Problemas Tema 7 Enunciados de problemas de ampliación del Tema 5 sobre integrales y del Tema 6 sobre matrices

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Problemas Tema 7 Enunciados de problemas de ampliación del Tema 5 sobre integrales y del Tema 6 sobre matrices"

Transcripción

1 página / Problemas Tema 7 Enunciados de problemas de ampliación del Tema 5 sobre integrales y del Tema 6 sobre matrices Hoja. Sean las matrices A=( ) y B= ( ). Efectuar: a) A+B b) A B c) 4A d) A B t e) (B+ A) t B. Sean las matrices A=( ), B= ( 3 4 ) y C= ( 7 5) Efectuar: a) (A+B+C) t b) (A t + B t +C t ) c) (A B) t d) A t B t 3. Sean A, B y C tres matrices cuadradas del mismo orden. Son ciertas las siguientes igualdades? Justificar la respuesta. a) (A+B) =A +B + A B b) (A+C ) (A C )= A C c) (A+B+C) ( A+ B C )=(A+B) C d) (A+B) 3 = A 3 + B 3 +3 A B+3 A B

2 página / Hoja. Hallar todas las matrices que conmutan con: a) A=( ) b) B=( 3 4 ) c) C=( 3 ). Sean las matrices A=( ) y B= ( a b c). Hallar a, b y c para que conmuten. 3. Calcular A n, con n N. a) A=( a ) a) b) A=( a c) A=( ) d) A=( ) e) A=( ) f) A=( a b a )

3 página 3/ Hoja 3. Demostrar: a) Cualquiera que sea la matriz cuadrada M, el producto M M t es una matriz simétrica. b) Si M y N son matrices simétricas, M N es simétrica si M y N conmutan. c) Si A es una matriz cuadrada, A+ A t es simétrica. d) Si A es una matriz cuadrada, A A t es antisimétrica.. Demostrar: a) Si A es antisimétrica, entonces A y A 4 son simétricas. b) Si A es antisimétrica, entonces A 3 y A 5 son antisimétricas. c) Toda matriz cuadrada se puede expresar como suma de una simétrica y una antisimétrica. d) El producto de dos matrices ortogonales es ortogonal. 3. Dada la matriz A=( ) hallar B= A+A + A A n ) 4. Dada la matriz A=( n n hallar B= A+A + A A n

4 página 4/ Hoja 4. Dada la matriz A=( ) hallar B= A+A + A A n. Dada la matriz A=( 3 4) hallar B= A+A + A A n 3. Dada la matriz A=( ) hallar An 4. Resolver. a) x cos( x)dx b) x 3 e x dx c) arcotg ( x)dx 5. Resolver. a) e 3x sen(x )dx b) e x (x 3 +5x )dx c) ln (x)dx

5 página 5/ Hoja 5. Resolver. a) e x cos(x)dx b) 3x x+5 (x+3) 3 c) x + x dx dx. Resolver. a) +e x dx b) x x dx c) x++ 3 (x+) x+ dx 3. Resolver. a) cosec 3 ( x)dx b) e4x +3 e 3x dx c) x e x dx 4. Resolver. a) x +5x x 3 + x x dx x b) + ( x+) (x 3) dx c) x3 +x x 4 dx

6 página 6/ Hoja 6. Resolver. a) cos 4 (x) dx b) c) cos (x) sen ( x) dx +cos(x) dx. Resolver. a) +e x e x dx b) x ln( x)dx c) x sen(3x )dx 3. Resolver. a) arcosen( x) dx x b) ( x+)(x + x+) dx c) 3x 4 x +x +4 dx 4. Resolver. a) 3x +3 x dx b) 4 x dx c) x+ x dx

7 página 7/ Hoja 7. Resolver. a) + sen( x)+cos(x) dx b) 4e3x dx x +e c) sen(x) cos 3 (x) dx. Dada la matriz A=( ) hallar A n. cos x sen x 3. Comprobar que la matriz sen x cos x A=( ) es ortogonal. 4. Encontrar las matrices X, Y cuadradas de orden que verifican { X +3 Y =( 5 7 X Y =( 9) } ) 5. Dada la matriz A=( ) hallar A n y escribir A como suma de una matriz simétrica y otra antisimétrica. 6. Demostrar que si B=λ A+μ I con λ,μ R, entonces A y B conmutan.

8 ( Colegio Marista La Inmaculada de Granada Profesor Daniel Partal García página 8/ Hoja 8. Determina si las siguientes matrices tienen inversa. a) A=( b) ) B=( 4) c) C=( 6 ) d) D=( 3 4 ). Determina para qué valores de a no tienen inversa las siguientes matrices. ( a) a 3 b) 4 a) ( ) ( 4 4 ) a c) a Calcula la inversa de las siguientes matrices. a) ( 3 b) 8 ) ( ) c) ( ) d) ( ) 4. Indica si son ortogonales las siguientes matrices. ( 3 ) ( ) a) b) c) 3 ) 5. Determina la matriz X que satisface la ecuación ( 3 ) X + ( 5 ) = ( )

9 página 9/ Hoja 9. Resuelve las siguientes ecuaciones matriciales. a) ( ( ) X = ) b) X ( ) = ( ) + ( ) c) ( ( ) ) X =. Resuelve la siguiente ecuación matricial. A B X C X = C, siendo A=( ), B=( 3 ) ( ), C= 3. Resuelve la siguiente ecuación matricial. (A+B X ) t =A B+C, siendo A=( 3), B= ( 3 4), C= ( 3) 4. Resuelve la siguiente ecuación matricial. A X B+C=, siendo A=( 3), B= ( 3 4), C= ( 3) 5. Halla el rango de las siguientes matrices. ( 4 ) ( ) a) b) Estudiar el rango de las siguientes matrices según los distintos valores de a. ( a 3 a) ( a+ 3 a a) 4 5 b) 4 a a + a c) 5 a 4 a + 3 a 4) ( ) a a a

10 página / Hoja. Calcula: a) La integral definida x dx. b) El área encerrada por la función f (x)=x, el eje OX y las rectas verticales x=, x=.. Calcula: a) La integral definida x dx. b) El área encerrada por la función f (x)=x, el eje OX y las rectas verticales x=, x=. 3. Calcula: a) La integral definida 4 (5x x )dx. b) El área encerrada por la función f (x)=5x x, el eje OX y las rectas verticales x=, x=4. 4. Calcula: 4 a) La integral definida ( x 3x )dx. b) El área encerrada por la función f (x)=x 3x, el eje OX y las rectas verticales x=, x=4. 5. Calcula: a) La integral definida π sen( x)dx. b) El área encerrada por la función f ( x)=sen( x), el eje OX y las rectas verticales x=, x= π.

11 página / Hoja. Sean las matrices A=( 4 3 ) y B= ( 3 4). Calcula: a) A b) Resolver A X = B A (obtener matriz X ). Sean A=( λ y ) B=( ). Calcula: a) Para qué valores de λ existe A? b) En la ecuación matricial A X = B, obtener X si λ=4. 3. Calcula: π a) 6 sen( x) 5 3cos(x) dx b) x x 6 dx 4. Calcula: a) El área encerrada por la función f (x)=cos( x), el eje OX y las rectas verticales x= y x= π. b) x ln( x)dx

12 página / Hoja. a) Una matriz es ortogonal si su inversa coincide con su traspuesta. Comprobar si es ortogonal la matriz A. A=( 3 3 ) b) Obtener A 3. a) Para qué valores de a no admite inversa la matriz A=( a 3 4 a ) b) Calcular las matrices A y B que satisfacen el siguiente sistema matricial: 5 A+3 B=( 4 5) 3 A+ B=( 9 ) 3. Calcula: a) 3 x + x 4 x 3 dx b) arcocos (x) dx 4. Calcula: a) El área encerrada por la función f (x)= x 3, el eje OX y las rectas verticales x= y x=4. b) ( cos (x)+)dx

Álgebra Lineal, Ejercicios

Álgebra Lineal, Ejercicios Álgebra Lineal, Ejercicios MATRICES 1 Se llama traza de una matriz cuadrada a la suma de los elementos de su diagonal principal Sea G el conjunto de todas las matrices cuadradas de orden n con traza nula

Más detalles

TEMA 7: MATRICES. OPERACIONES.

TEMA 7: MATRICES. OPERACIONES. TEMA 7: MATRICES. OPERACIONES. 1. MATRICES. TIPOS DE MATRICES. Se llama matriz de orden m x n (m filas y n columnas) a un conjunto de m n elementos, distribuidos en m filas y n columnas y encerrados entre

Más detalles

Ejercicios finales. Álgebra. 1. Escribir la matriz A de dimensiones 5 x 4 y elementos: Sol:

Ejercicios finales. Álgebra. 1. Escribir la matriz A de dimensiones 5 x 4 y elementos: Sol: Álgebra Ejercicios finales 1. Escribir la matriz A de dimensiones 5 x 4 y elementos:. Una fábrica de embutidos comercializa tres tipos de productos: salchichón, chorizo y morcilla. Para su fabricación

Más detalles

Matrices 1 (Problemas). c

Matrices 1 (Problemas). c º Bachillerato Matrices 1 (Problemas) 1.- Efectúa las siguientes operaciones con matrices: a) 1 4 5 6 + b) 5 7 9 11 1 1 1 1 1 1 c). 4 d) 6. 1 6 1 18 1 g) 0 0 0 0 a 0 b 0. 0 b 0 0 0 c c 0 0.- Siendo A =

Más detalles

1.- DETERMINANTE DE UNA MATRIZ CUADRADA

1.- DETERMINANTE DE UNA MATRIZ CUADRADA 1 Calcule los siguientes determinantes: a) 4 7 5 Resuelva la ecuación 1.- DETERMINANTE DE UNA MATRIZ CUADRADA Solución : 7 b) 1 3 5 4 + x x = 0 1 3 1 0 3 1 4 1 3 Solución : c) 3 4 1 Solución : 35 0 1.

Más detalles

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ...

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ... TEMA : MATRICES Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas a a a... a n a a a... an A... am am am... amn A los números reales a ij se les llama elementos

Más detalles

Tema 2: Determinantes

Tema 2: Determinantes Tema : Determinantes.- a) Encontrar los valores de λ para los que la matriz λ A = 0 λ λ 0 es invertible b) Para λ = hallar la inversa de A comprobar el resultado c) Resolver el sistema x 0 A = 0 z 0 para

Más detalles

Ejercicios resueltos de Álgebra, hoja 3. Beatriz Graña Otero

Ejercicios resueltos de Álgebra, hoja 3. Beatriz Graña Otero Ejercicios resueltos de Álgebra, hoja. Beatriz Graña Otero 5 de Diciembre de 8 B.G.O. 47.- Sobre el R-espacio vectorial E de dimensión 4, sea la métrica cuya matriz asociada a la base B = {e, e, e, e 4

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea la función f: (0,+ ) R definida por f(x) = ln(x), donde ln denota logaritmo x neperiano. a) [1 punto] Estudia y determina las asíntotas de la gráfica de f. b) [1 5 puntos] Halla

Más detalles

EXAMEN DE MATRICES Y DETERMINANTES

EXAMEN DE MATRICES Y DETERMINANTES º BACHILLERATO EXAMEN DE MATRICES Y DETERMINANTES 8 7 m + Ejercicio. Considera las matrices A m (a) [,5 puntos] Determina, si existen, los valores de m para los que A I A (b) [ punto] Determina, si existen,

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO Opción A Ejercicio 1.- Sea la función f : (0, + ) R definida por f(x) = 1 +ln(x) donde ln denota la función x logaritmo neperiano. (a) [1 75 puntos] Halla los [ extremos ] absolutos de f (abscisas donde

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

Cálculo Integral Agosto 2015

Cálculo Integral Agosto 2015 Cálculo Integral Agosto 5 Laboratorio # Antiderivadas I.- Halle las siguientes integrales indefinidas. ) (x 5 8x + 3x 3 ) ) (y 3 6y 6 5 + 8) dy 3) (y 3 + 5)(y + 3) dy 4) (t 3 + 3t + ) (t 3 + 5) dt 5) (3y

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 203 Capítulo 7 Año 2006 7.. Modelo 2006 - Opción A Problema 7.. 2 puntos Un punto de luz situado

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 201 Capítulo 4 Año 200 4.1. Modelo 200 - Opción A Problema 4.1.1 2 puntos Determinar los valores

Más detalles

[Ln(1+x) - senx]/[x.senx], siendo Ln(1+x) el logaritmo neperiano de. Solución

[Ln(1+x) - senx]/[x.senx], siendo Ln(1+x) el logaritmo neperiano de. Solución Ejercicio n º 1 de la opción A de septiembre de 2003 [2'5 puntos] Calcula 1+x [Ln(1+x) - senx]/[x.senx], siendo Ln(1+x) el logaritmo neperiano de [Ln(1+x) - senx]/[x.senx] = [Ln(1+0) - sen0]/[0.sen0] =

Más detalles

EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com MATRICES Y DETERMINANTES 1- Sea m un número real y considere la matriz: 1 0 0 1 2 1 1 a) Determine todos los valores de m para los que la matriz A tiene inversa. b) Determine, si existe, la inversa de

Más detalles

6. Obtén las matrices A y B que verifiquen el sistema. 7. Encuentra una matriz X que cumpla. siendo. 9. Resuelve la siguiente ecuación matricial:

6. Obtén las matrices A y B que verifiquen el sistema. 7. Encuentra una matriz X que cumpla. siendo. 9. Resuelve la siguiente ecuación matricial: Ejercicios. Escribe la matriz traspuesta de: 2 3 3 B= 0 4 3 2 4 C= 2 3 2. Se consideran las matrices: 0 3 2 2 2 2 0 2 3 B= 0 4 C=2 4 3 0 2 5 Calcula: 3A, 3A + 2C, A C, C A y A B. 3. Dadas las matrices

Más detalles

b) y 1 = 10x x 2 y 2 = 25x x 2 d) y 1 = 4x 1 3x 2 y 2 = 2x 1 5x 2

b) y 1 = 10x x 2 y 2 = 25x x 2 d) y 1 = 4x 1 3x 2 y 2 = 2x 1 5x 2 Álgebra lineal Curso 2008-2009 Tema 2 Hoja 1 Tema 2 ÁLGEBRA SUPERIOR 1 Expresar los siguientes sistemas lineales en notación matricial a y 1 = 2x 1 + 3x 2 y 2 = 4x 1 + 2x 2 b y 1 = 10x 1 + 12x 2 y 2 =

Más detalles

Junio 2008: Sean las matrices B = Junio 2008: Calcular el rango de la matriz

Junio 2008: Sean las matrices B = Junio 2008: Calcular el rango de la matriz Septiembre 008: Sea A una matriz 3 x 3 de columnas C 1, C y C 3 (en ese orden). Sea B la matriz de columnas C 1 + C, C 1 + 3C 3 y C (en ese orden). Calcular el determinante de B en función de A. (1 punto)

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID. PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) MODELO DE EXAMEN (Curso )

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID. PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) MODELO DE EXAMEN (Curso ) UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) MODELO DE EXAMEN (Curso 00-003) MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES:

Más detalles

Selectividad Matemáticas II junio 2012, Andalucía

Selectividad Matemáticas II junio 2012, Andalucía Selectividad Matemáticas II junio 0, Andalucía Pedro González Ruiz 0 de junio de 0. Opción A Problema. Sea la función f : R R definida por f(x) = e x (x ).. Calcular las asíntotas de f.. Hallar los extremos

Más detalles

Grado en Ciencias Ambientales. Matemáticas. Curso 10/11.

Grado en Ciencias Ambientales. Matemáticas. Curso 10/11. Grado en Ciencias Ambientales. Matemáticas. Curso 0/. Problemas Tema 2. Matrices y Determinantes. Matrices.. Determinar dos matrices cuadradas de orden 2, X e Y tales que: 2 2X 5Y = 2 ; X + 2Y = 4.2. Calcular

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- [2 5 puntos] Una ventana normanda consiste en un rectángulo coronado con un semicírculo. De entre todas las ventanas normandas de perímetro 10 m, halla las dimensiones del marco

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2013 MATEMÁTICAS II. CÓDIGO 158

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2013 MATEMÁTICAS II. CÓDIGO 158 PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2013 MATEMÁTICAS II. CÓDIGO 158 OBSERVACIONES IMPORTANTES: El alumno deberá responder a todas las cuestiones de una de las

Más detalles

Álgebra Lineal Grupo A Curso 2011/12. Espacios vectoriales. Bases...

Álgebra Lineal Grupo A Curso 2011/12. Espacios vectoriales. Bases... Álgebra Lineal Grupo A Curso 2011/12 Espacios vectoriales. Bases 61) Dados los vectores v 1,v 2,...,v n linealmente independientes, probar que también lo son los vectores u 1 = v 1 u 2 = v 1 + v 2... u

Más detalles

a a a a

a a a a JUNIO 2012 GENERAL 1. Se consideran las matrices: A = 3 1 0 1 3 0 0 0 2 e I 3 = 1 0 0 0 1 0 a) Resuelve la ecuación det (A x I 3 ) = 0. (1 punto) JUNIO 2012 ESPECÍFICA a 1 2 a 1 2. Dado el número real

Más detalles

Guía de Matrices 2i, para i = j

Guía de Matrices 2i, para i = j Wilson Herrera Guía de Matrices { i, para i = j. Escribir la matriz [a ij ] x si a ij = j, para i j. 0, para i < j. Escribir la matriz [a ij ] x si a ij =, para i = j, para i > j.. Escribir la matriz [i

Más detalles

Preparando Selectividad Solución Selectividad - Modelo 02

Preparando Selectividad Solución Selectividad - Modelo 02 página 1/17 Preparando Selectividad Solución Selectividad - Modelo 0 Modelo 0. Opción A. Ejercicio 1 a) [0,5 puntos] Enuncia el teorema de Bolzano. b) [0,5 puntos] Enuncia el teorema de Rolle. c) [0,5

Más detalles

MATEMÁTICAS II (PAUU XUÑO 2011)

MATEMÁTICAS II (PAUU XUÑO 2011) MATEMÁTICAS II (PAUU XUÑO 0) OPCIÓN A. a) Sean C, C, C 3 las columnas primera, segunda y tercera, respectivamente, de una matriz cuadrada M de orden 3 con det (M ) = 4. Calcula enunciando las propiedades

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- [2 5 puntos] Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Ejercicio 2.- [2 5 puntos] Sea f : ( 2, + ) R la función

Más detalles

ÁLGEBRA SELECTIVIDAD C y L

ÁLGEBRA SELECTIVIDAD C y L ÁLGEBRA SELECTIVIDAD C y L JUNIO 2004 1. Se tiene una matriz M cuadrada de orden 3 cuyas columnas son respectivamente C1, C2 y C3 y cuyo determinante vale 2. Se considera la matriz A cuyas columnas son

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 013 Capítulo 1 Año 011 1.1. Modelo 011 - Opción A Problema 1.1.1 (3 puntos) Dado el sistema: λx

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 2013 Capítulo 9 Año 2008 9.1. Modelo 2008 - Opción A Problema 9.1.1 2 puntos Se considera la función

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN OPCIÓN A

INSTRUCCIONES GENERALES Y VALORACIÓN OPCIÓN A INSTRUCCIONES GENERALES Y VALORACIÓN Instrucciones: El examen presenta dos opciones A y B; el alumno deberá elegir una y sólo una de ellas, y resolver los cuatro ejercicios de que consta. No se permite

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES 2 Determinantes ACTIVIDADES INICIALES I. Enumera las inversiones que aparecen en las siguientes permutaciones y calcula su paridad, comparándolas con la permutación principal 1234. a) 1342 b) 3412 c) 4321

Más detalles

MODELOS DE EXÁMENES. Pruebas de acceso a la universidad Matemáticas II. Universidad Complutense (Madrid)

MODELOS DE EXÁMENES. Pruebas de acceso a la universidad Matemáticas II. Universidad Complutense (Madrid) COLEGIO INTERNACIONAL SEK EL CASTILLO Departamento de Ciencias MODELOS DE EXÁMENES Pruebas de acceso a la universidad Matemáticas II Universidad Complutense (Madrid) UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A xcos(x)+b sen(x) Ejercicio 1.- [2 5 puntos] Sabiendo que lím x 0 x 3 es finito, calcula b y el valor del límite. Ejercicio 2.- Sean f : R R y g : R R las funciones definidas mediante f(x) = x(x

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD

PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : (0,+ ) R la función definida por f(x) = 3x + 1 x. (a) [1 5 puntos] Determina los intervalos de crecimiento y de decrecimiento y los extremos relativos de f (puntos donde

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- [2 5 puntos] Halla las dimensiones del rectángulo de área máxima inscrito en un triángulo isósceles de 6 metros de base (el lado desigual) y 4 metros de alto. Ejercicio 2.- Sean

Más detalles

Álgebra lineal - Matriz inversa. Determinante. Farith J. Briceño N.

Álgebra lineal - Matriz inversa. Determinante. Farith J. Briceño N. Álgera lineal - Matriz inversa. Determinante. Farith J. Briceño N. Ojetivos a curir Matriz Inversa. Determinante. Calculo de determinantes. Propiedades de los determinantes. Adjunta de una matriz. Calculo

Más detalles

IES Fco Ayala de Granada Modelo 5 del Solución Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 de la opción A del modelo 5 de 1999.

IES Fco Ayala de Granada Modelo 5 del Solución Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 de la opción A del modelo 5 de 1999. IES Fco Ayala de Granada Modelo 5 del 999. Germán-Jesús Rubio Luna Opción A Ejercicio de la opción A del modelo 5 de 999. [ 5 puntos] Haciendo el cambio de variable t = e x, calcula Calculamos primero

Más detalles

Problemas Tema 8 Enunciados de problemas sobre determinantes

Problemas Tema 8 Enunciados de problemas sobre determinantes página 1/8 Problemas Tema 8 Enunciados de problemas sobre determinantes Hoja 1 1. Calcula los siguientes determinantes: 3 1 8 4 0 0 3 5 c) 4 6 4 6 d) 2 3 6 9 2. Calcula los siguientes determinantes: 1

Más detalles

. Probar que las matrices de la forma B = k A + r I, donde k y r son números. 2x + az = 0. ax + y = n. Calcular: 0 1

. Probar que las matrices de la forma B = k A + r I, donde k y r son números. 2x + az = 0. ax + y = n. Calcular: 0 1 ÁLGEBRA 1 (Junio, 1994) Comprueba que el determinante 3 1 1 1 1 3 1 1 1 1 3 1 1 1 1 3 es nulo sin desarrollarlo Explica el proceso que sigues (Junio, 1994) Considerar la matriz A = 1 1 1 reales e I la

Más detalles

Curso MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN

Curso MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- [2 5 puntos] Se quiere construir un depósito abierto de base cuadrada y paredes verticales con capacidad para 13 5 metros cúbicos. Para ello se dispone de una chapa de acero de grosor

Más detalles

Ejercicios de MATRICES y SISTEMAS DE ECUACIONES LINEALES.

Ejercicios de MATRICES y SISTEMAS DE ECUACIONES LINEALES. Ejercicios de MATRICES y SISTEMAS DE ECUACIONES LINEALES. 1. a) Hallar números Α y Β tales que b) Idem para que Α Β 2 Α Β Α Β 2 Β 1 Α Β 0 1 1 Β 3 5 Α 0 10 19 8 2 2. a) Sean A 2 1 3 2, B 1 1 4 2, C 2 3

Más detalles

ÁLGEBRA LINEAL I Práctica 3

ÁLGEBRA LINEAL I Práctica 3 ÁLGEBRA LINEAL I Práctica 3 Matrices y determinantes (Curso 2013 2014) 1. En el conjunto de las matrices n n de elementos reales, demostrar que el producto de matrices triangulares inferiores es otra matriz

Más detalles

A = , B = 2 2. a 11 a 1n a 21 a 2n A = a m1 a mn

A = , B = 2 2. a 11 a 1n a 21 a 2n A = a m1 a mn Máster en Materiales y Sistemas Sensores para Tecnologías Medioambientales Erasmus Mundus NOTAS DE CÁLCULO NUMÉRICO Damián Ginestar Peiró ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEL DISEÑO UNIVERSIDAD POLITÉCNICA

Más detalles

Ejercicio 1 (Curso 2016/2017) Considérense las matrices: k A C C

Ejercicio 1 (Curso 2016/2017) Considérense las matrices: k A C C EJERCICIOS DE MRICES Y DEERMINNES (Selectividad Madrid) Ejercicio (Curso 06/07) Considérense las matrices: 3 0 = B = C = 3 40 ( punto) Determínese la matriz C. ( punto) la matriz X que verifica: X + 3B

Más detalles

Junio 2008: Sean las matrices B = Junio 2008: Calcular el rango de la matriz

Junio 2008: Sean las matrices B = Junio 2008: Calcular el rango de la matriz Septiembre 2008: Sea A una matriz 3 x 3 de columnas C 1, C 2 y C 3 (en ese orden). Sea B la matriz de columnas C 1 + C 2, 2C 1 + 3C 3 y C 2 (en ese orden). Calcular el determinante de B en función de A

Más detalles

TEMA 1: MATRICES. x 2. Ejercicio y B =, se pueden encontrar matrices C y D para que existan los productos ACB y BDA?.

TEMA 1: MATRICES. x 2. Ejercicio y B =, se pueden encontrar matrices C y D para que existan los productos ACB y BDA?. TEMA : MATRICES Ejercicio.- 0 2 2 Dadas las matrices A = y B = -2 0 5, calcula BBt AA t. Ejercicio 2.- 0 x 2 Sean las matrices A =, B = y C =, halla x e y para que se 2 y verifique ABC = A t C. Ejercicio

Más detalles

SEPTIEMBRE 2003 PRUEBA A

SEPTIEMBRE 2003 PRUEBA A PROBLEMAS SEPTIEMBRE 003 PRUEBA A 1.- a) Discutir en función de los valores de m: x 3y 0 x y+ z 0 x + y + mz m b) Resolver en los casos de compatibilidad el sistema anterior..- Calcular el área de la región

Más detalles

EXAMEN DE MATRICES Y DETERMINANTES

EXAMEN DE MATRICES Y DETERMINANTES EXAMEN DE MATRICES Y DETERMINANTES 14 10 16 Ejercicio 1. Tres personas, A, B, C, quieren comprar las siguientes cantidades de fruta: A: kg de peras, 1 kg de manzanas y 6 kg de naranjas. B: kg de peras,

Más detalles

DIAGONALIZACIÓN DE MATRICES CUADRADAS

DIAGONALIZACIÓN DE MATRICES CUADRADAS DIAGONALIZACIÓN DE MATRICES CUADRADAS.- Considerar los vectores u = (, -, ) y v = (, -, ) de : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué

Más detalles

MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES

MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES CONCEPTO DE MATRIZ Definición: Se denomina matriz A o (a ij ) a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas : Columnas Filas Elemento a ij : Cada uno

Más detalles

Actividades EbaU de Matemáticas II BLOQUE DE ANÁLISIS

Actividades EbaU de Matemáticas II BLOQUE DE ANÁLISIS . Sea la función f(x) = Actividades EbaU de Matemáticas II Ln 2x x BLOQUE DE ANÁLISIS. Estudie su dominio, asíntotas, crecimiento, posibles puntos máximos y mínimos relativos y haga un dibujo aproximado

Más detalles

MATRICES Octubre 2015

MATRICES Octubre 2015 MATRICES Octubre 015 5 4 1. Sea la matriz 1 1 4 4 1 a) Prueba que 0 donde I es la matriz identidad y 0 es una matriz con todos sus elementos igual a 0. b) Calcula A 3. (J 007) Sean las matrices 0, 1,,

Más detalles

Escuela de Matemáticas

Escuela de Matemáticas Escuela de Matemáticas Universidad de Costa Rica MA-004: Álgebra Lineal Prácticas Sistemas de ecuaciones lineales, Matrices Determinantes MSc Marco Gutiérrez Montenegro 07 Sistemas de ecuaciones lineales

Más detalles

ÁLGEBRA SELECTIVIDAD C y L

ÁLGEBRA SELECTIVIDAD C y L ÁLGEBRA SELECTIVIDAD C y L JUNIO 2004 1. Se tiene una matriz M cuadrada de orden 3 cuyas columnas son respectivamente C1, C2 y C3 y cuyo determinante vale 2. Se considera la matriz A cuyas columnas son

Más detalles

1 λ λ 2. λ λ 1 λ λ λ λ λ λ λ 2λ λ λ λ 2λ 1 λ λ 1 0 λ λ λ. rg A 2 pues el menor rg B SOLUCIÓN

1 λ λ 2. λ λ 1 λ λ λ λ λ λ λ 2λ λ λ λ 2λ 1 λ λ 1 0 λ λ λ. rg A 2 pues el menor rg B SOLUCIÓN a) La matriz A de los coeficientes la matriz B ampliada son: λ λ 4 λ λ 6 λ λ λ 3 λ El único menor de orden 3 en la matriz de los coeficientes es: λ λ 3 3 3 3 λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ Para

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CRITERIOS ESPECÍFICOS DE CORRECCIÓN CRITERIOS GENERALES. Los criterios esenciales de valoración de un ejercicio serán el planteamiento razonado y la ejecución técnica del mismo. La mera descripción del

Más detalles

ÁLGEBRA. 2. [2,5 puntos] Discutir y resolver el siguiente sistema dependiente del parámetro x λy 0 λx y 2 2x λz 0

ÁLGEBRA. 2. [2,5 puntos] Discutir y resolver el siguiente sistema dependiente del parámetro x λy 0 λx y 2 2x λz 0 ÁLGEBRA Junio 94. [,5 puntos] Comprueba que el determinante el proceso que sigues. 3 3 3 3 es nulo sin desarrollarlo. Explica Se basa en la propiedad: si a una línea le sumamos una combinación lineal de

Más detalles

BOLETÍN DE MATRICES 2 IES A Sangriña Curso 2016/ Calcula la matriz inversa, si existe, usando el método de Gauss:

BOLETÍN DE MATRICES 2 IES A Sangriña Curso 2016/ Calcula la matriz inversa, si existe, usando el método de Gauss: *** OBLIGATORIOS *** 1. Efectúa todos los posibles productos: 2. Calcula la matriz inversa, si existe, usando el método de Gauss: 3. Sean y. Encuentra X para que cumpla: 3 X 2 A = 5 B 4. Encuentra dos

Más detalles

Selectividad Matemáticas II junio 2015, Andalucía (versión 3)

Selectividad Matemáticas II junio 2015, Andalucía (versión 3) Selectividad Matemáticas II junio 05, Andalucía (versión 3) Pedro González Ruiz 7 de junio de 05. Opción A Problema. Se quiere construir un depośito abierto de base cuadrada y paredes verticales con capacidad

Más detalles

1.5.3 Sistemas, Matrices y Determinantes

1.5.3 Sistemas, Matrices y Determinantes 1.5.3 Sistemas, Matrices y Determinantes 24. Sean las matrices 3 0 4 1 A= 1 2 B = 0 2 1 1 C = 1 4 2 3 1 5 1 5 2 D = 1 0 1 E = 3 2 4 6 1 3 1 1 2 4 1 3 a Calcular cuando se pueda: 3C D, ABC, ABC, ED, DE,

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Matrices ACTIVIDADES INICIALES.I. Señala el número de filas y columnas que componen las tablas de cada uno de los siguientes ejemplos. a) Un tablero de ajedrez b) Una quiniela de fútbol c) El cuadro de

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD a) Duración: 1 hora y 30 minutos. b) Tienes que elegir entre realizar únicamente los cuatro ejercicios de la Opción A o realizar únicamente los cuatro ejercicios de la Opción B. Instrucciones: c) La puntuación

Más detalles

Modelo 3. Ejercicio 1 de la Opción A de Sobrantes de 2010

Modelo 3. Ejercicio 1 de la Opción A de Sobrantes de 2010 Modelo 3. Ejercicio 1 de la Opción A de Sobrantes de 2010 [2 5 puntos] Sea la función f : R R dada por f(x) = Calcula las constantes a, b y c sabiendo que f es derivable y que la recta tangente a la gráfica

Más detalles

Matrices y determinantes (Curso )

Matrices y determinantes (Curso ) ÁLGEBRA Práctica 3 Matrices y determinantes (Curso 2008 2009) 1. En el conjunto de las matrices n n de elementos reales, demostrar que el producto de matrices triangulares inferiores es otra matriz triangular

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Examen-Modelo para el curso 2014-2015 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f la función definida por f(x) = ex x 1 a) [1 punto] Estudia y calcula las asíntotas de la gráfica de f. para x 1. b) [1 5 puntos] Halla los intervalos de crecimiento y de decrecimiento

Más detalles

IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 2011 específico1 [2'5 puntos] Un alambre de 100 m de longitud se divide

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a

Más detalles

ÁLGEBRA. Ejercicio 1. Modelo Dadas las matrices se pide:

ÁLGEBRA. Ejercicio 1. Modelo Dadas las matrices se pide: Ejercicio 1. Modelo 2.014 Dadas las matrices 1 1 1 0 0 1 A = ( 1 1 2) B = ( 0 1 0) 4 se pide: 3 k 1 0 0 a. Hallar los valores de k para los que existe la matriz inversa A 1. b. Hallar la matriz A 1 para

Más detalles

PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 2005/06

PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 2005/06 PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 200/06 1. Utilizar el método de eliminación de Gauss para resolver el sistema de ecuaciones lineales siguiente: 2 x 1 2 x

Más detalles

Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_ tan(x) - sen(x) [2 5 puntos] Calcula lim

Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_ tan(x) - sen(x) [2 5 puntos] Calcula lim IES Fco Ayala de Granada Septiembre de 014 Reserva 1 (Modelo 5) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_1 014 tan(x) - sen(x) [ 5 puntos] Calcula lim

Más detalles

Ejercicios de Matrices y Determinantes.

Ejercicios de Matrices y Determinantes. Matemáticas 2ºBach CNyT. Ejercicios : Matrices y Determinantes. Pág 1/12 Ejercicios de Matrices y Determinantes. 1. Dadas las matrices: Calcular: A + B; A B; A x B; B x A; A t. 2. Demostrar que: A 2 A

Más detalles

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Enunciados) Isaac Musat Hervás 1 de febrero de 2018

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Enunciados) Isaac Musat Hervás 1 de febrero de 2018 Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Enunciados) Isaac Musat Hervás 1 de febrero de 2018 2 Índice general 1. Año 2000 9 1.1. Modelo 2000 - Opción A..................... 9 1.2.

Más detalles

Unidad 15 Integrales definidas. Aplicaciones

Unidad 15 Integrales definidas. Aplicaciones Unidad 15 Integrales definidas. Aplicaciones 3 SOLUCIONES 1. La suma superior es: La suma inferior es:. La suma superior es: s ( P) = ( 1) 3 + (3 ) 10 = 3 + 10 = 13 La suma inferior es: s ( P) = ( 1) 1+

Más detalles

EJERCICIOS DE MATRICES

EJERCICIOS DE MATRICES EJERCICIOS DE MTRICES ) Sean las matrices y definidas como: y. Halla una matriz tal que verifique = +. Sol: = ) Una fábrica produce tres tipos de artículos y distribuyendo su producción entre cuatro clientes.

Más detalles

EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.

EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress. MATRICES Y DETERMINANTES 0 - Considera las matrices 0 y. Determina, si existe, la 2 3 matriz X que verifica AX+B=A 2. Andalucía - Junio 204 Opción B - Oficial 2- Sabiendo que el determinante de la matriz

Más detalles

ÁLGEBRA LINEAL I Práctica 3

ÁLGEBRA LINEAL I Práctica 3 ÁLGEBRA LINEAL I Práctica 3 Matrices y determinantes (Curso 2015 2016) 1. En el conjunto de las matrices n n de elementos reales, demostrar que el producto de matrices triangulares inferiores es otra matriz

Más detalles

Ejercicio 8. a) Halla el punto C que es la proyección ortogonal del punto B = (2,1,1) sobre el plano

Ejercicio 8. a) Halla el punto C que es la proyección ortogonal del punto B = (2,1,1) sobre el plano Ejercicio 8. a) Halla el punto C que es la proección ortogonal del punto B (2,1,1) sobre el plano π : 2 x 2z 6 b) Halla el punto A que esté sobre el eje OX tal que el área del triángulo ABC valga 6. Cuántas

Más detalles

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,

Más detalles

Selectividad Matemáticas II septiembre 2014, Andalucía

Selectividad Matemáticas II septiembre 2014, Andalucía Selectividad Matemáticas II septiembre 14, Andalucía Pedro González Ruiz 17 de septiembre de 14 1. Opción A Problema 1.1 Sabiendo que lím x cos(3x) e x +ax xsen(x) Sea l el límite pedido. Tenemos: es finito,

Más detalles

Tema 3. FUNCIONES. CÁLCULO DIFERENCIAL. Funciones. 1. Estudiar la acotación de las siguientes funciones:

Tema 3. FUNCIONES. CÁLCULO DIFERENCIAL. Funciones. 1. Estudiar la acotación de las siguientes funciones: Fundamentos Matemáticos para la Ingeniería. Curso 2015-2016. Tema 3. Hoja 1 Tema 3. FUNCIONES. CÁLCULO DIFERENCIAL. Funciones 1. Estudiar la acotación de las siguientes funciones: (a) y = 2x 1; (b) y =

Más detalles

IES Fco Ayala de Granada Junio de 2012 (Común Modelo ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (Común Modelo ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (Común Modelo ) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 13 Capítulo 6 Año 5 6.1. Modelo 5 - Opción A Problema 6.1.1 ( puntos) Justificar razonadamente

Más detalles

EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com GEOMETRÍA 1- Dados el punto P(1,-1,0) y la recta : 1 0 3 3 0 a) Determine la ecuación general del plano (Ax+By+Cz+D=0) que contiene al punto P y a la recta s. b) Determine el ángulo que forman el plano

Más detalles

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]

Más detalles

Ejercicio 1 del modelo 2 de la opción A de sobrantes de Solución

Ejercicio 1 del modelo 2 de la opción A de sobrantes de Solución Ejercicio 1 del modelo 2 de la opción A de sobrantes de 2001 Sea f: R R la función dada por f(x) = 8 x 2. (a) [1 punto] Esboza la gráfica y halla los extremos relativos de f (dónde se alcanzan y cuáles

Más detalles

Formulas Matemáticas

Formulas Matemáticas B A C a TRIGONOMETRÍA Radian Grados sen a cos a tag a 0 2π 0 0 1 0 π/6 30º 1 / 2 3 / 2 3 / 3 π/4 45º 2 / 2 2 / 2 1 π/3 60º 3 / 2 1 / 2 3 π/2 90º 1 0 π 180º 0-1 0 3π/2 270º -1 0 sen a = B / C cos a = A

Más detalles