Producto cartesiano y relaciones.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Producto cartesiano y relaciones."

Transcripción

1 CAPÍTULO 1. Producto cartesiano y relaciones. Este primer capítulo trata sobre producto cartesiano y relaciones. Muchos subconjuntos del plano definen relaciones, las cuales tienen cada una distintas propiedades. Estas propiedades forman en la mente ideas que posteriormente se aplican en ingeniería, por ejemplo en programación y bases de datos.

2 SECCIÓN 1. Producto Cartesiano. En esta sección traemos, cuidadosamente seleccionado, un ejercicio sobre producto cartesiano. El problema comienza con una propiedad que, una vez que la interpretamos en la familiar recta real R, nos da una idea de cómo probarla en general y no sólo para subconjuntos de números reales. Finalmente, la demostración detallada en cada paso nos da una visión general de cómo se demuestran varias propiedades de distintos ejercicios. CONTENIDO. 1. Ejercicio sintetizador de producto cartesiano. 2. Ejemplo en R. 3. Demostración de las propiedades. 2

3 Enunciado. Sean A, B U dos conjuntos cualesquiera. Determinar si la igualdad Galería 1.1 : Producto Cartesiano (A B) (B A) = (A B) (B A) es correcta. En caso negativo dar un contraejemplo y en caso positivo demostrarla. Solución. Lo primero que tenemos que hacer es interpretar geométricamente cada miembro de la igualdad en un ejemplo que conozcamos. Una buena idea es pensar que A, B R. El gráfico siguiente nos muestra este caso. Interpretación geométrica del producto cartesiano para nuestro ejercicio en R 2 con A y B intervalos. El miembro de la izquierda resulta entonces todo lo graficado en color verde. Pero, es igual al miembro de la derecha? Vemos que no : el miembro de la derecha es, de los cuatro rectángulos, solamente el superior izquierdo A B y el inferior derecho B A. Por lo tanto la igualdad es incorrecta. Pero vayamos un poco más allá. Del gráfico parece que el miembro derecho está incluido en el izquierdo. Si queremos probar que este es el caso siempre, lo debemos demostrar. 3

4 Vamos a probar entonces que (A B) (B A) (A B) (B A). Para probar una inclusión de conjuntos debemos tomar un elemento del primero de ellos y mostrar que sí o sí este elemento pertenece al segundo. Sea entonces : (x, y) (A B) (B A) (x, y) A B (x, y) B A (x A y B) (x B y A) (x A y A) (x A y B) (x B y A) (x B y B) (x (A B) y A) ((x (A B) y B) x (A B) y (B A) (x, y) (A B) (B A). c.q.d. 4

5 SECCIÓN 1 Relaciones de equivalencia y de orden. En esta segunda sección resolvemos dos ejercicios importantes de los dos tipos de relaciones más importantes de la materia : las relaciones de equivalencia y las relaciones de orden. En el primero, interpretamos geométricamente la relación, con lo cual las clases y el conjunto cociente se hallan de una manera natural. En el segundo, ordenamos el conjunto con un método que se utiliza en otros lados de la materia. Estas ideas generales se aplican a muchos ejercicios de modo que su manejo completo es de gran ayuda en otros temas. CONTENIDO. 1. Relaciones de equivalencia. 2. Clases y conjunto cociente. 3. Relaciones de orden. 4. Elementos particulares de subconjuntos. 5

6 Enunciado. En R 2 definimos (x, y) (u, v) x 2 + y 2 = u 2 + v 2. Probar que es una relación de equivalencia, determinar las clases y el conjunto cociente que determina la misma. Solución. Recordemos que una relación de equivalencia es una relación que es simultáneamente reflexiva, simétrica y transitiva. Hagamos por ejemplo la demostración de la transitividad, dejando como ejercicio para el lector la demostración de la reflexividad y de la simetría. Debemos probar que (x, y) (u, v) (u, v) (r, s) (x, y) (r, s). Supongamos entonces que (x, y) (u, v) (u, v) (r, s) x 2 + y 2 = u 2 + v 2 u 2 + v 2 = r 2 + s 2 x 2 + y 2 = r 2 + s 2 (x, y) (r, s). Ahora bien, para calcular las clases debemos recordar la definición de ella. En un conjunto A donde hay definida una relación de equivalencia, si a A entonces se define la clase de a, que se denota cl(a) así: cl(a) = {x A : x a}. Pero en nuestro ejemplo A = R 2 por eso lo que en la definición es x ahora debe ser un elemento de R 2. Tiene entonces sentido calcular la clase de un elemento de R 2. Calculemos por ejemplo la clase del (3,4). cl(3,4) = {(x, y) R 2 : (x, y) (3,4)}. Esto implica que se debe cumplir que x 2 + y 2 = = 25 luego el conjunto cl(3,4) es igual a cl(3,4) = {(x, y) R 2 : x 2 + y 2 = 25} lo cual se representa geométricamente por una circunferencia de radio 5. Análogamente la clase del (12,5) se calcula así : cl(12,5) = {(x, y) R 2 : (x, y) (12,5)}. 6

7 Esto implica que se debe cumplir que x 2 + y 2 = = 169 Galería 1 : Las clases de la relación. luego el conjunto cl(12,5) es igual a cl(12,5) = {(x, y) R 2 : x 2 + y 2 = 169} lo cual se representa geométricamente por una circunferencia de radio 13. En general, vemos que la clase de un elemento (a, b) es el conjunto cl(a, b) = {(x, y) R 2 : x 2 + y 2 = a 2 + b 2 } lo cual se representa geométricamente por una circunferencia de radio a 2 + b 2 con centro en el origen. Clases de equivalencia de los elementos (3,4) y (12,5). Para calcular el conjunto cociente, debemos hallar el conjunto de todas las clases de equivalencia, donde no debemos listar en dicho conjunto dos veces a una misma clase. De la gráfica anterior, vemos que un tal conjunto podría ser cualquier semirrecta con origen en (0,0). Luego, un posible conjunto es el conjunto de las clases de los números reales no negativos a pero nombrados en la forma (a,0), es decir R 2 / = {cl(a,0) : a R + 0 }. Podés ver una solución on-line explicada por un profesor cliqueando aquí. 7

8 Problema. Considere el subconjunto de números naturales ordenado por la divisibilidad siguiente : A = {2,3,4,9,28,36,45,180,252,1260}. Realizar el diagrama de Hasse correspondiente y luego, para el subconjunto B = {4,9,36,45,180} hallar c. inf(b), c. sup(b), inf(b), sup(b), min(b), max(b), minim(b), ma xim(b). Solución. Recordemos que en un conjunto finito donde hay definida una relación de orden se define el diagrama de Hasse como una figura de vértices y aristas donde se dibuja una arista del vértice a al vértice b si a está relacionado con b donde se entiende que todo elemento está relacionado con sí mismo y que no hace falta dibujar la arista si se puede llegar desde a hasta b pasando por uno o más vértices del conjuntos. En nuestro caso debemos concentrarnos en dibujar una arista desde a hasta b cuando a b. Diagrama de Hasse del conjunto A. El diagrama de Hasse queda entonces así : 8

9 Pasamos ahora a la segunda parte del ejercicio. Consideremos el subconjunto B = {4,9,36,45,180} de A. Entonces con este diagrama vemos que los elementos notables del subconjunto B = {4,9,36,45,180} son : c. inf(b) = c. sup(b) = {180,1260} inf(b) sup(b) = 180 min(b) max(b) = 180 minim(b) = {4,9} ma xim(b) = {180}. 9

Conjuntos, relaciones y funciones Susana Puddu

Conjuntos, relaciones y funciones Susana Puddu Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también

Más detalles

Apuntes de Matemática Discreta 8. Relaciones de Equivalencia

Apuntes de Matemática Discreta 8. Relaciones de Equivalencia Apuntes de Matemática Discreta 8. Relaciones de Equivalencia Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 8 Relaciones de Equivalencia

Más detalles

ÁLGEBRA I. Curso Grado en Matemáticas

ÁLGEBRA I. Curso Grado en Matemáticas ÁLGEBRA I. Curso 2012-13 Grado en Matemáticas Relación 1: Lógica Proposicional y Teoría de Conjuntos 1. Establecer las siguientes tautologías: (a) A A A (b) A A A (c) A B B A (d) A B B A (e) (A B) C A

Más detalles

Ejercicios de Álgebra Básica. Curso 2014/15

Ejercicios de Álgebra Básica. Curso 2014/15 Ejercicios de Álgebra Básica. Curso 2014/15 Tema 1: Conjuntos Conjuntos. Operaciones básicas Ejercicio 1. Describir las relaciones de inclusión o pertenencia entre los siguientes conjuntos: A =, B = {

Más detalles

Álgebra de Boole. Retículos.

Álgebra de Boole. Retículos. CAPÍTULO 4. Álgebra de Boole. Retículos. Este capítulo introduce dos estructuras algebraicas muy importantes : la estructura de álgebra de Boole y la de retículo. Estas estructuras constituyen una parte

Más detalles

1. Conjuntos y funciones

1. Conjuntos y funciones Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 2016 PRACTICO 1: CONJUNTOS. 1 1. Conjuntos y funciones Ejercicio 1. Si I es un conjunto y A α es

Más detalles

Semana05[1/14] Relaciones. 28 de marzo de Relaciones

Semana05[1/14] Relaciones. 28 de marzo de Relaciones Semana05[1/14] 28 de marzo de 2007 Introducción Semana05[2/14] Ya en los capítulos anteriores nos acercamos al concepto de relación. Relación Dados un par de conjuntos no vacíos A y B, llamaremos relación

Más detalles

Conjuntos. Relaciones. Aplicaciones

Conjuntos. Relaciones. Aplicaciones Conjuntos. Relaciones. Aplicaciones Conjuntos 1. Considera el subconjunto A de números naturales formado por los múltiplos de 4 y el conjunto B N de los números que terminan en 4. Comprueba que A B y B

Más detalles

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad Estructuras Discretas Relaciones Definición: relación Relaciones Claudio Lobos, Jocelyn Simmonds clobos,jsimmond@inf.utfsm.cl Universidad Técnica Federico Santa María Estructuras Discretas INF 152 Sean

Más detalles

Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos

Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos Semana02[1/23] 9 de marzo de 2007 Introducción Semana02[2/23] La teoría de conjuntos gira en torno a la función proposicional x A. Los valores que hacen verdadera la función proposicional x A son aquellos

Más detalles

Capítulo 4: Conjuntos

Capítulo 4: Conjuntos Capítulo 4: Conjuntos Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Septiembre de 2014 Olalla (Universidad de Sevilla) Capítulo 4: Conjuntos Septiembre de

Más detalles

6 Relaciones Binarias

6 Relaciones Binarias 6 Relaciones Binarias 21 Sean A = {a, b, c, d}, B = {2, 3, 4, 5} y C = {6,, 8,, 10}. Sean R1 A B y R2 B C definidas por R1 = {(a, 2), (a, 5), (b, 4), (c, 2), (c, 3), (d, 3)} y x R2 y x divide a y. a) Hallar

Más detalles

Capítulo 2 Conjuntos. 2.1 Introducción. 2.2 Determinación de conjuntos. Definición:

Capítulo 2 Conjuntos. 2.1 Introducción. 2.2 Determinación de conjuntos. Definición: Capítulo 2 Conjuntos 2.1 Introducción El concepto de conjunto, de singular importancia en la ciencia matemática y objeto de estudio de una de sus disciplinas más recientes, está presente, aunque en forma

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN DESIGUALDADES QUE INVOLUCRAN VALOR ABSOLUTO

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN DESIGUALDADES QUE INVOLUCRAN VALOR ABSOLUTO MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN DESIGUALDADES QUE INVOLUCRAN VALOR ABSOLUTO Con base en la de nición de valor absoluto podemos probar las siguientes propiedades: Si

Más detalles

6 Vectores. Dependencia e independencia lineal.

6 Vectores. Dependencia e independencia lineal. 6 Vectores. Dependencia e independencia lineal. Introducción Hay fenómenos reales que se pueden representar adecuadamente mediante un número con su adecuada unidad de medida. Sin embargo para representar

Más detalles

Terminaremos el capítulo con una breve referencia a la teoría de cardinales.

Terminaremos el capítulo con una breve referencia a la teoría de cardinales. TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto

Más detalles

UNIDAD DE APRENDIZAJE II

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE II Saberes procedimentales 1. Emplea de manera sistemática conceptos algebraicos, geométricos, trigonométricos y de geometría analítica. 2. Relaciona una ecuación algebraica con a

Más detalles

RESOLUCIÓN DE TRIÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS RESOLUCIÓN DE TRIÁNGULOS Resolver un triángulo consiste en determinar la longitud de sus tres lados y la amplitud de sus tres ángulos. Vamos a recordar primero la resolución para triángulos rectángulos

Más detalles

ESPACIOS VECTORIALES SUBESPACIOS:

ESPACIOS VECTORIALES SUBESPACIOS: SUBESPACIOS: Continuación EJEMPLOS: S 2 = {(x 1, x 2 ) / x 2 =x 12 } R 2 es subespacio del espacio vectorial? Interpretación geométrica: Representa una parábola de eje focal el eje de ordenadas, vértice

Más detalles

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES RELACIONES BINARIAS PAR ORDENADO Es un arreglo de dos elementos que tienen un orden determinado donde a es llamada al primera componente y b es llamada la

Más detalles

APUNTES DE GEOMETRÍA ANALÍTICA

APUNTES DE GEOMETRÍA ANALÍTICA CAPÍTULO 1: LA RECTA EN EL PLANO Conceptos Primitivos: Punto, recta, plano. APUNTES DE GEOMETRÍA ANALÍTICA Definición 1 (Segmento) Llamaremos segmento a la porción de una línea recta comprendida entre

Más detalles

Tema 11: Integral definida. Aplicaciones al cálculo de áreas

Tema 11: Integral definida. Aplicaciones al cálculo de áreas Tema 11: Integral definida. Aplicaciones al cálculo de áreas 1. Introducción Las integrales nos van a permitir calcular áreas de figuras no geométricas. En nuestro caso, nos limitaremos a calcular el área

Más detalles

2. Distancia entre dos puntos. Punto medio de un segmento

2. Distancia entre dos puntos. Punto medio de un segmento Geometría 1 Geometría anaĺıtica Una ecuación de primer grado con dos incógnitas x e y tiene infinitas soluciones Por ejemplo x + y = 3 tiene como soluciones (0, 3), (1, ), ( 1, 4), etc Hasta ahora se han

Más detalles

Lección No.4: Relación de equivalencia

Lección No.4: Relación de equivalencia Sol: B-A1, c, (A B) c 3, e y (A B) c 1, c, 3, d, 4, e,5 Ejercicio 2: Si U 1,2,3,4,5,6,7,8,9, A 3,7,9, B 1,3,4,5 y C 1, 5,8 encontrar (A B) (BC) -A y C c Sol: A B BC -A1,5} y C c = {2,3,4,6,7,9}. Lección

Más detalles

2 4 0 x 1 ± o ( 11) p

2 4 0 x 1 ± o ( 11) p Problema 1 Se tienen dos progresiones de números reales, una aritmética (a n n N yotrageométrica (g n n N no constante Se cumple que a 1 = g 1 0, a = g y a 10 = g 3 Decidir, razonadamente, si para cada

Más detalles

Análisis Matemático 2

Análisis Matemático 2 MARTÍN MAULHARDT Análisis Matemático 2 UNA CUIDADOSA SELECCIÓN DE EJERCICIOS RESUELTOS CAPÍTULO 1 Geometría del Plano. El plano y el espacio constituyen el lugar geométrico sobre el cual vamos a trabajar

Más detalles

Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón.

Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón. Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón. 0.1. Definiciones básicas: subconjunto, conjunto vacío, complemento, conjunto de partes A lo largo de esta sección consideraremos

Más detalles

Relaciones de orden. Álgebras de Boole

Relaciones de orden. Álgebras de Boole Relaciones de orden. Álgebras de Boole MATEMÁTICA DISCRETA I F. Informática. UPM MATEMÁTICA DISCRETA I () Relaciones de orden. Álgebras de Boole F. Informática. UPM 1 / 52 Conjuntos y relaciones entre

Más detalles

Objetivos formativos de Matemática Discreta. Tema 1: Conjuntos, aplicaciones y relaciones

Objetivos formativos de Matemática Discreta. Tema 1: Conjuntos, aplicaciones y relaciones Objetivos formativos de Matemática Discreta Para cada uno de los temas el alumno debe ser capaz de hacer lo que se indica en cada bloque. Además de los objetivos que se señalan en cada tema, se considera

Más detalles

UNIDAD IV DISTANCIA ENTRE DOS PUNTOS

UNIDAD IV DISTANCIA ENTRE DOS PUNTOS UNIDAD IV DISTANCIA ENTRE DOS PUNTOS Dados los puntos: P(x1, y1) y Q(x2, y2), del plano, hallemos la distancia entre P y Q. Sin pérdida de generalidad, tomemos los puntos P y Q, en el primer cuadrante

Más detalles

Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones

Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones UNSL Repaso de Inducción, y Inducción Matemática (Sección 1.7 del libro) Supongamos que queremos demostrar enunciados del siguiente tipo: P(n) : La suma de los primeros n números naturales es n(n+1)

Más detalles

Subspacios Vectoriales

Subspacios Vectoriales Subspacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Subspacios Vectoriales 1 / 25 Objetivos Al finalizar este tema tendrás que: Saber si un subconjunto es

Más detalles

Para ver una explicación detallada de cada gráfica, haga Click sobre el nombre.

Para ver una explicación detallada de cada gráfica, haga Click sobre el nombre. Para ver una explicación detallada de cada gráfica, haga Click sobre el nombre. La Parábola La Circunferencia La Elipse La Hipérbola La Parábola La parábola se define como: el lugar geométrico de los puntos

Más detalles

Definición: un lugar geométrico plano es el conjunto de todos los puntos del plano que cumplen una determinada propiedad.

Definición: un lugar geométrico plano es el conjunto de todos los puntos del plano que cumplen una determinada propiedad. Capítulo II. Lugar geométrico. Definición: un lugar geométrico plano es el conjunto de todos los puntos del plano que cumplen una determinada propiedad. Ejemplo: la mediatriz de un segmento es el conjunto

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2012 2013) 1. En un espacio afín real de dimensión 3, se consideran dos sistemas de referencia R = O, ē 1, ē 2, ē 3 } y R = P, ū 1, ū 2, ū 3 },

Más detalles

Interpretación gráfica

Interpretación gráfica Interpretación gráfica En la introducción de la sección Sistemas de Ecuaciones Lineales se presentó la interpretación gráfica (o geométrica) de la solución de un S.E.L.. Este tema está relacionado con

Más detalles

Espacios Vectoriales

Espacios Vectoriales Leandro Marín Octubre 2010 Índice Definición y Ejemplos Paramétricas vs. Impĺıcitas Bases y Coordenadas Para definir un espacio vectorial tenemos que empezar determinando un cuerpo sobre el que esté definido

Más detalles

14/02/2017. TEMA 3: EL CUERPO DE LOS NUMEROS REALES Esp. Prof. Liliana N. Caputo

14/02/2017. TEMA 3: EL CUERPO DE LOS NUMEROS REALES Esp. Prof. Liliana N. Caputo TEMA 3: EL CUERPO DE LOS NUMEROS REALES Esp. Prof. Liliana N. Caputo Así como al estudiar conjuntos hablamos de la existencia de términos primitivos (que no se definen), para definir algunos conjuntos,

Más detalles

50 CAP. I. CONJUNTOS, APLICACIONES Y RELACIONES. Ejercicio. 8.1. Dados los conjuntos: Determinar los siguientes conjuntos: Se tiene:

50 CAP. I. CONJUNTOS, APLICACIONES Y RELACIONES. Ejercicio. 8.1. Dados los conjuntos: Determinar los siguientes conjuntos: Se tiene: 50 CAP. I. CONJUNTOS, APLICACIONES Y RELACIONES Ejercicio. 8.1. Dados los conjuntos: Determinar los siguientes conjuntos: A = {a, b, c, d, e}, B = {e, f, g, h}, C = {a, e, i, o, u} A B C, A B C, A \ B,

Más detalles

Capitulo V: Relaciones

Capitulo V: Relaciones Capitulo V: Relaciones Relaciones Binarias: Consideremos dos conjuntos A B no vacíos, llamaremos relación binaria de A en B o relación entre elementos de A B a todo subconjunto R del producto cartesiano

Más detalles

Relaciones de orden. Definición 1. Llamamos conjunto ordenado a un par (E, ) donde E es un conjunto y es un orden definido en E

Relaciones de orden. Definición 1. Llamamos conjunto ordenado a un par (E, ) donde E es un conjunto y es un orden definido en E Relaciones de orden Diremos que una relación R es de orden si verifica las propiedades reflexiva, antisimétrica y transitiva. Generalmente usaremos la notación en lugar de R para expresar relaciones de

Más detalles

1. Medida Exterior. Medida de Lebesgue en R n

1. Medida Exterior. Medida de Lebesgue en R n 1. La integral de Lebesgue surge del desarrollo de la integral de Riemann, ante las dificultades encontradas en las propiedades de paso al ĺımite para calcular la integral de una función definida como

Más detalles

Tema 7: Geometría Analítica. Rectas.

Tema 7: Geometría Analítica. Rectas. Tema 7: Geometría Analítica. Rectas. En este tema nos centraremos en estudiar la geometría en el plano, así como los elementos que en este aparecen como son los puntos, segmentos, vectores y rectas. Estudiaremos

Más detalles

Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica

Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica 1. a) Marcar en un eje los puntos a(1);b( 2) y c(4). b) Hallar los puntos simétricos respecto al origen

Más detalles

La parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija llamada directriz.

La parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija llamada directriz. La Parábola La parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija llamada directriz. Características geométricas. a) Vértice. Es el

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuaciones con valor absoluto El valor absoluto de un número real a se denota por a y está definido por: Propiedades a a si a si a 0 a < 0 i a y b son números reales y n es un número entero, entonces:

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2013 2014) 1. En un espacio afín real de dimensión 3, se consideran dos sistemas de referencia R = O, ē 1, ē 2, ē 3 } y R = P, ū 1, ū 2, ū 3 },

Más detalles

Problemas de exámenes de Geometría

Problemas de exámenes de Geometría 1 Problemas de exámenes de Geometría 1. Consideramos los planos π 1 : X = P+λ 1 u 1 +λ 2 u 2 y π 2 : X = Q+µ 1 v 1 +µ 2 v 2. Cuál de las siguientes afirmaciones es incorrecta? a) Si π 1 π 2 Ø, entonces

Más detalles

Tema 8: Funciones I. Características.

Tema 8: Funciones I. Características. Tema 8: Funciones I. Características. Iniciamos la primera parte de los dos temas que vamos a dedicar al bloque de análisis, en el cual vamos a conocer y definir el concepto de función y los principales

Más detalles

Trazados en el plano. Potencia

Trazados en el plano. Potencia UNIDAD 1 Trazados en el plano. Potencia Localización de un barco mediante el arco capaz (Ilustración de los autores utilizando fotografías del Banco de imágenes del ISFTIC). E n esta Unidad se completan

Más detalles

CARÁCTER DE LA GEOMETRÍA ANALÍTICA

CARÁCTER DE LA GEOMETRÍA ANALÍTICA CARÁCTER DE LA GEOMETRÍA ANALÍTICA La Geometría Elemental, conocida a por el estudiante, se denomina también Geometría PURA para distinguirla del presente estudio. Recordaremos que por medio de un sistema

Más detalles

Curvas y transformaciones proyectivas. Curvas cónicas (II). Tangencias e intersecciones

Curvas y transformaciones proyectivas. Curvas cónicas (II). Tangencias e intersecciones Curvas y transformaciones proyectivas. Curvas cónicas (II). Tangencias e intersecciones En el tema anterior hemos estudiado las propiedades de las curvas cónicas, aprendiendo su trazado a partir de distintos

Más detalles

Tema 6: Trigonometría.

Tema 6: Trigonometría. Tema 6: Trigonometría. Comenzamos un tema, para mi parecer, muy bonito, en el que estudiaremos algunos aspectos importantes de la geometría, como son los ángulos, las principales razones e identidades

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es

Más detalles

Coordenadas de un punto

Coordenadas de un punto Coordenadas de un punto En esta sección iniciamos con las definiciones de algunos conceptos básicos sobre los cuales descansan todos los demás conceptos que utilizaremos a lo largo del curso. Ejes Coordenados

Más detalles

1. Teorema de Fubini. Teorema de Fubini.

1. Teorema de Fubini. Teorema de Fubini. 1. El teorema de Fubini nos va a dar una técnica para el cálculo de integrales de funciones de varias variables mediante el cálculo de varias integrales de funciones de una variable. partir de ahí se podrán

Más detalles

Conjuntos finitos y conjuntos numerables

Conjuntos finitos y conjuntos numerables Tema 3 Conjuntos finitos y conjuntos numerables En este tema vamos a usar los números naturales para contar los elementos de un conjunto, o dicho con mayor precisión, para definir los conjuntos finitos

Más detalles

1. Conjuntos y funciones

1. Conjuntos y funciones PRACTICO 1: CONJUNTOS. 1. Conjuntos y funciones Es útil saber de memoria las siguientes propiedades de conjuntos y funciones. Tanto como saber las tablas. Ejercicio 1. Si I es un conjunto y A α es un conjunto

Más detalles

58 7. ESPACIOS COCIENTE

58 7. ESPACIOS COCIENTE CAPíULO 7 Espacios cociente En esta sección estudiamos el cociente de un espacio vectorial por un subespacio W. Este cociente se define como el conjunto cociente de por una relación de equivalencia conveniente.

Más detalles

Números naturales, principio de inducción

Números naturales, principio de inducción , principio de inducción. Conjuntos inductivos. Denotaremos por IN al conjunto de números naturales, IN {,,, 4, 5, 6,...}, cuyos elementos son suma de un número finito de unos. Recordemos que IN es cerrado

Más detalles

Números reales. por. Ramón Espinosa

Números reales. por. Ramón Espinosa Números reales por Ramón Espinosa Existe un conjunto R, cuyos elementos son llamados números reales. Los números reales satisfacen ciertas propiedades algebraicas y de orden que describimos a continuación.

Más detalles

Prohibida su reproducción. Manuel López Mateos. Versión de muestra. Uso exclusivo para los alumnos de Cálculo I, López Mateos.

Prohibida su reproducción. Manuel López Mateos. Versión de muestra. Uso exclusivo para los alumnos de Cálculo I, López Mateos. Manuel López Mateos Funciones Reales López Mateos 2012 editores Primera edición, 2012, en López Mateos Editores 2012 López Mateos Editores, s.a. de c.v. Ave. Insurgentes Sur 1863-301 Guadalupe Inn Álvaro

Más detalles

RESUMEN TEÓRICO LUGARES GEÓMETRICOS. CÓNICAS (circunferencia y elipse)

RESUMEN TEÓRICO LUGARES GEÓMETRICOS. CÓNICAS (circunferencia y elipse) RESUMEN TEÓRICO LUGARES GEÓMETRICOS. CÓNICAS (circunferencia y elipse) 1. LUGARES GEOMÉTRICOS Definición: Se llama lugar geométrico a la figura que forman un conjunto de puntos que cumplen una determinada

Más detalles

TRIGONOMETRÍA. MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico. 1.- Ángulos en la Circunferencia.

TRIGONOMETRÍA. MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico. 1.- Ángulos en la Circunferencia. TRIGONOMETRÍA MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico 1.- Ángulos en la Circunferencia. 2.- Razones Trigonométricas de un Triángulo Rectángulo. 3.- Valores del Seno, Coseno y Tangente

Más detalles

Números, medidas y operaciones

Números, medidas y operaciones MINIMOS DE MATEMÁTICAS DE 1º DE E.S.O. 1. Números naturales y enteros Números, medidas y operaciones 1. Leer, escribir y ordenar cualquier número natural. 2. Pasar al sistema decimal de numeración números

Más detalles

Solución de un sistema de desigualdades

Solución de un sistema de desigualdades Solución de un sistema de desigualdades En la sección anterior tuvimos oportunidad de resolver desigualdades de dos variables. En el último ejemplo vimos nuestro primer sistema de desigualdades, que aunque

Más detalles

1 NOCIONES BÁSICAS SOBRE CONJUNTOS. SÍMBOLOS.

1 NOCIONES BÁSICAS SOBRE CONJUNTOS. SÍMBOLOS. UNIDAD 1.- CONCEPTOS REQUERIDOS CONJUNTOS. AXIOMAS DE PERTENENCIA, PARALELISMO, ORDEN Y PARTICIÓN. 1 NOCIONES BÁSICAS SOBRE CONJUNTOS. SÍMBOLOS. 1.1 Determinaciones de un conjunto. Un conjunto queda determinado

Más detalles

Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 2009

Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 2009 Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 009 Comisión Académica 1 Nivel Menor Problema 1. Considere un triángulo cuyos lados miden 1, r y r. Determine

Más detalles

Teorema de Lagrange. En esta sección demostramos algunos hechos básicos sobre grupos, que se pueden deducir de la definición

Teorema de Lagrange. En esta sección demostramos algunos hechos básicos sobre grupos, que se pueden deducir de la definición Teorema de Lagrange Capítulo 3 3.1 Introducción En este capítulo estudiaremos uno de los teoremas más importantes de toda la teoría de grupos como lo es el Teorema de Lagrange. Daremos en primer lugar

Más detalles

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA ESCUELA PREPARATORIA OFICIAL No. 268 GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA Profra: Citlalli Artemisa García García 1) Qué es la pendiente? 2) Cómo es la pendiente de rectas

Más detalles

Funciones (continuación)

Funciones (continuación) Nivelación de Matemática MTHA UNLP Funciones (continuación) Funciones trigonométricas Consideremos un ángulo x y seleccionemos un punto (a, b) sobre el rayo que determina dicho ángulo Sea R = a + b, la

Más detalles

1. Funciones Medibles

1. Funciones Medibles 1. Medibles Medibles simples... Hasta ahora hemos estudiado la medida de Lebesgue definida sobre los conjuntos de R n y sus propiedades. Vamos a aplicar ahora esta teoría al estudio de las funciones escalares

Más detalles

I. E. S. Fray Luis de León Jesús Escudero Martín Pág. 1

I. E. S. Fray Luis de León Jesús Escudero Martín Pág. 1 I E S Fray Luis de León Jesús Escudero Martín Pág 1 II2 NÚMEROS COMPLEJOS 1 Introducción 2 Definición 3 Representación gráfica de los números complejos 4 Igualdad de números complejos 5 Operaciones con

Más detalles

AB CD. (Ver Figura 30). Figura 30

AB CD. (Ver Figura 30). Figura 30 3.2 GRUPO III. AXIOMAS DE CONGRUENCIA. III.1 Axioma de la construcción del segmento. Sea AB un segmento cualquiera y CE una semirrecta de origen C. Entonces existe en CE un único punto D tal que Figura

Más detalles

PRODUCTO CARTESIANO RELACIONES BINARIAS

PRODUCTO CARTESIANO RELACIONES BINARIAS PRODUCTO CARTESIANO RELACIONES BINARIAS Producto Cartesiano El producto cartesiano de dos conjuntos A y B, denotado A B, es el conjunto de todos los posibles pares ordenados cuyo primer componente es un

Más detalles

Forma binomial de números complejos (ejercicios)

Forma binomial de números complejos (ejercicios) Forma binomial de números complejos (ejercicios) Objetivos. Mostrar que los números reales x se pueden identificar con números complejos de la forma (x, 0), y cada número complejo (x, y) se puede escribir

Más detalles

1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3.

1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3. . Producto escalar. Propiedades... Norma de un vector. Espacio normado...ortogonalidad. Ángulos..3.Producto escalar en V..4.Producto escalar en V 3.. Producto vectorial de dos vectores de V 3...Expresión

Más detalles

190. Dado el paralelepípedo OADBFCEG en el espacio afín ordinario, se considera el sistema de referencia afín R = ( O, OA, OB, OC ).

190. Dado el paralelepípedo OADBFCEG en el espacio afín ordinario, se considera el sistema de referencia afín R = ( O, OA, OB, OC ). Hoja de Problemas Geometría VIII 90. Dado el paralelepípedo OADBFCEG en el espacio afín ordinario, se considera el sistema de referencia afín R O, Sean: OA, OB, OC ). OG la recta determinada por los puntos

Más detalles

b) Sea una relación de equivalencia en A y una operación en A. Decimos que y son compatibles si a b a c b c y c a c b para todo a, b, c A

b) Sea una relación de equivalencia en A y una operación en A. Decimos que y son compatibles si a b a c b c y c a c b para todo a, b, c A APENDICE Relaciones y Operaciones Compatibles 1 Definición: a) Sea A un conjunto y una relación entre elementos de A. Decimos que es una relación de equivalencia si es: i Reflexiva: a A, a a. ii Simétrica:

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación).

Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación). Espacios Topológicos 1 Punto de Acumulación Definición: Sea A un subconjunto arbitrario de R n, se dice que x R n es un punto de acumulación de A si toda bola abierta con centro x contiene un punto A distinto

Más detalles

En general, un conjunto A se define seleccionando los elementos de un cierto conjunto U de referencia que cumplen una determinada propiedad.

En general, un conjunto A se define seleccionando los elementos de un cierto conjunto U de referencia que cumplen una determinada propiedad. nidad 3: Conjuntos 3.1 Introducción Georg Cantor [1845-1918] formuló de manera individual la teoría de conjuntos a finales del siglo XIX y principios del XX. Su objetivo era el de formalizar las matemáticas

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO UNIDAD VECTORES EN EL ESPACIO Página 13 Problema 1 Halla el área de este paralelogramo en función del ángulo α: cm Área = 8 sen α = 40 sen α cm α 8 cm Halla el área de este triángulo en función del ángulo

Más detalles

Las variedades lineales en un K-espacio vectorial V pueden definirse como sigue a partir de los subespacios de V.

Las variedades lineales en un K-espacio vectorial V pueden definirse como sigue a partir de los subespacios de V. Capítulo 9 Variedades lineales Al considerar los subespacios de R 2, vimos que éstos son el conjunto {(0, 0)}, el espacio R 2 y las rectas que pasan por el origen. Ahora, en algunos contextos, por ejemplo

Más detalles

TEMA 4. TRANSFORMACIONES EN EL PLANO

TEMA 4. TRANSFORMACIONES EN EL PLANO TEMA 4. TRANSFORMACIONES EN EL PLANO HERRAMIENTAS PARA TRANSFORMACIONES En este bloque encontramos las siguientes herramientas: Simetría axial La herramienta Refleja objeto en recta dibuja la figura simétrica

Más detalles

La proporción áurea. Ejercicio. Den un ejemplo de dos rectángulos semejantes y expliquen cómo los encontraron. Sesión 2

La proporción áurea. Ejercicio. Den un ejemplo de dos rectángulos semejantes y expliquen cómo los encontraron. Sesión 2 Sesión 2 La proporción áurea PROPÓSITOS: Movilizar conocimientos de geometría y de pensamiento algebraico para la resolución de problemas así como para interpretar y validar los resultados obtenidos. Aplicar

Más detalles

7. Seguiría siendo válida la proposición anterior si algunos de los conjuntos A, B, C y D son vacíos?

7. Seguiría siendo válida la proposición anterior si algunos de los conjuntos A, B, C y D son vacíos? UNIVERSIDAD SIMÓN BOLÍVAR DEPARTAMENTO DE COMPUTACIÓN Y TECNOLOGÍA DE LA INFROMACIÓN ESTRUCTURAS DISCRETAS I GUÍA PRÁCTICA Nº 2. Demuestre lo siguiente mediante inducción matemática: a) 3 + 2 4 + 3 5 +...

Más detalles

Definiciones Una relación R en un conjunto A es una relación de orden si verifica las propiedades reflexiva, antisimétrica y transitiva.

Definiciones Una relación R en un conjunto A es una relación de orden si verifica las propiedades reflexiva, antisimétrica y transitiva. RELACIONES DE ORDEN Definiciones Una relación R en un conjunto A es una relación de orden si verifica las propiedades reflexiva, antisimétrica y transitiva. Un conjunto parcialmente ordenado ( A, R ) es

Más detalles

RESUMEN DE GEOMETRIA EUCLIDIANA. Profesor: Manuel J. Salazar Jiménez. Relaciones no definidas: pertenecer a, estar entre, congruente a, equidistar

RESUMEN DE GEOMETRIA EUCLIDIANA. Profesor: Manuel J. Salazar Jiménez. Relaciones no definidas: pertenecer a, estar entre, congruente a, equidistar RESUMEN DE GEOMETRIA EUCLIDIANA Profesor: Manuel J. Salazar Jiménez Nociones no definidas o nociones primitivas: Punto, recta, plano, espacio, distancia. Relaciones no definidas: pertenecer a, estar entre,

Más detalles

EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS

EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS 1- Dados el punto V, la circunferencia de centro O y la recta R tangente a la circunferencia, se pide: a. Dibujar la circunferencia homotética de la dada, sabiendo

Más detalles

UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno:

UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno: UNIDAD La derivada Objetivos Al terminar la unidad, el alumno: Calculará la derivada de funciones utilizando el álgebra de derivadas. Determinará la relación entre derivación y continuidad. Aplicará la

Más detalles

1. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano.

1. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano. CAPÍTULO 1 El plano vectorial Consideremos P como el plano intuitivo de puntos: A,,C... 1.1. El espacio vectorial de los vectores Definición 1.1 Vectores fijos Dado dos puntos cualesquiera A e del espacio

Más detalles

TRIGONOMETRÍA: MEDIDA DE ÁNGULOS

TRIGONOMETRÍA: MEDIDA DE ÁNGULOS el blog de mate de aida: trigonometría º ESO pág. 1 TRIGONOMETRÍA: MEDIDA DE ÁNGULOS Ángulo es la porción del plano limitada por dos semirrectas de origen común. Medidas de ángulos Medidas en grados Un

Más detalles

Lista de problemas de álgebra, 2016

Lista de problemas de álgebra, 2016 Instituto Politécnico Nacional Escuela Superior de Física y Matemáticas Posgrado en Ciencias Físicomatemáticas Línea de Matemáticas Lista de problemas de álgebra 2016 Egor Maximenko: En mi opinión cualquier

Más detalles

es el lugar geométrico de los puntos p tales que ; R (1)

es el lugar geométrico de los puntos p tales que ; R (1) LA RECTA DEL PLANO ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS La recta en el plano como lugar geométrico Dados un punto p un vector no nulo u, la recta T paralela a u que pasa por p es el lugar geométrico

Más detalles

Tema 5: Funciones. Límites de funciones

Tema 5: Funciones. Límites de funciones Tema 5: Funciones. Límites de funciones 1. Concepto de función Una aplicación entre dos conjuntos y es una transformación que asocia a cada elemento del conjunto un único elemento del conjunto. Una función

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

Geometría Analítica / Cónicas

Geometría Analítica / Cónicas Geometría Analítica / Cónicas Para optimizar el desarrollo de ejercicios de Geometría Analítica, especialmente en el manejo de las Ecuaciones de las Cónicas, recomiendo un recurso algebraico súper sencillo

Más detalles

ALGEBRA. Curso: 3 E.M. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Unidad de Aprendizaje: La Parábola

ALGEBRA. Curso: 3 E.M. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Unidad de Aprendizaje: La Parábola Colegio SSCC Concepción - Depto. de Matemáticas Unidad de Aprendizaje: La Parábola Capacidades/Destreza/Habilidad: Racionamiento Matemático/ Aplicación / Calcular, Resolver Valores/ Actitudes: Respeto,

Más detalles