n m = n n n n. }{{} m veces Y hasta podemos extender esta noción n m = n n n n. }{{} m veces 7 / 21

8 Inducción matemática Los axiomas de Peano proveen las bases base para las pruebas por inducción; si P 1, P 2, P 3,... es una lista de proposiciones, todas ellas serán verdaderas si se cumple que 1. P 1 es verdad. 2. P n+1 es verdad siempre que P n es verdad. Probar que n = 1 2n(n + 1) si n N. Probar que todos los elementos de la forma 5 n 4n 1 son divisibles por 16 si n N. Probar que n 2 = 1 6n(n + 1)(2n + 1) si n N. Para qué enteros es verdad que 2 n > n 2? Probar. 8 / 21

9 Un problema con moraleja Sea P n la siguiente afirmación: n 2 + 5n + 1 = un entero par. 1. Pruebe que si P n es verdad, P n+1 lo es. 2. Para qué valores de n es cierto P n? 3. Cuál es la moral de esta historia? 9 / 21

10 Cómo extender los naturales? Hemos definido la adición (y por extensión, la multiplicación, potencia, y tetración) de números naturales. Como ya probaron ustedes, la adición es asociativa. Este tipo de estructura algebraica (un conjunto con una operación binaria asociativa) se llama un semigrupo. Probar que los naturales bajo multiplicación forman un semigrupo. Para realizar toda la aritmética a la que estamos acostumbrados necesitamos añadir dos conceptos: el del elemento identidad, y el de elemento inverso. Sea S un semigrupo bajo la operación : S S S. 1. Un elemento identidad es un elemento e S e x = x x S. 2. El elemento inverso x 1 a x S es tal que x 1 x = e. Si para cada x S existe un elemento inverso x 1 S entonces S es un grupo. 10 / 21

11 Resta y división Es tradicional denotar al elemento identidad de la adición como 0, y a los inversos aditivos de los números naturales n como n. Al conjunto que incluye los números naturales, sus inversos aditivos, y la identidad 0 se le llama los números enteros: Z = {n n N} {0}{ n n N} Si queremos hacer la misma extensión pero para la multiplicación, llegamos a los números racionales Q = ß p q p, q Z q 0. Q contiene a todos los decimales que terminan, como = Probar la ley distributiva bajo nuestras definiciones de suma y multiplicación. 11 / 21

12 Poniendo orden en los racionales Una de las propiedades más importante de los racionales Q es que tienen una estructura de orden que satisface: 1. Dados a y b, o bien a b o b a. 2. Si a b y b a, entonces a = b. 3. Si a b y b c, entonces a c. 4. Si a b entonces a + c b + c. 5. Si a b y 0 c, entonces a c b c. 12 / 21

13 A los números racionales les faltan piezas Este es un sistema satisfactorio para muchos propósitos, en donde podemos definir toda nuestra aritmética convencional: sumas, restas, multiplicaciones y divisiones. Pero es posible mostrar que en algún sentido los números racionales no son completos. Consideremos por ejemplo la longitud de la diagonal: 1 d =? 1 Por el teorema de Pitágoras, sabemos que esa longitud satisface = d 2. Puede d ser un número racional? 13 / 21

14 La irracionalidad de 2 Teorema: no existe número racional tal que su cuadrado sea 2. Prueba: Un número racional puede escribirse como p/q, en donde p y q son números enteros. Podemos suponer que p y q no tienen factores comunes; si los tienen, podemos eliminarlos y obtener nuevos valores para p y q. Supongamos que en efecto Å ã p 2 = 2. q Entonces se sigue que p 2 = 2q 2, y por tanto p es un número par, que escribimos como p = 2r. Substituyendo y simplificando, obtenemos que 2r 2 = q 2 y por lo tanto q también es un número par, en contradicción con la suposición de que p y q no tienen factores comunes. 14 / 21

15 La incompletitud de los racionales Definición: Llamamos número algebraico a uno que satisface una ecuación polinomial c n x n + c n 1 x n c 1 x + c 0 = 0. en donde los coeficientes {c n } son enteros, y n 1. Los números racionales son siempre números algebraicos; si r = m/n, entonces nr m = 0. Pero hemos mostrado que algunos números algebraicos no pueden ser racionales. El deseo de expandir nuestro sistema numérico para incluir las soluciones a este tipo de ecuaciones nos lleva primero a los números reales, y eventualmente a los complejos. Probar que 3 es irracional. Puede usarse el mismo método para probar que 6 es irracional? Dónde falla nuestra prueba por contradicción si tratamos de mostrar que 4 es irracional? 15 / 21

16 Los números escalares forman cuerpos Los números a los que estamos acostumbrados son conjuntos F que cumplen las siguientes condiciones: 1. Podemos sumar números: hay una operación conmutativa y asociativa + con inversa 0 tal que α + β F para cualquier par α, β en F. A cada elemento α corresponde una inversa α tal que α + ( α) = Podemos multiplicarlos: hay otra operación, conmutativa y asociativa con identidad 1 tal que α β F para cualquier par α, β en F. A cada elemento distinto de 0 corresponde una inversa α 1 tal que α α 1 = Esas dos operaciones se combinan de modo que, para cualquier terna α, β, γ en F α (β + γ) = α β + α γ. Esta estructura es llamada «campo» o «cuerpo» por los matemáticos. 16 / 21

17 Usaremos una noción intuitiva de los reales Consideramos a los reales R como una extensión de los números racionales Q que no deja agujeros; intuitivamente, identificamos a los reales con todas las longitudes posibles a lo largo de la recta numérica. Casi todo el desarrollo del cálculo fue hecho la primera mitad de los 1800s (Cauchy, Abel, Bolzano, Dirichlet, Weierstrass, Riemann) utilizando intuiciones sobre la naturaleza de los reales similares a lo que tomaremos como punto de partida; estas intuiciones se formalizaron en los 1870s, cuando se construyeron rigurosamente los reales a partir de los racionales. Trabajo adicional Replicar la construcción de Dedekind de los reales en términos de cortes. 17 / 21

18 Algunas propiedades de los reales 1. R es un conjunto que contiene a Q 2. Las operaciones (+, ) definidas en Q se extienden a R 3. Por el momento, asumiremos que R es un campo, y que hereda un orden de Q. 18 / 21

19 Los reales son completos Axioma de Completitud: todo conjunto no vacío de números reales que esta acotado por arriba tiene un supremo. Esta última propiedad requiere las definiciones: Acotado por arriba: Decimos que A R está acotado por arriba si existe un número b R tal que a b a A. Llamos a b la cota superior de A. Un real s es el supremo de un conjunto A R si cumple con los criterios: s es una cota superior de A Si b es otra cota superior de A, entonces s b. Definir, analogamente a la cota superior y el supremo, una cota inferior y un ínfimo. 19 / 21

20 El ínfimo y el supremo de A pueden no estar en A Un número real a max es un máximo del conjunto A R si a max A y a A, a a max. Similarmente, un mínimo a min A cumple que a A, a a min. Cuáles son los máximos, mínimos, ínfimos y supremos de los siguientes subconjuntos? x R 0 < x < 3 x R 0 x < 17 x R 3 < x 6 x R 0 x 2 Sea s R una cota superior para A R. Enteonces, s = sup A sí y sólo sí, ϵ > 0, a A s ϵ < a. 20 / 21

21 Algunos ejercicios 1. Sea Z 5 = {0, 1, 2, 3, 4}, y defina las operaciones de adición y multiplicación módulo 5. (Esto quiere decir, el resultado de a + b y a b es el residuo del resultado, dividido por Mostrar que cada elemento x Z 5 tiene un inverso aditivo. 1.2 Mostrar que cada elemento x Z 5 tiene un inverso multiplicativo si x Ocurre lo mismo para Z 4? Formule una conjetura sobre los valores de n para los cuáles existen inversos aditivos y multiplicativos. 2. Sea A R acotado por debajo, y defina B = {b R b es una cota inferior de A} Muestre que sup B = inf A. 3. Asuma que A y B son conjuntos no vacíos y que B A. Muestre que sup B A. 4. Pruebe que si a es una cota superior de A, y a A, entonces a = sup A. 5. Si sup A < sup B, pruebe que b B tal que b es una cota superior de A. 21 / 21

Estructuras Algebraicas

Estructuras Algebraicas Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos

Más detalles

1 Números reales. Funciones y continuidad.

1 Números reales. Funciones y continuidad. 1 Números reales. Funciones y continuidad. En este tema nos centraremos en el estudio de la continuidad de funciones reales, es decir, funciones de variable real y valor real. Por ello es esencial en primer

Más detalles

BLOQUE 1. LOS NÚMEROS

BLOQUE 1. LOS NÚMEROS BLOQUE 1. LOS NÚMEROS Números naturales, enteros y racionales. El número real. Intervalos. Valor absoluto. Tanto el Cálculo como el Álgebra que estudiaremos en esta asignatura, descansan en los números

Más detalles

Conjuntos, relaciones y funciones Susana Puddu

Conjuntos, relaciones y funciones Susana Puddu Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también

Más detalles

El cuerpo de los números reales

El cuerpo de los números reales Capítulo 1 El cuerpo de los números reales 1.1. Introducción Existen diversos enfoques para introducir los números reales: uno de ellos parte de los números naturales 1, 2, 3,... utilizándolos para construir

Más detalles

Introducción a los números reales

Introducción a los números reales Grado en Matemáticas Curso 2010-2011 Índice Conjuntos numéricos 1 Conjuntos numéricos Tienen nombre Y cuatro operaciones básicas 2 Teoremas y demostraciones Métodos de demostración 3 4 Objetivos Objetivos

Más detalles

FUNCIONES REALES 1º DE BACHILLERATO CURSO

FUNCIONES REALES 1º DE BACHILLERATO CURSO FUNCIONES REALES 1º DE BACHILLERATO CURSO 2007-2008 Funciones reales Definición Clasificación Igual de funciones Dominio Propiedades Monotonía Extremos relativos Acotación. Extremos absolutos Simetría

Más detalles

Introducción. El uso de los símbolos en matemáticas.

Introducción. El uso de los símbolos en matemáticas. Introducción El uso de los símbolos en matemáticas. En el estudio de las matemáticas lo primero que necesitamos es conocer su lenguaje y, en particular, sus símbolos. Algunos símbolos, que reciben el nombre

Más detalles

Conjuntos Infinitos. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO

Conjuntos Infinitos. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO El estudio de los conjuntos infinitos se inicia con Las Paradojas del Infinito, la última obra del matemático checo Bernard Bolzano, publicada

Más detalles

Forma binomial de números complejos (ejercicios)

Forma binomial de números complejos (ejercicios) Forma binomial de números complejos (ejercicios) Objetivos. Mostrar que los números reales x se pueden identificar con números complejos de la forma (x, 0), y cada número complejo (x, y) se puede escribir

Más detalles

1. Construcción de la Integral

1. Construcción de la Integral 1. Construcción de la Integral La integral de Riemann en R n es una generalización de la integral de funciones de una variable. La definición que vamos a dar reproduce el método de Darboux para funciones

Más detalles

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:

Más detalles

EL CUERPO ORDENADO REALES

EL CUERPO ORDENADO REALES CAPÍTULO I. EL CUERPO ORDENADO DE LOS NÚMEROS REALES SECCIONES A. Elementos notables en R. B. Congruencias. Conjuntos numerables. C. Método de inducción completa. D. Desigualdades y valor absoluto. E.

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 2: Lunes 18 Viernes 22 de Marzo. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 2: Lunes 18 Viernes 22 de Marzo. Contenidos Cálculo Coordinación de Matemática I MAT021 1 er Semestre de 2013 Semana 2: Lunes 18 Viernes 22 de Marzo Contenidos Clase 1: La Ecuación Cuadrática. Inecuaciones de grado 2, con y sin valor absoluto. Clase

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K (Q,

Más detalles

Conjunto R 3 y operaciones lineales en R 3

Conjunto R 3 y operaciones lineales en R 3 Conjunto R 3 y operaciones lineales en R 3 Objetivos. Definir el conjunto R 3 y operaciones lineales en R 3. Requisitos. Conjunto de los números reales R, propiedades de las operaciones aritméticas en

Más detalles

UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS

UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS UNIVERSIDAD DON BOSCO - DEPARTAMENTO DE CIENCIAS BÁSICAS UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS ÁLGEBRA LINEAL - GUIÓN DE CLASE - SEMANA 10 y 11 - CICLO 01-2015 Estudiante: Grupo: 1. Estructuras Algebraicas

Más detalles

Sobre la Construcción Axiomática de los Números Naturales

Sobre la Construcción Axiomática de los Números Naturales Sobre la Construcción Axiomática de los Números Naturales Dr. Rafael Labarca Briones Profesor de Matemáticas. Universidad de Santiago de Chile. Charla dictadas en las EMALCAS de Arequipa, La Paz y Quito.

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Z = N {0} N Enteros Las operaciones + y. son cerradas en Z, es decir la suma de dos números enteros es un número entero y el producto

Más detalles

Límite superior y límite inferior de una sucesión

Límite superior y límite inferior de una sucesión Límite superior y límite inferior de una sucesión Objetivos. Definir las nociones de los límites superior e inferior de una sucesión y estudiar sus propiedades básicas. Requisitos. Supremo e ínfimo de

Más detalles

Terminaremos el capítulo con una breve referencia a la teoría de cardinales.

Terminaremos el capítulo con una breve referencia a la teoría de cardinales. TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto

Más detalles

CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria.

CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. CONJUNTOS NUMÉRICOS La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. Por ejemplo, usamos números para contar una determinada cantidad

Más detalles

TEMA 1. NÚMEROS REALES Y COMPLEJOS

TEMA 1. NÚMEROS REALES Y COMPLEJOS TEMA 1. NÚMEROS REALES Y COMPLEJOS 1.1 DEFINICIÓN AXIOMATICA DE LOS NÚMEROS REALES 1.1.1 Axiomas de cuerpo En admitimos la existencia de dos operaciones internas la suma y el producto, con estas operaciones

Más detalles

CLASIFICACION DE LOS NUMEROS

CLASIFICACION DE LOS NUMEROS CLASIFICACION DE LOS NUMEROS NÚMEROS NATURALES En el desarrollo de las culturas fue evolucionando esta forma primitiva de representar objetos o cosas reales a través de símbolos naciendo así el primer

Más detalles

El ente básico de la parte de la matemática conocida como ANÁLISIS, lo constituye el llamado sistema de los número reales.

El ente básico de la parte de la matemática conocida como ANÁLISIS, lo constituye el llamado sistema de los número reales. EL SISTEMA DE LOS NÚMEROS REALES Introducción El ente básico de la parte de la matemática conocida como ANÁLISIS, lo constituye el llamado sistema de los número reales. Números tales como:1,3, 3 5, e,

Más detalles

Espacios topológicos. 3.1 Espacio topológico

Espacios topológicos. 3.1 Espacio topológico Capítulo 3 Espacios topológicos 3.1 Espacio topológico Definición 3.1.1. Un espacio topológico es un par (X, τ), donde X es un conjunto, y τ es una familia de subconjuntos de X que verifica las siguientes

Más detalles

OPERACIONES CON NÚMEROS REALES

OPERACIONES CON NÚMEROS REALES NÚMEROS REALES Por número real llamaremos a un número que puede ser racional o irracional, por consiguiente, el conjunto de los números reales es la unión del conjunto de números racionales y el conjunto

Más detalles

Unidad II. 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función.

Unidad II. 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función. Unidad II Funciones 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función. Función En matemática, una función (f) es una relación entre un conjunto dado X (llamado dominio)

Más detalles

ESTALMAT-Andalucía Actividades 06/07

ESTALMAT-Andalucía Actividades 06/07 EL LENGUAJE MATEMÁTICO Actividad 1 Cuando hablamos o escribimos en Matemáticas lo hacemos en nuestra lengua habitual, el español, pero utilizamos frases con palabras que designan objetos y símbolos que

Más detalles

TEMA 2. ESPACIOS VECTORIALES

TEMA 2. ESPACIOS VECTORIALES TEMA 2. ESPACIOS VECTORIALES CÉSAR ROSALES GEOMETRÍA I En este tema comenzaremos el estudio de los objetos que nos interesarán en esta asignatura: los espacios vectoriales. Estos son estructuras básicas

Más detalles

Una topología de los números naturales*

Una topología de los números naturales* Una topología de los números naturales* Divulgación Gabriel Ruiz Hernández Instituto de Matemáticas, UNAM 1 de septimebre de 1997 resumen En este trabajo vamos a describir un espacio topológico X con las

Más detalles

Cardinalidad. Teorema 0.3 Todo conjunto infinito contiene un subconjunto infinito numerable.

Cardinalidad. Teorema 0.3 Todo conjunto infinito contiene un subconjunto infinito numerable. Cardinalidad Dados dos conjuntos A y B, decimos que A es equivalente a B, o que A y B tienen la misma potencia, y lo notamos A B, si existe una biyección de A en B Es fácil probar que es una relación de

Más detalles

Caracterización de los números reales

Caracterización de los números reales Grado 11 Matematicas - Unidad 1 Operando en el conjunto de los números reales Tema Caracterización de los números reales Nombre: Curso: Breve historia de los reales A continuación se da una brevísima historia

Más detalles

Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica

Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 3: Relaciones, Funciones, y Notación Asintótica Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 1: Fundamentos:

Más detalles

SCUACAC026MT22-A16V1. SOLUCIONARIO Ejercitación Generalidades de números

SCUACAC026MT22-A16V1. SOLUCIONARIO Ejercitación Generalidades de números SCUACAC026MT22-A16V1 0 SOLUCIONARIO Ejercitación Generalidades de números 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA EJERCITACIÓN GENERALIDADES DE NÚMEROS Ítem Alternativa 1 E 2 D 3 B 4 E 5 A 6 E 7 B 8 D 9 D

Más detalles

CONJUNTOS NUMÉRICOS Los conjuntos numéricos Conjuntos numéricos

CONJUNTOS NUMÉRICOS Los conjuntos numéricos Conjuntos numéricos CONJUNTOS NUMÉRICOS Estudiemos los conjuntos numéricos sin su estructura y la forma como poco a poco se van formando nuevos conjuntos por la necesidad de resolver algunos problemas. 0.1. Los conjuntos

Más detalles

NÚMEROS COMPLEJOS: C

NÚMEROS COMPLEJOS: C NÚMEROS COMPLEJOS: C Alejandro Lugon 21 de mayo de 2010 Resumen Este es un pequeño estudio de los números complejos con el objetivo de poder usar las técnicas de solución de ecuaciones y sistemas diferenciales

Más detalles

Números reales Conceptos básicos Algunas propiedades

Números reales Conceptos básicos Algunas propiedades Números reales Conceptos básicos Algunas propiedades En álgebra es esencial manejar símbolos con objeto de transformar o reducir expresiones algebraicas y resolver ecuaciones algebraicas. Debido a que

Más detalles

1. Naturales, enteros, racionales y reales

1. Naturales, enteros, racionales y reales 1. Naturales, enteros, racionales y reales 1.1. Números naturales, enteros y racionales Los números que básicamente vamos a tratar son los reales R. Estudiaremos sucesiones de números reales, funciones

Más detalles

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos.

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos. Capítulo 1 Preliminares Vamos a ver en este primer capítulo de preliminares algunos conceptos, ideas y propiedades que serán muy útiles para el desarrollo de la asignatura. Se trata de resultados sobre

Más detalles

Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes

Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

PROPIEDADES DE LOS NUMEROS REALES

PROPIEDADES DE LOS NUMEROS REALES PROPIEDADES DE LOS NUMEROS REALES Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Prof. Yuitza T. Humarán Martínez Adaptado por Prof. Caroline Rodriguez Naturales N={1, 2, 3, 4, } {0}

Más detalles

Índice Proposiciones y Conectores Lógicos Tablas de Verdad Lógica de Predicados Inducción

Índice Proposiciones y Conectores Lógicos Tablas de Verdad Lógica de Predicados Inducción Curso 0: Matemáticas y sus Aplicaciones Tema 5. Lógica y Formalismo Matemático Leandro Marín Dpto. de Matemática Aplicada Universidad de Murcia 2012 1 Proposiciones y Conectores Lógicos 2 Tablas de Verdad

Más detalles

1.2 Si a y b son enteros impares, entonces a + b es par. 1.4 Si el producto de enteros a y b es par, entonces alguno de ellos es par.

1.2 Si a y b son enteros impares, entonces a + b es par. 1.4 Si el producto de enteros a y b es par, entonces alguno de ellos es par. Sesión 1 Demostraciones Demostración directa 1.1 Si n es un número entero impar, entonces n 2 es impar. 1.2 Si a y b son enteros impares, entonces a + b es par. Demostración indirecta 1.3 Si n 2 es par,

Más detalles

Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación.

Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. NÚMEROS REALES Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. Un conjunto es una colección bien definida

Más detalles

Repaso de Vectores. Autor: Dra. Estela González. flecha. La longitud de la línea indica la magnitud del vector, y su

Repaso de Vectores. Autor: Dra. Estela González. flecha. La longitud de la línea indica la magnitud del vector, y su Autor: Dra. Estela González Algunas cantidades físicas como tiempo, temperatura, masa, densidad y carga eléctrica se pueden describir plenamente con un número y una unidad, pero otras cantidades (también

Más detalles

Unidad II. Conjuntos. 2.1 Características de los conjuntos.

Unidad II. Conjuntos. 2.1 Características de los conjuntos. Unidad II Conjuntos 2.1 Características de los conjuntos. Es la agrupación en un todo de objetos bien diferenciados en el la mente o en la intuición, por lo tanto, estos objetos son bien determinados y

Más detalles

Espacios Vectoriales www.math.com.mx

Espacios Vectoriales www.math.com.mx Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................

Más detalles

Semana03[1/17] Funciones. 16 de marzo de Funciones

Semana03[1/17] Funciones. 16 de marzo de Funciones Semana03[1/17] 16 de marzo de 2007 Introducción Semana03[2/17] Ya que conocemos el producto cartesiano A B entre dos conjuntos A y B, podemos definir entre ellos algún tipo de correspondencia. Es decir,

Más detalles

SISTEMA DE NUMEROS REALES

SISTEMA DE NUMEROS REALES SISTEMA DE NUMEROS REALES 1.1 Conjuntos Es una agrupación de objetos distintos (pero con algunas características en común), los que reciben el nombre de elementos. Generalmente se nombra a un conjunto

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 1 Nombre: Introducción al algebra Objetivo de la asignatura: El estudiante aplicará los conceptos fundamentales del álgebra como números reales, exponentes, radicales

Más detalles

Una matriz es un arreglo rectangular de elementos. Por ejemplo:

Una matriz es un arreglo rectangular de elementos. Por ejemplo: 1 MATRICES CONCEPTOS BÁSICOS Definición: Matriz Una matriz es un arreglo rectangular de elementos. Por ejemplo: es una matriz de 3 x 2 (que se lee 3 por 2 ) pues es un arreglo rectangular de números con

Más detalles

Cálculo diferencial II

Cálculo diferencial II TECNOLÓGICO DE PÁNUCO Cálculo diferencial II Ing. Ariadna Daulet Santiago Santiago Ing. Ariadna Daulet Santiago Santiago EVALUACIÓN UNIDAD 1 EVIDENCIA INDICADOR CALIFICACIÓN APROBATORIA MÍNIMA EXAMEN A,

Más detalles

GUION TÉCNICO AUDIO. Propiedades de Campo y Orden de los Números Reales (1). estructurados, y ello les obliga a "funcionar" o a

GUION TÉCNICO AUDIO. Propiedades de Campo y Orden de los Números Reales (1). estructurados, y ello les obliga a funcionar o a 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. Propiedades de Campo y Orden de los Números Reales (1). Los números son elementos que forman parte de conjuntos

Más detalles

Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación).

Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación). Espacios Topológicos 1 Punto de Acumulación Definición: Sea A un subconjunto arbitrario de R n, se dice que x R n es un punto de acumulación de A si toda bola abierta con centro x contiene un punto A distinto

Más detalles

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y). TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:

Más detalles

Teoría de la Probabilidad Tema 2: Teorema de Extensión

Teoría de la Probabilidad Tema 2: Teorema de Extensión Teoría de la Probabilidad Tema 2: Teorema de Extensión Alberto Rodríguez Casal 25 de septiembre de 2015 Definición Una clase (no vacía) A de subconjuntos de Ω se dice que es un álgebra si A es cerrada

Más detalles

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1 PRODUCTO ESCALAR INTRODUCCIÓN El espacio vectorial de los vectores libres del plano se caracteriza por tener definidas dos operaciones: una interna, suma de vectores, y otra externa, producto de un número

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 5

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 5 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 5 OPERACIONES CON LOS NÚMEROS REALES En R se de nen dos operaciones: Suma o adición y producto o multiplicación: Si a 2 R y

Más detalles

El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.

El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D. Concepto de función Función real de variable real es toda correspondencia f que asocia a cada elemento de un determinado subconjunto de números reales, llamado dominio, otro número real (uno y sólo uno).

Más detalles

Los números enteros nos permiten interpretar valores negativos que obtenemos en ciertas situaciones cotidianas, por ejemplo:

Los números enteros nos permiten interpretar valores negativos que obtenemos en ciertas situaciones cotidianas, por ejemplo: INDICE: PRELIMINARES CONJUNTO DE LOS NÚMEROS NATURALES CONJUNTO DE LOS NÚMEROS ENTEROS CONJUNTO DE LOS NÚMEROS RACIONALES EL CONJUNTO DE LOS NÚMEROS IRRACIONALES EL CONJUNTO DE NÚMEROS REALES LA RECTA

Más detalles

(infinito) indica una sucesión indefinida de números. Al número asociado a cada punto lo llamaremos COORDENADA.

(infinito) indica una sucesión indefinida de números. Al número asociado a cada punto lo llamaremos COORDENADA. CLASIFICACION DE LOS NUMEROS EL CONJUNTO DE LOS NUMEROS NATURALES El conjunto de los números naturales es el más antiguo y se usa primordialmente para contar. Los números naturales forman una colección

Más detalles

Sesión No. 1. Contextualización. Nombre: Fundamentos del Álgebra MATEMÁTICAS

Sesión No. 1. Contextualización. Nombre: Fundamentos del Álgebra MATEMÁTICAS Matemáticas 1 Sesión No. 1 Nombre: Fundamentos del Álgebra Contextualización Esta sesión está diseñada para ofrecer una breve explicación de los principios aritméticos y algebraicos que se requieren para

Más detalles

Sobre funciones reales de variable real. Composición de funciones. Función inversa

Sobre funciones reales de variable real. Composición de funciones. Función inversa Sobre funciones reales de variable real. Composición de funciones. Función inversa Cuando en matemáticas hablamos de funciones pocas veces nos paramos a pensar en la definición rigurosa de función real

Más detalles

Espacios conexos. Capítulo Conexidad

Espacios conexos. Capítulo Conexidad Capítulo 5 Espacios conexos 1. Conexidad En este capítulo exploraremos el concepto de conexidad en un espacio métrico, y estudiaremos algunas de sus aplicaciones. Definición 5.1. Decimos que el espacio

Más detalles

Transformaciones lineales y matrices

Transformaciones lineales y matrices CAPíTULO 5 Transformaciones lineales y matrices 1 Matriz asociada a una transformación lineal Supongamos que V y W son espacios vectoriales de dimensión finita y que T : V W es una transformación lineal

Más detalles

Funciones integrables en R n

Funciones integrables en R n Capítulo 1 Funciones integrables en R n Sean un subconjunto acotado de R n, y f : R una función acotada. Sea R = [a 1, b 1 ]... [a n, b n ] un rectángulo que contenga a. Siempre puede suponerse que f está

Más detalles

Pablo Cobreros Tema 6. El tamaño del infinito

Pablo Cobreros Tema 6. El tamaño del infinito Lógica II Pablo Cobreros pcobreros@unav.es Tema 6. El tamaño del infinito Introducción Introducción La noción de cardinal Afirmaciones acerca del tamaño La noción de cardinal El tamaño del infinito Introducción

Más detalles

2. Los números naturales, enteros y racionales 1

2. Los números naturales, enteros y racionales 1 - Fernando Sánchez - - Cálculo I 2Los números naturales, enteros y racionales Números naturales 24 09 2015 Se llaman números naturales a los elementos del conjunto N = {1, 2, 3,...}. En este conjunto hay

Más detalles

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad Estructuras Discretas Relaciones Definición: relación Relaciones Claudio Lobos, Jocelyn Simmonds clobos,jsimmond@inf.utfsm.cl Universidad Técnica Federico Santa María Estructuras Discretas INF 152 Sean

Más detalles

Números naturales y recursividad

Números naturales y recursividad Números naturales y recursividad Rafael F. Isaacs G. Sonia M. Sabogal P. * Fecha: 8 de marzo de 2005 Números naturales Se sabe que los números naturales constituyen la estructura básica de la Matemática;

Más detalles

Banco de reactivos de Álgebra I

Banco de reactivos de Álgebra I Banco de reactivos de Álgebra I Compilación: Ochoa Cruz Rita Julio de 006 Temario. Unidad I: El campo de los números reales. Conjunto y conjuntos de números. Orden y distancia. Valor absoluto 4. Operaciones

Más detalles

Aritmética de Enteros

Aritmética de Enteros Aritmética de Enteros La aritmética de los computadores difiere de la aritmética usada por nosotros. La diferencia más importante es que los computadores realizan operaciones con números cuya precisión

Más detalles

Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. MATRICES Matriz Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n A = a i1 a ij a in a m1 a

Más detalles

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2014 Universidad Nacional de Colombia

Más detalles

Los Conjuntos de Números

Los Conjuntos de Números Héctor W. Pagán Profesor de Matemática Mate 40 Debemos recordar.. Los conjuntos de números 2. Opuesto. Valor absoluto 4. Operaciones de números con signo Los Conjuntos de Números Conjuntos importantes

Más detalles

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales Introducción Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A. Cayley

Más detalles

Sucesiones en R n. Ejemplos.-Considerando el espacio R 2 sea la sucesión {x k } 1 dada por x k = ( k, 1 k) podemos listar como sigue:

Sucesiones en R n. Ejemplos.-Considerando el espacio R 2 sea la sucesión {x k } 1 dada por x k = ( k, 1 k) podemos listar como sigue: Sucesiones en R n Definición. Una sucesión en R n es cualquier lista infinita de vectores en R n x, x,..., x,... algunos de los cuales o todos ellos pueden coincidir entre si. Dada una sucesión x, x,...,

Más detalles

Tema 5: Sistemas de ecuaciones lineales.

Tema 5: Sistemas de ecuaciones lineales. TEORÍA DE ÁLGEBRA: Tema 5 DIPLOMATURA DE ESTADÍSTICA 1 Tema 5: Sistemas de ecuaciones lineales 1 Definiciones generales Definición 11 Una ecuación lineal con n incognitas es una expresión del tipo a 1

Más detalles

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad y Laterales Curso Propedéutico de Cálculo Sesión 2: y Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico y Esquema Laterales 1 Laterales 2 y Esquema Laterales

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC13 Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas ITESM Matrices: Conceptos y Operaciones Básicas Matemáticas Discretas - p. 1/25 Una matriz A m n es un arreglo

Más detalles

TEMARIOS PRUEBAS SEMESTRALES 2015 PRIMER SEMESTRE DEPARTAMENTO DE MATEMÁTICA

TEMARIOS PRUEBAS SEMESTRALES 2015 PRIMER SEMESTRE DEPARTAMENTO DE MATEMÁTICA Saint Gaspar College Misio nero s de la Precio sa Sangre F o r m a n d o P e r s o n a s Í n t e g r a s TEMARIOS PRUEBAS SEMESTRALES 2015 PRIMER SEMESTRE DEPARTAMENTO DE MATEMÁTICA NIVEL FECHA *TEMARIO*

Más detalles

LOS NÚMEROS NATURALES

LOS NÚMEROS NATURALES LOS NÚMEROS NATURALES INDUCCION MATEMÁTICA Existen diversas formas de sistematizar al conjunto de los números naturales y sus propiedades, la axiomática de Peano es aquella en que nos basaremos para deducir

Más detalles

UNIDAD: NÚMEROS Y PROPORCIONALIDAD. Los elementos del conjunto IN = {1, 2, 3, 4, 5, 6, 7,...} se denominan números

UNIDAD: NÚMEROS Y PROPORCIONALIDAD. Los elementos del conjunto IN = {1, 2, 3, 4, 5, 6, 7,...} se denominan números GUÍA Nº 2 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS ENTEROS NÚMEROS NATURALES (ln) Los elementos del conjunto IN = {1, 2, 3, 4, 5, 6, 7,...} se denominan números naturales NÚMEROS ENTEROS (Z) Los elementos

Más detalles

Preparación para Álgebra 1 de Escuela Superior

Preparación para Álgebra 1 de Escuela Superior Preparación para Álgebra 1 de Escuela Superior Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales

Más detalles

Álgebra Lineal VII: Independencia Lineal.

Álgebra Lineal VII: Independencia Lineal. Álgebra Lineal VII: Independencia Lineal José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato email: jrico@salamancaugtomx

Más detalles

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares

Más detalles

Aritmética del reloj. Mate 3041 Profa. Milena R. Salcedo Villanueva

Aritmética del reloj. Mate 3041 Profa. Milena R. Salcedo Villanueva Aritmética del reloj Mate 3041 Profa. Milena R. Salcedo Villanueva 1 Aritmética del Reloj El médico: Ahora son las 10 de la mañana. Tome la próxima pastilla a las 2 de la tarde, y luego una cada 8 horas.

Más detalles

Tema I 1. EL CUERPO DE LOS REALES, EL CUERPO DE LOS COMPLEJOS

Tema I 1. EL CUERPO DE LOS REALES, EL CUERPO DE LOS COMPLEJOS 1 Tema I 1. EL CUERPO DE LOS REALES, EL CUERPO DE LOS COMPLEJOS 1.1 Los Números Naturales. Los números naturales aparecen por la necesidad que tiene el hombre (primitivo) tanto de contar como de ordenar

Más detalles

Tema 1: Matrices y Determinantes

Tema 1: Matrices y Determinantes Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz

Más detalles

Integrales múltiples

Integrales múltiples ntegrales múltiples Cálculo (2003) El objetivo de este capítulo es definir y aprender a calcular integrales de funciones reales de varias variables, que llamamos integrales múltiples. Las motivación más

Más detalles

7.FUNCIÓN REAL DE VARIABLE REAL

7.FUNCIÓN REAL DE VARIABLE REAL 7.FUNCIÓN REAL DE VARIABLE REAL 7.1 CONCEPTOS PREVIOS Dados dos conjuntos A={ 1,, 3,...} y B={y 1, y, y 3,...}, el par ordenado ( m, y n ) indica que el elemento m del conjunto A está relacionado con el

Más detalles

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo.

Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo. 1 Tema 5.-. Teoría de anillos. Dominios, cuerpos y cuerpos de fracciones. Característica de un cuerpo. 5.1. Anillos y cuerpos Definición 5.1.1. Un anillo es una terna (A, +, ) formada por un conjunto A

Más detalles

En una recta numérica el punto que representa el cero recibe el nombre de origen.

En una recta numérica el punto que representa el cero recibe el nombre de origen. 1. Conjuntos numéricos Los conjuntos numéricos con los que has trabajado tanto en Enseñanza Básica como en Enseñanza Media, se van ampliando a medida que se necesita resolver ciertas problemáticas de la

Más detalles

LOS NUMEROS IRRACIONALES Y SU REPRESENTACIÓN EN LA RECTA NUMERICA

LOS NUMEROS IRRACIONALES Y SU REPRESENTACIÓN EN LA RECTA NUMERICA GUIA Nº 1: LOS NÚMEROS REALES 1 GRADO: 8º PROFESORA: Eblin Martínez M. ESTUDIANTE: PERIODO: I DURACIÓN: 20 Hrs LOGRO: Realizo operaciones con números naturales, enteros, racionales e irracionales. INDICADORES

Más detalles

ALGEBRA DE BOOLE George Boole C. E. Shannon E. V. Hungtington [6]

ALGEBRA DE BOOLE George Boole C. E. Shannon E. V. Hungtington [6] ALGEBRA DE BOOLE El álgebra booleana, como cualquier otro sistema matemático deductivo, puede definirse con un conjunto de elementos, un conjunto de operadores y un número de axiomas no probados o postulados.

Más detalles

CONJUNTO DE LOS NUMEROS ENTEROS

CONJUNTO DE LOS NUMEROS ENTEROS República Bolivariana de Venezuela Ministerio de la Defensa Universidad Nacional Experimental Politécnica de la Fuerza Armada Núcleo Caracas CIU Cátedra: Razonamiento Matemático CONJUNTO DE LOS NUMEROS

Más detalles

Tema 7.0. Repaso de números reales y de funciones

Tema 7.0. Repaso de números reales y de funciones Matemáticas II (Bachillerato de Ciencias) Análisis: Repaso de números reales y de funciones 47 Tema 70 Repaso de números reales y de funciones El conjunto de los números reales El conjunto de los números

Más detalles

Sesión del día 11 de Marzo del 2011 y tutoría del día 12 de Marzo del 2011

Sesión del día 11 de Marzo del 2011 y tutoría del día 12 de Marzo del 2011 Especialidad La enseñanza de las matemáticas en secundaria Grupo B: Celaya Sesión del día 11 de Marzo del 2011 y tutoría del día 12 de Marzo del 2011 Álgebra Resumen de la sesión anterior. Se añadió que

Más detalles