ANÁLISIS MATEMÁTICO II

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ANÁLISIS MATEMÁTICO II"

Transcripción

1 GUÍAS DE TRABAJOS PRÁCTICOS ANÁLISIS MATEMÁTICO II er. CUATRIMESTRE 2017 Profesora Responsable: María Inés Troparevsky La elaboración de las guías de trabajos prácticos fue realizada por María Inés Troparevsky, Eduardo Zitto y Silvia Gigola.

2 Bibliografía Mardsen, J. & Tromba, A. J., Cálculo Vectorial. Ed. Addison- Wesley, Apostol, Tom M., Calculus, vol II, Reverté, Pita Ruiz, Claudio, Cálculo vectorial, Prentice-Hall Hispanoamericana, Apostol, T. M. (2001), Análisis Matemático, Reverté Courant, J., Introducción al cálculo y al análisis matemático 2, Limusa, Penney, E., Cálculo y geometría analítica, Prentice-Hall Hispanoamericana, Santaló. L. A., Vectores y tensores con sus aplicaciones. Eudeba, Spiegel, M., Cálculo Superior. Mc-Graw Hill, Bibliografía complementaria Ecuaciones Diferenciales Kreider, D., Kuller y Ostberg, D., Ecuaciones Diferenciales, Fondo Educativo Interamericano, Zill, D. G., Ecuaciones Diferenciales con Aplicaciones, Grupo Editorial Iberoamericana, Blanchard P., Devaney R., Hall G., Ecuaciones Diferenciales, Editorial Thomson, 1999.

3 Índice general Guía I: Geometría del plano y del espacio Repaso - Rectas y planos Coordenadas cartesianas Coordenadas polares Guía II: Funciones, límite, continuidad, curvas Conjuntos de Nivel Límite y Continuidad Curvas parametrizadas Guía III: Derivadas, Diferenciabilidad, Superficies Derivadas Diferenciabilidad Superficies Parametrizadas Guía IV: Funciones Compuestas e Implícitas Funciones Compuestas Funciones Implícitas Guía V: Polinomio de Taylor. Extremos libres y condicionados Polinomio de Taylor Extremos Libres Extremos Condicionados Guía VI: Integrales curvilíneas Repaso de curvas Integral de campos escalares sobre curvas Integral de campos vectoriales sobre curvas Campos de gradientes Líneas de Campo

4 Guía VII: Integrales Múltiples Integrales Dobles Cambio de Coordenadas Integrales Triples Coordenadas Cilíndricas y Esféricas Guía VIII: Integrales de Superficie Guía IX: Teoremas Integrales Guía X: Ecuaciones Diferenciales Ordinarias Generalidades Ecuaciones Diferenciales de primer orden Curvas Ortogonales Ecuaciones Diferenciales Exactas Líneas de Campo

5 Guía I: Geometría del plano y del espacio 1. Repaso - Rectas y planos 1. Hallar, en cada caso, la ecuación cartesiana de un plano que satisfaga las condiciones dadas. Analizar si esas condiciones determinan el plano unívocamente. Graficar. a) es paralelo al plano x = 0 y contiene el punto P = (1, 2, 3); b) es perpendicular al eje z y pasa por el punto P = (1, 1, 2); c) pasa por (1, 1, 0), (0, 2, 1) y (3, 2, 1); d) pasa por (2, 0, 1) y es perpendicular a la recta que pasa por (1, 1, 0) y (4, 1, 2); e) contiene a la intersección de los planos de ecuaciones x+y 2 z = 0 y 2 x y +z = 2. f ) es perpendicular al plano de ecuación 2 x + 3 y + 4 z = Hallar, en cada caso, las ecuaciones cartesianas de una recta que satisfaga las condiciones dadas. Analizar si esas condiciones determinan la recta unívocamente. Graficar a) pasa por el origen y es paralela a la recta dada por las ecuaciones x + 2 y z = 2, 2 x y + 4 z = 5; b) es perpendicular al plano de ecuación 2x 3y + 3z = 5 y pasa por el punto P = (1, 1, 1); c) está contenida en el plano de ecuación y = 1 y pasa por el punto P = ( 1, 1, 3); d) está contenida en el plano de ecuación x = 2 y pasa por los puntos P 1 = (2, 1, 3) y P 2 = (2, 1, 1); e) pasa por (1, 2, 1) y forma con los tres semiejes positivos ángulos iguales entre sí; f ) está contenida en la intersección de los planos de ecuaciones y x = 0 y z = 4 x y. 3. En los siguientes casos, hallar k de manera que exista más de un plano que pase por p 1, p 2 y p 3. Analizar una condición aplicable en general. 7

6 a) p 1 = (1, 0, 0), p 2 = (0, 1, 0), p 3 = (2, 1, k); b) p 1 = (1, 1, 0), p 2 = (1, 1, 1), p 3 = (1, 3, k). 4. a) Expresar 3 ĭ + j en la forma u + v, con u paralelo a ĭ + j y v perpendicular a u. b) Escribir la ecuación vectorial del segmento de recta 2x 3y = 2, en R 2, entre los puntos P 1 = (4, 2) y P 2 = (1, 0). c) Describir el conjunto de vectores en el espacio que resultan perpendiculares al vector v = (1, 2, 1). Qué representa? d) Dados A = (1, 2, 1) y B = (1, 2, 2), describir el conjunto de vectores P = (x, y, z) que satisfacen P A = P B. Qué representa? 5. Calcular las siguientes distancias: a) del origen al plano de ecuación x + 2 y + 3 z = 4; b) del punto (1, 2, 0) al plano de ecuación 3 x 4 y 5 z = 2; c) del origen a la recta de ecuaciones x + y + z = 0, 2 x y 5 z = 1; d) de la recta de ecuaciones x 2 = (y+3)/2 = (z 1)/4 al plano de ecuación 2 y z = Dados los vectores u = 2 ĭ + j 2 k y v = 2 ĭ 2 j k hallar: a) el ángulo entre u y v; b) u ; c) 3 u 2 v; d) un vector unitario paralelo a u; e) la proyección de u sobre v. 7. Resolver cada uno de los siguientes problemas: a) Hallar los valores de k para los que los puntos (1, 1, 1), (0, 3, 2), ( 2, 1, 0) y (k, 0, 2) son coplanares; determinar en esos casos una ecuación del plano que los contiene. b) Hallar el área del paralelogramo dos de cuyos lados son los segmentos que unen el origen con (1, 0, 1) y (0, 2, 1). c) Probar que el triángulo de vértices A = (1, 1, 2), B = (3, 3, 8) y C = (2, 0, 1) tiene un ángulo recto. 8. Sean v, w dos vectores distintos en R 3, con extremos P, Q respectivamente. 8

7 a) Mostrar que el punto medio del segmento de extremos P, Q es el extremo del vector v + w (es decir que el extremo del vector v + w equidista de P y de Q). Ilustrar. 2 2 b) Mostrar que los puntos del segmento de extremos P, Q son los extremos de los vectores de la forma v + t(w v), 0 < t < 1 y entonces la distancia de cada uno de ellos a P es t w v. Interpretar gráficamente. 2. Coordenadas cartesianas 9. Describir mediante un gráfico las regiones planas dadas por: (a) {(x, y) R 2 : x 2} (b) {(x, y) R 2 : x y} (c) {(x, y) R 2 : x + y 1} (d) {(x, y) R 2 : 2x 3y = 0, 1 < x < 1} (e) {(x, y) R 2 : x 2 + y 2 1, x 0} (f) {(x, y) R 2 : x2 4 + y2 9 = 1} (g) {(x, y) R 2 : x 2 + 4y 2 < 9, x 2} (h) {(x, y) R 2 : x 2 2x + y 2 /4 y 16} (i) {(x, y) R 2 : x 2 y = 0} (j) {(x, y) R 2 : 2x 2 x + y 1} (k) {(x, y) R 2 : x y 2 > 1} (l) {(x, y) R 2 : 2x + y 2 y 1} (m) {(x, y) R 2 : x 2 y 2 = 1} (n) {(x, y) R 2 : xy 1} (ñ) {(x, y) R 2 : y 2 4x 2 < 1} (o){(x, y) R 2 : xy > 1, x + y 0} (p) {(x, y) R 2 : x e y } (q) {(x, y) R 2 : sen(x) < 1/2} (r) {(x, y) R 2 : y < ln(x)} (s) {(x, y) R 2 : y = cosh(x)} 10. Describir mediante inecuaciones en coordenadas cartesianas las siguientes regiones planas: a) Interior del círculo centrado en (0, 0) y de radio 2. b) Cuadrado de lado 1 con ejes paralelos a los ejes coordenados y vértice inferior izquierdo en (1, 1). c) Puntos por encima de la parábola de ecuación y = 2 x 2. 9

8 d) Puntos interiores a la elipse centrada en (0, 0), de semiejes de longitud 2 y 4, paralelos a los ejes coordenados. 11. Describir mediante inecuaciones el interior y la frontera de los conjuntos dados por: (a) {(x, y) R 2 : 0 < x 2 + y 2 < 1} (b) {(x, y) R 2 : x 0, y < 0} (c) {(x, y) R 2 : 0 < x + y 1} (d) {(x, y) R 2 : x 2 + y 2 1} (e) {(x, y, z) R 3 : x + y + z 0} (f) {(x, y, z) R 3 : 1 x 2 + y 2 + z 2 5} (g) {(x, y, z) R 3 : z > x 2 + y 2 } (h) {(x, y, z) R 3 : x 2 + z 2 1} 12. Hallar, cuando sea posible, un punto exterior, un punto frontera y un punto interior a los siguientes conjuntos de R 2. Determinar cuáles son compactos y cuáles son arco-conexos. a) x + y > 2, b) x 2 + y 2 4, c) y 2x 2 2, d) 2x + 3y = 1 Cuáles son todos los puntos frontera? e) 2 < x < 3, y 2 < 1, f ) (x 2y)(y x 2 ) = 0, g) xy < Describir mediante ecuaciones y/o inecuaciones conjuntos planos A que satisfagan: a) todo punto sea punto frontera; b) todo punto sea punto aislado; c) A A 0 = {(0, 0)}, donde A 0 es el interior de A; d) A es cerrado y su interior es {(x, y) : x 2 + y 2 < 1}; e) A es no acotado y su frontera es {(x, y) : x + y = 1}. 3. Coordenadas polares 14. Trazar aproximadamente en el plano xy, las siguientes curvas descriptas en coordenadas polares. Cuando no esté indicado, observar qué dominio debe considerarse para la variable θ. Determinar cuáles se corresponden con los gráficos que aparecen a continuación. 10

9 (a) r = constante, (b) θ = constante (c) r = θ (d) r = 2, 0 θ < π/2 (e) 1 r 2, θ = π/6 (f) r = cos(θ), 0 θ < π/2 (g) cos(θ) = 4 r (h) r = 4 cos(θ), θ [0, π/2] [3π/2, 2π) (i) r = 2 cos(θ) sen(θ) 15. Describir mediante inecuaciones en coordenadas cartesianas las siguientes regiones planas descriptas en coordenadas polares. (a) π/6 θ π/3 (b) 1 r < 2 (c) 1 < r 2, π/6 θ < π/3 (d) r 3 sen(θ), θ [0, π] 16. Describir mediante inecuaciones en coordenadas polares las regiones planas descriptas, en coordenadas cartesianas, por: 11

10 (a) {(x, y) R 2 : x 2 + y 2 1} (b) {(x, y) R 2 : x 2 + y 2 2 y 0, y > x } (c) {(x, y) R 2 : x 2 3 y 2 } (d) {(x, y) R 2 : x y, x < 3 y} 12

11 Guía II: Funciones, límite, continuidad, curvas 1. Conjuntos de Nivel 1. En los siguientes casos, describir el dominio de f y determinar si es un conjunto cerrado, abierto, acotado. Describir los conjuntos de nivel de f y esbozar su gráfico. (a) f(x, y) = 3(1 x 2 y 2 ) (b) f(x, y) = y x (c)f(x, y) = 4 x 2 y 2 (d) f(x, y) = 9x 2 + 4y 2 (e) f(x, y) = x 2 y 2 (f) f(x, y) = 1 x2 y 2 16 (g) f(x, y) = 25 x 2 (h) f(x, y) = e x2 y 2 (i) f(x, y) = x 2 + 2y 2 (j) f(x, y) = mín(x, y) 2. Describir en coordenadas polares: a) el dominio de las funciones de los items b), c) y f) del ejercicio anterior; b) los conjuntos de nivel 0 de las funciones de los items c), e) y j) del ejercicio anterior; c) los conjuntos de positividad, C + = {(x, y) Dom(f) : f(x, y) > 0}, de las funciones de los items e), g) e i). 3. Graficar el conjunto de nivel 0 y el conjunto de nivel 4 de las siguientes funciones: (a) f(x, y) = { x + y si x 2 0 si x < 2 (b) f(x, y) = sen(y x) 13

12 4. Describir el dominio y los conjuntos de nivel de los siguientes campos escalares: a) f(x, y, z) = x + y + 2z b) g(x, y, z) = e x2 +y 2 z 2 c) h(x, y, z) = 2x2 + y 2 5. La función T (x, y) representa la temperatura en el punto (x, y) de una placa metálica delgada plana, (x, y) D = {(x, y) R 2 : x [ 10, 10], y [ 10, 10]} = [ 10, 10] [ 10, 10]. Las curvas de nivel de T se denominan isotermas porque todos sus puntos tienen la misma temperatura. Dibujar algunas isotermas si T (x, y) = 64 4x 2 8y 2. z 2. Límite y Continuidad 6. En los siguientes casos hallar, si existe, el límite indicado; en los casos en que no existe, fundamentar. (a) (c) (e) (g) (i) lím xy (x,y) (1, 1) y2 (b) lím (x,y) (0,4) lím (x,y) (0,0) lím (x,y) (0,2) x2 + y 2 (d) lím (x,y) (1, 2) x2 + (y 2) 2 x x 2 (y 2) 2 x 2 + (y 2) 2 (f) lím (x,y) (0,0) ( y lím xy,, ) x (x,y) (1, 2) x y 2 ( lím (x,y) (0,0) y cos(1/x), sen(3x) 2x ), x y (h) x y lím (x,y,z) (0,1,1) (j) lím ( x x 0 x x + y, ) x x y + 1 z2 1 (k) x 2 + y 2 lím (x,y) (0,0) y (l) lím (x,y) (0,0) x 2 y 2 x 2 + y 2 (m) lím (x,y) (0,0) xy 2 x 2 y + y (n) lím x 2 + y 2 (x,y) (0,0) x 2 + y 2 7. Determinar el dominio y los puntos de continuidad de las siguientes funciones: 14

13 { 1 cuando x y > 0 (a) f(x, y) = 0 cuando x y 0 (c) f(x, y) = (e) f(x, y) = { 0 cuando xy 0 1 cuando xy = 0 { (x 2) 2 (x, y) (2, 0) (x 2) 2 +y 2 0 (x, y) = (2, 0) (b) f(x, y) = (d) f(x, y) = (f) f(x, y) = { x 2 y cuando x 2 y 3 cuando x = 2 y { { x 2 y x 2 +y 2 (x, y) (0, 0) 0 (x, y) = (0, 0) x 2 +y x 2 +y 2 (x, y) (0, 0) 0 (x, y) = (0, 0) 1 x 2 si y = 0, x 1 (g) f(x, y) = 1 y 2 si x = 0, y 1 0 en otro caso { (h) f(x, y) = x 4x 2 + y 2 < 1 2x + y 4x 2 + y Sea f(x, y) = x 3 x(y + 1) 2 x 2 + (y + 1) 2 si (x, y) (0, 1) a si (x, y) = (0, 1) Determinar, si es posible, el valor de a para que f(x, y) resulte continua en R En los siguientes casos definir, si es posible, una función f continua en R 2 que satisfaga las condiciones dadas. Es única? a) f(x, y) = 0 cuando x 2 + y 2 < 1, f(x, y) = 1 cuando x 2 + y 2 > 2. b) f(x, y) = x y cuando x y < 1, f(x, y) = (y x) 2 cuando x y > Sea f(x, y) = e x2 y 2. a) Hallar las curvas de nivel de f. b) Determinar las intersecciones de la superficie gráfico de f con los planos coordenados. c) Realizar un gráfico aproximado de f. d) Calcular lím f(x, y). Para hacerlo, realizar la sustitución u = (x,y) (, ) x2 + y 2. Relacionar el valor hallado con el resultado con los items anteriores. xy 11. Realizar la sustitución u = 1/x, v = 1/y para calcular lím (x,y) (, ) x2 + y. 2 Calcular lím xy. (x,y) (0,0) x 2 +y 2 15

14 12. Sea f : R 2 R y (a, b) R 2. Definimos g y h de R en R mediante g(x) = f(x, b) y h(y) = f(a, y). a) Estudiar las relaciones entre los gráficos de h y g y el gráfico de f. b) Si f es continua en (a, b): Es g continua en a? Es h continua en b? Justificar. c) Si f(x, y) = x 2 + y 3 y (a, b) = (1, 2), hallar g y h. d) Dar un ejemplo para mostrar que g puede ser continua en a y h en b, sin que f sea continua en (a, b). 13. Sea f : R 2 R, y (a, b) R 2. Fijado (α, β) R 2, definimos h : R R mediante h(t) = f((a, b) + t (α, β)). a) Estudiar la relación entre el gráfico de h y el de f. b) Dar un ejemplo para mostrar que aún cuando para cada (α, β) R 2 h resulte continua en 0, f puede no ser continua en (a, b). c) Es cierto que si f es continua en (a, b) entonces h es continua en 0? 3. Curvas parametrizadas 14. Sea C la curva parametrizada por σ(t) = (R cos(t), R sen(t)), t [0, 2π), R > 0 fijo. Hallar la ecuación de su recta tangente en t = π/4. Graficar la curva y la recta indicando la orientación de la curva. 15. Sea C la curva dada por σ(t) = (t 2, t 3 + 1, t 3 1), t [1, 4]. a) Hallar la ecuación de su recta tangente y su plano normal en σ(2). b) Hallar el módulo de su vector tangente en σ(2). c) Probar que la curva es plana. d) Hallar la intersección de C con el plano de ecuación y + z = Sea C la curva dada por σ(t) = (t, 3 t), t [ 1, 8]. a) Graficar la curva. b) Hallar la ecuación de su recta tangente y su recta normal en t = Sean f : R 3 R, g : R 3 R, definidas por f(x, y, z) = x 2 + y 2 + z 2 y g(x, y, z) = (x 2 2x + y 2 ). Hallar una parametrización para la curva determinada por la intersección de las superficies de nivel de f y g que pasan por el punto (0, 0, 2). 16

15 18. Sean γ 1 (t) = (t, t ) con t [ 1, 1] y γ 2 (t) = (t 3, t 3 ) con t [ 1, 1]. a) Verificar que ambas parametrizaciones definen la misma curva plana y graficarla. b) Si las parametrizaciones describen el movimiento de un punto en función del tiempo t, hallar la velocidad (vector tangente a la curva) y la rapidez (su módulo) para cada parametrización. Existen los vectores tangentes para todo valor del parámetro? 19. En los siguientes casos, hallar una parametrización regular de la curva definida por el par de ecuaciones, y calcular su recta tangente en el punto indicado. a) y = 4 x, z = 4 x 2, (1, 3, 3) b) x 2 + y 2 + z 2 = 2, z = x 2 + y 2, (0, 1, 1) c) z = x + y 2, x = y 2, (4, 2, 8) d) x 2 + y 2 + z 2 = 6, z = x 2 + y 2, (1, 1, 2) 20. Resolver los siguientes problemas: a) Una abeja vuela ascendiendo a lo largo de la curva intersección de z = x 4 + xy con x = 1. En el punto (1, 2, 5) sigue a lo largo de la tangente en el sentido de las y crecientes. Dónde cruza la abeja el plano y = 1? b) Una partícula se mueve en el plano de manera que su posición al tiempo t es r(t) = (t sen(t), 1 cos(t)). Hallar los máximos de los módulos de su velocidad y su aceleración. Dibujar aproximadamente la trayectoria y los vectores velocidad y aceleración. c) Una partícula se mueve a lo largo de la parte superior de la parábola de ecuación y 2 = 2 x de izquierda a derecha con rapidez constante de 5 metros/segundo. Cuál es su vector velocidad al pasar por (2, 2)? 17

16 Guía III: Derivadas, Diferenciabilidad, Superficies 1. Derivadas 1. En los siguientes casos, calcular las funciones derivadas parciales de f y luego evaluarlas en los puntos indicados. a) f(x, y) = x y + x 2, en (2, 0); b) f(x, y) = senh(x 2 + y), en (1, 1); c) f(x, y, z) = xz en (1, 1, 1); y + z d) f(x, y, z) = ln(1 + x + y 2 z), en (1, 2, 0) y en (0, 0, 0); e) f(x, z) = sen(x z), en (π/3, 4); 1 f ) f(x, y) =, en ( 3, 4); x2 + y2 g) f(x, y) = y 2 x sen(ln(1 + t 3 )) dt, en (1, 2). 2. Hallar las derivadas parciales de las siguientes funciones en el origen. Analizar la continuidad de las funciones y de sus derivadas parciales en el origen. { 2x 3 y 3 para (x, y) (0, 0) a) f(x, y) = x 2 +3y 2 0 para (x, y) = (0, 0) { x 2 2y 2 para x y b) f(x, y) = x y 0 en otro caso { 0 cuando xy 0 c) f(x, y) = 1 cuando xy = 0 18

17 3. Determinar el dominio y hallar las derivadas de segundo orden de las siguientes funciones: a) f(x, y) = ln(x 2 + y); b) f(x, y, z) = x sen(y) + y cos(z); c) f(x, y) = arc tg x y ; x 2 d) f(x, y) = a + y2 2 b ; 2 e) f(x, y, z) = z ln(x 2 + y 2 + z + 1). { xy x2 y 2 cuando (x, y) (0, 0) 4. Sea f(x, y) = x 2 +y 2. Mostrar que las derivadas cruzadas en 0 cuando (x, y) = (0, 0) (0, 0) de f existen y son distintas. Es C 2 la función f? 5. Probar que la función f(x, y) = e x sen(y) es armónica, es decir que es de clase C 2 y satisface la ecuación de Laplace 2 f(x, y) + 2 f(x, y) = 0. x 2 y 2 { 9 x 6. Dada f(x, y) = 2 y 2 cuando x 2 + y cuando x 2 + y 2. Analizar la continuidad y la existencia de derivada parcial respecto de y en el punto (3, > 9 0). 7. Analizar la existencia de las derivadas direccionales de la siguientes funciones en los puntos y direcciones dadas: a) f(x, y) = 3x 2 2xy P 0 = (0, 2) v = ( 1, 3 ) 2 2 { xy si xy 0 b) f(x, y) = P x + y si xy < 0 0 = (0, 0) v 1 = ( 1 1 2, 2 ) v 2 = ( 1 2, 1 2 ) 8. Analizar la existencia de las derivadas direccionales según distintas direcciones, en el origen, de las siguientes funciones: (a) f(x, y) = x + 1 x 2 + y { x (c) f(x, y) = 2 y cuando x > y x y cuando x y (b) f(x, y) = { x 2 + y cuando x > 2y 3 cuando x 2y { x + y + z cuando z > x2 + y (d) f(x, y, z) = 2 0 en otros casos 19

18 2. Diferenciabilidad 9. Hallar el gradiente de los siguientes campos escalares. Existen puntos en el dominio de f en los cuáles no existe el vector gradiente? Es f continua en esos puntos? a) f(x, y) = f(x, y) = 1 6 (x2 + y 2 ) b) f(x, y) = y x 1 c) f(x, y) = x 2 + y 4 d)f(x, y, z) = x 2 + ln(y 2 + 1) + 1 z Analizar la continuidad y la diferenciabilidad de las funciones siguientes en el origen a) f(x, y) = b) g(x, y) = c) l(x, y) = d) m(x, y) = ( 1 (x 2 + y 2 ) sen { x si (x, y) (0, 0) x 2 +y 2 0 en otro caso { { 11. Sea f(x, y) = x 2 + y 2. x 2 y si (x, y) (0, 0) x 2 +y 2 0 en otro caso ) si (x, y) (0, 0) x 2 + y 2 0 en otro caso x 2 y 2 x 2 +y 2 si (x, y) (0, 0) 0 en otro caso a) Hallar el conjunto de nivel de f que contiene al punto (1, 2) y el vector gradiente de f en (1, 2). Graficar. b) Hallar una ecuación para el plano tangente al gráfico de f en el punto (1, 2, f(1, 2)). Realizar un gráfico aproximado de la función y su plano tangente en ese punto. 12. Dados el campo escalar f : D R 2 R y P 0 D se pide en cada caso: Hallar f(p 0 ), la curva de nivel de f que pasa por P 0 = (x 0, y 0 ) y su recta tangente en ese punto. Graficar. Representar en el gráfico de f, Q 0 = (x 0, y 0, f(x 0, y 0 )), el plano tangente a la superficie en Q 0 y el vector N = ( f (P x 0), f (P y 0), 1). Relacionar lo hecho en los items anteriores. 20

19 a) f(x, y) = 5 + 2x 3y, P 0 = (0, 0) b) f(x, y) = x 2 2x + y 2, P 0 = ( 1, 2) c) f(x, y) = 4 x 2 y 2, P 0 = (1, 1) Justificar que las funciones dadas son diferenciables en los puntos indicados. Esas funciones son diferenciables en sus dominios? 13. Sea f : R 2 R diferenciable en todo el plano. Sabiendo que el plano tangente a la superficie gráfico de f en el punto (1, 1, f(1, 1 )) tiene ecuación 2x 4y 2z = 6, 2 2 hallar f(1, 1) y f(1, 1) La elevación de una montaña sobre el nivel del mar está dada por la función f(x, y) = 1500 e (x2 +y 2 )/200. El semieje positivo de las x apunta hacia el este y el de las y hacia el norte. a) Hallar y dibujar algunas curvas de nivel de f. b) Un alpinista está en (10, 10, 1500 ), si se mueve hacia el noreste, asciende o desciende?, e con qué pendiente? 15. Cuáles son todos los puntos de la superficie gráfico de f(x, y) = xye x+y, para los cuales resulta el plano tangente horizontal? 16. Probar que si un campo escalar definido en R 2 es diferenciable en un punto entonces es continuo en ese punto. 17. Analizar la continuidad de las derivadas parciales y la diferenciabilidad en el origen de { x 3 y 3 si (x, y) (0, 0) f(x, y) = x 2 +y 2. 0 en otro caso 18. Dada f(x, y) = { x 3 x(y 1) 2 x 2 +(y 1) 2 cuando (x, y) (0, 1) 0 cuando (x, y) = (0, 1) a) Probar que f tiene derivadas en todas las direcciones en el punto (0, 1) y hallar todos los versores para los cuales la derivada direccional de f en (0, 1) es nula. b) Qué se puede decir de la diferenciabilidad de f en (0, 1)? 19. Sea f(x, y, z) = e xz+xy2. Hallar un valor aproximado de f(0,1, 0,98, 2,05) utilizando una aproximación lineal adecuada. 21

20 20. Sea f : R 2 R diferenciable, tal que f(1, 2) = 5. Sabiendo que su derivada direccional en (1, 2) es máxima en la dirección del versor ( 1 1 2, 2 ) y f (1, 2) = 3 2, se pide: x a) hallar una ecuación para el plano tangente a la superficie gráfica de f en el punto (1, 2, f(1, 2)) b) calcular un valor aproximado de f(1,01, 1,98) utilizando una aproximación lineal 21. Se desea estimar el área de un rectángulo, cuyos lados son a = (10 ± 0,1)m y b = 100m ± b. Determinar con que precisión mediría el lado b ( b) para que la contribución de la incerteza en la medición de a y b en el error del área sean del mismo orden. 22. El período de oscilación de un péndulo ideal es T = 2π l g donde l es la longitud del hilo y g es la aceleración de la gravedad. Calcular cotas para los errores absoluto y relativo que se cometen en la determinación de g si el período es T = 2 seg con error menor a 0,02 seg y l = 1m, con error inferior a 0,001m (considerar π = 3,1416). 23. En los siguientes casos hallar, cuando sea posible, una función diferenciable (en un abierto U que contenga a todos los puntos del plano involucrados) f(x, y) que satisfaga las condiciones dadas. En los casos en que no sea posible, fundamentar esta imposibilidad. a) f/ x(0, 0) = 1, f/ y(0, 0) = 2, f(0, 0) = 1; b) f/ x(0, 0) = 1, f/ y(0, 0) = 2, f(0, 0) = 1, f(1, 0) = 1; c) f/ x(1, 2) = 3, f/ y(1, 2) = 4, f(1, 2) = 1, f(0, 0) = 0; d) f es constante a lo largo de la curva de ecuación y = x x 3, f/ x(0, 0) = 1; e) las pendientes de la superficie z = f(x, y) en el punto (1, 0) en las direcciones (1, 1) y (0, 1) son 1 y 2 respectivamente, y f(1, 0) = Hallar las matrices jacobianas de los siguientes campos: a) F (x, y) = (3x 2 y, x y) b) G(x) = (x 2 + 1, 2x) c) h(x, y, z) = xy + z 2 x d) L(x, y) = (x 2 y, y, x xy) e) M(r, θ) = (r cos(θ), r sen(θ)) f ) N(x, y, z) = (2xy, x 2 ze y ) 22

21 3. Superficies Parametrizadas 25. Considere la superficie S dada en forma paramétrica por X(u, v) = (u + v, u v, u v), (u, v) R 2. a) Hallar una ecuación cartesiana para S. b) Hallar la ecuación del plano tangente a S en (3, 1, 2). 26. Determinar las ecuaciones del plano tangente y recta normal a la superficies siguientes en los puntos que se indican: a) el paraboloide elíptico 4x 2 + y 2 16z = 0 en el punto (2, 4, 2); b) la porción de cilindro elíptico X(u, v) = (v, 2 + cos(u), 2 sen(u)), 0 u π, 0 v 4, Q 0 = (2, 3/2, 3); c) la porción de cono circular X(u, v) = (v cos(u), 2 v, v sen(u)), 0 u π, 0 v 3, Q 0 = (0, 4, 2); d) la porción de hiperboloide de una hoja X(u, v) = (cos(u) cosh(v) + 1, sen(u) cosh(v), senh(v)), D = [0, π] [ 1, 1], 27. Sean D = [0, 2π] [0, 1]; Φ : D R 3, Φ(u, x) = (x, 2 cos(u), 2 sin(u)). Q 0 = (1, 1, 0). a) Mostrar que es una parametrización de una porción de cilindro. Graficar S = Img( Φ). b) Calcular el vector normal y analizar si es una parametrización regular en todos los puntos. c) Hallar el plano tangente a la superficie en el punto (1, 3, 1). 23

22 Guía IV: Funciones Compuestas e Implícitas 1. Funciones Compuestas 1. Dada f(x, y) = sin((x 2) 2 + y 1) expresarla como composición de dos funciones, f(x, y) = g(h(x, y)), indicando dominio y codominio de cada una de ellas. 2. Dada f(x, y) = xy + y, hallar f( 1, 1), f(1 + x, 2y) y f(u + v, u v). 2x 3. Probar que f(x, y) = 4x4 + 12x 2 y 2 + 9y 4 4 2x 2 3y 2, es constante sobre los puntosa de la elipse 2x 2 + 3y 2 = Dadas f(x, y) = (xy 4 + y 2 x 3, ln x) y g(u, v) = (v u, sen u u ): a) hallar sus dominios y las expresiones de h = f g y de w = g f; b) calcular h v(1, e) aplicando la regla de la cadena y usando la expresión de h hallada en a). 5. Si h = f g, calcular h(a) en los siguientes casos: a) A = (0, 1), f(u, v) = u/v y g(x, y) = (1 + ln(x + y), cos(xy)); b) A = (1, 0), g(x, y) = (x, xe y2, x y), sabiendo que f(1, 1, 1) = (3, 1, 2) y f C 1 (R 3 ). { x = t 1 6. Siendo z = e x x 2 y x con y = 2t 2 resulta z = h(t). Determinar funciones f : R 2 R y g : R R 2 tales que h = f g. Demostrar que h tiene un máximo relativo en t 0 = Dada w = e x y z 2 y + x con x = u v, y = u + u 3 ln(v 1), z = uv; hallar la dirección de máxima derivada direccional de w = w(u, v) en (1, 2) y el valor de dicha derivada máxima. 24

23 8. Demostrar que z = f(x/y) satisface la ecuación xz x + yz y = 0, qué hipótesis supuso? 9. Si f(x, y) = x + y, g(u) = (u 1) 2, mostrar que (g f) resulta nulo en todos los puntos de la recta x + y = Sea f C 1 una función escalar de dos variables, A Dom(f) y f(a) 0. Demostrar que f(a) es perpendicular a la curva de nivel de f que pasa por A y está localmente orientado hacia los niveles crecientes. Verificarlo gráficamente para f(x, y) = x 2 + y 2 en los puntos (1, 1), ( 1, 1), (1, 1) y ( 1, 1) pertenecientes a la curva de nivel Suponer que f : R 2 R es una función C 2 que satisface las condiciones dadas. Determinar, en cada caso, el gradiente de f en el punto A especificado y hallar una función que satisfaga esas condiciones: a) f(1, 1 + t) = 1 + t, f(1 + t, 1) = 1 t,a = (1, 1); b) f(t, t) = 1, f(t, t 2 ) = 1 + t t 2, A = (0, 0); c) f v(0, 0) = 2, f(t, 2t) = t, v = ( 2/2, 2/2), A = (0, 0). 12. Sea f : R 2 R 2, (u, v) f(u, v) = (x(u, v), y(u.v)) una función biyectiva y C 2 que satisface ( ) (x, y) 1 1 (1, 2) = (u, v) 2 1 y f(1, 2) = (1, 2). a) Hallar un vector tangente en (1, 2) a la curva imagen por f de la circunferencia de ecuación u 2 + v 2 = 5. b) Hallar un vector tangente en (1, 2) de la preimagen por f de la recta de ecuación y = 2x. 13. Sea S la superficie parametrizada por F (u, v) = (u cos v, u sen v, u) con (u, v) R 2 y C la curva de ecuación v = u 2 1 en el plano uv. a) Hallar una parametrización regular para la curva C, imagen de C a través de F. b) Sea A un punto cualquiera de C, probar que el plano tangente a S en A contiene a la recta tangente a C en dicho punto. 14. Sea g : R R diferenciable. Parametrizar la superficie S definida por z = y g( x ), y > 0. y Probar que el plano tangente a S en cada uno de sus puntos, pasa por el origen. 25

24 15. Suponiendo que f tiene derivadas parciales continuas de todos los órdenes y z = f(x, y) donde x = x(s, t) = 2s + 3t e y = y(s, t) = 3s 2t, calcular 2 z s, 2 z 2 s t y 2 z t Mostrar que si f(x, y) es una función armónica (i.e. f es de clase C 2 y satisface 2 f x + 2 f 2 y = 0), 2 entonces f(x 3 3xy 2, 3x 2 y y 3 ) también es armónica. 2. Funciones Implícitas 17. Demostrar que las ecuaciones dadas define implícitamente una función z = f(x, y), en un entorno del punto (x 0, y 0 ), cuyo gráfico pasa por A = (x 0, y 0, z 0 ). Calcular f(x 0, y 0 ) en cada caso. a) x 2 y 2 + z 2 = 0, A = (4, 5, z 0 ), z 0 > 0; b) z = 2 ln(z + 3x y 2 ), A = (1, 2, 2). 18. Demostrar que (x 2 + ln(x + z) y, yz + e xz 1) = (0, 0) define una curva C regular en un entorno de (1, 1, 0) y hallar el plano normal a C en dicho punto. 19. Si u y v están definidas como funciones de x e y por x = u 3 + v 3, y = uv v 2 en un entorno de (x 0, y 0, u 0, v 0 ) = (2, 0, 1, 1), calcular u x, u y, v x, v (u, v), en el punto (2, 0). y (x, y) 20. Demostrar que el sistema de ecuaciones xy 2 + zu + v 2 = 3 x 3 z + 2y uv = 2 xu + yv xyz = 1 define x, y, z como funciones de u, v en el entorno de (x 0, y 0, z 0, u 0, v 0 ) = (1, 1, 1, 1, 1) y calcular y u en (u 0, v 0 ). 21. Un cierto gas satisface la ecuación pv = T 4p T 2 donde p es la presión, V el volumen, T la temperatura y (p 0, V 0, T 0 ) = (1, 1, 2). a) Calcular T/ p y T/ V en en (p 0, V 0 ). 26

25 b) Si mediciones de p y V arrojaron valores p = 1 ± 0,001, V = 1 ± 0,002, acotar el error si se estima la temperatura mediante T = Hallar una ecuación cartesiana para la recta tangente a C en los siguientes casos a) C = {(x, y) R 2 /x 2 + y 2 + 2xy = 4}, en (1, 1); b) C = {(x, y) R 2 /xy + ln y = e x }, en (0, e); c) C = {(x, y, z) R 3 /(xy + z, y + x 2) = (3, 5)}, en (1, 6, 3). 23. Demostrar que la esfera x 2 + y 2 + z 2 = r 2 y el cono z 2 = a 2 x 2 + b 2 y 2 son superficies ortogonales en todo punto de su intersección. 24. Sea C la curva definida como intersección de las superficies de ecuaciones y = x 2 y e xz 1 xy + ln(yz) = 0. Si L 0 es la recta tangente a C en A = (1, 1, 1), calcular la distancia desde A hasta el punto en que L 0 corta al plano de ecuación x + y = El siguiente sistema de ecuaciones define implícitamente una curva en un entorno del punto (5, 0, 4) { ln(x z) + y + x = 5 e yz + z x = 0 Encontrar la intersección de la recta tangente a dicha curva en el punto (5, 0, 4) con el plano de ecuación x + z =

26 Guía V: Polinomio de Taylor. Extremos libres y condicionados 1. Polinomio de Taylor 1. Expresar el polinomio p(x, y) = x 3 2xy + y 2 en potencias de (x 1) e (y + 1). 2. Calcular el polinomio de Taylor de 2 orden de f en A. a) f(x, y) = e x+y cos(y 1), A = ( 1, 1); b) f(x, y, z) = xy ln z, A = (1, 4, 1); c) f(x, y) = cos(x + y), A = (0, 0). 3. Hallar una cota (en función de x y y), para el valor del término complementario del desarrollo de Taylor de primer orden correspondiente al ítem 2a) y 2c). 4. Aproximar el valor 1,01 1,98 utilizando el polinomio de Taylor de primer orden (aproximación lineal) de una función adecuada en el punto A = (1, 2). 5. Demostrar que e x 1 ln(y 1) y 2 en un entorno del punto (1, 2). 6. Sabiendo que la ecuación y z + e zx = 0 en un entorno de (0, 0, 1), define implícitamente a z = f(x, y), hallar un valor aproximado para f(0,01, 0,02) aplicando el desarrollo de Taylor hasta 2 orden. 7. El polinomio de Taylor de 2 orden para f en el punto (2, 1) es p(x, y) = x 2 3xy+2x+y 1, hallar una ecuación cartesiana para el plano tangente a la gráfica de f en (2, 1, z 0 ). 8. Sea w = f(u, v) definida en forma implícita por 3v + ue 2w w = 1 en un entorno del punto (u 0, v 0, w 0 ) = (7, 2, 0). Si u = x 2y y v = x + y, hallar el polinomio de Taylor de primer orden de w(x, y) en el punto (1, 3) y utilizarlo para calcular aproximadamente el valor de w cuando x = 0,97 e y = 3,01. 28

27 2. Extremos Libres 9. Analizar la existencia de extremos relativos de f en su dominio. Se puede determinar si alguno de los extremos hallados es absoluto? (a)f(x, y) = (x 3 + y 3 )(x 3 y 3 ) (b)f(x, y) = 4 x 2 y 2 (c)f(x, y) = (x 1)y (d)f(x, y) = ln(2 x 2 y 2 ) (e)f(x, y, z) = (x 2 + y 2 )(2 e z2 ) (f)f(x, y) = ln(1 + x 4 + y 4 ) (g)z = x 3 + y x + 48 y (h)z = (2x 3y + 4) 2 (i)f(x, y) = x 3 + y 3 + 3x 2 2y 2 8 (j)z = (x 3y) 2 + (x + y) Hallar los extremos de f(x, y) = x 2 + xy + y 2 ax by, para a, b R fijos. 11. Construir una función f : R 2 R, que tenga un único máximo en el punto (1, 2) de valor Dada f(x, y) = ax 3 + bxy + cy 2, hallar todos los valores de a, b y c de manera que en (0, 0, 0) haya un punto silla de la gráfica de f y en (1, 1) un mínimo de los valores de f. Es f(0, 0) un extremo local? 13. Sea f es una función estrictamente positiva y C 3 cuyo gradiente se anula sólo en P 1 = (1, 1) y en P 2 = ( 1, 1). Sabiendo que el determinante Hessiano en esos puntos es no nulo, y que en P 1, f tiene un máximo de valor 10 y en P 2 un mínimo de valor 3, estudiar los extremos de g(x, y) = 1 f(x,y). (x 1)2 14. Sea f(x, y) = h(g(x, y)), donde g(x, y) = 2 3 (y 2) 2 + 2(x 1)(y 2) y h : 2 R R es una función C 2 que satisface h (x) > 0, x. Estudiar los extremos de f. Justificar. 15. Resolver: a) Una función C 2, z = f(x, y) tiene máximo relativo 3 en (1, 2). Hallar una ecuación del plano tangente en (1, 2, 4) a la superficie de ecuación z = f(x, y) + x 2. b) Sea f : R 2 R una función C 3 que satisface f(1, 2) = (1, 0), y cuya matriz Hessiana en (1, 2) es ( )

28 Hallar a de manera que la función g(x, y) = f(x, y) + ax + (y 2) 2 tenga extremo en (1, 2). Qué tipo de extremo es? c) Una función C 2, G(x, y, z) tiene máximo relativo 0 en (1, 2, 3). Hallar una ecuación del plano tangente en (1, 2, 3) a la superficie de ecuación G(x, y, z) = 4x y Hallar los extremos relativos de f(x, y) = 27x + y + 1 xy (x > 0, y > 0). en el primer cuadrante 17. Mostrar que f(x, y, z) = 4xyz x 4 y 4 z 4 tiene un máximo local en (1, 1, 1). 18. Hallar los extremos relativos de a) f(x, y, z) = x 3 + 3x + 2y 2 + 4yz + 3y + 8z 2. b) f(x, y, z) = y + x y + z x + 1 z 19. Hallar b de manera que f(x, y) = 1 b(y b 2)2 + (x 1) 2 2(y 2) 2 tenga un extremo local en el punto (1, 2) y clasificarlo. 20. Sea z = f(x, y) definida implícitamente en un entorno del punto (0, 0) por la ecuación xy + z + e z 1 = 0. Demostrar que el (0, 0) es un punto estacionario de f, clasificarlo y calcular f(0, 0). 21. La función C 2, f : R 2 R sobre la recta y = 3x + 2 vale x 2 ln(x 1) + 3. Es posible asegurar que f no tiene un extremo local en (2, 8)? 22. Demostrar que f(x, y, z) = x 2 + y 2 + z + 2 tiene un mínimo relativo en ( 1, 1, 12), cuando se la evalúa en puntos del plano X(u, v) = (u 3, v + 4, 2u 2v 2) con (u, v) R 2. El punto hallado resulta punto crítico de la función en su dominio? 3. Extremos Condicionados 23. Hallar los extremos absolutos de f(x, y) = x 2 + y 2 x y 1 en a) la circunferencia x 2 + y 2 = 1; b) el círculo x 2 + y Hallar los extremos de f(x, y, z) = xz yz evaluada en puntos de la curva intersección de las superficies de ecuaciones x 2 + z 2 = 2 y yz = Hallar los extremos absolutos de f(x, y) = 2x(y 1) x y en el triángulo de vértices (0, 0), (1, 0) y (1, 4) (interior y perímetro). 30

29 26. Un cuerpo tiene forma de paralelepípedo rectangular de volumen V y su superficie frontera tiene área A. Determinar las dimensiones del paralelepípedo si se desea que tenga área mínima para un volumen V dado. 27. Un envase cilíndrico debe tener 1 litro de capacidad, el material para las tapas cuesta 0,02$/cm 2 mientras que el de la cara lateral 0,01$/cm 2. Calcular las dimensiones del envase para que el costo sea mínimo. 28. Calcular el máximo valor de f(x, y, z) = x 2 + xy + y 2 + xz + z 2 sobre la superficie esférica de radio 1 con centro en el origen. 29. Hallar la distancia entre los planos x + y z = 4 y z = x + y Calcular la distancia entre las rectas L 1 y L 2 definidas por: { x + y + z = 2 r 1 = y = x { x + y = 1 r 2 = z = 1 aplicando el método de los multiplicadores de Lagrange y parametrizando ambas rectas. 31. Hallar los puntos de la superficie z = xy + 1 más cercanos al origen. Observar que la superficie está definida para los puntos (x, y) que satisfacen xy 1, por lo tanto deberá analizar los extremos en el abierto xy > 1 y en el borde xy = 1. 31

30 Guía VI: Integrales curvilíneas 1. Repaso de curvas 1. Hallar una parametrización para las siguientes curvas y graficarlas. { x + 2y z = 4 a) C : en el primer octante. y = 2x 1 { x b) C : 2 + y 2 = 4 z = 2 { x c) C : 2 + y 2 = 4 en el primer octante. z = 2x d) C : { x 2 + z2 4 = 4 3 2x + y = 1 2. Hallar otra parametrización para las curvas del ejercicio anterior de manera que resulten orientadas en sentido opuesto. 3. Sea f : [0, 2π] R 2, f(t) = (cos(t), sen(t)). La curva que describe es la circunferencia de radio 1, centrada en el origen, a partir del punto (1, 0) en sentido antihorario. a) Suponiendo que la parametrización dada describe, en función del tiempo t, el movimiento de un punto material que recorre la curva, demostrar que la velocidad f tiene módulo constante (rapidez constante). b) Reparametrizarla de manera de recorrer la curva 4 veces más rápido conservando la orientación. c) Reparametrizarla de manera de recorrer la curva 2 veces más lentamente invirtiendo la orientación. Cuál es su rapidez? 32

31 4. Probar que r(t) = (1, 2 cos(2t), 2 sen(2t)) es solución del problema de valores iniciales { v(t) = d r (t) = w r(t), w = 2ĭ dt r(0) = ĭ + 2 j 2. Integral de campos escalares sobre curvas 5. Calcular fds en los siguientes casos. C a) f(x, y) = 1/(x 2 + y 2 ), C : x 2 + y 2 = 4, y > 0. b) f(x, y, z) = 2x yz, C recta intersección de los planos 2y x+z = 2 con x y+z = 4 desde (7, 4, 1) hasta (4, 2, 2). 6. Calcular la longitud de: a) la curva parametrizada por σ(t) = (t, 4 3 t3/2, 2t), 0 t 2. Parametrizarla por longitud de arco; b) la hélice C de ecuación paramétrica X = (3 cos(t), 3 sen(t), 4t) con t [0, 2π]. Hallar su recta tangente y su plano normal en (3 2/2, 3 2/2, π). 7. Resolver a) Hallar la masa de un alambre cuya forma es la de la curva intersección de z = 2 x 2 2y 2 y z = x 2, en el primer octante, entre (0, 1, 0) y (1, 0, 1) si su densidad es δ(x, y, z) = xy. b) Hallar la masa de un alambre en forma de V, en R 2 cuya forma es la de la curva y = x, comprendida entre x 1 = 1 y x 2 = 1, si su densidad en cada punto es proporcional al valor absoluto del producto de las coordenadas del punto. c) Calcular la masa de un hilo metálico con densidad en cada punto es proporcional al producto de las distancias desde el punto a los planos coordenados, si la forma del alambre coincide con la de la curva intersección del cilindro x 2 + y 2 = 4 con el plano z = 2. d) Hallar la masa, el centro de masa y la densidad media de un alambre en forma de hélice, λ(t) = (cos t, sen t, t), t [0, 2π], cuya función de densidad es δ(x, y, z) = k(x 2 + y 2 + z 2 ). e) Hallar el momento de inercia de un alambre homogéneo de densidad constante δ 0 cuya forma es la de la curva parametrizada por σ : [ a, a] R 2, σ(t) = (t, cosh t), respecto de cada uno de los ejes coordenados. 33

32 8. Sean R > 0, f : D R, f(x, y) = R x 2 + y 2, con D = {(x, y) R 2 /x 2 + y 2 R}, justificar geométricamente que la función representa la distancia de un punto del dominio a la circunferencia de radio R centrada en el origen. Calcular el valor medio de f sobre la curva parametrizada por λ : [ a, a] R 2, λ(t) = (t, mt), donde m es fijo y a = R 1+m 2, e interpretar el resultado obtenido. 9. Suponer que la curva C parametrizada por λ : [a, b] R 2 de clase C 1 es la curva de nivel 3 de la función continua f : U R 2 R y su longitud es 4. Calcular fds Cuál es el C valor medio de f sobre la curva? 3. Integral de campos vectoriales sobre curvas 10. Calcular la circulación de f(x, y) = (y, x) desde el punto (1, 0) hasta el punto (0, 1) a lo largo de: a) un segmento que une los puntos. b) las 3/4 partes del círculo unitario. 11. Calcular a) C + (2x, y) d s, donde C es el cuadrado x + y = 1. b) C + (xy, x 2 ) d s, siendo C la frontera de la región del primer cuadrante limitada por xy 1, y x 2, 8y x Resolver a) Sea C parametrizada por σ(t) = (t, t 2, 2t) con t desde 0 hasta 2. Expresar C como intersección de dos superficies y graficarla. Calcular la circulación de f(x, y, z) = (xy, x, zy) a lo largo de C cuáles son los puntos inicial y final del recorrido? b) Idem que el inciso anterior para σ(t) = (t + 1, 2t + 1, t), t desde 1 hasta 2 y el campo f(x, y, z) = (x + 2y + z, 2y, 3x z). 13. Calcular el trabajo que realiza una fuerza constante de magnitud 2, en la dirección positiva del eje y, sobre una partícula puntual cuya trayectoria es la circunferencia unitaria, (0, 1) (1, 0) (0, 1), 14. Sea g una función continua en R 3.Calcular la circulación de f(x, y, z) = (2g(x, y, z), xy 9xg(x, y, z), 3yg(x, y, z)), desde (1, y 0, z 0 ) hasta (8, y 1, z 1 ) a lo largo de la curva C cuyos puntos pertenecen a la superficie de ecuación z = x y 2, y su proyección sobre el plano xy cumple con la ecuación x = y 3. 34

33 3.1. Campos de gradientes 15. Analizar si los siguientes campos admiten función potencial y en caso afirmativo hallarla. a) f(x, y) = (2x + y 2 sen(2x), 2y sen 2 x). b) f(x, y, z) = (xy, x + zy, yz). c) f(x, y, z) = (y 2xz + 1, x + 2y, x 2 ). d) f(x, y, z) = ((1 + xz)e xz, xe xz, yx 2 e xz ). 16. Sea f(x, y) = (x, x y 2 ) a) Mostrar que f no admite función potencial. b) Hallar la circulación de f a lo largo de la curva positivamente orientada C, perímetro de la región descripta por 0 y 1, 0 x y Sea f(x, y, z) = (4x/z, 2y/z, (2x 2 + y 2 )/z 2 ), z 0 a) Mostrar que f admite función potencial para z > 0. b) Describir las superficies equipotenciales de f. c) Calcular la circulación de f a lo largo de la curva descripta por x = 1 + log(1 + sen(t) ), y = e t(π t), z(t) = 1 + t/π, t [0, π]. 18. Si f y g son campos escalares C 1 en un D conexo y si C es una curva contenida en D de A a B entonces a) (f g + g f) d s = f(b)g(b) f(a)g(a) C b) (2fg f + f 2 g) d s = f 2 (B)g(B) f 2 (A)g(A) C c) Si g 0 en D, entonces C g f f g g 2 d s = f(b)/g(b) f(a)/g(a) 19. Cuál es el trabajo que realiza f(x, y, z) = (y 2 cos x + z 3 )ĭ + (2y sen x 4) j + (3xz 2 + 2) k sobre una part icula cuya trayectoria es la curva parametrizada por x = arc sen t, y = 1 2t, z = 3t 1, 0 t 1? 20. Resolver a) Para qué valores de a y b resulta conservativo el campo f(x, y, z) = (ax sen(πy), x 2 cos(πy)+bye z, y 2 e z )? Para esa elección de a y b calcular la circulación de f a lo largo de la curva parametrizada por σ(t) = (cos t, sen(2t), sen 2 (t)), 0 t π. 35

34 b) Para qué valores de a y b, y en qué dominio que contenga a (1, 1, 1), resulta conservativo el campo f(x, y, z) = (ax ln(z))ĭ+(by 2 z) j+( x2 z +y3 ) k? Para esa elección de a y b calcular la circulación de f a lo largo del segmento que une el punto (1, 1, 1) al (2, 1, 2). c) Verificar que C (3x 2y2 ) dx + (y 3 4xy) dy no depende de C, sólo de los puntos inicial y final del arco de curva. Calcular la integral cuando se circula desde (1, 3) hasta (2, 4). d) Evaluar C (ex sen y + 3y) dx + (e x cos y + 2x 2y) dy, sobre la elipse 4x 2 + y 2 = 4. Indicar el sentido elegido. 21. Sea ϕ C 2 (R 3 ), demuestre que f = ϕ ϕ es un campo de gradientes y calcule λ AB f d s sabiendo que ϕ(b) = 7 y que λ AB ϕ d s = 4. (A y B son los puntos inicial y final del arco de curva suave λ AB ). 22. Sea C una curva ( simple cerrada, ) que no pasa por el origen y que encierra una región R. Sea f(x, y y) = x 2 + y, x. 2 x 2 + y 2 a) Probar que si (0, 0) / R, entonces C + f d s = 0. b) Probar que si C es una circunferencia centrada en el origen de cualquier radio, orientada en sentido horario, entonces C f d s = 2π. c) Probar que el campo f tiene matriz jacobiana continua y simétrica en R 2 {(0, 0)}. Es f un campo gradiente? Es posible definir f en un dominio donde sea un campo de gradiente? 3.2. Líneas de Campo 23. Determinar la correspondencia de los siguientes gráficos con los campos vectoriales f i : R 2 R 2, f 1 = (x, 0), f 2 = (y, 1), f 3 = ( y, x) y f 4 = (2x, 2y). 36

35 Puede graficar aproximadamente sus líneas de campo? 24. Dado el campo f(x, y) = ( y, x) a) Probar que las líneas de campo son circunferencias. b) Probar que f(x, y) es constante sobre circunferencias centradas en el origen. c) Si C es una circunferencia centrada en el origen de radio R, calcular, sin efectuar la integral, f d s C Si f : R 2 R 2 es un campo de gradientes, y φ, un campo C 1 en R 2 es su función potencial, demostrar que las líneas de campo y las líneas equipotenciales son familias de curvas ortogonales. Comprobar este resultado para los campos f(x, y) = (x, y) y g(x, y) = ( 4x, 1). 37

36 Guía VII: Integrales Múltiples 1. Integrales Dobles 1. Calcular el área de las siguientes regiones planas. Graficar la región. a) definida por y x 2, y x. b) definida por x + y 2, y x, y 0. c) limitada por y = x 3 y y = x. d) limitada por la línea de nivel 4 de f(x, y) = x + y. e) limitada por las curvas de nivel 2 y 4 de f(x, y) = x + 2y en el 1 cuadrante. 2. Expresar cada integral invirtiendo el orden de integración. Graficar la región de integración. (a) 2 dx 2x f(x, y) dy (b) 1 2 y 2 f(x, y) dxdy 1 x 0 y (c) 1 1 f(x, y) dydx (d) 1 dy e y f(x, y) dx 1 x Calcular la masa y el centro de masa de una placa plana definida por x 1, 0 y 1, si su densidad en cada punto es proporcional a la distancia desde el punto al eje y. 4. Calcular la masa de la placa plana definida por x y 2 cuando la densidad en cada punto es proporcional a la distancia desde el punto a la recta x = Interpretar gráficamente la región de integración y calcular las siguientes integrales (en algunos casos puede convenirle invertir el orden de integración). 38

37 (a) 1 1 2x dxdy (b) 17/4 x 2 2 x dydx 1 y 2 4 x 2 (c) y ex2 dxdy (d) y dxdy (D indica el disco de radio 1 centrado en el origen.) D 6. Sean Q = [0, 2] [0, 2] y f : Q R continua en Q. Si mostrar que F (x, y) = para todo (x, y) interior a Q. x 0 du y 0 f(u, v) dv, (x, y) Q 2 F x y (x, y) = 2 F (x, y) = f(x, y) y x 2.1. Cambio de Coordenadas 7. Resolver los siguientes ejercicios utilizando los cambios de coordenadas propuestos. a) Calcular área(d), D = {(x, y) R 2 / x + y 2}, usando (x, y) = ( u+v, u v). 2 2 b) Calcular e x+y dxdy, D descripto por 1 x + y 4 en el 1 cuadrante, usando D x + y = u, x = v. c) Calcular el área de la región plana definida por x2 (x, y) = (ar cos θ, br sen θ). + y2 a 2 b 2 1 con a > 0, b > 0, usando d) Calcular dxdy, D descripto por x x2 y 4x 2, x 1, y 9 usando la transformación (x, y) = (v/u, v 2 D /u). 8. Calcular las siguientes integrales aplicando una transformación lineal conveniente. a) e (y x)/(x+y) dxdy, D descripto por x + y 2, x 0, y 0. D b) (x y) 2 sen 2 (x + y) dxdy, D descripto por π y x π, π x + y 3π. D c) D (x + y) 3 dxdy, D descripto por 1 x + y 4, 2 x 2y Resolver utilizando coordenadas polares, en qué casos merece especial cuidado el análisis de la integrabilidad de la función en el dominio indicado?. 39

38 a) e x2 +y 2 dxdy, D círculo de radio R con centro en (0, 0). D b) D x+y x 2 dxdy, D descripto por 0 y x, x + y 2. c) Área(D), D descripto por x2 + y 2 4a 2, x 2 + y 2 2ax, con a > Sea f una función continua tal que 4 f(t) dt = 1. Calcular f(x 2 + y 2 ) dxdy siendo 0 D D R 2 el disco descripto por x 2 + y Integrales Triples 11. Describir mediante un gráfico en perspectiva las regiones del espacio dadas por: (a) x + y 1 (b) x 2 y (c) x 2 y 2 0 (d) x 2 + z 2 1 (e) x 2 + y 2 + z 2 = 9, 1 z 2 (f) (x 1) 2 + (y 2) 2 + (z 3) 2 1 (g) z > (x 1) 2 + (y + 2) 2 (h) (x 1) 2 + y 2 y + (z 3) 2 + 3z 1 (i) z > x 2 y 2 (j) x 2 + y 2 + 2x z 2 0 (k) x 2 y 2 z 2 1 (l) x 2 + y 2 1, z x + y 3. Coordenadas Cilíndricas y Esféricas 12. Describir mediante un gráfico en perspectiva y en coordenadas cartesianas las siguientes regiones del espacio, dadas en coordenadas cilíndricas. Indicar cuáles tienen relación con los gráficos que aparecen a continuación. 40

39 (a) r 1 (b) r = 2, 0 < θ < 3π/4 (c) r 2 cos(θ) (d) r 2, r(cos(θ) + sen(θ)) 1 (e) 0 < θ < π/4, r 1/cos(θ) (f) z 2 2r 2 (g) z r 2 (h) z 2 > 1 r Describir en coordenadas cilíndricas las regiones dadas en coordenadas cartesianas: (a) x 3y (b) z 3y (c) z x 2 + y 2 (d) x 2 + y 2 + z 2 z < 0, x 2 + y 2 < z 2, z Describir mediante un gráfico y en coordenadas cartesianas las regiones del espacio siguientes dadas en coordenadas esféricas (ρ 0, 0 θ < 2π, 0 ϕ π). Indicar cuáles tienen relación con los gráficos que aparecen a continuación. 41

40 (a) ρ 2 (b) ρ 1, ϕ π/4 (c) θ = π/4 (d) ρ = 1, θ 3/2π (e) ρ 2, θ = π/4 (f) θ < π/2, ϕ > 2π/3 15. Describir en coordenadas esféricas las siguientes regiones dadas en coordenadas cartesianas: en cartesianas por (a) x 2 + y 2 1 (b) x y (c) x 2 + y 2 + 3z 2 1 (d) x = 3y, z = x, x Calcular el volumen del cuerpo D mediante una integral triple usando el sistema de coordenadas que crea conveniente. a) D = {(x, y, z) R 3 /x + y z 1 x 0 y 0}. b) D = {(x, y, z) R 3 /x 2 + y 2 1 y 2 + z 2 1}. 42

41 c) D = {(x, y, z) R 3 /z x 2 + y 2 x 2 + y 2 + z 2 2}. d) D limitado por z = 2x 2 + y 2, z + y 2 = 8. e) D definido por: y x 2, y x, z x + y, x + y + z 6. f ) D interior a la esfera de ecuación x 2 + y 2 + z 2 = 4r 2, con x 2 + y 2 2 r x, en el 1 octante. (r > 0). 17. Demostrar que V = 9 2 a3 es el volumen del tetraedro en el primer octante limitado por los planos coordenados y el plano tangente a la superficie de ecuación xyz = a 3 en el punto (x 0, y 0, z 0 ) de la misma (a 0). 18. Calcular la masa del cuerpo limitado por x 2 + y 2 + z 2 = 2 con y x 2 + z 2 cuando la densidad en cada punto es proporcional a la distancia desde el punto al eje y. 19. Calcular el momento estático del cuerpo H respecto del plano x z si la densidad en cada punto es proporcional a la distancia desde el punto al plano x y. H está en el 1 octante definido por: x + y + z 2, z x + y, y x. 20. Calcular las coordenadas del centro de gravedad de un cuerpo con densidad constante limitado por x 2 + z 2 = 1, y x = 1, 1 octante. 21. Calcular el volumen de la región definida por x 2 + y 2 6 z x 2 + y Hallar k > 0 de manera que el volumen del cuerpo comprendido entre el paraboloide x 2 + y 2 = kz y el plano z = k sea 4π. 23. Calcular el momento de inercia respecto del eje x de un cuerpo con densidad constante limitado por x = y 2 + z 2, 5x = y 2 + z Sea R R 3 la región descripta por 0 z 4 x 2 y 2, x 2 + y 2 2y 0, y 0. a) Hallar el área de la proyección de R sobre el plano yz. b) Hallar el área de la proyección de R sobre el plano xz. c) Hallar el área de la proyección de R sobre el plano xy. 25. Graficar y describir en cada caso el conjunto que genera C al rotar en un ángulo α 0 en torno al eje z. Indicar el sentido de rotación. a) C = {(0, 1, 1)}, ϕ 0 = π/2 b) C = {(x, y, z) R 3 /x = 0, z = 3y + 2}, ϕ 0 = π/2 c) C = {(x, y, z) R 3 /x = 0, z = 3y 2 + 2}, ϕ 0 = 3π/2 d) C = {(x, y, z) R 3 /x = 0, z 2 + y 2 = 1}, ϕ 0 = π/3 43

sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x

sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x 1. Hallar κ de manera que el flujo saliente del campo f ( x, = (x + y + z, 6y a través de la frontera del cuerpo x + y + z 16 x + y κ, 0 < k < 4 f : R R un campo vectorial definido por:. Sea γ ( t ) =

Más detalles

x 2 y si x 3y 2 si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares.

x 2 y si x 3y 2 si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares. FIUBA 07-05-11 Análisis Matemático II Parcial - Tema 1 1. Sea f(x, y) = { x y si x 3y si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares.. Sea G(x, y) = (u(x, y),

Más detalles

x 2 + ln(x + z) y = 0 yz + e xz 1 = 0 define una curva C regular en un entorno de (1, 1, 0) y halle el plano normal a C en dicho punto.

x 2 + ln(x + z) y = 0 yz + e xz 1 = 0 define una curva C regular en un entorno de (1, 1, 0) y halle el plano normal a C en dicho punto. 1 Sea f : R R una función C 3 que satisface f(1, ) = (0, 0), y cuya matriz ( Hessiana ) en (1, ) es: 1 0 H = 0 Hallar todos los b ɛ R de manera que la función: g( = f( + 1 b b (y ) ) tenga extremo en (1,

Más detalles

ANÁLISIS II Computación. Práctica 4. x 3. x 2 + y 2 si (x, y) (0, 0)

ANÁLISIS II Computación. Práctica 4. x 3. x 2 + y 2 si (x, y) (0, 0) facultad de ciencias exactas y naturales uba primer cuatrimestre 2007 ANÁLISIS II Computación Práctica 4 Derivadas parciales 1. Calcular a) f y (2, 1) para f(x, y) = xy + x y b) f z (1, 1, 1) para f(x,

Más detalles

ANÁLISIS MATEMÁTICO II (81.01)

ANÁLISIS MATEMÁTICO II (81.01) GUÍAS DE TRABAJOS PRÁCTICOS ANÁLISIS MATEMÁTICO II A (61.03) y ANÁLISIS MATEMÁTICO II (81.01) 1er. cuatrimestre 2018 Profesor responsable: Ricardo Oscar Sirne Coordinadora: Cristina Unger La elaboración

Más detalles

ANALISIS II Computación. Práctica 4. x 3. x 2 + y 2. x 2 + y 2 si (x, y) (0, 0) 0 si (x, y) = (0, 0)

ANALISIS II Computación. Práctica 4. x 3. x 2 + y 2. x 2 + y 2 si (x, y) (0, 0) 0 si (x, y) = (0, 0) facultad de ciencias exactas y naturales uba curso de verano 2006 ANALISIS II Computación Práctica 4 Derivadas parciales 1. Calcular (a) f xy y (2, 1) para f(x, y) = + x y (b) f z (1, 1, 1) para f(x, y,

Más detalles

ANALISIS II 12/2/08 COLOQUIO TEMA 1

ANALISIS II 12/2/08 COLOQUIO TEMA 1 ANALISIS II //08 COLOQUIO TEMA Sea f : R R un campo vectorial C y C la curva parametrizada por: γ(t) = (cost, 0, sent) con t ɛ [0, π] Sabiendo que C f ds = 6 y que rot( f( ) = (z, ), calcular la integral

Más detalles

Funciones reales de varias variables

Funciones reales de varias variables PROBLEMAS DE CÁLCULO II Curso 2-22 2 Funciones reales de varias variables. Dibuja las curvas de niveles,,..., 5 y la representación gráfica de las siguientes funciones a) f(x, y) = 5 x y b) f(x, y) = x

Más detalles

1. Hallar la ecuación paramétrica y las ecuaciones simétricas de la recta en los siguientes casos:

1. Hallar la ecuación paramétrica y las ecuaciones simétricas de la recta en los siguientes casos: A. Vectores ANALISIS MATEMATICO II Grupo Ciencias 05 Práctica : Geometría Analítica: Vectores, Rectas y Planos, Superficies en el espacio Para terminar el 3 de septiembre.. Sean v = (0,, ) y w = (,, 4)

Más detalles

ANALISIS MATEMATICO II (Ciencias- 2011) Trabajo Práctico 8

ANALISIS MATEMATICO II (Ciencias- 2011) Trabajo Práctico 8 ANALISIS MATEMATIO II (iencias- 2011) Integrales sobre curvas (o de línea) Trabajo Práctico 8 1. Evaluar las siguientes integrales curvilíneas γ f ds. (a) f(x, y, z) = x + y + z ; r(t) = (sen t, cos t,

Más detalles

Diferenciación SEGUNDA PARTE

Diferenciación SEGUNDA PARTE ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 4 - Primer Cuatrimestre 009 Diferenciación SEGUNDA PARTE Regla de la Cadena 1 Sean f(u, v, w) = u + v 3 + wu y g(x, y) = x sen(y) Además, tenemos

Más detalles

Integrales Curvilíneas.

Integrales Curvilíneas. CAPÍTULO 8 Integrales Curvilíneas. Este capítulo abre la segunda parte de la materia : el cálculo integral vectorial. Las integrales de línea de campos escalares y vectoriales tienen aplicaciones a la

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

Integrales Curvilíneas.

Integrales Curvilíneas. CAPÍTULO 7 Integrales Curvilíneas. Este capítulo abre la segunda parte de la materia : el cálculo integral vectorial. Las integrales de línea de campos escalares y vectoriales tienen aplicaciones a la

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Primer Cuatrimestre - 010 Práctica 3: Diferenciación Derivadas parciales y direccionales 1. Sea f una función continua en x = a. Probar que f es derivable en x =

Más detalles

Integrales de lı nea y de superficie

Integrales de lı nea y de superficie EJERIIO DE A LULO II PARA GRADO DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera 4 4.1 Integrales de lı nea y de superficie Integrales sobre curvas

Más detalles

Funciones de varias variables: continuidad derivadas parciales y optimización

Funciones de varias variables: continuidad derivadas parciales y optimización Titulación: Ingeniero en Telecomunicación. Asignatura: Cálculo. Relación de problemas número 4. Funciones de varias variables: continuidad derivadas parciales y optimización Problema 1. Determinar el dominio

Más detalles

9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES

9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES 9.1. Diferenciación 9.1.1. DERIVADAS PARCIALES Derivadas parciales de una función de dos variables Se llaman primeras derivadas parciales de una función f(x, y) respecto de x e y a las funciones: f x (x,

Más detalles

Tema 3: Diferenciabilidad de funciones de varias variables

Tema 3: Diferenciabilidad de funciones de varias variables Departamento de Matemáticas. Universidad de Jaén. Análisis Matemático II. Curso 2009-2010. Tema 3: Diferenciabilidad de funciones de varias variables 1. Calcular las dos derivadas parciales de primer orden:

Más detalles

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES 1.- En cada uno de los siguientes casos calcular la integral de línea dada a) + +, donde C es el segmento de recta que une el punto O(0,0)

Más detalles

Práctica 3: Diferenciación I

Práctica 3: Diferenciación I Análisis I Matemática I Análisis II (C) Cuat II - 009 Práctica 3: Diferenciación I Derivadas parciales y direccionales. Sea f una función continua en x = a. Probar que f es derivable en x = a si y solo

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) 1er. Cuatrimestre 2017 Práctica 3: Diferenciación Aplicación de algunos resultados de diferenciación en una variable 1. Vericar que se

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) Primer Cuatrimestre - 03 Práctica 3: Diferenciación Aplicación de algunos resultados de diferenciación en una variable. Vericar que se

Más detalles

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Práctica 9 Campos conservativos - Teorema de Green

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Práctica 9 Campos conservativos - Teorema de Green ANÁLISIS MATEMÁTIO II - Grupo iencias 018 Práctica 9 ampos conservativos - Teorema de Green A. ampos conservativos 1. Mostrar que F x, y) = y cos x) i + x sen y) j no es un campo vectorial gradiente..

Más detalles

Soluciones de los ejercicios del segundo examen parcial

Soluciones de los ejercicios del segundo examen parcial Matemáticas III GIC, curso 5 6 Soluciones de los ejercicios del segundo examen parcial EJERCICIO. Considera la integral doble π π ibuja la región del plano XY en la que se está integrando. Usa el teorema

Más detalles

3. Funciones de varias variables

3. Funciones de varias variables Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 17 3. Funciones de varias variables Función real de varias variables reales Sea f una función cuyo dominio es un subconjunto D de R n

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. Análisis II Análisis matemático II Matemática 3. er. cuatrimestre de 8 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones. Ejercicio. Verificar el teorema de Stokes para el

Más detalles

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013 Análisis II - Análisis matemático II - Matemática 3 do. cuatrimestre de 3 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones.. Verificar el teorema de Stokes para el hemisferio

Más detalles

CÁLCULO II Funciones de varias variables

CÁLCULO II Funciones de varias variables CÁLCULO II Funciones de varias variables Facultad de Informática (UPM) Facultad de Informática (UPM) () CÁLCULO II Funciones de varias variables 1 / 36 Funciones de varias variables Función vectorial de

Más detalles

a) Analice la continuidad en (1,0). E1) Dada F : IR 2 π g : D IR 2 I R 2 2 2

a) Analice la continuidad en (1,0). E1) Dada F : IR 2 π g : D IR 2 I R 2 2 2 Ejemplos de parcial de Análisis Matemático II Los ítems E1, E, E3 E4 corresponden a la parte práctica Los ítems T1 T son teóricos (sólo para promoción) T1) Sea F : IR IR diferenciable tal que F(,) 00 =

Más detalles

GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE. 2) Para cada una de las superficies dadas determine un vector normal y la ecuación del

GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE. 2) Para cada una de las superficies dadas determine un vector normal y la ecuación del GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE PLANO TANGENTE Y VECTOR NORMAL. AREA DE UNA SUPERFICIE 1) En cada uno de los siguientes ejercicios se presenta una S dada en forma paramétrica,

Más detalles

SERIE # 2 CÁLCULO VECTORIAL

SERIE # 2 CÁLCULO VECTORIAL SERIE # CÁLCULO VECTORIAL SERIE 1) Calcular las coordenadas del punto P de la curva: en el que el vector P 1, 1, r t es paralelo a r t Página 1 t1 r t 1 t i ( t ) j e k ) Una partícula se mueve a lo largo

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. Análisis II Análisis matemático II Matemática 3. 2do. cuatrimestre de 2015 Práctica 2 - Integrales de superficie. Definición.1. Una superficie paramétrica (superficie a secas para nosotros) es un conjunto

Más detalles

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen Universidad Técnica Federico anta aría Coordinación de atemática IV Guía-Apunte de Preparación del CAR 2 do emestre 2011 Información Contenidos del Certamen Teorema de Green, Teorema de Green para Regiones

Más detalles

Listado 1 Cálculo III (2025) PLEV Hallar adherencia, interior, conjunto de puntos de acumulación y frontera para:

Listado 1 Cálculo III (2025) PLEV Hallar adherencia, interior, conjunto de puntos de acumulación y frontera para: Universidad de Concepción Facultad de Ciencias Físicas y Matemáticas Departamento de Matemática Listado 1 Cálculo III (2025) PLEV 2018 1. Hallar adherencia, interior, conjunto de puntos de acumulación

Más detalles

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

Problemas de Análisis Vectorial y Estadístico

Problemas de Análisis Vectorial y Estadístico Relación 1. Funciones Γ y β 1. Función Gamma Definimos la función gamma Γ(p) como: Demostrar que: Γ(p) = t (p 1) e t dt para p> a) Γ(1) = 1 b) Integrando por partes, ver que Γ(p) = (p 1)Γ(p 1) para p>1

Más detalles

Análisis Matemático 2

Análisis Matemático 2 Análisis Matemático 2 Una resolución de ejercicios con hipervínculos a videos on-line Autor: Martín Maulhardt Revisión: Fernando Acero y Ricardo Sirne Análisis Matemático II y II A Facultad de Ingeniería

Más detalles

Lista de Ejercicios Complementarios

Lista de Ejercicios Complementarios Lista de Ejercicios omplementarios Matemáticas VI (MA-3) Verano. ean α >, β > y a, b R constantes. ea la superficie que es la porción del cono de ecuación z = α x + y que resulta de su intersección con

Más detalles

de C sobre el plano xy tiene ecuación

de C sobre el plano xy tiene ecuación Análisis Matemático II (95-0703) Finales tomados durante el Ciclo lectivo 017 Son 10 (die fechas de final, desde el 4/05/17 al 7/0/18 inclusive Análisis Matemático II (95-0703) Final del 4/05/17 Condición

Más detalles

Funciones Reales de Varias Variables

Funciones Reales de Varias Variables Funciones Reales de Varias Variables Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 162 CONTENIDO Funciones

Más detalles

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos]

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos] Matemáticas II Pruebas de Acceso a la Universidad GEOMETRÍA Junio 94 1 Sin resolver el sistema, determina si la recta x y + 1 = 0 es exterior, secante ó tangente a la circunferencia (x 1) (y ) 1 Razónalo

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. 1 Análisis II Análisis matemático II Matemática 3. 1er. cuatrimestre de 2008 Práctica 1 - urvas, integral de longitud de arco e integrales curvilíneas. urvas Definición 1. Una curva R 3 es un conjunto

Más detalles

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,

Más detalles

GUÍA DE CÁLCULO VECTORIAL Academia de Matemáticas y Física I.C.

GUÍA DE CÁLCULO VECTORIAL Academia de Matemáticas y Física I.C. 1. Considere los siguientes vectores a = (2,3,1), b = (4, 1,3). Calcule: a) a + b b) 2a + 3b c) 3a b d) a + b e) 3a 2b f) 2 a + b 2. Halle las longitudes de los lados del triángulo ABC y determine si son

Más detalles

Integración sobre curvas

Integración sobre curvas Problemas propuestos con solución Integración sobre curvas ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Integral de línea de campos escalares 1

Más detalles

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático Ejercicios de Fundamentos Matemáticos I Ingeniería de Telecomunicaciones Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada FUNDAMENTO MATEMÁTICO I Relación de Ejercicios N o

Más detalles

Respuestas faltantes en ejercicios edición 2007 Sección 4.4: Superficie cuadráticas de revolución Ejercicio 4-1

Respuestas faltantes en ejercicios edición 2007 Sección 4.4: Superficie cuadráticas de revolución Ejercicio 4-1 Editorial Mc Graw Hill. Edición 007 Respuestas faltantes en ejercicios edición 007 Sección 4.4: Superficie cuadráticas de revolución Ejercicio 4- R r + x + y Ejercicio 4-3 + R x + y + z Ecuaciones: x +

Más detalles

TRABAJO PRÁCTICO N 1: ALGUNOS ELEMENTOS DE LA GEOMETRÍA ANALÍTICA. 1.2 a. Marcar en un sistema de coordenadas cartesianas los siguientes puntos: 3 2

TRABAJO PRÁCTICO N 1: ALGUNOS ELEMENTOS DE LA GEOMETRÍA ANALÍTICA. 1.2 a. Marcar en un sistema de coordenadas cartesianas los siguientes puntos: 3 2 FACULTAD DE CIENCIAS EXACTAS, INGENIERIA Y AGRIMENSURA ESCUELA DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE MATEMATICA CATEDRA DE ALGEBRA Y GEOMETRÍA ANALITICA I CARRERA: Licenciatura en Física TRABAJO

Más detalles

Cálculo diferencial en varias variables (Curso ) a) Estudiar la continuidad en el origen de las funciones dadas.

Cálculo diferencial en varias variables (Curso ) a) Estudiar la continuidad en el origen de las funciones dadas. CÁLCULO Práctica 4.2 Cálculo diferencial en varias variables (Curso 2016-2017) 1. Sean f, h: IR 2 IR funciones definidas del siguiente modo: x 3 f(x, y) = x 2, (x, y) (0, 0) + y2 a) Estudiar la continuidad

Más detalles

con tiene recta tangente de ecuación y 4 x 2. Análisis Matemático II ( ) Final del 14/07/ dz planteada en coordenadas cilíndricas,

con tiene recta tangente de ecuación y 4 x 2. Análisis Matemático II ( ) Final del 14/07/ dz planteada en coordenadas cilíndricas, Análisis Matemático II (95-0703) Finales tomados durante el Ciclo lectivo 05 Son 0 (die fechas de final, desde el 6/05/5 al 9/0/6 inclusive Análisis Matemático II (95-0703) Final del 6/05/05 Condición

Más detalles

EJERCICIOS DE CA LCULO II PARA GRADOS DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera

EJERCICIOS DE CA LCULO II PARA GRADOS DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera EJECICIOS E CA LCULO II PAA GAOS E INGENIEI A Elaborados por omingo Pestana y Jose Manuel odrı guez, con Arturo de Pablo y Elena omera 3 3. Integracio n en n Integral mu ltiple. f en los siguientes casos:

Más detalles

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo.

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo. GEOMETRÍA 1. (Junio, 1994) Sin resolver el sistema, determina si la recta x +3y +1= 0 es exterior, secante o tangente a la circunferencia (x 1) +(y ) =1. Razónalo.. (Junio, 1994) Dadas las ecuaciones de

Más detalles

PRÁCTICAS DE CÁLCULO PARA I. QUÍMICA

PRÁCTICAS DE CÁLCULO PARA I. QUÍMICA PRÁCTICS DE CÁLCULO PR I. QUÍMIC Departamento de nálisis Matemático Curso 2005/2006 Práctica 1 Cálculo Diferencial............................... 1 Práctica 2 Cálculo Integral.................................

Más detalles

1 Funciones de Varias Variables

1 Funciones de Varias Variables EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,

Más detalles

Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica

Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica 1. a) Marcar en un eje los puntos a(1);b( 2) y c(4). b) Hallar los puntos simétricos respecto al origen

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. 1 Análisis II Análisis matemático II Matemática 3. 1er. cuatrimestre de 2015 Práctica 1 - urvas, integral de longitud de arco e integrales curvilíneas. urvas Ejercicio 1 1. Probar que x 1 (t) = r cos(2πt),

Más detalles

3 Integración en IR n

3 Integración en IR n a t e a POBLEMAS DE CÁLCULO II t i c a s 1 o Ings. Industrial y de Telecomunicación CUSO 29 21 3 Integración en I n 3.1 Integral múltiple. Problema 3.1 Calcula f en los siguientes casos: Q i) f(x, y) =

Más detalles

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio.

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio. Asignatura: álculo II PRUEBAS DE EVALUAIÓN NOTA: En todos los ejercicios se deberá justificar la respuesta eplicando el procedimiento seguido en la resolución del ejercicio. URSO 010 011 JUNIO URSO 10

Más detalles

Tema 3. GEOMETRIA ANALITICA.

Tema 3. GEOMETRIA ANALITICA. Álgebra lineal. Curso 087-009. Tema. Hoja 1 Tema. GEOMETRIA ANALITICA. 1. Hallar la ecuación de la recta: a) que pase por ( 4, ) y tenga pendiente 1. b) que pase por (0, 5) y tenga pendiente. c) que pase

Más detalles

Cálculo diferencial en varias variables (Curso ) a) Estudiar la continuidad en el origen de las funciones dadas.

Cálculo diferencial en varias variables (Curso ) a) Estudiar la continuidad en el origen de las funciones dadas. CÁLCULO Práctica 4.2 Cálculo diferencial en varias variables (Curso 2017-2018) 1. Sean f, h: IR 2 IR funciones definidas del siguiente modo: x 3 f(x, y) = x 2, (x, y) (0, 0) + y2 a) Estudiar la continuidad

Más detalles

Análisis Matemático II Curso 2018 Práctica introductoria

Análisis Matemático II Curso 2018 Práctica introductoria Análisis Matemático II Curso 018 Práctica introductoria Cónicas - Sus ecuaciones y gráficas 1. Encontrar la forma estándar de cada cónica y graficar. a) x + y 6y = 0 b) x + y 1 = 0 c) x(x + 1) y = 4 d)

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

Análisis Matemático I

Análisis Matemático I Universidad Nacional de La Plata Facultad de Ciencias Exactas Departamento de Matemática Análisis Matemático I Evaluación Final - Agosto de 26. Nombre: Dirección correo electrónico: Ejercicio. Sea f una

Más detalles

1. Hallar la ecuación del plano que pasa por el punto (3, 1, 2) y satisface la condición dada. a) paralelo al plano xy b) perpendicular al eje y

1. Hallar la ecuación del plano que pasa por el punto (3, 1, 2) y satisface la condición dada. a) paralelo al plano xy b) perpendicular al eje y FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 5 1. Hallar la ecuación del plano que

Más detalles

Integral Doble e Integral Triple

Integral Doble e Integral Triple www.cidse.itcr.ac.cr/revistamate Práctica 6 Integral Doble e Integral Triple Cambio de variable con coordenadas polares y coordenadas ciĺındricas. Cálculo Superior Instituto Tecnológico de Costa ica Escuela

Más detalles

Gu ıa Departamento Matem aticas U.V.

Gu ıa Departamento Matem aticas U.V. Universidad de Valparaíso Instituto de Matemáticas Guía de Cálculo en Varias Variables Integración. Sean = [,] [,] {(x,y) : (x,y) < } y f : continua. a) Escriba lafuncióncaracterísticaχ demedianteunafunciónporparte,análogamente

Más detalles

Vectores. b) Hallar la magnitud de cada uno de los vectores P Q, QRy P R. c) Encontrar el vector fijo equivalente a QP.

Vectores. b) Hallar la magnitud de cada uno de los vectores P Q, QRy P R. c) Encontrar el vector fijo equivalente a QP. Wilson Herrera 1 Vectores 1. Dados los puntos P (1, 2), Q( 2, 2) y R(1, 6): a) Representarlos en el plano XOY. b) Hallar la magnitud de cada uno de los vectores P Q, QRy P R. c) Encontrar el vector fijo

Más detalles

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009 ANÁLISIS I MATEMÁTICA ANÁLISIS II (Computación) Práctica 5 - Verano 2009 Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Derivadas de orden superior. Calcular las derivadas

Más detalles

FUNCIONES DE. 1.- Determinar y representar gráficamente el dominio de las siguientes funciones: a) f (x) = x 2 16 b) f (x) = x 2 1.

FUNCIONES DE. 1.- Determinar y representar gráficamente el dominio de las siguientes funciones: a) f (x) = x 2 16 b) f (x) = x 2 1. FUNCIONES DE n EN m Nota: se entenderá log log0 = y ln = log e - Determinar y representar gráficamente el dominio de las siguientes funciones: a) f () = 6 b) f () = c) f () = d) f () = e) f () = + + +

Más detalles

Matemáticas III Andalucía-Tech

Matemáticas III Andalucía-Tech Matemáticas III Andalucía-Tech Tema Optimización en campos escalares Índice 1. Formas cuadráticas y matrices simétricas reales 1. Extremos relativos de un campo escalar 3.1. Polinomio de Taylor de un campo

Más detalles

CURVAS Y SUPERFICIES Hoja 1: Curvas

CURVAS Y SUPERFICIES Hoja 1: Curvas CURVAS Y SUPERFICIES Hoja 1: Curvas 1. Sea σ (t) = (cos t, sen t, t) con t [0, π] y sea f(x, y, z) = x + y + z. Evaluar la integral σ fdσ. (Sol.: π 3 (3 + 4π )).. Sea σ : [0, π/] R 3 la curva σ(t) = (30

Más detalles

CALCULO DIFERENCIAL. GRUPO D

CALCULO DIFERENCIAL. GRUPO D CALCULO DIFERENCIAL. GRUPO D HOJA DE PROBLEMAS 1 1. En este ejercicio se trata de dibujar el siguiente subconjunto de R 3 llamado hiperboloide de una hoja (a, b, c > 0): } V = (x, y, z) R 3 : x a + y b

Más detalles

9. Diferenciación de funciones reales de varias variables reales

9. Diferenciación de funciones reales de varias variables reales 9.2. Extremos 9.2.1. POLINOMIOS DE TAYLOR Polinomios de Taylor y de McLaurin Se llama polinomio de Taylor de orden n 1 de la función f(x, y) en (a, b) al polinomio: f(a, b) f(a, b) n (x, y) = f(a, b) +

Más detalles

Tarea 1 - Vectorial

Tarea 1 - Vectorial Tarea - Vectorial 2050. Part :. - 3.2.. Un cerro se queda en las montañas en la altura de 6 mil metros. El cerro tiene la forma del gráfico de la función z = f(x, y) = x 2 y 2. Observamos que plaquitas

Más detalles

SECCIONES CÓNICAS (1)Determinar y graficar el lugar geométrico de los puntos que equidistan de F(0, 2) y de la recta

SECCIONES CÓNICAS (1)Determinar y graficar el lugar geométrico de los puntos que equidistan de F(0, 2) y de la recta LOS EJERCICIOS DEBEN RESOLVERSE TAMBIÉN USANDO SOFTWARE MATEMÁTICO. LAS ECUACIONES PEDIDAS SON, EN TODOS LOS CASOS, LAS CANÓNICAS Y LAS PARAMÉTRICAS. I) GEOMETRÍA ANALÍTICA EN EL PLANO 1. Determinar y

Más detalles

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones:

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones: FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 7 1. Usando sólo la definición de derivada,

Más detalles

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 3 Geometría del plano y del espacio José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es

Más detalles

Teorema de la Función Implícita

Teorema de la Función Implícita Teorema de la Función Implícita El círculo de radio 1 con centro en el origen, puede representarse implícitamente mediante la ecuación x 2 + y 2 1 ó explícitamente por las ecuaciones y 1 x 2 y y 1 x 2

Más detalles

ETSII Febrero Análisis Matemático.

ETSII Febrero Análisis Matemático. Departamento de Análisis Matemático ETSII Febrero 2000. Análisis Matemático. Problema 1. (1 punto) Calcular los siguientes ites: e x e senx x 0 x senx x π/4 (tgx)tg2x Problema 2. (2 puntos) Considérese

Más detalles

Planificaciones Análisis Matemático II A. Docente responsable: SIRNE RICARDO OSCAR. 1 de 7

Planificaciones Análisis Matemático II A. Docente responsable: SIRNE RICARDO OSCAR. 1 de 7 Planificaciones 6103 - Análisis Matemático II A Docente responsable: SIRNE RICARDO OSCAR 1 de 7 OBJETIVOS * Objetivos específicos de la asignatura - Conocer los fundamentos del cálculo para funciones escalares

Más detalles

EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 2: Cálculo diferencial de una variable

EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 2: Cálculo diferencial de una variable EJERCICIOS DE CÁLCULO I Para Grados en Ingeniería Capítulo 2: Cálculo diferencial de una variable Domingo Pestana Galván José Manuel Rodríguez García Índice 2. Cálculo diferencial de una variable. 2..

Más detalles

Capítulo VI. Diferenciabilidad de funciones de varias variables

Capítulo VI. Diferenciabilidad de funciones de varias variables Capítulo VI Diferenciabilidad de funciones de varias variables La definición de diferenciabilidad para funciones el cociente no tiene sentido, puesto que no está definido, porque el cociente entre el vector

Más detalles

Planificaciones Análisis Matemático II. Docente responsable: SIRNE RICARDO OSCAR. 1 de 7

Planificaciones Análisis Matemático II. Docente responsable: SIRNE RICARDO OSCAR. 1 de 7 Planificaciones 8101 - Análisis Matemático II Docente responsable: SIRNE RICARDO OSCAR 1 de 7 OBJETIVOS * Objetivos específicos de la asignatura - Conocer los fundamentos del cálculo para funciones escalares

Más detalles

1.5. Integral de línea de un campo Vectorial.

1.5. Integral de línea de un campo Vectorial. .5. Integral de línea de un campo Vectorial. Sea F ( xyz,, un campo vectorial continuo sobre R donde F representa un campo de fuerzas aplicado sobre una partícula cuya trayectoria puede ser descrita por

Más detalles

Contenido 1. Integrales Dobles 2. Integrales Triples

Contenido 1. Integrales Dobles 2. Integrales Triples Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................

Más detalles

UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas

UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas a t e a t i c a s PROBLEMAS, CÁLCULO I, er CURSO 2. CÁLCULO DIFERENCIAL DE UNA VARIABLE GRADO EN INGENIERÍA EN:

Más detalles

Ejercicios típicos del segundo parcial

Ejercicios típicos del segundo parcial Ejercicios típicos del segundo parcial El segundo examen parcial consiste en tres ejercicios prácticos y dos teóricos, aunque esta frontera es muy difusa. Por ejemplo, el primer ejercicio de esta serie,

Más detalles

CÁLCULO ELEMENTAL PROBLEMAS. Valor absoluto. Funciones y sus gráficas

CÁLCULO ELEMENTAL PROBLEMAS. Valor absoluto. Funciones y sus gráficas CÁLCULO ELEMENTAL PROBLEMAS Valor absoluto - Resolver las ecuaciones siguientes: (i) 2x 6 = x (ii) x + 8 = 3x 4 2- Resolver la inecuación 2x 3 4 Funciones y sus gráficas 3- Dada f(x) = 2x 2 x, hallar f(

Más detalles

Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 01/02

Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 01/02 Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 0/02 x 2 + y 4. (a) Comprueba que el siguiente límite no existe lim (x,y) (0,0) x 2 + y. 2 (b) Busca una trayectoria a través de la

Más detalles

OCW-Universidad de Málaga, (2014). Bajo licencia. Creative Commons Attribution- NonComercial-ShareAlike 3.

OCW-Universidad de Málaga,  (2014). Bajo licencia. Creative Commons Attribution- NonComercial-ShareAlike 3. OCW-Universidad de Málaga, http://ocw.uma.es (014). Bajo licencia Creative Commons Attribution- NonComercial-ShareAlike 3.0 Spain Matemáticas III Relación de ejercicios Tema 1 Ejercicios Ej. 1 Encuentra

Más detalles

CÁLCULO II Grados en Ingeniería

CÁLCULO II Grados en Ingeniería CÁLCULO II Grados en Ingeniería Domingo Pestana Galván José Manuel Rodríguez García Figuras realizadas con Arturo de Pablo Martínez Capítulo 1. Cálculo diferencial 1.1 Funciones. Límites y continuidad

Más detalles

Integrales Dobles. Hermes Pantoja Carhuavilca. Matematica II. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos

Integrales Dobles. Hermes Pantoja Carhuavilca. Matematica II. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Integrales Dobles Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 76 CONTENIDO Integrales Dobles Introducción

Más detalles

Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) x u + f

Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) x u + f 1 228 Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) z u = f x x u + f y y u z v = f x x v + f y y v z w = f x

Más detalles