Tema 7.- Métodos numéricos aproximados

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 7.- Métodos numéricos aproximados"

Transcripción

1 ema 7.- Métodos numéricos aproimados. Introducción técnicas generales. La Aproimación de Galerkin. El Método de los Elementos Finitos 4. Ejercicios

2 Método general de Residuos Ponderados Variable (generaliada): Incógnita (generaliada): SED del problema: u=u() Z u 0 Ψ V ( Z u ) dv 0 Funciones (tantas como ED): () Si en u ponemos una solución, la integral = 0. Si la integral = 0,, entonces u es solución. Si la integral =0 para muchos, esperamos que u sea solución. Idea: u de prueba con parámetros libres, que calculamos anulando la integral para tantos como sea preciso

3 Ψ V ( Z u ) dv 0 Manipulaciones usuales: Integrar por partes (una o más veces): reduce el orden de derivación de u, aumenta el de. Aplicar el eorema de la Divergencia: Algunas integrales de Vol. pasan a integrales de contorno. Pueden obtenerse soluciones u menos derivables que lo que eigía Z! Formas débiles de solución... recordar este tipo de manipulaciones en el PDV el PFV

4 Cómo construir convenientemente la u de prueba Con el mismo número de parámetros en u, u, u Que sea lineal en los parámetros (aunque no en ) u u u (,,) (,,) (,,) N N N (,,)a (,,)a (,,)a N N N (,,)a (,,)a (,,)a N N N n n n (,,)a (,,)a (,,)a n n n Opcional: será más fácil operar si: omamos N i = N i = N i ( = N i ). omamos las N() que satisfagan las c.c. de desplaamiento nulo (esas c.c. quedarán siempre satisfechas, a)

5 Campo aproimado de desplaamientos: u () N () a N () a n n K n n n n u() u () N () a N () a u () N () a N () a N a... N a N a n n N Siendo: N n L n n N Nn N N N N...N a a a a a M M a a n a a n n n

6 Ejemplos de funciones de aproimación D N N N En la forma más general de la Aproimación de Galerkin, no se presupone ninguna limitación a la forma de las Ni. Simplemente son funciones definidas en el dominio que ocupa el sólido, que no tienen porqué anularse en ninguna ona del mismo ni de su contorno.

7 ema 7.- Métodos numéricos aproimados. Introducción técnicas generales. La Aproimación de Galerkin. El Método de los Elementos Finitos 4. Ejercicios

8 Galerkin, como todos los métodos de equilibrio, se basa en PDV: ij ij V i i V i i S dv X dv X ds etc. ; X X X X ; = ; u u u = u ; ; Por comodidad operativa, definimos las siguientes matrices:... análogas para el campo virtual.

9 Con estas notaciones, ijijdv ixidv i XidS V V S queda así: V dv XdV XdS V S Queremos poner en función del u (aproimado): Le de comportamiento: Ecs. compatibilidad: o D( ) L u matri que depende de las ctes elásticas deformación para tensión nula matri que contiene operadores: derivadas de primer orden

10 Detalles menores: D E La matri tiene distinta epresión en D,.P., ó D.P. Si =0,.P. D.P. coinciden: D Operador L (D):,,,,,,,,, L Operador L (D):,,,, L

11 Sustituendo: o D( ) Lu u Na Con lo que: o D L(Na) D (LN)a dv X dv X ds V V S o ( ) D LN a dv X dv X ds V V S V D (L N)dV a V o X dv X ds D dv V S V D (L N) a dv o X dv X ds D dv V S V o

12 La epresión anterior, con distintas elecciones de, conduce a distintos métodos (colocación por puntos, por subdominios, etc.). La Aproimación de Galerkin es uno de ellos, que se caracteria por la elección siguiente: N a L L (N a ) (L N) a V V a LN D LN dv a a N X dv a LN D LN dv a a N X dv V a N X ds a LN D dv S a N X ds a LN D dv S V V V o o

13 LN D LN dv a N X dv N X ds V V S V LN D dv o K a f Las fueras de contorno pueden ser en parte desconocidas Sus integrales también Puede haber incógnitas en f. K= matri de rigide. Cuadrada nn. Simétrica (M SM) K será singular en general (no hemos impuesto cc desplaam.). Pero: si las cc en desplaamientos son todas homogéneas (=0), elegimos N para que las cumpla de partida, entonces K será regular, además no habrá incógnitas en f. Si no elegimos N así, habrá que plantear ecuaciones adicionales, tantas como incógnitas haa en f.

14 K a f ij V Estructura de las submatrices n j K a ij j i K L N D L N dv (6) (66) () f i (6) j ; (i =...n) () (6) () i i i i o V S V f N X dv N X ds L N D dv () Procederemos por submatrices, siempre. En general, son todas las K ij 0 () () (6) (66) (6)

15 ema 7.- Métodos numéricos aproimados. Introducción técnicas generales. La Aproimación de Galerkin. El Método de los Elementos Finitos 4. Ejercicios

16 MEF formulación básica: Sólo es una aproimación de Galerkin, con mu poco más: a) Funciones N i de pequeño soporte b) Manera de tomar los soportes: entorno de Elementos que comparten un Nodo nodo i elemento e c) Cada Ni vale = en su nodo, cero en los demás N i = i

17 MEF - Significados físicos de los parámetros u,, I N, L, I N, L, I N a De a: i n En las coordenadas del nodo i u nodo i 0, L, I, L, 0 a a a a contiene los desplaamientos nodales!! a i i i De f: Fuera F concentrada en el nodo i: Aportación a f N X ds N X ds i S i i Ent(nodo i) F N (nodo i) X ds I X ds F F i Ent(nodo i) Ent(nodo i) F Ent(nodo i) XdS F f contiene unas cargas puntuales, que son equivalentes a las cargas originales del problema.

18 Estructura de las submatrices Como en Galerkin, pero además cada submatri se calcula como aportación de elementos. j q p i K L N D L N dv K K ij pq i j p q ij ij ( p) Para K se usan las epresiones analíticas de Ni ( de Nj) en el ij elemento (p). ( q) Para K se usan las epresiones analíticas de Ni ( de Nj) ij en el elemento (q), que son distintas que en el elemento En MEF muchas submatrices serán nulas!! (p) (q) (p).

19 Análogamente si se trata de una submatri diagonal: nodo i r s t q p m En todo caso K ij K e (e) ij K LN D L N dv ii V i i p q r s t m pqrstm (p) (q) (r) (s) (t) (m) K K K K K K ii ii ii ii ii ii

20 Análogamente para los términos de f: f i f e (e) i f (e) o i (N ) XdV (N ) XdS (LN ) D dv e e i S i e i Cada una de estas integrales solo debe evaluarse en los elementos en que eista respectivamente, alguna carga de volumen, carga de contorno, o deformación inicial. Evidentemente, la segunda integral sólo debe evaluarse en elementos con alguno de sus lados sobre el contorno del sólido (S e es la parte de S que corresponde al elemento e).

21 ema 7.- Métodos numéricos aproimados. Introducción técnicas generales. La Aproimación de Galerkin. El Método de los Elementos Finitos 4. Ejercicios

22 4..- Qué posiciones de K son distintas de cero 4 K L N D L N dv ij V i j 4 6 e Ve e K e ij 5 Aportaciones de los elementos: Elem = Elem = Elem = Elem 4 = K SIMERICA

23 4..- Estructura de un sistema de ecuaciones f 5 f 5 = f f 6 = 6 f f K a SIMERICA f Cómo se resuelve 0 f 0 f a 0 a 0 0 f 0 f a 4 0 a 4 0 a 5 0 a 5 a a 0 6 6

24 4..- Sobre las epresiones de las funciones de forma en cada elemento a) Particularidades del polinomio: - Es = en su nodo; =0 en los demás antos coeficientes como nodos - Completar orden, en lo posible b) Cómo calcularlas: - A ojo si se puede - Con un sistema de ecuaciones j i e k N N e i e k "a ojo": "a ojo": e N j =A+B+C en (0,0)=A+0+0=0 A=0 en (,)=0+B+C=0 en (0,)=0+0+C= C=/ ; B=-/ N e j =-

25 4. (cont.)- Sobre las funciones de forma en elementos similares Si un elemento es traslación de otro, las funciones de forma homólogas dentro de ellos, diferirán sólo en constantes. Por tanto, sus derivadas (por ej. en L.N) serán idénticas. Por tanto, sus aportaciones homólogas a la matri de rigide global, serán iguales. Véase por ej: K () () K 5 () () K K K () (4) K K K

26 4. (cont.)- Sobre las funciones de forma en el contorno Si se trata, por ej, de evaluar f i cuando ha una carga de contorno, sólo me interesa el valor de N i en el contorno: () () () S f f N XdS N ds X p N L L espesor L e p cos f p sen L 6

27 4.4 Un ejemplo de cálculo Datos físicos: Discretiación: cm p p= (N/cm) E (N/cm ) =0 b= (cm) F cm p F F F 4 F 5 F 6 cm cm

28 Funciones de Forma: Elemento : Elemento (traslación de, podría no necesitarlas): N () () () N N N () () 5 () 6 N N F F F 4 p F 4 F 5 F 6 Elemento, funciones tipo A+B+C+D (obtenidas con sistemas de ecuaciones): N N () () () 4 () 5 N N

29 LN LN () (), , 0 0,, 0 Matrices LN elem. (): LN, , 0 0,, ; (), , 0 0 0,, 0 Del elem. no necesito. Matrices LN elem. ():, 0 0 () 0 LN 0, 0 0,, ; LN () LN () ; LN ()

30 () () () V K (LN ) D(LN )dv K ij en el elemento () & () E dv () E 0 () K 0 () () () V K (LN ) D(LN )dv () E dv E () K 0 5 F F F 4 p F 4 F 5 F 6 () () () V K (LN ) D(LN )dv E dv V E 0 () K 0 0 6

31 K ij en el elemento () & (), continuación: F F F 4 p F 4 F 5 F 6 () K... () K... () K... E E 0 E 0 0 K K K () 55 () 56 () 66 K ij en el elemento (): LN () i cte, por lo que su cálculo analítico es molesto. Haremos cuadratura de Gauss de punto: g f (, ) da ; f (, ) A A g g A

32 K ij en el elemento (), continuación: (, ) en elem. () es = (, ) g g () () () V K (LN ) D(LN )dv E dv V F F F 4 p F 4 F 5 F E E

33 Análogamente, el resto de las K ij () : K () 8 8 E () K E 4 K () E 8 8 K () 8 8 E 8 8 K () E 8 8 K () E 8 8 K () E () K E 45 K () E 8 8

34 Cálculo de f No ha fueras de volumen, luego : Las aportaciones elementales a cada submatri f i, valen: Las fueras puntuales están incluidas aquí, pero como son fáciles, no las ensamblaremos hasta el final del proceso. ds>0 Aportaciones del elemento (): siempre () para f : d F la ensamblamos luego, hemos dicho S f N X ds (e) (e) (e) X f i N X ds N S(e) i S(e) i ds X F F F 4 p F 4 F 5 F 6

35 () para f : 0 Eso de la carga conocida p. F la ensamblamos luego () para f : d 0 F F F 4 p F 4 F 5 F 6 Aportaciones del elemento (): No ha aportaciones de la carga conocida p. Aportaciones del elemento (): () () () () 6 Podemos raonar que las aportaciones de p para f f serán iguales a las f f, a que las funciones a integrar son físicamente idénticas salvo una traslación. No obstante lo hacemos:

36 () para f : d 0 () 5 para f : () para f 6 : d F F F 4 p F 4 F 5 6 F 6 Efectivamente salen como las del elem. Ya podemos escribir es sistema global de ecuaciones. Incluímos en él las fueras concentradas (en este caso son todas incógnitas), las c.c. en desplaamientos:

37 F F a a a a F a5 F a F F 6 4 SIMERICA

38 Cómo se resuelve: Primero se prescinde de las ecuaciones con incógnita de fuera, se resuelve ese subsistema. Se puede prescindir en ellas de los coeficientes que se multiplican por cero (c.c. de desplaamientos nulos), que estarán alineados en las columnas correspondientes. En este caso:

39 F a F a a a E F F a F a6 0 F 6 4 SIMERICA

40 Lo que no hemos tachado, queda como un sistema resoluble: a 9 a a E 9 a a 5 9 a SIMERICA /E /E a a a a E a a 5 6 /E /E /E

41 Una ve sabidas las a i, el cálculo de las incógnitas de f es inmediato (no necesita resolver sistema de ecuaciones), utiliando las ecuaciones que habíamos tachado. El resultado es: F F F ; F ; ; F ; ; F

42 F I N

43 Soluciones Analíticas Soluciones Aproimadas Geometría c.c. sencillas Geometría c.c. cualesquiera Solución eacta fiable 00% Soluciones Diversas fuentes de ineactitud en forma de serie Potenciales escalares /o vectoriales de desplaamiento (D D), potenciales de tensión (D), funciones de variable compleja (D) Fotoelasticidad (D), métodos numéricos (D D) Método de trabajo: Bibliografía álgebra Método de trabajo: Laboratorio u ordenador

Interp r o p la l c a ió i n seccio i nal a l (S ( pl p i l n i e) Val a o l re r s pr p e r scri r t i os N (x)

Interp r o p la l c a ió i n seccio i nal a l (S ( pl p i l n i e) Val a o l re r s pr p e r scri r t i os N (x) Introducción al método de los elementos finitos Métodos Numéricos 2 Laboratori de Càlcul Numèric (LaCàN) Dep. de Matemàtica Aplicada III Universitat Politècnica de Catalunya www-lacan.upc.es Ventajas del

Más detalles

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:

Más detalles

CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 MATRICES

CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 MATRICES CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 Unidades: - Matrices (Bloque Álgebra) - Determinantes (Bloque Álgebra) - Sistemas de ecuaciones lineales (Bloque Álgebra) - Vectores (Bloque

Más detalles

1 de 6 24/08/2009 9:54 MATRICES Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853 En

Más detalles

Vectores en el plano UNIDAD I: MATRICES. Dirección de un vector. Sentido de un vector

Vectores en el plano UNIDAD I: MATRICES. Dirección de un vector. Sentido de un vector UNIDAD I: MATRICES Vectores en el plano Un vector,, es un segmento con una dirección que va del punto A (origen) al punto B (etremo).un vector es un segmento orientado que va del punto A (origen) al punto

Más detalles

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1.1 SISTEMAS DE ECUACIONES LINEALES Una ecuación lineal es una ecuación polinómica de grado 1, con una o varias incógnitas. Dos ecuaciones son equivalentes

Más detalles

Tema 11: Problemas Métricos

Tema 11: Problemas Métricos ..- Distancia entre dos puntos : Tema : Problemas Métricos B AB A d( A, B) AB La distancia entre dos puntos Aa (, a, a) Bbb (,, b ) es el módulo del vector que une dichos puntos: d( A, B) AB b a b a b

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

Conjuntos y matrices. Sistemas de ecuaciones lineales

Conjuntos y matrices. Sistemas de ecuaciones lineales 1 Conjuntos y matrices Sistemas de ecuaciones lineales 11 Matrices Nuestro objetivo consiste en estudiar sistemas de ecuaciones del tipo: a 11 x 1 ++ a 1m x m = b 1 a n1 x 1 ++ a nm x m = b n Una solución

Más detalles

Sea V un conjunto no vacío (cuyos elementos se llamarán vectores) y sea K un cuerpo (cuyos elementos se llamarán escalares).

Sea V un conjunto no vacío (cuyos elementos se llamarán vectores) y sea K un cuerpo (cuyos elementos se llamarán escalares). Capítulo 6 Espacios Vectoriales 6.1 Definiciones Sea V un conjunto no vacío (cuyos elementos se llamarán vectores) y sea K un cuerpo (cuyos elementos se llamarán escalares). Definición 6.1.1 Se dice que

Más detalles

Capítulo 2. Determinantes Introducción. Definiciones

Capítulo 2. Determinantes Introducción. Definiciones Capítulo 2 Determinantes 2.1. Introducción. Definiciones Si nos centramos en la resolución de un sistema A x = b con A una matriz n n, podemos calcular A 1 y la resolución es inmendiata. El problema es

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2013 MATEMÁTICAS II. CÓDIGO 158

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2013 MATEMÁTICAS II. CÓDIGO 158 PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2013 MATEMÁTICAS II. CÓDIGO 158 OBSERVACIONES IMPORTANTES: El alumno deberá responder a todas las cuestiones de una de las opciones

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una

Más detalles

MATRICES OPERACIONES BÁSICAS CON MATRICES

MATRICES OPERACIONES BÁSICAS CON MATRICES MATRICES OPERACIONES BÁSICAS CON MATRICES ANTECEDENTES En el año 1850, fueron introducidas por J.J. Sylvester El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A.

Más detalles

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES 26 de Abril de 2011 MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES (Clase 05) Departamento de Matemática Aplicada Facultad de Ingeniería Universidad Central de Venezuela Álgebra Lineal y Geometría

Más detalles

FASCÍCULO: SISTEMAS DE ECUACIONES LINEALES

FASCÍCULO: SISTEMAS DE ECUACIONES LINEALES FASCÍCULO: SISTEMAS DE ECUACIONES LINEALES Una de las aplicaciones más famosas del concepto de determinante es el método para resolver sistemas de m ecuaciones con n incógnitas, aparece en en la publicación

Más detalles

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A =

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A = Matrices: repaso Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas Una matriz A M m n es de la forma a 11 a 1n A = a m1 a mn Denotaremos A ij = a ij el coeficiente

Más detalles

MÉTODO DE LOS ELEMENTOS FINITOS.

MÉTODO DE LOS ELEMENTOS FINITOS. de MÉTODO DE LOS ELEMENTOS FINITOS. Castillo Madrid, 23 de Noviembre de 26 Índice de 2 3 4 de de El de los Elementos Finitos (M.E.F.) es un procedimiento numérico para resolver ecuaciones diferenciales

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Generalidades Definición [Sistema de ecuaciones lineales] Un sistema de m ecuaciones lineales con n incógnitas, es un conjunto de m igualdades

Más detalles

Ingeniería y Arquitectura Programa de asignatura

Ingeniería y Arquitectura Programa de asignatura Identificación de la asignatura Nombre de la asignatura: Elementos Finitos Clave: MIES Área académica: Ingenierías y Arquitectura Total créditos: 04 Teórico Práctico 03 01 Programa académico al que pertenece:

Más detalles

Tema 6.- Estados Bidimensionales

Tema 6.- Estados Bidimensionales Tema 6.- Estados Bidimensionales 1. Introducción 2. Deformación plana 3. Tensión plana 4. Función potencial de tensiones de Airy 5. Planteamiento en coordenadas cartesianas 6. Planteamiento en coordenadas

Más detalles

Pruebas extraordinarias de septiembre Bachillerato

Pruebas extraordinarias de septiembre Bachillerato Pruebas extraordinarias de septiembre Bachillerato El Departamento de Matemáticas establece como prueba extraordinaria un único examen, en el que se incluirán los contenidos mínimos establecidos para cada

Más detalles

Introducción al método de los Elementos Finitos en 2D

Introducción al método de los Elementos Finitos en 2D Introducción al método de los Elementos Finitos en D Lección Variantes para la aproimación en elementos finitos D Adaptado por Jaime PuigPe UC de:. Zabaras. Curso FE Analsis for Mech&Aerospace Design.

Más detalles

Índice. Programación de las unidades. Unidad 1 Matrices 6. Unidad 2 Determinantes 8. Unidad 3 Sistemas de ecuaciones lineales 10

Índice. Programación de las unidades. Unidad 1 Matrices 6. Unidad 2 Determinantes 8. Unidad 3 Sistemas de ecuaciones lineales 10 Índice Programación de las unidades Unidad 1 Matrices 6 Unidad 2 Determinantes 8 Unidad 3 Sistemas de ecuaciones lineales 10 Unidad 4 Geometría en el espacio 12 Unidad 5 Producto escalar 14 Unidad 6 Productos

Más detalles

Álgebra Lineal Grupo A Curso 2011/12. Espacios vectoriales. Bases...

Álgebra Lineal Grupo A Curso 2011/12. Espacios vectoriales. Bases... Álgebra Lineal Grupo A Curso 2011/12 Espacios vectoriales. Bases 61) Dados los vectores v 1,v 2,...,v n linealmente independientes, probar que también lo son los vectores u 1 = v 1 u 2 = v 1 + v 2... u

Más detalles

Chapter 1. Matrices. 1.1 Introducción y definiciones

Chapter 1. Matrices. 1.1 Introducción y definiciones Chapter 1 Matrices 1.1 Introducción y definiciones Los conceptos de las matrices y determinantes se remonta al siglo segundo BC, incluso antes. Pero no es hasta el siglo XVII cuando las ideas reaparecen

Más detalles

Tema 1: Matrices. Sistemas de ecuaciones. Determinantes

Tema 1: Matrices. Sistemas de ecuaciones. Determinantes Tema 1: Matrices. Sistemas de ecuaciones. Determinantes José M. Salazar Octubre de 2016 Tema 1: Matrices. Sistemas de ecuaciones. Determinantes Lección 1. Matrices. Sistemas de ecuaciones. Determinantes

Más detalles

Matrices y Sistemas Lineales

Matrices y Sistemas Lineales Matrices y Sistemas Lineales Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza Matrices sobre IR ó C. Definición Dado un conjunto K (IR ó C) y dos conjuntos finitos de índices I = {,, m} J

Más detalles

1 ÁLGEBRA DE MATRICES

1 ÁLGEBRA DE MATRICES 1 ÁLGEBRA DE MATRICES 1.1 DEFINICIONES Las matrices son tablas numéricas rectangulares. Se dice que una matriz es de dimensión m n si tiene m filas y n columnas. Cada elemento de una matriz se designa

Más detalles

Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES

Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES Prof. Rafael López Camino Universidad de Granada 1 Matrices Definición 1.1 Una matriz (real) de n filas y m columnas es una expresión de la forma a 11...

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a

Más detalles

1. a) Sean A, B y X matrices cuadradas de orden n. Despeja X en la ecuación X.A = 2X + B 2. 1 b)

1. a) Sean A, B y X matrices cuadradas de orden n. Despeja X en la ecuación X.A = 2X + B 2. 1 b) Curso 9/. a) Sean, X matrices cuadradas de orden n. Despeja X en la ecuación X. = X + b) Calcula la matri X, siendo = = Solución: a) X. X.( - Id).( - Id) X.X.( - Id) - X. - X -.( Id) X.( - Id) b) 4 ( Id)

Más detalles

S O L U C I O N E S O P C I Ó N A. PR1.- Nos dan 3 planos, dos de ellos determinan la recta. El problema se reduce a interpretar.

S O L U C I O N E S O P C I Ó N A. PR1.- Nos dan 3 planos, dos de ellos determinan la recta. El problema se reduce a interpretar. S O L U C I O N E S O P C I Ó N A PR.- Nos dan planos, dos de ellos determinan la recta. El problema se reduce a interpretar geométricamente las posibles soluciones del sistema m y m my a) Matri de los

Más detalles

Sistema de ecuaciones Parte II

Sistema de ecuaciones Parte II Regla de Cramer Sistema de ecuaciones Parte II La regla de Cramer sirve para resolver sistemas de ecuaciones lineales. Se aplica a sistemas que cumplan las dos condiciones siguientes: El número de ecuaciones

Más detalles

ETAPAS BÁSICAS DEL ANÁLISIS MATRICIAL DE UN SISTEMA DISCRETO. Mercedes López Salinas

ETAPAS BÁSICAS DEL ANÁLISIS MATRICIAL DE UN SISTEMA DISCRETO. Mercedes López Salinas ETAPAS BÁSICAS DEL ANÁLISIS MATRICIAL DE UN SISTEMA DISCRETO Mercedes López Salinas PhD. Ing. Civil elopez@uazuay.edu.ec ELEMENTOS FINITOS Facultad de Ciencia y Tecnología Escuela de Ingeniería Civil y

Más detalles

Si u y v son vectores cualquiera en W, entonces u + v esta en W. Si c es cualquier numero real y u es cualquier vector en W, entonces cu esta en W.

Si u y v son vectores cualquiera en W, entonces u + v esta en W. Si c es cualquier numero real y u es cualquier vector en W, entonces cu esta en W. Unidad 4 Espacios vectoriales reales 4.1 Subespacios Si V es un espacio vectorial y W un subconjunto no vacío de V. Entonces W es un subespacio de V si se cumplen las siguientes condiciones Si u y v son

Más detalles

Contenido. 2 Operatoria con matrices. 3 Determinantes. 4 Matrices elementales. 1 Definición y tipos de matrices

Contenido. 2 Operatoria con matrices. 3 Determinantes. 4 Matrices elementales. 1 Definición y tipos de matrices elementales Diciembre 2010 Contenido Definición y tipos de matrices elementales 1 Definición y tipos de matrices 2 3 4 elementales 5 elementales Definición 1.1 (Matriz) Una matriz de m filas y n columnas

Más detalles

Matrices, determinantes y sistemas de ecuaciones lineales

Matrices, determinantes y sistemas de ecuaciones lineales Matrices, determinantes y sistemas de ecuaciones lineales David Ariza-Ruiz 10 de octubre de 2012 1 Matrices Una matriz es una tabla numérica rectangular de m filas y n columnas dispuesta de la siguiente

Más detalles

Capítulo 3 El Método de los Elementos de Contorno y la Formulación Hipersingular.

Capítulo 3 El Método de los Elementos de Contorno y la Formulación Hipersingular. Capítulo 3 El Método de los Elementos de Contorno y la Formulación Hipersingular. 3.1. Introducción El Método de los Elementos de Contorno (MEC) se ha implantado firmemente en numerosos campos de la ingeniería

Más detalles

Una ecuación lineal de n-incógnitas es una igualdad de la forma:

Una ecuación lineal de n-incógnitas es una igualdad de la forma: página 1/39 Teoría Tema 6 Ecuación lineal Una ecuación lineal de n-incógnitas es una igualdad de la forma: a 1 x 1 +a 2 x 2 +a 3 x 3 +...+a n x n =c Donde a 1,a 2, a 3,..., a n,c son números reales. En

Más detalles

TEMA 7: MATRICES. OPERACIONES.

TEMA 7: MATRICES. OPERACIONES. TEMA 7: MATRICES. OPERACIONES. 1. MATRICES. TIPOS DE MATRICES. Se llama matriz de orden m x n (m filas y n columnas) a un conjunto de m n elementos, distribuidos en m filas y n columnas y encerrados entre

Más detalles

Sistemas de ecuaciones lineales. Matrices

Sistemas de ecuaciones lineales. Matrices Dpto de MATEMÁTICA APLICADA A LOS RECURSOS NATURALES Sección departamental en la ETSI de Montes Algebra Sistemas de ecuaciones lineales Matrices Sistemas lineales Solución de un sistema lineal Sistemas

Más detalles

Las matrices se denotarán usualmente por letras mayúsculas, A, B,..., y los elementos de las mismas por minúsculas, a, b,...

Las matrices se denotarán usualmente por letras mayúsculas, A, B,..., y los elementos de las mismas por minúsculas, a, b,... INTRO. MATRICES Y DETERMINANTES Prof. Gustavo Sosa Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas

Más detalles

Sistemas de Ecuaciones Lineales. Matrices y determinantes.

Sistemas de Ecuaciones Lineales. Matrices y determinantes. Capítulo 3 Sistemas de Ecuaciones Lineales Matrices y determinantes 31 Sistemas de Ecuaciones Lineales El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación

Más detalles

Introducción a los espacios vectoriales

Introducción a los espacios vectoriales 1 / 64 Introducción a los espacios vectoriales Pablo Olaso Redondo Informática Universidad Francisco de Vitoria November 19, 2015 2 / 64 Espacios vectoriales 1 Las 10 propiedades de un espacio vectorial

Más detalles

4. Método del elemento finito (formulación de desplazamientos)

4. Método del elemento finito (formulación de desplazamientos) 4 Método del elemento finito (formulación de desplazamientos) 41 Introducción El método del elemento finito es un método numérico que permite encontrar soluciones aproximadas a problemas físicos gobernados

Más detalles

PARTE II TEORÍA LINEAL DE LA ELASTICIDAD PARA MATERIALES ISOTRÓPICOS

PARTE II TEORÍA LINEAL DE LA ELASTICIDAD PARA MATERIALES ISOTRÓPICOS PARTE II TEORÍA LINEAL DE LA ELASTICIDAD PARA MATERIALES ISOTRÓPICOS 1 G. CLASIFICACIÓN DE LAS DEFORMACIONES PURAS DEFORMACIÓN PURA Cuando en el desplazamiento la parte correspondiente a un movimiento

Más detalles

1) Calcula los límites de la siguiente función en 0 y + : 3x+sen x f(x)= x. 2) Estudia la continuidad y derivabilidad de la siguiente función en x=0:

1) Calcula los límites de la siguiente función en 0 y + : 3x+sen x f(x)= x. 2) Estudia la continuidad y derivabilidad de la siguiente función en x=0: CURSO 22-23. 23 de mayo de 23. ) Calcula los límites de la siguiente función en y + : 3+sen f() 2) Estudia la continuidad y derivabilidad de la siguiente función en : 3) Deriva y simplifica: f() e / +e

Más detalles

MN - Métodos Numéricos

MN - Métodos Numéricos Unidad responsable: 295 - EEBE - Escuela de Ingeniería de Barcelona Este Unidad que imparte: 737 - RMEE - Departamento de Resistencia de Materiales y Estructuras en la Ingeniería Curso: Titulación: 2018

Más detalles

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes.

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes. Una forma fácil de recordar esta suma (regla de Sarrus): Ejemplos: Tarea: realizar al menos tres ejercicios de cálculo de determinantes de matrices de 2x2 y otros tres de 3x3. PARA DETERMINANTES DE MATRICES

Más detalles

TEMA 4 SISTEMAS DE 2 GRADOS DE LIBERTAD. Sistemas de 2 Grados de Libertad

TEMA 4 SISTEMAS DE 2 GRADOS DE LIBERTAD. Sistemas de 2 Grados de Libertad TEMA 4 SISTEMAS DE GRADOS DE LIBERTAD Sistemas de Grados de Libertad ELEMENTOS DE MÁQUINAS Y VIBRACIONES - 4. - TEMA 4 SISTEMAS DE GRADOS DE LIBERTAD ELEMENTOS DE MÁQUINAS Y VIBRACIONES - 4. - TEMA 4 SISTEMAS

Más detalles

UNIVERSIDAD AUTÓNOMA DE MADRID PRUEBA DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS Convocatoria 2014

UNIVERSIDAD AUTÓNOMA DE MADRID PRUEBA DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS Convocatoria 2014 PRUEBA DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 5 AÑOS Convocatoria 4 INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES: Escoja entre una de las dos opciones A o B. Lea con atención y detenimiento los

Más detalles

dx = x El tensor x/ X se denomina tensor gradiente de la deformación F = x

dx = x El tensor x/ X se denomina tensor gradiente de la deformación F = x Capítulo 2 Cinemática El desarrollo de las expresiones contenidas en este capítulo se lleva a cabo en un sistema de referencia general cartesiano {I 1 I 2 I 3 }. La notación es, con algunas diferencias,

Más detalles

Métodos directos para resolver sistemas de ecuaciones lineales

Métodos directos para resolver sistemas de ecuaciones lineales Métodos directos para resolver sistemas de ecuaciones lineales Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el

Más detalles

Procedimiento para encontrar la inversa de una matriz cuadrada (Método de Gauss-Jordan).

Procedimiento para encontrar la inversa de una matriz cuadrada (Método de Gauss-Jordan). Ejemplo 19: Demuestre que la matriz A es invertible y escríbala como un producto de matrices elementales. Solución: Para resolver el problema, se reduce A a I y se registran las operaciones elementales

Más detalles

Tema 3: Espacios vectoriales

Tema 3: Espacios vectoriales Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación

Más detalles

Matrices. Definiciones básicas de matrices. José de Jesús Angel Angel.

Matrices. Definiciones básicas de matrices.  José de Jesús Angel Angel. Matrices Definiciones básicas de matrices wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 2007-2009 Contenido 1 Matrices 3 11 Matrices cuadradas 5 12 Matriz transpuesta 5 13 Elementos de

Más detalles

Matemáticas para la Empresa

Matemáticas para la Empresa Matemáticas para la Empresa 1 o L. A. D. E. Curso 2008/09 Relación 1. Espacios Vectoriales 1. a) En IR 2 se consideran las operaciones habituales: (x, y) + (x, y ) = (x + x, y + y ) λ(x, y) = (λx, λy)

Más detalles

APÉNDICE A. Algebra matricial

APÉNDICE A. Algebra matricial APÉNDICE A Algebra matricial El estudio de la econometría requiere cierta familiaridad con el álgebra matricial. La teoría de matrices simplifica la descripción, desarrollo y aplicación de los métodos

Más detalles

Carmen Torres Blanc, Gloria Sánchez Torrubia DMATIC, ETSIInf, U.P.M. Álgebra Lineal. 1 TEMA 1.1: MATRICES Y SISTEMAS DE ECUACIONES LINEALES

Carmen Torres Blanc, Gloria Sánchez Torrubia DMATIC, ETSIInf, U.P.M. Álgebra Lineal. 1 TEMA 1.1: MATRICES Y SISTEMAS DE ECUACIONES LINEALES Carmen Torres Blanc, Gloria Sánchez Torrubia DMATIC, ETSIInf, UPM Álgebra Lineal TEMA : MATRICES Y SISTEMAS DE ECUACIONES LINEALES Definición de cuerpo conmutativo Definición Un Cuerpo Conmutativo es un

Más detalles

DETERMINANTES Profesor: Fernando Ureña Portero

DETERMINANTES Profesor: Fernando Ureña Portero : CONCEPTO, CÁLCULO DE. Definición: A cada matriz cuadrada A=a ij, de orden n, se le asigna un número real, denominado determinante de A, denotado por A o por det (A). A =det (A)= 1.-Determinante de orden

Más detalles

Matrices y sistemas de ecuaciones

Matrices y sistemas de ecuaciones Matrices y sistemas de ecuaciones María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I M. Muñoz (U.P.C.T.) Matrices y sistemas de ecuaciones Matemáticas I 1 / 59 Definición de Matriz Matrices

Más detalles

ASIGNATURA: EL MÉTODO DE LOS ELEMENTOS FINITOS EN INGENIERÍA. Código: Titulación: INGENIERO INDUSTRIAL Curso: 4

ASIGNATURA: EL MÉTODO DE LOS ELEMENTOS FINITOS EN INGENIERÍA. Código: Titulación: INGENIERO INDUSTRIAL Curso: 4 ASIGNATURA: EL MÉTODO DE LOS ELEMENTOS FINITOS EN INGENIERÍA Código: 141214001 Titulación: INGENIERO INDUSTRIAL Curso: 4 Profesor(es) responsable(s): PEDRO JESÚS MARTÍNEZ CASTEJÓN Departamento: ESTRUCTURAS

Más detalles

1.- Sumar b) 4. 4 c) 4 d) No puede realizarse. a) Sumar. d) No puede realizarse. 3.- La suma de matrices es:

1.- Sumar b) 4. 4 c) 4 d) No puede realizarse. a) Sumar. d) No puede realizarse. 3.- La suma de matrices es: PROESO SELETIVO - Sumar a) b) c) d) o puede realizarse - Sumar a) b) c) d) o puede realizarse - La suma de matrices es: a) Distributiva respecto al producto de matrices b) Una relación de orden cuyo conjunto

Más detalles

Álgebra y Geometría Analítica 4-Sistemas de ecuaciones lineales. Resumen

Álgebra y Geometría Analítica 4-Sistemas de ecuaciones lineales. Resumen Álgebra y Geometría Analítica 4-Sistemas de ecuaciones lineales Docente: Ernesto Aljinovic Resumen Sistema de n ecuaciones lineales con m incógnitas (Sistema de n m) Forma matricial del sistema Matriz

Más detalles

CAPÍTULO 2 TRANSFORMACIONES LINEALES

CAPÍTULO 2 TRANSFORMACIONES LINEALES CAPÍULO RANSFORMACIONES LINEALES ransformación Sean V W espacios vectoriales. La función : V W recibe el nombre de transformación, los espacios V W se llaman dominio codominio de la transformación, respectivamente.

Más detalles

ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2

ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2 ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2 Abstract Estas notas conciernen al álgebra de matrices y serán actualizadas conforme el material se cubre Las notas no son substituto de la clase pues solo contienen

Más detalles

Clase. 1. Resolución de sistemas de ecuaciones lineales: preliminares

Clase. 1. Resolución de sistemas de ecuaciones lineales: preliminares Clase 1. Resolución de sistemas de ecuaciones lineales: preliminares 2. Método directo y exacto: Gauss 3. Método directo y exacto (II): descomposición LU 4. Métodos indirectos: Jacobi, Gauss-Seidel 2 Sistemas

Más detalles

PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 2005/06

PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 2005/06 PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 200/06 1. Utilizar el método de eliminación de Gauss para resolver el sistema de ecuaciones lineales siguiente: 2 x 1 2 x

Más detalles

Descomposición del valor singular y sus aplicaciones

Descomposición del valor singular y sus aplicaciones 7 Descomposición del valor singular y sus aplicaciones Marlene J. Soldevilla Olivares William C. Echegaray Castillo Resumen El presente trabajo damos algunas propiedades de los valores singulares de una

Más detalles

Sistem as de ecuaciones lineales

Sistem as de ecuaciones lineales Sistem as de ecuaciones lineales. Concepto, clasificación y notación Un sistema de m ecuaciones lineales con n incógnitas se puede escribir del siguiente modo: a x + a 2 x 2 + a 3 x 3 + + a n x n = b a

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES CONCEPTO MATRICES Se llama matriz de orden (dimensión) m n a un conjunto de m n elementos dispuestos en m filas y n columnas Se representa por A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn j=1,2,,n

Más detalles

Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales

Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales (1) Sea n N. Mostrar que el conjunto de polinomios sobre R de grado menor que n es un subespacio vectorial de R[x]. Este

Más detalles

TEMA 8. Sistemas de Ecuaciones Lineales: Método de Gauss. 1. Sistemas de ecuaciones lineales. Generalidades

TEMA 8. Sistemas de Ecuaciones Lineales: Método de Gauss. 1. Sistemas de ecuaciones lineales. Generalidades TEMA 8 F MATEMÁTICOS TEMA 8 Sistemas de Ecuaciones Lineales: Método de Gauss 1 Sistemas de ecuaciones lineales Generalidades Uno de los problemas centrales del álgebra lineal es la resolución de ecuaciones

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 s y por es Departamento de Matemáticas ITESM s y por es Álgebra Lineal - p. 1/22 El determinante de una matriz cuadrada A es un número real asignado a ella. En la notación matemática

Más detalles

Relación 1. Espacios vectoriales

Relación 1. Espacios vectoriales MATEMÁTICAS PARA LA EMPRESA Curso 2007/08 Relación 1. Espacios vectoriales 1. (a) En IR 2 se consideran las operaciones habituales: (x, y) + (x, y ) = (x + x, y + y ) λ(x, y) = (λx, λy) Demuestra que IR

Más detalles

Tema 1: MATRICES. OPERACIONES CON MATRICES

Tema 1: MATRICES. OPERACIONES CON MATRICES Tema 1: MATRICES. OPERACIONES CON MATRICES 1. DEFINICIÓN Y TIPO DE MATRICES DEFINICIÓN. Una matriz es un conjunto de números reales dispuestos en filas y columnas. Si en ese conjunto hay m n números escritos

Más detalles

Matrices. José Vicente Romero Bauset. ETSIT-curso 2009/2010. José Vicente Romero Bauset Tema 1.- Matrices. 1

Matrices. José Vicente Romero Bauset. ETSIT-curso 2009/2010. José Vicente Romero Bauset Tema 1.- Matrices. 1 Matrices José Vicente Romero Bauset ETSIT-curso 2009/2010 José Vicente Romero Bauset Tema 1- Matrices 1 Introducción Por qué estudiar las matrices? Son muchas las situaciones de la vida real en las que

Más detalles

Clase nº1 Funciones de forma Introducción al Método de los Elementos Finitos

Clase nº1 Funciones de forma Introducción al Método de los Elementos Finitos Clase nº1 Funciones de forma Introducción al Método de los Elementos Finitos Tomando un elemento de volumen diferencial y poniendo en evidencia las fuerzas actuantes sobre cada una de las caras, así como

Más detalles

TEMA III: DIAGONALIZACIÓN.

TEMA III: DIAGONALIZACIÓN. TEMA III: DIAGONALIZACIÓN. OBJETIVOS: Generales: 1. Captar el motivo que justifica el problema de la diagonalización de endomorfismos. 2. Resolver y aplicar dicho problema cuando sea posible. Específicos:

Más detalles

Bases y dimensión. Problemas teóricos. En todos los problemas se supone que V es un espacio vectorial sobre un campo F. p=1

Bases y dimensión. Problemas teóricos. En todos los problemas se supone que V es un espacio vectorial sobre un campo F. p=1 Bases y dimensión Problemas teóricos Bases de un espacio vectorial En todos los problemas se supone que V es un espacio vectorial sobre un campo F. Definición de base. Sean b 1,..., b n V. Se dice que

Más detalles

Problemas de Álgebra Ingeniería Técnica en Informática de Sistemas. Curso 2009/10

Problemas de Álgebra Ingeniería Técnica en Informática de Sistemas. Curso 2009/10 Problemas de Álgebra Ingeniería Técnica en Informática de Sistemas Curso 2009/10 Hoja 1 Preliminares 1 Resuelve los siguientes sistemas de ecuaciones de números complejos: { z 1 + iz 2 = 1 i 3z 1 + (1

Más detalles

SOLUCIONES A LA AUTOEVALUACIÓN - Espacios Vectoriales.

SOLUCIONES A LA AUTOEVALUACIÓN - Espacios Vectoriales. SOLUCIONES A LA AUTOEVALUACIÓN - Espacios Vectoriales. A) Soluciones a las Cuestiones C-1) a) Sí, por ejemplo el eje X, formado por los vectores de la forma (λ, 0), que se identificarían con el número

Más detalles

Sistemas lineales de ecuaciones diferenciales. Juan-Miguel Gracia

Sistemas lineales de ecuaciones diferenciales. Juan-Miguel Gracia Sistemas lineales de ecuaciones diferenciales Juan-Miguel Gracia Índice Sistemas lineales 2 Búsqueda de una solución especial 3 Aplicación a sistemas 4 Problema de condiciones iniciales 2 / 2 Sistemas

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales ALBERTO VIGNERON TENORIO Dpto. de Matemáticas Universidad de Cádiz Índice general 1. Sistemas de ecuaciones lineales 1 1.1. Sistemas de ecuaciones lineales. Definiciones..........

Más detalles

Lección 8. Matrices y Sistemas de Ecuaciones Lineales

Lección 8. Matrices y Sistemas de Ecuaciones Lineales Lección 8 Matrices y Sistemas de Ecuaciones Lineales MIGUEL ANGEL UH ZAPATA 1 Análisis Numérico I Facultad de Matemáticas, UADY Septiembre 2014 1 Centro de Investigación en Matemáticas, Unidad Mérida En

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II ARAGÓN CONVOCATORIA JUNIO 009 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz. Algebra Opción A a) Las matrices correspondientes son: A m m m m m m A* El determinante

Más detalles

Matrices y sistemas de ecuaciones lineales. Autovalores y autovectores.

Matrices y sistemas de ecuaciones lineales. Autovalores y autovectores. Tema 5 Matrices y sistemas de ecuaciones lineales Autovalores y autovectores 5 Introducción Una matriz es una disposición ordenada de elementos de la forma: a a a m a a a m a n a n a nm Sus filas son las

Más detalles

Aquella que tiene nulos los elementos nos situados en la diagonal principal. Los elementos situados por encima de la diagonal principal son nulos.

Aquella que tiene nulos los elementos nos situados en la diagonal principal. Los elementos situados por encima de la diagonal principal son nulos. Álgebra lineal Matrices Rango de una matriz Orden del mayor menor complementario no nulo. Matriz regular det A Diagonal principal Elementos a ii de la matriz. Si la matriz es cuadrado son los elementos

Más detalles

Estructuras de Materiales Compuestos

Estructuras de Materiales Compuestos Estructuras de Materiales Compuestos Mecánica de laminados Ing. Gastón Bonet - Ing. Cristian Bottero - Ing. Marco Fontana Introducción Estructuras de Materiales Compuestos - Mecánica de laminados Comportamiento

Más detalles

BLOQUE 2. ÁLGEBRA LINEAL. MATRICES Y SISTEMAS DE ECUACIONES LINEALES (*)

BLOQUE 2. ÁLGEBRA LINEAL. MATRICES Y SISTEMAS DE ECUACIONES LINEALES (*) BLOQUE 2. ÁLGEBRA LINEAL. MATRICES Y SISTEMAS DE ECUACIONES LINEALES (*) Matrices. Determinantes. Rango. Sistemas de ecuaciones lineales. El Álgebra Lineal es una parte de la Matemática de frecuente aplicación

Más detalles

Francisco José Vera López

Francisco José Vera López Álgebra y Matemática Discreta Matrices. Sistemas de ecuaciones. Francisco José Vera López Dpto. de Matemática Aplicada Facultad de Informática 2015 1 Matrices 2 Sistemas de Ecuaciones Matrices Una matriz

Más detalles

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD. LÍMITE DE UNA FUNCIÓN Diremos que una función y f () tiene por ite L cuando la variable independiente tiende a, y se nota por f ( ) L, cuando al acercarnos

Más detalles