Definiciones previas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Definiciones previas"

Transcripción

1 Máquina de Turing

2 Definiciones previas Definición. Alfabeto: Diremos que un conjunto finito Σ es un alfabeto si Σ y ( x)(x Σ x es un símbolo indivisible) Ejemplos Σ ={a,b}, Σ ={0,1}, Σ ={a,b, z} son alfabetos Σ ={0,1,00,01} Σ ={sa,ca,casa} no lo son

3 Definiciones previas Definicion. Palabra: Se dice que w es una palabra (cadena o string) sobre Σ si w es una secuencia finita de símbolos de Σ Ejemplos: si Σ ={0,1}, entonces: 0011, 101, 1 son palabras sobre Σ

4 Definiciones previas Definicion. Longitud de una palabra: Se denota w, es el número de símbolos que contiene w. Por ejemplo: perro =5 010 =3 Nota: notaremos con Σ* al conjunto de todas las palabras formadas por símbolos de Σ incluída la cadena nula (o vacía) que tiene longitud cero y denotaremos con λ. ( λ = 0) Ejemplo: Σ = {a,b} Σ* = {λ,a,b,aa,ab,ba,bb,aaa }

5 Definiciones previas Concatenación: La notación utilizada para denotar la concatenación de dos palabras w y v es w.v (o simplemente wv). La concatenación es asociativa pero no conmutativa: (v.w).x = v.(wx) v.w w.v Se cumple que: v.w = v + w La cadena vacía es el elemento neutro para la concatenacion λ.w = w.λ = w

6 Definiciones previas Definición. Sea una cadena w Σ y un número natural i, se define la potencia i-ésima de w como: w 0 = λ w (i+1) = w.w i ( i) (i 0 ) Ejemplo: si w = ab, w 3 = ababab

7 Definiciones previas Definición. Se denomina lenguaje definido sobre Σ a cualquier subconjunto de Σ* Ejemplo: si Σ = {0,1} Σ* {λ} {w Σ* / w comienza con 1} {1w0 / w Σ* } Son lenguajes sobre Σ

8 Características del proceso de cálculo de una persona Se concentra en una porción restringida del papel Trabaja con un número finito de símbolos Puede cambiar la sección de papel en que se concentra (de acuerdo al símbolo que observa y a sus estado mental) Pasa por un número finito de estados mentales distinguibles Se asume que siempre contará con el papel suficiente para sus cálculos (se asume infinito)

9 Máquina de Turing En cada instante, la máquina se encuentra en algún estado q i, perteneciente al conjunto finito Q de todos los estados posibles Q={q 0,q 1,q 2, q n }

10 Configuración inicial La cinta inicialmente se encuentra en blanco (símbolo especial B en cada celda), la máquina comienza en un estado inicial q 0 apuntando al primer símbolo del string escrito sobre la cinta (si es que éste existe). Obsérvese que dicho string estará limitado por infinitos B a izquierda y derecha.

11 Comportamiento de la máquina de Turgin El comportamiento de la máquina está definido por una fución de transición (programa) Dependiendo del símbolo en la celda actual y del estado corriente, la máquina efectúa las siguientes acciones 1. Cambia de estado (o vuelve a elegir el actual) 2. Escribe un símbolo en la celda actual, reemplazando lo que allí había (puede escribir el mismo símbolo que estaba) 3. Mueve el cabezal a la izaquierda o la derecha, exactamente una celda

12 Ejemplos

13

14 Comportamiento de la máquina de Turgin El programa de la MT no es un programa secuencial sino que es una función matemática de transición. La máquina trabaja haciendo pattern matching, es decir, busca en la memoria del programa cuál es la línea (transición) que debe aplicar. Debe existir sólo una línea que haga pattern matching (si hubiese más no sería una función matemática). Si no existe ninguna transición definida para el estado actual y el símbolo leído en la cinta la máquina se detiene.

15 Ejemplos

16 Ejemplos

17 Actividades Escribir símbolos 1 a la derecha indefinidamente Escribir símbolos 0 a la izquierda indefinidamente Escribir la palabra casa Escribir indefinidamente casa casa casa casa hacia la izquierda Escribir 1 hacia la derecha y 0 hacia la izquierda en zigzag indefinidamente, es decir me voy a izquierda para escribir un 1 al final, y cambio el sentido hacia la izquierda para escribir un 0, y cambio sentido hacia la derecha, así indefinidamente

18 Ejercicio Construir una máquina de Turing que agregue un bit de paridad a una secuencia binaria para que la cantidad de 1 sea par. Γ={0,1,Β} El conjunto Γ es el conjunto de símbolos que pueden encontrarse en la cinta. Este dato es importante porque la máquina se detiene cuando se encuentra en una situación indefinida.

19 Ejercicio

20 Qué hacen las siguientes máquinas de Turing?

21 Ejercicio Sumar 1 al número unario existente en la cinta Γ = {1,B}. En unario, el número n se representa como una cadena de n símbolos 1 (el cero es un string vacío). Construir una máquina de Turing que haga un corrimiento a derecha del string binario en la cinta, marcando con un símbolo especial # la cinta que correspondía al primer símbolo desplazado. Γ = {B,#,0,1}. (5 minutos para hacerlo en clase)

22 Máquina de Turing como reconocedoras de cadenas de símbolos Alcanza con identificar los estados que se consideran finales (aceptadores). Se dice que una máquina de Turing M acepta un string w M se detiene en un estado final.

23 Máquina de Turing como reconocedoras de cadenas de símbolos

24 Máquina de Turing como reconocedoras de cadenas de símbolos

25 Modelo Estándar de máquina de Turing Definición. Una máquina de Turing es una 6-tupla M = <Q, Σ, Γ, δ, q 0, F> tal que: Q es un conjunto finito de estados de M Σ es el alfabeto de la entrada Γ es el alfabeto de la cinta. Σ Γ y B (Γ Σ ) q 0 es el estado inicial de M (q 0 Q) F es el conjunto de estados finales de M. (F Q) δ es la función de transición de M. Se define δ: Q x Γ Q x Γ x {D, I}, D e I representan el movimiento del cabezal a derecha e izquierda respectivamente.

26 Modelo Estándar de máquina de Turing

27 Ejemplo (revisitado)

28 Ejemplo (revisitado)

29 Descripción instantánea de una máquina de Turing

30 Movimiento de una máquina de Turing

31 Movimiento de una máquina de Turing

32 Lenguaje aceptado por una máquina de Turing

33 Lenguaje aceptado por una máquina de Turing

34 Lenguaje aceptado por una máquina de Turing

7. Máquinas de Turing.

7. Máquinas de Turing. 7. Máquinas de Turing. Araceli Sanchis de Miguel Agapito Ledezma Espino José A. Iglesias Mar

Más detalles

Departamento de Tecnologías de la Información. Tema 4. Máquinas de Turing. Ciencias de la Computación e Inteligencia Artificial

Departamento de Tecnologías de la Información. Tema 4. Máquinas de Turing. Ciencias de la Computación e Inteligencia Artificial Departamento de Tecnologías de la Información Tema 4 Máquinas de Turing Ciencias de la Computación e Inteligencia Artificial Índice 4.1 Límites de los autómatas 4.2 Definición de Máquina de Turing 4.3

Más detalles

Máquinas de Turing Definición y descripción

Máquinas de Turing Definición y descripción Capítulo 12 Máquinas de Turing 12.1. Definición y descripción Definición 1 Se llama máquina de Turing a toda séptupla M = (Γ,Σ,,Q,q 0,f,F), donde: Γ es el alfabeto de símbolos de la cinta. Σ Γ es el alfabeto

Más detalles

Temas. Objetivo. Símbolo, alfabeto. Hileras y operaciones con hileras. Operaciones con lenguajes

Temas. Objetivo. Símbolo, alfabeto. Hileras y operaciones con hileras. Operaciones con lenguajes 0 1 Temas Símbolo, alfabeto Hileras y operaciones con hileras Operaciones con lenguajes Objetivo Que el estudiante logre conocer, comprender y manejar conceptos vinculados con la Teoría de Lenguajes Formales

Más detalles

MÁQUINAS DE TURING CIENCIAS DE LA COMPUTACION I 2009

MÁQUINAS DE TURING CIENCIAS DE LA COMPUTACION I 2009 MÁQUINAS DE TURING Las máquinas de Turing, así como los AF y los AP se utilizan para aceptar cadenas de un lenguaje definidas sobre un alfabeto A. El modelo básico de máquina de Turing, tiene un mecanismo

Más detalles

Unidad 4. Autómatas de Pila

Unidad 4. Autómatas de Pila Unidad 4. Autómatas de Pila Una de las limitaciones de los AF es que no pueden reconocer el lenguaje {0n1n} debido a que no se puede registrar para todo n con un número finito de estados. Otro lenguaje

Más detalles

TIPOS DE GRAMATICAS JERARQUIAS DE CHOMSKY

TIPOS DE GRAMATICAS JERARQUIAS DE CHOMSKY TIPOS DE GRAMATICAS JERARQUIAS DE CHOMSKY Para el estudio de este tema es necesario analizar dos tipos de gramáticas de la clasificación de Chomsky, las regulares y las independientes de contexto, las

Más detalles

Unidad 4. Autómatas de Pila

Unidad 4. Autómatas de Pila Unidad 4. Autómatas de Pila Una de las limitaciones de los AF es que no pueden reconocer el lenguaje {0 n 1 n } debido a que no se puede registrar para todo n con un número finito de estados. Otro lenguaje

Más detalles

Teoría de la Computación y Leguajes Formales

Teoría de la Computación y Leguajes Formales y Leguajes Formales Prof. Hilda Y. Contreras Departamento de Computación hyelitza@ula.ve hildac.teoriadelacomputacion@gmail.com Contenido Tema 0: Introducción y preliminares: Conocimientos matemáticos

Más detalles

Máquinas de estado finito y expresiones regulares

Máquinas de estado finito y expresiones regulares Capítulo 3 Máquinas de estado finito y expresiones regulares En este tema definiremos y estudiaremos máquinas de estado finito, llamadas también máquinas de estado finito secuenciales o autómatas finitos.

Más detalles

MÁQUINAS DE TURING Y LENGUAJES ESTRUCTURADOS POR FRASES

MÁQUINAS DE TURING Y LENGUAJES ESTRUCTURADOS POR FRASES Máquinas de Turing y lenguajes estructurados por frases -1- MÁQUINAS DE TURING Y LENGUAJES ESTRUCTURADOS POR FRASES MÁQUINAS DE TURING - Son máquinas teóricas capaces de aceptar lenguajes generados por

Más detalles

Unidad 1 Lenguajes Formales

Unidad 1 Lenguajes Formales Unidad 1 Lenguajes Formales 1. INTRODUCCION El lenguaje es una secuencia de fonemas o símbolos que forman sílabas, palabras, frases, párrafos, capítulos, novelas, libros, bibliotecas...que tiene una sintaxis

Más detalles

PRACTICA 10: Máquinas de Turing

PRACTICA 10: Máquinas de Turing ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA Departamento de Estadística, I.O. y Computación Teoría de Autómatas y Lenguajes Formales PRACTICA 10: Máquinas de Turing 10.1. Introducción La clase de

Más detalles

Computabilidad y Lenguajes Formales: Teoría de la Computabilidad: Máquinas de Turing

Computabilidad y Lenguajes Formales: Teoría de la Computabilidad: Máquinas de Turing 300CIG007 Computabilidad y Lenguajes Formales: Teoría de la Computabilidad: Máquinas de Turing Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V. Máquina

Más detalles

Máquinas de Turing, recordatorio y problemas

Máquinas de Turing, recordatorio y problemas Máquinas de Turing, recordatorio y problemas Elvira Mayordomo, Universidad de Zaragoza 5 de diciembre de 2014 1. Recordatorio de la definición de máquina de Turing Una máquina de Turing, abreviadamente

Más detalles

Alfabetos y cadenas (1) Alfabetos y cadenas (2) Lenguajes. Propiedades de la concatenación:

Alfabetos y cadenas (1) Alfabetos y cadenas (2) Lenguajes. Propiedades de la concatenación: Alfabetos y cadenas (1) 0 b b 0 1 Alfabeto: Un alfabeto Σ es un conjunto finito y no vacío de símbolos. Cadena sobre un alfabeto Σ: Es una sucesión de caracteres tomados de Σ. Cadena vacía: Cadena sin

Más detalles

Unidad 1 Introducción

Unidad 1 Introducción Unidad 1 Introducción Contenido 1.1 La importancia de estudiar los autómatas y lenguajes formales 1.2 Símbolos, alfabetos y cadenas 1.3 Operaciones sobre cadenas 1.4 Definición de lenguaje y operaciones

Más detalles

Lenguajes, Gramáticas y Autómatas Conceptos

Lenguajes, Gramáticas y Autómatas Conceptos Lenguajes, Gramáticas y Autómatas Conceptos Departamento de Informática e Ingeniería de Sistemas C.P.S. Universidad de Zaragoza Última revisión: Febrero. 2004 11/02/2004 1 Índice Alfabetos, palabras y

Más detalles

Traductores Push Down

Traductores Push Down Push Down Extensión de Autómatas Universidad de Cantabria Outline El Problema 1 El Problema 2 3 El Problema Hemos estudiado anteriormente los autómatas con pila y hemos visto su relación con los lenguajes

Más detalles

Teoría de la Computación y Lenguajes Formales

Teoría de la Computación y Lenguajes Formales Teoría de la Computación y Lenguajes Formales Máquinas de Turing Prof. Hilda Y. Contreras Departamento de Computación hyelitza@ula.ve hildac.teoriadelacomputacion@gmail.com Máquinas de Turing Contenido

Más detalles

Teoría de Autómatas y Compiladores [ICI-445] Capítulo 2: Autómatas Finitos

Teoría de Autómatas y Compiladores [ICI-445] Capítulo 2: Autómatas Finitos Teoría de Autómatas y Compiladores [ICI-445] Capítulo 2: Autómatas Finitos Dr. Ricardo Soto [ricardo.soto@ucv.cl] [http://www.inf.ucv.cl/ rsoto] Escuela de Ingeniería Informática Pontificia Universidad

Más detalles

Tema 6: Máquina de Turing

Tema 6: Máquina de Turing Tema 6: Máquina de Turing Departamento de Sistemas Informáticos y Computación http://www.dc.upv.es p.1/28 Tema 6: Máquina de Turing La Máquina de Turing. Máquinas de Turing como aceptores Otros modelos

Más detalles

Ciencias de la Computación I

Ciencias de la Computación I Ciencias de la Computación I Autómatas Linealmente Acotados Máquinas de Turing Motivación - Es posible diseñar un AP que reconozca el lenguaje L 1? L 1 = { a n b n c n / n > 0 } Ejemplo una estrategia

Más detalles

Autómata de Pila (AP, PDA) Sesión 18

Autómata de Pila (AP, PDA) Sesión 18 Sesión 8 Autómata de Pila (Pushdown Automata) Autómata de Pila (AP, PDA) Un AP es una máquina que acepta el lenguage generado por una GLC Consiste en un NFA- aumentado con una pila (stack). L = {xx r x

Más detalles

Autómata de Pila (AP, PDA) Tema 18

Autómata de Pila (AP, PDA) Tema 18 Tema Autómata de Pila (Pushdown Automata Autómata de Pila (AP, PDA Un AP es una máquina que acepta el lenguage generado por una GLC Consiste en un NFA- aumentado con una pila (stack. Dr. Luis A. Pineda

Más detalles

El Autómata con Pila

El Autómata con Pila El Autómata con Pila Una Generalización del Autómata Finito Universidad de Cantabria Esquema 1 2 3 4 Los autómatas son abstracciones de maquinas de calcular, como hemos visto. Los más sencillos no tienen

Más detalles

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 42

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 42 Máquinas de Turing IIC3242 IIC3242 Máquinas de Turing 1 / 42 Complejidad Computacional Objetivo: Medir la complejidad computacional de un problema. Vale decir: Medir la cantidad de recursos computacionales

Más detalles

Temas. Objetivo. Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2) Definir autómatas de pila.

Temas. Objetivo. Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2) Definir autómatas de pila. 0 Temas Definición de autómata de pila Autómata de pila determinístico y no determinístico Objetivo Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2)

Más detalles

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 45

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 45 Máquinas de Turing IIC3242 IIC3242 Máquinas de Turing 1 / 45 Complejidad Computacional Objetivo: Medir la complejidad computacional de un problema. Vale decir: Medir la cantidad de recursos computacionales

Más detalles

300CIG007 Computabilidad y Lenguajes Formales: Autómatas Finitos

300CIG007 Computabilidad y Lenguajes Formales: Autómatas Finitos 300CIG007 Computabilidad y Lenguajes Formales: Autómatas Finitos Pontificia Universidad Javeriana Cali Ingeniería de Sistemas y Computación Prof. Gloria Inés Alvarez V. Qué es un computador? Todos lo sabemos!!!

Más detalles

Examen. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003.

Examen. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación Examen IIC 2222 Teoría de Autómatas y Lenguajes Formales Segundo Semestre, 2003 Este examen tiene

Más detalles

06 Análisis léxico II

06 Análisis léxico II 2 Contenido Alfabetos, símbolos y cadenas Operaciones con cadenas Concatenación de dos cadenas Prefijos y sufijos de una cadena Subcadena y subsecuencia Inversión de una cadena Potencia de una cadena Ejercicios

Más detalles

ALGORITMOS DIGITALES II. Ing. Hugo Fdo. Velasco Peña Universidad Nacional 2006

ALGORITMOS DIGITALES II. Ing. Hugo Fdo. Velasco Peña Universidad Nacional 2006 ALGORITMOS DIGITALES II Ing. Hugo Fdo. Velasco Peña Universidad Nacional 2006 OBJETIVOS Conocer los principios básicos de los algoritmos. Establecer paralelos entre los algoritmos, los programas y las

Más detalles

Máquinas de Turing. Definición 2

Máquinas de Turing. Definición 2 Definición 1 La Máquina de Turing (MT) es el modelo de autómata com máxima capacidad computacional: la unidad de control puede desplazarse a izquierda o derecha y sobreescribir símbolos en la cinta de

Más detalles

CONJUNTOS REGULARES. Orlando Arboleda Molina. 19 de Octubre de Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle

CONJUNTOS REGULARES. Orlando Arboleda Molina. 19 de Octubre de Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle CONJUNTOS REGULARES Orlando Arboleda Molina Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle 19 de Octubre de 2008 Contenido Expresiones regulares Teorema de Kleene Autómatas

Más detalles

Tema 2: Lenguajes Formales. Informática Teórica I

Tema 2: Lenguajes Formales. Informática Teórica I Tema 2: Lenguajes Formales Informática Teórica I Teoría de Lenguajes Formales. Bibliografía M. Alfonseca, J. Sancho y M. Martínez. Teoría de Lenguajes, Gramáticas y Autómatas, R.A.E.C., Madrid, (1998).

Más detalles

1) Comprender la importancia que tiene la Máquina de Turing para la Ciencia de la Computación.

1) Comprender la importancia que tiene la Máquina de Turing para la Ciencia de la Computación. 0 1 Temas 2 Objetivos 1) Comprender la importancia que tiene la Máquina de Turing para la Ciencia de la Computación. 2) Definir máquinas de Turing unicinta y multicinta, para reconocer lenguajes y para

Más detalles

Alfabetos, cadenas y lenguajes

Alfabetos, cadenas y lenguajes Capítulo 1 lfabetos, cadenas y lenguajes 1.1. lfabetos y cadenas Un alfabeto es un conjunto finito no vacío cuyos elementos se llaman símbolos. Denotamos un alfabeto arbitrario con la letra Σ. Una cadena

Más detalles

Equivalencia Entre PDA y CFL

Equivalencia Entre PDA y CFL Equivalencia Entre PDA y CFL El Lenguaje aceptado por un Autómata con Pila Universidad de Cantabria Esquema 1 Introducción 2 3 Lenguaje Aceptado por un Autómata Como en los autómatas finitos, se puede

Más detalles

Expresiones regulares y derivadas

Expresiones regulares y derivadas Expresiones regulares y derivadas Teoría de Lenguajes 1 er cuatrimestre de 2002 1 Expresiones regulares Las expresiones regulares son expresiones que se utilizan para denotar lenguajes regulares. No sirven

Más detalles

CAPITULO 2: LENGUAJES

CAPITULO 2: LENGUAJES CAPITULO 2: LENGUAJES 2.1. DEFINICIONES PREIAS SIMBOLO: Es una entidad indivisible, que no se va a definir. Normalmente los símbolos son letras (a,b,c,.., Z), dígitos (0, 1,.., 9) y otros caracteres (+,

Más detalles

Generalidades sobre lenguajes.

Generalidades sobre lenguajes. no DSIC - UPV July 3, 2011 (DSIC - UPV) July 3, 2011 1 / 21 Definiciones: no Alfabeto Σ = {a, b, c} o Γ = {0, 1} palabra, cadena o frase Σ: x = aaba, y = 0011. Cadena vacía: λ. Longitud de una palabra:

Más detalles

Igualdad de cadenas. Las nociones de sufijo y prefijo de cadenas sobre un alfabeto son análogas a las que se usan habitualmente.

Igualdad de cadenas. Las nociones de sufijo y prefijo de cadenas sobre un alfabeto son análogas a las que se usan habitualmente. Igualdad de cadenas Si w y z son palabras, se dice que w es igual a z, si tiene la misma longitud y los mismos símbolos en la misma posición. Se denota por w = z. Las nociones de sufijo y prefijo de cadenas

Más detalles

Máquinas de Turing. Complexity D.Moshkovitz

Máquinas de Turing. Complexity D.Moshkovitz Máquinas de Turing 1 Motivación Nuestra meta, en este curso, es analizar problemas y clasificarlos de acuerdo a su complejidad. 2 Motivación Nos hacemos preguntas como: Cuánto tiempo tarda en computarse

Más detalles

Temas finales de Teoría de Autómatas y Lenguajes Formales II Curso

Temas finales de Teoría de Autómatas y Lenguajes Formales II Curso Temas finales de Teoría de Autómatas y Lenguajes Formales II Curso 2002-2003 M. Luisa González Díaz Departamento de Informática Universidad de Valladolid 2. Máquinas de Turing 2.1. 2.1.1. Definición, representación

Más detalles

Introducción a la indecidibilidad

Introducción a la indecidibilidad Introducción a la indecidibilidad José M. empere Departamento de istemas Informáticos y Computación Universidad Politécnica de Valencia Lenguajes y problemas Un problema será considerado cualquier cuestión

Más detalles

si w=ay por tanto a Σ e y Σ*

si w=ay por tanto a Σ e y Σ* EJERCICIOS: LENGUAJES Y GRAMÁTICAS FORMALES Y MÁQUINAS DE TURING 1.- Prefijos de una cadena x son las cadenas que se pueden obtener de x suprimiendo 0 o más caracteres del final de x. Prefijos propios

Más detalles

7 Máquina de Turing. 7.1 Introducción. 7.2 El modelo de la Máquina de Turing

7 Máquina de Turing. 7.1 Introducción. 7.2 El modelo de la Máquina de Turing 1 Curso Básico de Computación 7 Máquina de Turing Es este capítulo introducimos la Máquina de Turing que es, un modelo matemático simple de una computadora. 7.1 Introducción Hasta ahora no se ha podido

Más detalles

Clase 07: Autómatas. Solicitado: Ejercicios 05: Autómatas

Clase 07: Autómatas. Solicitado: Ejercicios 05: Autómatas Solicitado: Ejercicios 05: Autómatas M. en C. Edgardo Adrián Franco Martínez http://computacion.cs.cinvestav.mx/~efranco @efranco_escom edfranco@ipn.mx 1 Contenido Autómata Teoría de Autómatas Definición

Más detalles

Expresiones Regulares

Expresiones Regulares Conjuntos Regulares y Una forma diferente de expresar un lenguaje Universidad de Cantabria Conjuntos Regulares y Esquema 1 Motivación 2 Conjuntos Regulares y 3 4 Conjuntos Regulares y Motivación El problema

Más detalles

Clases 18 y 19:Máquina de Turing. M. en C. Edgardo Adrián Franco Martínez

Clases 18 y 19:Máquina de Turing. M. en C. Edgardo Adrián Franco Martínez Clases 18 y 19:Máquina de Turing M. en C. Edgardo Adrián Franco Martínez http://computacion.cs.cinvestav.mx/~efranco @efranco_escom edfranco@ipn.mx 1 Contenido Máquinas de Turing Definición formal de la

Más detalles

Clases de complejidad computacional: P y NP

Clases de complejidad computacional: P y NP 1er cuatrimestre 2006 La teoría de Se aplica a problemas de decisión, o sea problemas que tienen como respuesta SI o NO (aunque es sencillo ver que sus implicancias pueden extenderse a problemas de optimización).

Más detalles

L = {a n b n n>0}. L = {a n b n c n n>0}. L = {xcx x {a, b} + }.

L = {a n b n n>0}. L = {a n b n c n n>0}. L = {xcx x {a, b} + }. Universidad Rey Juan Carlos Curso 2010 2011 Teoría de Autómatas y Lenguajes Formales Ingeniería Técnica en Informática de Sistemas Hoja de Problemas 13 Máquinas de Turing Nivel del ejercicio : ( ) básico,

Más detalles

Procesadores de Lenguaje

Procesadores de Lenguaje Procesadores de Lenguaje Repaso TALF Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Primavera de 2013 La Jerarquía de Chomsky Cuatro niveles de lenguajes formales

Más detalles

Autómatas Finitos Deterministicos (DFA)

Autómatas Finitos Deterministicos (DFA) Autómatas Finitos Deterministicos (DFA) Introducción a la Lógica Fa.M.A.F., Universidad Nacional de Córdoba 22//4 Info útil Bibliografía: Introducción a la teoría de autómatas, lenguajes y computación.

Más detalles

09 Análisis léxico V Compiladores - Profr. Edgardo Adrián Franco Martínez

09 Análisis léxico V Compiladores - Profr. Edgardo Adrián Franco Martínez 2 Contenido Autómata Definición formal de autómata Representación de un autómata Mediante tablas de transiciones Mediante diagramas de estados Autómata finito Definición formal de autómata finito Lenguaje

Más detalles

1. Define que es un Autómatas finitos determinanticos y cuáles son sus elementos constitutivos (explique cada uno de ellos).

1. Define que es un Autómatas finitos determinanticos y cuáles son sus elementos constitutivos (explique cada uno de ellos). Unidad 2.- Lenguajes Regulares Los lenguajes regulares sobre un alfabeto dado _ son todos los lenguajes que Se pueden formar a partir de los lenguajes básicos?, {_}, {a}, a 2 _, por medio De las operaciones

Más detalles

Autómatas Finitos Deterministicos (DFA)

Autómatas Finitos Deterministicos (DFA) Autómatas Finitos Deterministicos (DFA) Introducción a la Lógica y la Computación Fa.M.A.F., Universidad Nacional de Córdoba 26/0/6 Info útil Bibliografía: Introducción a la teoría de autómatas, lenguajes

Más detalles

Autómata finito y Expresiones regulares A* C. B

Autómata finito y Expresiones regulares A* C. B Autómata finito y Expresiones regulares A* C. B Conceptos Alfabeto ( ): es el conjunto finito no vacío de símbolos. Ejemplo: = {0,1}, el alfabeto binario Cadenas: secuencia finita de símbolos pertenecientes

Más detalles

Curso Básico de Computación Preliminares

Curso Básico de Computación Preliminares Curso Básico de Computación Preliminares Feliú Sagols Troncoso Matemáticas CINVESTAV-IPN 2010 Curso Básico de Computación (Matemáticas) Preliminares 2010 1 / 11 1 Preliminares

Más detalles

1. Probar pertenencia a Lenguajes libres de contexto

1. Probar pertenencia a Lenguajes libres de contexto Tarea 3 Curso : Teoría de la Computación Codigo : CC3102-1 Fecha : 8 de noviembre de 2017 Autor : Bastián Mail : mail@gmail.com 1. Probar pertenencia a Lenguajes libres de contexto 1.1. L 1 = {a m b n

Más detalles

Jerarquía de Chomsky. 1. Clasificación de gramáticas. 2. Clasificación de lenguajes. 3. Gramáticas regulares. 5. Gramáticas dependientes del contexto

Jerarquía de Chomsky. 1. Clasificación de gramáticas. 2. Clasificación de lenguajes. 3. Gramáticas regulares. 5. Gramáticas dependientes del contexto Jerarquía de Chomsky 1. Clasificación de gramáticas 2. Clasificación de lenguajes 3. Gramáticas regulares 4. Gramáticas independientes del contexto 5. Gramáticas dependientes del contexto 6. Gramáticas

Más detalles

Preliminares. 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros.

Preliminares. 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros. CAPíTULO 1 Preliminares 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros. El método matemático es axiomático y deductivo: a partir de unos principios aceptados inicialmente

Más detalles

Lenguajes Formales y Monoides

Lenguajes Formales y Monoides Universidad de Cantabria Esquema 1 2 3 La operación esencial sobre Σ es la concatenación o adjunción de palabras: : Σ Σ Σ (x, y) x y es decir, si x = x 1 x n e y = y 1 y m, entonces x y = x 1 x n y 1 y

Más detalles

Modelos Avanzados de Computación

Modelos Avanzados de Computación UNIVERSIDAD DE GRANADA Departamento de Ciencias de la Computación e Inteligencia Artificial Modelos Avanzados de Computación Práctica 2 Máquinas de Turing Curso 2014-2015 Doble Grado en Ingeniería Informática

Más detalles

MatemáticaDiscreta&Lógica 1. Funciones. Aylen Ricca. Tecnólogo en Informática San José

MatemáticaDiscreta&Lógica 1. Funciones. Aylen Ricca. Tecnólogo en Informática San José MatemáticaDiscreta&Lógica 1 Funciones Aylen Ricca Tecnólogo en Informática San José 2014 http://www.fing.edu.uy/tecnoinf/sanjose/index.html FUNCIÓN.::. Definición. Sean A y B conjuntos no vacíos, una funciónf

Más detalles

Autómatas Finitos Deterministicos (DFA) Introducción a la Complejidad Computacional FFHA, Universidad Nacional de San Juan

Autómatas Finitos Deterministicos (DFA) Introducción a la Complejidad Computacional FFHA, Universidad Nacional de San Juan Autómatas Finitos Deterministicos (DFA) Introducción a la Complejidad Computacional FFHA, Universidad Nacional de San Juan 206 Info útil Bibliografía: Introducción a la teoría de autómatas, lenguajes y

Más detalles

Programación en Lógica INF 152

Programación en Lógica INF 152 Programación en Lógica INF 152 1.1 - Introducción Un conjunto es una colección de objetos. La definición del conjunto no debe ser ambigua, es decir, es necesario explicitar si un objeto particular pertenece

Más detalles

autómatas finitos y lenguajes regulares LENGUAJES FORMALES Y

autómatas finitos y lenguajes regulares LENGUAJES FORMALES Y CONTENIDO Reconocedores [HMU2.1]. Traductores [C8]. Diagramas de Estado [HMU2.1]. Equivalencia entre AF deterministas y no deterministas [HMU2.2-2.3]. Expresiones [HMU3]. Propiedades de [HMU4]. Relación

Más detalles

Introducción. Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas

Introducción. Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas Gramáticas Introducción Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas En algunos lenguajes, una sucesión de símbolos depende del

Más detalles

Teoría de Autómatas y Lenguajes Formales.

Teoría de Autómatas y Lenguajes Formales. Teoría de Autómatas y Lenguajes Formales Prueba de Evaluación de Lenguajes Regulares, Autómatas a Pila y Máquinas de Turing. Autores: Araceli Sanchis de Miguel Agapito Ledezma Espino Jose A. Iglesias Martínez

Más detalles

7. ( ) Describe una máquina de Turing que acepte el siguiente lenguaje: L = {a n b n n>0}. L = {a n b n c n n>0}. L = {xcx x {a, b} + }.

7. ( ) Describe una máquina de Turing que acepte el siguiente lenguaje: L = {a n b n n>0}. L = {a n b n c n n>0}. L = {xcx x {a, b} + }. Universidad Rey Juan Carlos Curso 2010 2011 Teoría de Autómatas y Lenguajes Formales Ingeniería Técnica en Informática de Sistemas Hoja de Problemas 13 Máquinas de Turing Nivel del ejercicio : ( ) básico,

Más detalles

Modelos De Computación. Guía Modelos de Computación. Tema I: Lenguajes y Gramáticas

Modelos De Computación. Guía Modelos de Computación. Tema I: Lenguajes y Gramáticas Guía Modelos de Computación Tema I: Lenguajes y Gramáticas Introducción La sintaxis de un lenguaje natural, esto es, la de los lenguajes hablados, como el inglés, el español, el alemán o el francés, es

Más detalles

Tema 2. Fundamentos de la Teoría de Lenguajes Formales

Tema 2. Fundamentos de la Teoría de Lenguajes Formales Departamento de Tecnologías de la Información Tema 2. Fundamentos de la Teoría de Lenguajes Formales Ciencias de la Computación e Inteligencia Artificial Índice 2.1. Alfabeto 2.2. Palabra 2.3. Operaciones

Más detalles

2 Autómatas finitos y gramáticas regulares.

2 Autómatas finitos y gramáticas regulares. 2 Autómatas finitos y gramáticas regulares. Autómata RAE Instrumento o aparato que encierra dentro de sí el mecanismo que le imprime determinados movimientos. Algo autónomo que se comporta de determinada

Más detalles

2 Autómatas finitos y gramáticas regulares.

2 Autómatas finitos y gramáticas regulares. 2 Autómatas finitos y gramáticas regulares. Autómata RAE Instrumento o aparato que encierra dentro de sí el mecanismo que le imprime determinados movimientos. Algo autónomo que se comporta de determinada

Más detalles

Tipos de reglas gramaticales (CHOMSKY) Otros tipos de reglas gramaticales no contractivas α β abc ACb

Tipos de reglas gramaticales (CHOMSKY) Otros tipos de reglas gramaticales no contractivas α β abc ACb Tipos de reglas gramaticales (CHOMSKY) Slide 1 0 - no restringidas α β α ε abc ba 0 αaα β aabc bbc - con estructura αaα αβα aaac aac de frase A ε 1 - dependientes αaα αβα AAC baac de contexto β ε aaac

Más detalles

Álgebra y Trigonometría

Álgebra y Trigonometría Álgebra y Trigonometría Conceptos fundamentales del Álgebra Universidad de Antioquia Departamento de Matemáticas 1. Números Reales El conjunto de los números reales está constituido por diferentes clases

Más detalles

Problemas de Decisión

Problemas de Decisión Problemas de Decisión La motivación de este capítulo puede estar dado por lo siguiente: Dado un conjunto Σ de fórmulas proposicionales en L(P ), existe un algoritmo general para determinar si Σ = ϕ Qué

Más detalles

MODELOS DE COMPUTACIÓN CRISTIAN ALFREDO MUÑOZ ALVAREZ JUAN DAVID LONDOÑO CASTRO JUAN PABLO CHACON PEÑA EDUARDO GONZALES PULGARIN

MODELOS DE COMPUTACIÓN CRISTIAN ALFREDO MUÑOZ ALVAREZ JUAN DAVID LONDOÑO CASTRO JUAN PABLO CHACON PEÑA EDUARDO GONZALES PULGARIN MODELOS DE COMPUTACIÓN CRISTIAN ALFREDO MUÑOZ ALVAREZ JUAN DAVID LONDOÑO CASTRO JUAN PABLO CHACON PEÑA EDUARDO GONZALES PULGARIN LENGUAJES Y GRAMÁTICAS La sintaxis de un lenguaje natural en lenguajes como

Más detalles

Curso Básico de Computación

Curso Básico de Computación Curso Básico de Computación Autómatas finitos y expresiones regulares Feliú Sagols Troncoso Matemáticas CINVESTAV-IPN 2010 Curso Básico de Computación (Matemáticas) Autómatas

Más detalles

Máquinas de Turing. Gálvez Martínez Ernesto Sánchez Sandoval David Isaac Villegas Rosales Erik Salazar Santiago Juan Carlos

Máquinas de Turing. Gálvez Martínez Ernesto Sánchez Sandoval David Isaac Villegas Rosales Erik Salazar Santiago Juan Carlos Máquinas de Turing Gálvez Martínez Ernesto Sánchez Sandoval David Isaac Villegas Rosales Erik Salazar Santiago Juan Carlos El modelo de Máquina de Turing Una Máquina de Turing Es un dispositivo que manipula

Más detalles

CURSO PROPEDÉUTICO 2018

CURSO PROPEDÉUTICO 2018 CURSO PROPEDÉUTICO 2018 LÓGICA MATEMÁTICA 1 Número de horas totales: 14 hrs. CONTENIDO MÓDULO 1. PROPOSICIONES Y TABLAS DE VERDAD 3 1.1 Proposición 3 1.2 Valor de Verdad 3 1.3 Proposición Compuesta 4 1.4

Más detalles

5 Autómatas de pila 5.1 Descripción informal. 5.2 Definiciones

5 Autómatas de pila 5.1 Descripción informal. 5.2 Definiciones 1 Curso Básico de Computación 5 Autómatas de pila 5.1 Descripción informal Un autómata de pila es esencialmente un autómata finito que controla una cinta de entrada provista de una cabeza de lectura y

Más detalles

Autómatas de Pila y Lenguajes Incontextuales

Autómatas de Pila y Lenguajes Incontextuales Autómatas de Pila y Lenguajes Incontextuales Elvira Mayordomo Universidad de Zaragoza 5 de noviembre de 2012 Contenido de este tema 1. Introducción a los autómatas de pila 2. Definiciones 3. Equivalencia

Más detalles

Curso Básico de Computación

Curso Básico de Computación CINVESTAV IPN México City 2010 1 Preliminares 1.1 Cadenas, alfabetos y lenguajes Un símbolo es un ente abstracto que no se puede definir formalmente. Letras o dígitos son ejemplos

Más detalles

Introducción TEORÍA DE LA COMPUTACIÓN INTRODUCCIÓN. Lógica

Introducción TEORÍA DE LA COMPUTACIÓN INTRODUCCIÓN. Lógica Introducción TEORÍA DE LA COMPUTACIÓN INTRODUCCIÓN Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: fhq@ciencias.unam.mx Página Web: www.matematicas.unam.mx/fhq

Más detalles

Sistemas a Eventos Discretos

Sistemas a Eventos Discretos Sistemas a Eventos Discretos Autómatas de Estado Finito Edgar Chacón 2 Universidad Católica de Cuenca 27 de julio de 2014 2 Programa Prometeo Senescyt, Ecuador E.C. (Ucacue) Sistemas a Eventos Discretos

Más detalles

Clase 03: Alfabetos, símbolos y cadenas

Clase 03: Alfabetos, símbolos y cadenas Solicitado: Ejercicios 01: Cadenas M. en C. Edgardo Adrián Franco Martínez http://computacion.cs.cinvestav.mx/~efranco @efranco_escom edfranco@ipn.mx 1 Contenido Alfabetos, símbolos y cadenas Operaciones

Más detalles

Teoría de autómatas. Un enfoque práctico. Recortables. Thelma Cantú María Gpe. Mendoza

Teoría de autómatas. Un enfoque práctico. Recortables. Thelma Cantú María Gpe. Mendoza Teoría de autómatas. Un enfoque práctico Recortables Thelma Cantú María Gpe. Mendoza 1.1 Búsqueda de lenguajes Alumno: 1 Nombre del lenguaje Alfabeto: Dónde se utiliza? Cuál es el beneficio para la humanidad?

Más detalles

Computabilidad y Lenguajes Formales: Autómatas Finitos

Computabilidad y Lenguajes Formales: Autómatas Finitos 300CIG007 Computabilidad y Lenguajes Formales: Autómatas Finitos Pontificia Universidad Javeriana Cali Ingeniería de Sistemas y Computación Prof. Gloria Inés Alvarez V. No Determinismo Hasta ahora cada

Más detalles

Tema 1: Introducción. Teoría de autómatas y lenguajes formales I

Tema 1: Introducción. Teoría de autómatas y lenguajes formales I Tema 1: Introducción Teoría de autómatas y lenguajes formales I Bibliografía Hopcroft, J. E., Motwani, R., y Ullman, J. D. Introducción a la Teoría de Autómatas, Lenguajes y Computación. Addison Wesley.

Más detalles

Los modelos abstractos de cómputo. Tema 1: Introducción. El modelo transductor. El modelo reconocedor. ordenador. datos. Modelo Abstracto de Cómputo

Los modelos abstractos de cómputo. Tema 1: Introducción. El modelo transductor. El modelo reconocedor. ordenador. datos. Modelo Abstracto de Cómputo Tema 1: Introducción Preliminares Los Modelos Abstractos de Cómputo El principio de inducción Palabras y Lenguajes Palabras Operadores sobre palabras Predicados sobre palabras Lenguajes Operadores sobre

Más detalles

1.1 Máquinas secuenciales Modelo de Moore y de Mealy Lenguaje de una máquina secuencial Equivalencia de modelos

1.1 Máquinas secuenciales Modelo de Moore y de Mealy Lenguaje de una máquina secuencial Equivalencia de modelos Guión 1.1 Máquinas secuenciales Modelo de Moore y de Mealy Lenguaje de una máquina secuencial Equivalencia de modelos Modelo de Moore y de Mealy: Definición Una máquina secuencial (MS) es una tupla: M

Más detalles

07 Análisis léxico III

07 Análisis léxico III 2 Contenido Lenguaje Operaciones entre lenguajes Lenguajes regulares Expresiones regulares 3 Lenguaje Un lenguaje es un conjunto de palabras (cadenas) de un determinado alfabeto Σ. Formalmente: Se llama

Más detalles

5. Propiedades de los Lenguajes Recursivamente Enumerables y de los Lenguajes Recursivos.

5. Propiedades de los Lenguajes Recursivamente Enumerables y de los Lenguajes Recursivos. 5. Propiedades de los Lenguajes Recursivamente Enumerables y de los Lenguajes Recursivos. 5.1 Esquemas de representación de áquinas de Turing. 5.2 Propiedades de cierre. 5.3 Codificación de áquinas de

Más detalles

Maquina de Turing. 5. Fundamentos de algoritmos. Turing TURING TURING 10/08/2010. MI Elizabeth Fonseca Chávez

Maquina de Turing. 5. Fundamentos de algoritmos. Turing TURING TURING 10/08/2010. MI Elizabeth Fonseca Chávez Maquina de Turing 5. Fundamentos de algoritmos MI Elizabeth Fonseca Chávez matemático inglés Alan Turing Turing Definición de algoritmo: conjunto ordenado de operaciones que permite hallar la solución

Más detalles