APLICACIONES. 1. La siguiente ecuación representa un movimiento sobreamortiguado de un sistema masa resorte:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "APLICACIONES. 1. La siguiente ecuación representa un movimiento sobreamortiguado de un sistema masa resorte:"

Transcripción

1 1 APLICACIONES. 1. La siguiente ecuación representa un movimiento sobreamortiguado de un sistema masa resorte: d d t d dt 0 Donde, es la constante de amortiguamiento, m = es la masa del objeto, m m = 1.5 Kg. que es el valor de la constante del resorte por unidad de masa. Si tenemos = 4 los datos tabulados a continuación t (t) Utilice las fórmulas de diferenciación numérica de maor precisión posible, evaluadas en el dato adecuado para determinar el valor de. NOTA: el valor de es constante, así que debe ser el mismo si se evalúa en cualquier punto, pero tenga en cuenta que al tratarse de un método numérico se puede presentar pequeñas diferencias si es evaluada en datos diferentes.. La curvatura de una curva está dada por : Use la fórmula de diferenciación numérica de mejor precisión para aproimar el valor de K(1) con h=0.05, si: t t 1 k ( t) d d d d dt dt dt dt d d dt dt. Según el análisis cinemático de del movimiento curvilíneo de una partícula en el plano, el radio de curvatura en cualquier punto de la traectoria se calcula a partir de 1

2 Utilice las fórmulas de diferenciación numérica para aproimar ρ en la posición en la cual se pueda aplicar la de maor eactitud posible para los siguientes datos Se tomó la posición de un avión caza sobre un portaviones durante el aterrizaje: t (s) (m) Use la fórmula de diferenciación numérica de maor precisión posible para determinar: a. La velocidad (d/dt) en =0 m. b. La aceleración (dv/dt) en =5 m. 5. Un aeroplano es seguido por un radar, cada segundo se registran los datos siguientes en coordenadas polares θ r. t, s θ, rad 0,75 0,7 0,7 0,68 0,67 0,66 r, pies Emplee la fórmula de diferenciación numérica compuesta de maor eactitud posible para encontrar la epresión vctorial de la velocidad ( ) la aceleración ( ) a los 10 segundos. La velocidad la aceleración en coordenadas polares están dadas por: = + = + ( + ) 6. La le de Farada caracteriza la caída de voltaje a través de un inductor como = Donde V L = caída de voltaje (V), L = inductancia (en henrios, = 1. ), i = corriente ( A ), t = tiempo ( s ). Determine la caída de voltaje, como una función del tiempo a partir de los siguientes datos, para una inductancia de 4 H.

3 t 0 0,1 0, 0, 0,5 0,7 i 0 0,15 0, 0,55 0,8 1,9 7. La forma de un estacionamiento es irregular, su longitud de oeste a este (izquierda a derecha) es de 40 m. En el lado oeste la anchura es de 150 m en el lado este es de 175. A 40, 80, 10, 160, 00 metros del lado oeste las anchuras son de 154, 158, 165, metros respectivamente. Utilice la Fórmula de integración numérica compuesta de mejor aproimación posible para determinar el área del estacionamiento. 8. Un flujo que se mueve a través de un tubo de 1 pulgadas de diámetro tiene el siguiente perfil de velocidades: r 0 1,5 4 4,5 5 5,5 6 u,9,78,61,6 1,78 1,40 0,67 0,5 0 Encuentre la tasa volumétrica del flujo Q, usando la relación Q = π r u dr Donde r es el radio aial del tubo, R es el radio del tubo u la velocidad. Utilice la combinación adecuada de las fórmulas de Newton Cotes cerradas para aproimar el valor de Q. 9. Para hallar la fuerza ejercida por el agua contra un lado de una placa en forma de triangulo isósceles con base de 6 pies altura de pies que se sumerge verticalmente con la base hacia arriba, pies bajo la superficie del agua ha que resolver la siguiente integral F = 6,4 (5 ) d Utilice la fórmula adecuada de integración numérica compuesta para aproimar el valor de la fuerza usando los siguientes datos: 0 0,5 1 1,5 1,5,5,5

4 4 10. La siguiente fórmula sirve para determinar el trabajo mecánico cuando la fuerza el ángulo entre la fuerza la dirección del movimiento varían en función de la posición: = ()[()]. Utilice la combinación adecuada de fórmulas de integración cerradas de Newton Cotes para determinar el trabajo W, si se tiene que: () = () = ( 10 ) F() () 11. Un tanque cónico invertido de 5 pies de radio 10 pies de altura se llena hasta pies del tope con aceite de oliva que pesa 57 lb/pie. Utilice la fórmula de Newton Cotes Cerrada apropiada para aproimar el valor del trabajo W que se requiere para bombear el aceite hasta el borde del tanque sabiendo que = 57 4 (10 ) ( ), pies F(), lb 1. Un eje circular tiene un diámetro d (m) que varía con la posición aial (m) según d 0.0(1 ) / e 0 m Una carga aial P de N se aplica en un etremo del eje, cuo E = *106 N/m. la elongación aial del eje está dada por: P / E 1/ A d d A 4

5 5 Calcular aplicando la regla de integración compuesta de maor eactitud posible con h=0. 1. El radio de un elipsoide varía con la posición aial según: r , 0.5,0.5. Hallar su área superficial utilizando la fórmula de integración compuesta más eacta posible un h = 0., si está dada por 0.5 dr s 4r 0.5 d 14. Una mujer empleo 10 min para manejar desde su casa hasta el supermercado. en cada intervalo de 1 min observó en el velocímetro los valores mostrados en la siguiente tabla, donde v(t) Km/h fue la lectura en el velocímetro a los t min después de que la mujer salió de su casa. utilice la fórmula de integración compuesta óptima para aproimar la distancia desde la casa de la mujer hasta el supermercado. d v(t) t

Respuestas al desarrollo de la competencia del capítulo 3

Respuestas al desarrollo de la competencia del capítulo 3 Respuestas Respuestas al desarrollo de la competencia del capítulo ÁREA NETA CON SIGNO En los problemas del al, dibuja la región delimitada por la gráfica de la función dada en el intervalo indicado calcula

Más detalles

FISVIR Física virtual al alcance de todos TALLER DE EJERCICIOS PARA PRACTICAR OBJETOS VIRTUALES DE APRENDIZAJE OVA s OTRAS TAREAS

FISVIR Física virtual al alcance de todos TALLER DE EJERCICIOS PARA PRACTICAR OBJETOS VIRTUALES DE APRENDIZAJE OVA s OTRAS TAREAS FISVIR Física virtual al alcance de todos TALLER DE EJERCICIOS PARA PRACTICAR OBJETOS VIRTUALES DE APRENDIZAJE OVA s OTRAS TAREAS Preguntas. 1. Cuál es la distancia total recorrida por un cuerpo que ejecuta

Más detalles

( t) MATEMATICAS. Respuesta No. 4 Hoja 1 de 3

( t) MATEMATICAS. Respuesta No. 4 Hoja 1 de 3 MATEMATICAS Pregunta No. 4 Tiempo: 5 min. Un proyectil es disparado con una velocidad desconocida, inicialmente con un ángulo de 3º respecto de la horizontal. Si se sabe que choca más arriba de la mitad

Más detalles

Posición de un Cuerpo. Elementos para la descripción del movimiento. Vector de Posición y Vector Desplazamiento

Posición de un Cuerpo. Elementos para la descripción del movimiento. Vector de Posición y Vector Desplazamiento 1 Bárbara Cánovas Conesa 637 70 113 www.clasesalacarta.com 1 Cinemática Posición de un Cuerpo Coordenadas Cartesianas Coordenadas Polares Vector de Posición (,, z) r, q r Elementos para la descripción

Más detalles

UNIDADES TECNOLÓGICAS DE SANTANDER DEPARTAMENTO DE CIENCIAS BÁSICAS CÁLCULO MULTIVARIABLE Primer Parcial

UNIDADES TECNOLÓGICAS DE SANTANDER DEPARTAMENTO DE CIENCIAS BÁSICAS CÁLCULO MULTIVARIABLE Primer Parcial Primer Parcial Identifica los criterios de convergencia para determinar si una serie es convergente o no. 1,2 Representa una función mediante una serie de potencias estableciendo el intervalo de convergencia.

Más detalles

850 CAPÍTULO 12 Funciones vectoriales

850 CAPÍTULO 12 Funciones vectoriales 850 CAPÍTULO Funciones vectoriales Eploración de velocidad Considérese el círculo dado por Usar una herramienta de graficación en modo paramétrico para repretar este círculo para varios valores de. Cómo

Más detalles

MODELO 1 EXAMEN DE CÁLCULO DIFERENCIAL. siendo a un nº real

MODELO 1 EXAMEN DE CÁLCULO DIFERENCIAL. siendo a un nº real MODELO 1 EXAMEN DE CÁLCULO DIFERENCIAL 1. Escribe la ecuación de la recta normal a la curva de ecuación: arcsen abscisa 1. Haz un estudio de todas las asíntotas de la función: 1 e f ( ). Halla los valores

Más detalles

Respuestas a la evaluación de la competencia del capítulo 3

Respuestas a la evaluación de la competencia del capítulo 3 Respuestas Respuestas a la evaluación de la competencia del capítulo En los ejercicios del al 7, dibuja la región que queda comprendida bajo la gráfica de la función dada en el intervalo indicado calcula

Más detalles

Acústica y vibraciones mecánicas

Acústica y vibraciones mecánicas Sistemas de un grado de libertar libre Ecuación de movimiento de un sistema masa-resorte Considerando el sistema de la figura y por la aplicación dela segunda ley de Newton o principio de conservación

Más detalles

UNIDAD II. 2 Cinemática. 2.1 Movimiento rectilíneo. 2.2 Movimiento bajo aceleración constante. 2.3 Movimiento circular

UNIDAD II. 2 Cinemática. 2.1 Movimiento rectilíneo. 2.2 Movimiento bajo aceleración constante. 2.3 Movimiento circular 42 UNIDAD II 2 Cinemática 2.1 Movimiento rectilíneo 2.2 Movimiento bajo aceleración constante 2.3 Movimiento circular 2.4 Movimiento curvilíneo general 43 UNIDAD II 2 CINEMATICA. La Cinemática (del griego

Más detalles

PRIMERA EVALUACIÓN. FÍSICA Julio 3 del 2015 (08h30-10h30)

PRIMERA EVALUACIÓN. FÍSICA Julio 3 del 2015 (08h30-10h30) PRIMERA EVALUACIÓN DE FÍSICA Julio 3 del 2015 (08h30-10h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE: FIRMA: VERSION

Más detalles

TEMA 4: Movimiento circular y gravitación universal

TEMA 4: Movimiento circular y gravitación universal Física y Química Curso 2011/12 4º E.S.O. TEMA 4: Movimiento circular y gravitación universal 1.- Contesta si es verdadero o falso: a) La velocidad lineal es la misma para todos los puntos de la circunferencia

Más detalles

3. Cinemática de la partícula: Sistemas de referencia

3. Cinemática de la partícula: Sistemas de referencia 3. Cinemática de la partícula: Sistemas de referencia 3.1.- Cinemática de la partícula 3.2.- Coordenadas intrínsecas y polares 3.3.- Algunos casos particulares de especial interés 3.1.- Cinemática de la

Más detalles

P. A. U. FÍSICA Madrid Septiembre 2005

P. A. U. FÍSICA Madrid Septiembre 2005 P. A. U. FÍSICA Madrid Septiembre 2005 CUESTIÓN 1.- Se tienen dos muelles de constantes elásticas k 1 y k 2 en cuyos extremos se disponen dos masas m 1 y m 2 respectivamente, siendo m 1 < m 2. Al oscilar,

Más detalles

Movimiento curvilíneo. Magnitudes cinemáticas

Movimiento curvilíneo. Magnitudes cinemáticas Movimiento curvilíneo. Magnitudes cinemáticas Movimiento curvilíneo Supongamos que el movimiento tiene lugar en el plano XY, Situamos un origen, y unos ejes, y representamos la trayectoria del móvil, es

Más detalles

BLOQUE 1. CINEMÁTICA.

BLOQUE 1. CINEMÁTICA. BLOQUE 1. CINEMÁTICA. Movimiento Rectilíneo Uniforme 1. Un coche inicia un viaje de 495 km a las ocho y media de la mañana con una velocidad media de 90 km/h. A qué hora llegará a su destino? 2. Un deportista

Más detalles

ECUACIONES DEL MOVIMIENTO: COORDENADAS RECTANGULARES

ECUACIONES DEL MOVIMIENTO: COORDENADAS RECTANGULARES ECUACIONES DEL MOVIMIENTO: COORDENADAS RECTANGULARES Objetivos del día: Los estudiantes serán capaces de: 1. Aplicar la segunda ley de Newton para determinar las fuerzas y las aceleraciones para partículas

Más detalles

Física Ondas 10/11/06

Física Ondas 10/11/06 Física Ondas 10/11/06 I.E.S. Elviña DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre Problemas [5 Ptos.] 1. Para el proyectil de la figura, calcula: (a) El vector velocidad con que se incrusta en el suelo. [1]

Más detalles

EJERCICIOS GRUPO 1 DERIVADAS. 1. Usando la definición calcule la derivada de las siguientes funciones.

EJERCICIOS GRUPO 1 DERIVADAS. 1. Usando la definición calcule la derivada de las siguientes funciones. INSTRUCCIÓN. Resuelve los problemas propuestos del modo siguiente: primero en forma individual, luego en forma grupal y por último preséntalo en forma grupal en un máimo de cinco (05) integrantes. EJERCICIOS

Más detalles

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica OSCILACIONES - PROBLEMAS RESUELTOS PROBLEMA Nº 1 Un cuerpo oscila con movimiento armónico simple a lo largo del eje x.

Más detalles

UNIDAD IV. Ecuaciones diferenciales Lineales

UNIDAD IV. Ecuaciones diferenciales Lineales UNIDAD IV Ecuaciones diferenciales Lineales 24 UNIDAD 4 0, ECUACIONES DIFERENCIALES LINEALES Se llama ecuación lineal de primer orden a la que es lineal con respecto a la función incógnita y su derivada.

Más detalles

Aplicaciones de la derivada (VI)

Aplicaciones de la derivada (VI) UNIVERSIDAD DEL CAUCA Facultad de Ciencias Naturales, Eactas de la Educación Departamento de Matemáticas CÁLCULO I Ejercicios Aplicaciones de la derivada (VI). Determine cuál de las tres funciones siguientes

Más detalles

Cinemática del Punto. e Problema 2.3 de [1]

Cinemática del Punto. e Problema 2.3 de [1] Capítulo 2 Cinemática del Punto Problema 2.1 Se considera una esfera de radio R centro O. Sean ABC las intersecciones de las esfera con tres ejes rectangulares que pasan por O. Un punto M está situado

Más detalles

Física (ENCB 2005 etapa nacional escrito)

Física (ENCB 2005 etapa nacional escrito) 1 ( 25) Física (ENCB 2005 etapa nacional escrito) Aplicando análisis dimensional, determine la Puntos: 1 ecuación correcta del momento respecto al origen en la siguiente figura. W = Fuerza Total de la

Más detalles

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS - ESCUELA DE FÍSICA FÍSICA MECÁNICA (12) TALLER SOBRE TRABAJO Y ENERGÍ A DE LA PARTÍ CULA Preparado por: Diego Luis Aristizábal Ramírez

Más detalles

I. Para cada una de las siguientes funciones calcular la derivada del orden pedido y simplificarlas. x 8(4 3 x ) x.. Sol. ). Sol.

I. Para cada una de las siguientes funciones calcular la derivada del orden pedido y simplificarlas. x 8(4 3 x ) x.. Sol. ). Sol. UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE FARMACIA CATEDRA DE MATEMATICA-FISICA GUÍA N 5 : Derivadas n-ésimas y aplicaciones de la derivada I. Para cada una de las siguientes funciones calcular la derivada

Más detalles

Sol: r=(3/2 t2-2t+3)i+(2t3-5t-2)j+(2t2-t+1)k;a=3i+12tj+4k;at=27/ 11 ; an= 1130/11 Sol: 75

Sol: r=(3/2 t2-2t+3)i+(2t3-5t-2)j+(2t2-t+1)k;a=3i+12tj+4k;at=27/ 11 ; an= 1130/11 Sol: 75 CINEMÁTICA 1.- El vector velocidad del movimiento de una partícula viene dado por v = (3t - 2) i + (6 t 2-5) j + (4 t - 1) k y el vector de posición en el instante inicial es: r 0 = 3 i - 2 j + k. Calcular:

Más detalles

ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω

ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω Suponiendo un cuerpo rígido que gira con velocidad angular ω alrededor del eje Z que permanece fijo al cuerpo. dl = ( dm R 2

Más detalles

A continuación se presentan algunos ejercicios resueltos, paso a paso, extraídos del libro Aplicaciones Físicas de la Integral Definida:

A continuación se presentan algunos ejercicios resueltos, paso a paso, extraídos del libro Aplicaciones Físicas de la Integral Definida: A continuación se presentan algunos ejercicios resueltos, paso a paso, etraídos del libro : EJEMPLO Sea R la región definida por (, ) R = /. Se tiene una placa con la forma de la región R sumergida verticalmente

Más detalles

1- Una carga puntual de 8,0 C se coloca a una distancia de 6,0 cm de una segunda carga puntual de -4,0 C. Qué fuerza se ejerce sobre cada carga?

1- Una carga puntual de 8,0 C se coloca a una distancia de 6,0 cm de una segunda carga puntual de -4,0 C. Qué fuerza se ejerce sobre cada carga? Repartido de Ejercicios Electrostática Física 6º Medicina Segundo Semestre 2018 Masa del electrón=9,31 x 10-31 kg; Carga elemental=1,6 x 10-19 C; Masa del protón = 1,67 x 10-27 kg; e 0 = 8,85 x 10-12 C

Más detalles

Cálculo Integral Enero 2015

Cálculo Integral Enero 2015 Cálculo Integral Enero 015 Laboratorio # 1 Antiderivadas I.- Halle las siguientes integrales indefinidas. 10) ) 6) 1 1 1 1 16) 1 8) 9) 18) II.- Calcule 1.. 1 Cálculo Integral Enero 015 Laboratorio # Aplicaciones

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V _sN. CURSO: Matemática Intermedia 3

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V _sN. CURSO: Matemática Intermedia 3 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-114-2-V-2-00-2017_sN CURSO: Matemática Intermedia 3 SEMESTRE: Segundo CÓDIGO DEL CURSO: 114 TIPO DE EXAMEN:

Más detalles

Centro de Preparación de Ingenieros

Centro de Preparación de Ingenieros C) Ríos Rosas nº 34, 8003 Madrid Teléfono: 91 546139-915593300 www.academiacpi.es Curso: 017-018 Tema 1: ANÁLISIS DIMENSIONAL VÍDEO 1: (1.1, 1., 1.3.) ECUACIÓN DE DIMENSIONES (Duración 9,40 m) PROBLEMA

Más detalles

Trabajo Práctico 1b - Dinámica del punto

Trabajo Práctico 1b - Dinámica del punto Facultad de Ingeniería - U.N.L.P. Mecánica Racional - Curso 2017 / 2 semestre Trabajo Práctico 1b - Dinámica del punto Problema 1. Obtener las ecuaciones del movimiento vertical ascendente y descendente

Más detalles

Soluciones Analíticas de Navier Stokes.

Soluciones Analíticas de Navier Stokes. 1 Soluciones Analíticas de Navier Stokes. Problema 1 Un fluido newtoniano fluye en el huelgo formado por dos placas horizontales. La placa superior se mueve con velocidad u w, la inferior está en reposo.

Más detalles

PUCMM FIS 101 Prof. Remigia cabrera Genao 2014

PUCMM FIS 101 Prof. Remigia cabrera Genao 2014 Posición (m) Unidad II. Cinemática Rectilínea PROBLEMAS PARA RESOLVER EN LA CLASE 1. Para el móvil del gráfico determine lo que se le pide abajo, si se mueve en una recta nortesur: 7.00 6.00 5.00 4.00

Más detalles

PROBLEMAS PROPUESTOS

PROBLEMAS PROPUESTOS ROBLEMAS ROUESTOS 1.- El movimiento de la partícula respecto a tierra está definido mediante las ecuaciones: x (t) = 8 t + 4 t y (t) = 16 t + 8 t 6 determinar: a) El vector velocidad y el vector aceleración

Más detalles

UNIVERSIDAD TECNOLÓGICA DE PUEBLA

UNIVERSIDAD TECNOLÓGICA DE PUEBLA PRÁCTICA NUMERO 1 Identificar los campos numéricos, con sus operaciones y propiedades para aplicarlos en la resolución de problemas de aplicación a la ingeniería. RESUELVE LAS SIGUIENTES SITUACIONES, APLICANDO

Más detalles

Magnitudes y Unidades. Cálculo Vectorial.

Magnitudes y Unidades. Cálculo Vectorial. Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades

Más detalles

Física III Medio (matemáticos) Profesor: Patricio de Jourdan H.

Física III Medio (matemáticos) Profesor: Patricio de Jourdan H. Física III Medio (matemáticos) Profesor: Patricio de Jourdan H. pjourdan@colegiosdiaconales.cl Por qué estudiar física? https://www.youtube.com/watch?v=ruij3 wrxv3k Newton qué vamos a ver este año?

Más detalles

I. INTRODUCCIÓN MECANICA MECANICA DE CUERPO RIGIDOS MECÁNICA DE CUERPO DEFORMABLE MECÁNICA DE FLUIDOS

I. INTRODUCCIÓN MECANICA MECANICA DE CUERPO RIGIDOS MECÁNICA DE CUERPO DEFORMABLE MECÁNICA DE FLUIDOS I. INTRODUCCIÓN MECANICA MECANICA DE CUERPO RIGIDOS MECÁNICA DE CUERPO DEFORMABLE MECÁNICA DE FLUIDOS ESTATICA DINAMICA CINEMATICA CINETICA II. NOCION DE CINEMATICA La cinemática (del griegoκινεω, kineo,

Más detalles

CINEMÁTICA RECTILÍNEA: MOVIMIENTO ERRÁTICO

CINEMÁTICA RECTILÍNEA: MOVIMIENTO ERRÁTICO Objetivos de hoy: CINEMÁTICA RECTILÍNEA: MOVIMIENTO ERRÁTICO Los estudiantes serán capaces de: 1. Determinar la posición, velocidad y aceleración de una partícula utilizando gráficas. Actividades en clase:

Más detalles

TEMA: MOVIMIENTO ARMÓNICO SIMPLE

TEMA: MOVIMIENTO ARMÓNICO SIMPLE TEMA: MOVIMIENTO ARMÓNICO SIMPLE C-J-04 a) Al colgar una masa en el extremo de un muelle en posición vertical, éste se desplaza 5 cm; de qué magnitudes del sistema depende la relación entre dicho desplazamiento

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

Física Examen final 15/04/11 OPCIÓN A

Física Examen final 15/04/11 OPCIÓN A Física Examen final 15/04/11 I.E.S. Elviña DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre OPCIÓN A [6 Ptos.] 1. Una masa de 0,100 kg unida a un resorte de masa despreciable realiza oscilaciones alrededor

Más detalles

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS - ESCUELA DE FÍSICA FÍSICA MECÁNICA (1) TALLER SOBRE TRABAJO Y ENERGÍA DE LA PARTÍCULA Preparado por: Diego Luis Aristizábal Ramírez

Más detalles

Como la cuerda entre A y B es inextensible lo que desciende A es lo mismo que asciende B, aplicando el teorema al bloque B se tiene.

Como la cuerda entre A y B es inextensible lo que desciende A es lo mismo que asciende B, aplicando el teorema al bloque B se tiene. EJERCICIOS RESUELTOS POR EL TEOREM EL TRJO Y L ENERGÍ. 1. etermine la velocidad del bloque de 0 kg después de ser liberado del reposo y que se mueve m hacia abajo por el plano. El bloque tiene una masa

Más detalles

Septiembre Pregunta 2B.- a) b) Junio Pregunta 2B.- a) b) Modelo Pregunta 2A.- a) b) Septiembre Pregunta 1A.

Septiembre Pregunta 2B.- a) b) Junio Pregunta 2B.- a) b) Modelo Pregunta 2A.- a) b) Septiembre Pregunta 1A. Septiembre 2013. Pregunta 2B.- La velocidad de una partícula que describe un movimiento armónico simple alcanza un valor máximo de 40 cm s 1. El periodo de oscilación es de 2,5 s. Calcule: a) La amplitud

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-07-2-M-2-00-202 CURSO: Matemática Intermedia I SEMESTRE: Segundo CÓDIGO DEL CURSO: 07 TIPO DE EXAMEN: Segundo

Más detalles

Mecánica I. Otoño de 2017

Mecánica I. Otoño de 2017 Mecánica I. Otoño de 2017 Tarea 1. Introducción a la derivada. Desigualdades. Resuelva las siguientes igualdades y desigualdades. 1. 2 0 2. 3 5 0 3. ( a)( b) 0 4. 2 < 1 5. 2 1 6. 2 < 7. ( 1)( + 1) 3 1

Más detalles

Calcular el peso específico, el volumen específico y la densidad del metano a 38 C y 8.50 kg/cm2 de presión absoluta.

Calcular el peso específico, el volumen específico y la densidad del metano a 38 C y 8.50 kg/cm2 de presión absoluta. Calcular el peso específico, el volumen específico y la densidad del metano a 38 C y 8.50 kg/cm2 de presión absoluta. í 8.5 10 53273 38 5.16 í 1 1 0.194 5.16 5.16 0.527 9.81 Si 6 m3 de un aceite pesan

Más detalles

Ejercicios propuestos Cálculo 20. Sem-A10

Ejercicios propuestos Cálculo 20. Sem-A10 Ejercicios propuestos Cálculo 0. Sem-A10 Prof. José Luis Herrera 1. Dibuje la gráfica de la función f para la cual f(0) = 0, f (0) = 3, f (1) = 0 y f () = 1.. Dibuje la gráfica de la función g para la

Más detalles

Las funciones son relaciones entre dos o más variables expresadas en una ecuación algebraica.

Las funciones son relaciones entre dos o más variables expresadas en una ecuación algebraica. FUNCIONES Y GRÁFICAS Las funciones son relaciones entre dos o más variables epresadas en una ecuación algebraica. or ejemplo, la epresión relaciona la variable con la variable mediante una regla de correspondencia

Más detalles

Ejercicio = 216,65 K; P 0. /S para resolver el problema. SOLUCIÓN: Condición de vuelo: M 0

Ejercicio = 216,65 K; P 0. /S para resolver el problema. SOLUCIÓN: Condición de vuelo: M 0 Ejercicio Calcular el exceso de potencia específica y la relación empuje/peso que tiene que tener un avión comercial para que en condiciones de crucero: M 0 = 0,85; a = 11000 m (T 0 = 216,65 K; P 0 = 22,6345

Más detalles

Fluidos. Repaso. Problemas.

Fluidos. Repaso. Problemas. Fluidos. Repaso. Problemas. Resumen: Fluidos. 1. La presión en un fluido es la fuerza por unidad de área que un fluido ejerce sobre un superficie. Se mide: 1 pascal = 1 newton /metro 2 2. La presión en

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERIA P.A FACULTAD DE INGENIERIA MECANICA 08/07/2016 DACIBAHCC EXAMEN FINAL DE METODOS NUMERICOS (MB536)

UNIVERSIDAD NACIONAL DE INGENIERIA P.A FACULTAD DE INGENIERIA MECANICA 08/07/2016 DACIBAHCC EXAMEN FINAL DE METODOS NUMERICOS (MB536) UNIVERSIDAD NACIONAL DE INENIERIA P.A. 06- FACULTAD DE INENIERIA MECANICA 08/07/06 EXAMEN FINAL DE METODOS NUMERICOS (MB536) DURACION: 0 MINUTOS SOLO SE PERMITE EL USO DE UNA HOA DE FORMULARIO A ESCRIBA

Más detalles

TEMA 2. CINEMÁTICA OBJETIVOS

TEMA 2. CINEMÁTICA OBJETIVOS OBJETIVOS Definir y relacionar las variables que describen el movimiento de una partícula (desplazamiento, velocidad y aceleración). Justificar la necesidad del carácter vectorial de las variables cinemáticas.

Más detalles

ECUACIONES DIFERENCIALES LINEALES DE SEGUNDO ORDEN

ECUACIONES DIFERENCIALES LINEALES DE SEGUNDO ORDEN ECUACIONES DIFERENCIALES LINEALES DE SEGUNDO ORDEN Movimiento Libre No Amortiguado Una de las aplicaciones de las ecuaciones diferenciales de segundo orden es la resolución de problemas de movimiento armónico

Más detalles

TRABAJO DE MATEMÁTICAS A 4º ESO

TRABAJO DE MATEMÁTICAS A 4º ESO TRABAJO DE MATEMÁTICAS A º ESO Esta serie de ejercicios te pueden audar a recuperar la agnatura de Matemáticas de º de ESO. Si necetas más ejercicios o empezar por un nivel más bajo porque te resulten

Más detalles

Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales

Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales 3. Cinemática Cinemática Describe el movimiento sin atender a las causas que lo producen Utilizaremos partículas puntuales Una partícula puntual es un objeto con masa, pero con dimensiones infinitesimales

Más detalles

Tema 4: Movimiento en 2D y 3D

Tema 4: Movimiento en 2D y 3D Tema 4: Movimiento en 2D y 3D FISICA I, 1º Grado en Ingeniería Electrónica, Robótica y Mecatrónica Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería Universidad de Sevilla Índice

Más detalles

INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS. 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2.

INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS. 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2. INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2. 1 1 4, 0 1 a.- (, ) = 2 1 4, 1 2 2 1 < 3, 0 < 1 b.- (, ) = 1 1 < 3, 1 2 3 3 4,

Más detalles

a) Analice la continuidad en (1,0). E1) Dada F : IR 2 π g : D IR 2 I R 2 2 2

a) Analice la continuidad en (1,0). E1) Dada F : IR 2 π g : D IR 2 I R 2 2 2 Ejemplos de parcial de Análisis Matemático II Los ítems E1, E, E3 E4 corresponden a la parte práctica Los ítems T1 T son teóricos (sólo para promoción) T1) Sea F : IR IR diferenciable tal que F(,) 00 =

Más detalles

FACULTAD DE INGENIERÍA CIVILY ARQUITECTURA TRABAJO FINAL DE FÍSICA 2013-II

FACULTAD DE INGENIERÍA CIVILY ARQUITECTURA TRABAJO FINAL DE FÍSICA 2013-II FACULTAD DE INGENIERÍA CIVILY ARQUITECTURA TRABAJO FINAL DE FÍSICA 2013-II EL PRESENTE TRABAJO SE DESARROLLARÁ EN ESTAS HOJAS CON EL RESPECTIVO PROCEDIMIENTO Y PRESENTADO CORRECTAMENTE EL DÍA DEL EXAMEN

Más detalles

ECUACIONES DIMENSIONALES

ECUACIONES DIMENSIONALES ECUACIONES DIMENSIONALES 1. En la expresión x = k v n / a, x = distancia, v = velocidad, a = aceleración y k es una constante adimensional. Cuánto vale n para que la expresión sea dimensionalmente homogénea?

Más detalles

2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima.

2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima. cos() - e + a. [04] [ET-A] Sabiendo que lim 0 sen() es finito, calcula a y el valor del límte.. [04] [ET-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima..

Más detalles

FACULTAD DE INGENIERÍA - DEPARTAMENTO DE FÍSICA FÍSICA II-2018 ESPECIALIDADES: BIOINGENIERÍA-CIVIL-QUÍMICA-ALIMENTOS

FACULTAD DE INGENIERÍA - DEPARTAMENTO DE FÍSICA FÍSICA II-2018 ESPECIALIDADES: BIOINGENIERÍA-CIVIL-QUÍMICA-ALIMENTOS FACULTAD DE INGENIERÍA - DEPARTAMENTO DE FÍSICA FÍSICA II-018 ESPECIALIDADES: IOINGENIERÍA-CIVIL-QUÍMICA-ALIMENTOS GUÍA DE PROLEMAS PROPUESTOS - MAGNETISMO Problema Nº 1 Un protón (q = 1,6 10-19 C, m =

Más detalles

Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES. Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile

Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES. Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 4: Mecánica de fluidos Martes 25 de Septiembre, 2007

Más detalles

1) ( ) 2 ( 1) 2) ( ) ( 2 )( ) 3) ( ) 4 4) ( ) = 8 5) ( ) = 4 6) ( ) = 4. 6 x

1) ( ) 2 ( 1) 2) ( ) ( 2 )( ) 3) ( ) 4 4) ( ) = 8 5) ( ) = 4 6) ( ) = 4. 6 x MATEMÁTICA II (MECÁNICA) EXAMEN II I PARTE: APLICAR EL CRITERIO DE LA PRIMERA DERIVADA A LAS SIGUIENTES FUNCIONES: Determinar: a.) Intervalos donde la función Crece b.) Intervalos donde la función Decrece.

Más detalles

Universidad San Sebastián Facultad de Ingeniería y Tecnología Guía 1.Física para Ingenieros. Unidades.

Universidad San Sebastián Facultad de Ingeniería y Tecnología Guía 1.Física para Ingenieros. Unidades. Universidad San Sebastián Facultad de Ingeniería y Tecnología Guía 1.Física para Ingenieros. Unidades. 1. Dos móviles se desplazan por una superficie en línea recta, el primero recorre 3x10 5 cm en un

Más detalles

MOVIMIENTO RECTILÍNEO. CINEMÁTICA

MOVIMIENTO RECTILÍNEO. CINEMÁTICA Serie de ejercicios de Cinemática y Dinámica MOVIMIENTO RECTILÍNEO. CINEMÁTICA 1. Una partícula se mueve en línea recta de acuerdo con la ecuación x = 4t 3 + 2t + 5, donde x está en ft y t en s. a) Determine

Más detalles

Docente: Angel Arrieta Jiménez

Docente: Angel Arrieta Jiménez CINEMÁTICA DE UNA PARTÍCULA EN DOS DIMENSIONES EJERCICIOS DE MOVIMIENTO CIRCULAR 1. En el ciclo de centrifugado de una maquina lavadora, el tubo de 0.3m de radio gira a una tasa constante de 630 r.p.m.

Más detalles

Física Aplicada a Farmacia. Curso º parcial 20/10/2015. T (s) DT = 2sT 0,02 0,015 0,011 0,011

Física Aplicada a Farmacia. Curso º parcial 20/10/2015. T (s) DT = 2sT 0,02 0,015 0,011 0,011 Problema. Experimental (3 p) En una práctica de física se ha medido el periodo de un péndulo simple para cuatro longitudes diferentes. Estas medidas aparecen en la tabla adjunta, conteniendo la segunda

Más detalles

FÍSICA GENERAL. Cursada Física Gral

FÍSICA GENERAL. Cursada Física Gral FÍSICA GENERAL Cursada 17 Física Gral - 17 1 MEDICIÓN UNIDADES FUNDAMENTALES Sistema Internacional (SI) Tiempo Distancia (longitud, espacio) segundo (otros: hora, día, minuto, ) metro (otros: milla, kilómetro,

Más detalles

5) Discute la existencia de los límites siguientes y calcula su valor cuando sea posible: x 2 3. x 1 x 1

5) Discute la existencia de los límites siguientes y calcula su valor cuando sea posible: x 2 3. x 1 x 1 Matemáticas I Hoja 6: Derivadas e integración de funciones reales de una variable real Grado en Ingeniería Química Curso 08/09 ) Se considera la función f() = 3 3 9 + en el intervalo cerrado [, 6]. Cuáles

Más detalles

Capítulo 1. Propiedades de los fluidos y definiciones. - Problemas resueltos -

Capítulo 1. Propiedades de los fluidos y definiciones. - Problemas resueltos - Capítulo 1 Propiedades de los fluidos y definiciones - resueltos - Propiedades de los fluidos y definiciones Ejemplo 1.1: Densidad, gravedad específica y masa de aire en un cuarto. Determine la densidad,

Más detalles

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS.

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS. UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS. Cálculo III, Examen Final. Semestre Primavera 1 Tiempo: 11 min. Problema 1 [1,5 puntos] La curvatura de una trayectoria

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS PRUEBA ESPECÍFICA

PRUEBA DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS PRUEBA ESPECÍFICA PRUEBA DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 5 AÑOS FÍSICA 1.- Cuál es el período de un péndulo simple de 1 m de longitud? a) 4 s b) 8 s c) s d) 6 s.- Un cuerpo de 15 kg se deja caer por un plano

Más detalles

Ejercicios. Movimiento horizontal

Ejercicios. Movimiento horizontal U.E.C. Agustiniano Cristo Rey Cátedra de Física. Cuarto año C de Bachillerato Prof.: Rosa Fernández Guía orientada a los temas más importantes para la prueba de revisión Ejercicios Movimiento horizontal

Más detalles

PRIMERA EVALUACIÓN. FÍSICA Julio 3 del 2015 (11h30-13h30)

PRIMERA EVALUACIÓN. FÍSICA Julio 3 del 2015 (11h30-13h30) PRIMERA EVALUACIÓN DE FÍSICA Julio 3 del 2015 (11h30-13h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE: FIRMA: VERSION

Más detalles

Física Ciclo Dos Ed Media Capacitación 2000 MOVIMIENTO ARMÓNICO SIMPLE (M.A.S)

Física Ciclo Dos Ed Media Capacitación 2000 MOVIMIENTO ARMÓNICO SIMPLE (M.A.S) MOVIMIENTO ARMÓNICO SIMPLE (M.A.S) Movimiento Armónico Simple es aquel que en la aceleración está siempre apuntando hacia la posición del equilibrio y es directamente proporcional al desplazamiento. También

Más detalles

x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.

x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1. . [0] [SEP-B] Sea la función f definida por f() = e- para. - a) Estudia las asíntotas de la gráfica de f. b) Halla los etremos relativos (abscisas donde se obtienen y valores que se alcanzan) y los intervalos

Más detalles

ANÁLISIS MATEMÁTICO I TEMA V : INTEGRALES Hoja 1. A) Calcular las siguientes integrales definidas aplicando la Regla de Barrow: 4x dx 3) I= π 0

ANÁLISIS MATEMÁTICO I TEMA V : INTEGRALES Hoja 1. A) Calcular las siguientes integrales definidas aplicando la Regla de Barrow: 4x dx 3) I= π 0 ANÁLISIS MATEMÁTICO I TEMA V : INTEGRALES Hoja A) Calcular las siguientes integrales definidas aplicando la Regla de Barrow: ) I= ( + ) ) I= / 4 π 0 cos 4) I= e ( + ) 6) I= 4 0 ( y) / dy B) Hallar el valor

Más detalles

Práctico 2:Diferenciación

Práctico 2:Diferenciación Práctico 2:Diferenciación. La siguiente función refleja la posición de un automóvil que se desplaza sobre una recta 00t si 0 t x = f (t) = 00 si t.25 (t.25) + 00 si.25 t 2.75 350 3 (a) Halle la razón de

Más detalles

FÍSICA GENERAL Fac. Cs. Exactas - UNCPBA

FÍSICA GENERAL Fac. Cs. Exactas - UNCPBA FÍSICA GENERAL Fac. Cs. Exactas - UNCPBA Cursada 218 Cátedra Teoría/Práctica (Comisión 1): Dr. Fernando Lanzini Dr. Matías Quiroga Teoría/Práctica (Comisión 2): Dr. Sebastián Tognana Prof. Olga Garbellini

Más detalles

PRIMERA PRACTICA CALIFICADA CINEMATICA ANDREW PYTEL AND JANN KIUSALAAS UNIVERSIDAD NACIONAL DE SAN CRISTÓ BAL DE HUAMANGA

PRIMERA PRACTICA CALIFICADA CINEMATICA ANDREW PYTEL AND JANN KIUSALAAS UNIVERSIDAD NACIONAL DE SAN CRISTÓ BAL DE HUAMANGA UNIVERSIDAD NACIONAL DE SAN CRISTÓ BAL DE HUAMANGA FACULTAD DE INGENIERÍA DE MINAS, GEOLOGÍA Y CIVIL ESCUELA DE FORMACIÓ N PROFESIONAL DE INGENIERÍA CIVIL CURSO DINAMICA (IC 244) PRACTICA N o 01 RESOLUCION

Más detalles

Problemas propuestos y resueltos energía mecánica Elaborado por: Profesora Pilar Cristina Barrera Silva. Tipler Mosca.

Problemas propuestos y resueltos energía mecánica Elaborado por: Profesora Pilar Cristina Barrera Silva. Tipler Mosca. Problemas propuestos y resueltos energía mecánica Elaborado por: Profesora Pilar Cristina Barrera Silva Tipler Mosca. Quinta edición Un objeto se somete a una única fuerza Fx que varía con la posición

Más detalles

GUIA DE PROBLEMAS Nº6: HIDROSTÁTICA- HIDRODINÁMICA. Premisa de Trabajo:

GUIA DE PROBLEMAS Nº6: HIDROSTÁTICA- HIDRODINÁMICA. Premisa de Trabajo: GUIA DE PROBLEMAS Nº6: HIDROSTÁTICA- HIDRODINÁMICA Premisa de Trabajo: En la resolución de cada ejercicio debe quedar manifiesto: Las características del fluido y del flujo del fluido, la expresión de

Más detalles

Guía de Acústica n 1 Movimiento Armónico Simple Tecnología en Sonido

Guía de Acústica n 1 Movimiento Armónico Simple Tecnología en Sonido Universidad Pérez Rosales Departamento de Acústica Profesores: Jaime Undurraga, Rodrigo Olavarría, Andrés Barrera e-mail:jaime_undurraga@hotmail.com, principiamatematica@lycos.com Guía de Acústica n 1

Más detalles

Estática Profesor Herbert Yépez Castillo

Estática Profesor Herbert Yépez Castillo Estática 2015-1 Profesor Herbert Yépez Castillo Introducción 7.1 Distribución de presión sobre una superficie Carga distribuida bidimensional Carga distribuida tridimensional 7.2 Presión de un fluido.

Más detalles

Problemas de Mecánica y Ondas II. Boletín nº 2. (Fluidos) Es incompresible? Existe la función de corriente? Determínela en caso afirmativo.

Problemas de Mecánica y Ondas II. Boletín nº 2. (Fluidos) Es incompresible? Existe la función de corriente? Determínela en caso afirmativo. Problemas de Mecánica y Ondas II. oletín nº 2. (Fluidos) 15. Considere un flujo cuyas componentes de la velocidad son 3 2 u = 0 v = y 4 z w=3y z Es incompresible? Existe la función de corriente? Determínela

Más detalles

Aplicaciones de los Principios de la Dinámica. 1 Bachillerato

Aplicaciones de los Principios de la Dinámica. 1 Bachillerato Aplicaciones de los Principios de la Dinámica 1 Bachillerato INDICE 1. TIPOS DE FUERZAS. 2. EL PESO 3. FUERZA NORMAL. 4. LA FUERZA DE ROZAMIENTO 5. FUERZA ELÁSTICA. 6. TENSIONES. 7. FUERZA CENTRÍPETA.

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0600 TRIMESTRE 00-P. 8 x 2 + y 2 + xy3 x 4 =1

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0600 TRIMESTRE 00-P. 8 x 2 + y 2 + xy3 x 4 =1 CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0600 TRIMESTRE 00-P (1) Obtener la ecuación de la tangente a la curva en el punto (2, 2). x 2 + y 2 + xy3 x 4 =1 (2) Se requiere construir un

Más detalles

FISICA I Cursada 2014 Trabajo Práctico N 3: Dinámica del Punto

FISICA I Cursada 2014 Trabajo Práctico N 3: Dinámica del Punto FISICA I Cursada 2014 Trabajo Práctico N 3: Dinámica del Punto 1 1. EJERCICIOS 1.1 Una caja se desliza hacia abajo por un plano inclinado. Dibujar un diagrama que muestre las fuerzas que actúan sobre ella.

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

Universidad de Antioquia, Depto. de Matematicas

Universidad de Antioquia, Depto. de Matematicas minuto. Si la cantidad máxima de sal en el tanque se obtiene a los 0 minutos. Cual era la cantidad de sal inicial en el tanque? (ta.: 375 libras) Ejercicio 10. Un tanque contiene 00 litros de una solución

Más detalles

ESCUELA SUPERIOR POLITECNICA DEL LITORAL Instituto de Ciencias Físicas SEGUNDA EVALUACIÓN CURSO NIVEL CERO B VERSIÓN 0

ESCUELA SUPERIOR POLITECNICA DEL LITORAL Instituto de Ciencias Físicas SEGUNDA EVALUACIÓN CURSO NIVEL CERO B VERSIÓN 0 ESCUELA SUPERIOR POLITECNICA DEL LITORAL Instituto de Ciencias Físicas SEGUNDA EVALUACIÓN CURSO NIVEL CERO B VERSIÓN 0 Nombre: Paralelo:.. 5 de Septiembre de 2012 considere el valor de g = 9.8 m/s 2 CADA

Más detalles

Tema 4: Movimiento en 2D y 3D

Tema 4: Movimiento en 2D y 3D Tema 4: Movimiento en 2D y 3D FISICA I, 1º Grado en Civil Escuela Técnica Superior de Ingeniería Universidad de Sevilla Física I, GIC, Dpto. Física Aplicada III, ETSI, Universidad de Sevilla, 2017/18 1

Más detalles