2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima."

Transcripción

1 cos() - e + a. [04] [ET-A] Sabiendo que lim 0 sen() es finito, calcula a y el valor del límte.. [04] [ET-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima.. [04] [JUN-A] Sea f: definida por f() = +a +b+c. a) Halla a, b y c para que la gráfica de f tenga un punto de infleión de abscisa = y que la recta tangente en el punto de abscisa = 0 tenga por ecuación y = 5-6. b) Para a =, b = -9 y c = 8, calcula los etremos relativos de f (abscisas donde se obtienen y valores que alcanzan). 4. [04] [JUN-B] Se desea construir un depósito en forma de cilindro recto, con base circular y sin tapadera, que tenga una capacidad de 5 m. Halla el radio de la base y la altura que debe tener el depósito para que la superficie sea mínima. 5. [0] [ET-A] Un alambre de 0 metros de longitud se divide en dos trozos. Con uno de ellos se forma un triángulo equilátero y con el otro un cuadrado. Halla la longitud de dichos trozos para que la suma de las áreas sea mínima. 6. [0] [ET-B] Sea f: (0,+ ) la función definida por f() = ln() (donde ln denota el logaritmo neperiano). a) Determina los intervalos de crecimiento y de decrecimiento y los etremos relativos de f (abscisas donde se obtienen y valores que se alcanzan). b) Estudia y determina las asíntotas de la gráfica de f. cos() + bsen() 7. [0] [JUN-A] Sabiendo que lim 0 es finito, calcula b y el valor del límte. +e - si 0 8. [0] [JUN-B] Sea f: (-,) R la función definida por f() =. a b- si 0 < < a) Determina a y b sabiendo que f es derivable en todo su dominio. b) Halla la ecuación de la recta tangente y de la recta normal a la gráfica de f en el punto de abscisa = 0. +k si 0 9. [0] [ET-A] Sea la función continua f: definida por f() = e - si > 0. a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa =. 0. [0] [ET-B] Sea la función f definida por f() = e- para. - a) Estudia las asíntotas de la gráfica de f. b) Halla los etremos relativos (abscisas donde se obtienen y valores que se alcanzan) y los intervalos de crecimiento y decrecimiento de f.. [0] [JUN-A] Sea la función f: definida por f() = e ( - ). a) Calcula la asíntotas de f. b) Halla los etremos relativos (abscisas donde se obtienen y valores que se alcanzan) y los intervalos de crecimiento y de decrecimiento de f. c) Determinan, si eisten, los puntos de infleión de la gráfica de f. 7 de julio de 05 Página de 7

2 a sen()-e. [0] [JUN-B] Sabiendo que lim es finito, calcula el valor de a y el de dicho límite. 0. [0] [ET-A] Calcula la base y la altura del triángulo isósceles de perímetro 8 y área máima. 4. [0] [ET-B] Sea f la función definida por f() = 4 + para 0. a) Estudia las asíntotas de la gráfica de la función. b) Halla los intervalos de crecimiento y decrecimiento, y los etremos relativos (abscisas donde se obtienen y valores que alcanzan). 5. [0] [JUN-A] Se desea construir un depósito cilíndrico cerrado de área total igual a 54 m. Determina el radio de la base y la altura del cilindro para que éste tenga volumen máimo. 6. [0] [JUN-B] Sea f:[,+ ) la función definida por f() = -. Determina el punto P de la gráfica de f que se encuentra a menor distancia del punto A(,0). Cuál es esa distancia? 7. [00] [ET-A] Una hoja de papel tiene que contener 8 cm de teto. Los márgenes superior e inferior han de tener cm cada uno y los laterales cm. Calcula las dimensiones de la hoja para que el gasto de papel sea mínimo. 8. [00] [ET-B] Considera la función f:[0,4] definida por: f() = +a+b si 0 c si < 4. a) Sabiendo que f es derivable en todo el dominio y que verifica f(0) = f(4), determina los valores de a, b y c. b) Para a = -, b = 4 y c = halla los etremos absolutos de f (abscisas donde se obtienen y valores que alcanzan). 9. [00] [JUN-A] Sea f la función definida como f() = a +b para a. a- a) Calcula a y b para que la gráfica de f pase por el punto (,) y tenga una asíntota oblicua con pendiente -4. b) Para el caso a =, b =, obtén la ecuación de la recta tangente a la gráfica de f en el punto de abscisa =. e -e sen 0. [00] [JUN-B] Calcula lim. 0. [009] [ET-A] Se considera la función f:[,+ ) definida por f() = - +. Determina la asíntota de la gráfica de f.. [009] [ET-B] De entre todos los rectángulos cuya área mide 6 cm, determina las dimensiones del que tiene diagonal de menor longitud.. [009] [JUN-A] Calcula el siguiente límite (ln significa logaritmo neperiano): lim ln() [009] [JUN-B] Sea f: la función definida por f() = a) Estudia su cointinuidad y derivabilidad. b) Determina sus asíntotas y sus etremos relativos. si < si 0 7 de julio de 05 Página de 7

3 a + si 5. [008] [ET-A] Considera la función f: definida por: f() = -b-4 si > a) Halla a y b sabiendo que f es derivable en. b) Determina la recta tangente y la recta normal a la gráfica de f en el punto de abscisa =. 6. [008] [ET-B] De entre todas las rectas del plano que pasan por el punto (,), encuentra aquella que forma con las partes positivas de los ejes coordenados un triángulo de área máima. Halla el área de dicho triángulo. 7. [008] [JUN-A] Sea f la función definida, para 0, por f() = e. Determina las asíntotas de la gráfica de f. 8. [008] [JUN-B] De entre todos los rectángulos de perímetro 8 cm, determina las dimensiones del que tiene diagonal de menor longitud. 9. [007] [ET-A] Sea f:(0,+ ) la función definida por f() = +. a) Determina los intervalos de crecimiento y decrecimiento y los etremos relativos de f (puntos donde se obtienen y valores que se alcanzan). b) Calcula el punto de infleión de la gráfica de f. 0. [007] [JUN-A] Determina dos números reales positivos sabiendo que su suma es 0 y que el producto de sus cuadrados es máimo.. [007] [JUN-B] Sea f: la función definida por f() = + +a+b. Determina a y b sabiendo que la recta tangente a la gráfica de f en su punto de infleión es la recta y = +.. [006] [ET-A] Sea f: la función definida por f() = -. a) Estudia la derivabilidad de f. b) Determina los intervalos de crecimiento y decrecimiento de f. c) Calcula los etremos relativos de f (puntos donde se alcazan y valor de la función).. [006] [ET-B] Un alambre de metro de longitud se divide en dos trozos, con uno se forma un cuadrado y con el otro una circunferencia. Calcula las longitudes de los dos trozos para que la suma de las áreas de ambos recintos sea mínima. 4. [006] [JUN-A] Determina un punto de la curva de ecuación y = e - en el que la pendiente de la recta tangente sea máima. 5. [006] [JUN-B] Sea f la función definida por f() = 4 +, para 0. a) Halla, si eisten, los puntos de corte con los ejes y las asíntotas de la gráfica de f. b) Calcula los intervalos de crecimiento y decrecimiento y los etremos relativos de f. 6. [005] [ET-A] Sea f: la función definida por f() = (-) e -. a) Halla las asíntotas de la gráfica de f. b) Determina los intervalos de crecimiento y de decrecimiento de f y calcula, si eisten, sus etremos relativos o locales y sus etremos absolutos o globales (puntos en los que se obtienen y valores que alcanza la función). 7. [005] [JUN-A] De la función f: definida por f() = a +b +c+d se sabe que tiene un máimo en = -, que su gráfica 7 de julio de 05 Página de 7

4 corta al eje O en el punto de abscisa = - y tiene un punto de infleión en el punto de abscisa = 0. Calcula a, b, c y d sabiendo, además, que la recta tangente a la gráfica de f en el punto de abscisa = tiene pendiente [005] [JUN-B] Sea f la función definida para 0 por f() = +. a) Estudia y determina las asíntotas de la gráfica de f. b) Determina los intervalos de crecimiento y de decrecimiento de f y calcula sus etremos relativos o locales (puntos en los que se obtienen y valores que alcanza la función). 9. [004] [ET-A] Se desea construir una caja cerrada de base cuadrada con una capacidad de 80 cm. Para la tapa y la superficie lateral se usa un material que cuesta euro/m y para la base se emplea un material un 50% más caro. Halla las dimensiones de la caja para que su coste sea mínimo. 40. [004] [ET-B] De una función f:[0,4] se sabe que f() = y que la gráfica de su función derivada es la que aparece en el dibujo. (a) Halla la recta tangente a la gráfica de f en el punto de abscisa =. (b) Determina los intervalos de crecimiento y de decrecimiento de f. En qué punto alcanza la función su máimo absoluto? c) Estudia la concavidad y conveidad de f [004] [JUN-A] Considerar la función f: definida por f() = (+)(-)(-). (a) Hallar las ecuaciones de las rectas tangente y normal a la gráfica de f en el punto de abscisa =. (b) Determinar los intervalos de concavidad y de conveidad de f. Tiene puntos de infleión la gráfica de f? 4. [004] [JUN-B] Se sabe que la función f:(-,+ ), definida por f() = (a) Hallar el valor de a. Es f derivable en = 0? (b) Determinar los intervalos de crecimiento y de decrecimiento de f. -4+ si - < < 0 +a es continua en (-,+ ). si 0 + ln(+) - sen 4. [00] [ET-A] Calcula lim, siendo ln(+) el logaritmo neperiano de +. 0 sen 44. [00] [ET-A] Sea f: la función definida por f() = e. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas? Halla la ecuación de dicha recta tangente. (b) Calcula el área del recinto acotado que está limitado por la gráfica de f, la recta tangente obtenida y el eje de ordenadas. 45. [00] [ET-B] Estudia la derivabilidad de la función f: definida por: f() = si - y, - 0 si = - o =. 46. [00] [JUN-B] Considera la función f: definida por f() = (+)e -. (a) Halla las asíntotas de la gráfica de f. (b) Determina los etremos de f y los puntos de infleión de su gráfica. ( 7 de julio de 05 Página 4 de 7

5 47. [00] [ET-A] Considerar la función f definida por f() = -+ para. - (a) Calcular las asíntotas de la gráfica de f. (b) Estudiar la posición de la gráfica de f respecto de sus asíntotas. 48. [00] [ET-B] Estudiar la derivabilidad de la función f: (0, + ) definida por: f() = Calcular la función derivada. + - si 0 < + 4 si > 49. [00] [JUN-A] Considera la función f : definida por f() = e +. (a) Calcula las asíntotas de la gráfica de f. (b) Determina los intervalos de crecimiento y decrecimiento, y los etremos relativos de f (puntos donde se obtienen y valor que alcanzan). 50. [00] [JUN-B] Sea f la función definida por f() = 9-, para 0 y. - (a) Calcula las asíntotas de la gráfica de f. (b) Determina los intervalos de crecimiento y decrecimiento de f. (c) Con los datos obtenidos, esboza la gráfica de f. 5. [00] [ET-A] Considera la función f:(-,0) definida por f() = (a) Determina el valor de a sabiendo que f es continua (y que a>0) (b) Esboza la gráfica de f. (c) Estudia la derivabilidad de f. a -6 si < -5 si < 0 e -e [00] [ET-B] Determina sabiendo que eiste y es finito el límite lim. Calcula dicho límite. 0 -sen() 5. [00] [JUN-A] Sea f: la función dada por f() = 8-. (a) Esboza la gráfica y halla los etremos relativos de f (dónde se alcanzan y cuáles son sus respectivos valores). (b) Calcula los puntos de corte de la gráfica de f con la recta tangente a la misma en el punto de abscisa = -. sen() 54. [000] [ET-A] Calcula lim 0 tg 55. [000] [ET-B] Determina el valor de a, b y c sabiendo que la gráfica de la función f: definida por f() = a +b+c tiene un punto de infleión en (-,) y que en dicho punto la recta tangente tiene por ecuación 0+y+8 = [000] [JUN-A] Un objeto se lanza verticalmente hacia arriba desde un determinado punto. La altura en metros alcanzada alcabo de t segundos viene dada por: h(t) = 5-5t - 5e -t (a) Calcula el tiempo transcurrido hasta alcanzar la altura máima y el valor de ésta. (b) Teniendo en cuenta que la velocidad es v(t) = h (t), halla la velocidad al cabo de segundos. 57. [000] [JUN-B] Se dispone de pts. para vallar un terreno rectangular colindante con un camino recto. Si el precio de la valla que ha de ponerse en el lado del camino es de 800 pts/metro y el de la valla de los restantes lados es de 00 pts/metro, cuáles son las dimensiones y el área del terreno rectangular de área máima que se puede vallar?. 7 de julio de 05 Página 5 de 7

6 58. [999] [ET-A] Considera la curva de ecuación y = -+ () Halla una recta que sea tangente a dicha curva y que forma un ángulo de 45º con el eje de abscisas. () Hay algún punto de la curva en el que la recta tangente sea horizontal? En caso afirmativo, halla la ecuación de dicha recta tangente; en caso negativo, eplica por qué. 59. [999] [ET-B] () Halla las asíntotas de la gráfica de la función definida para >0 por f() = +. () Halla las regiones de crecimiento y de decrecimiento de f indicando sus máimos y mínimos locales y globales si los hay. () Esboza la gráfica de f. 60. [999] [JUN-B] Dada la función f:[,e] definida por f() = + Ln() (donde Ln() es el logaritmo neperiano de ), determina cuál de las rectas tangentes a la gráfica de f tiene la máima pendiente. Soluciones 9. a) k = b) y = +e- 0. a) = ; y = 0 b) crec: (0,) (,+ ); min: (0,). a) y = 0 b) crec: (,+ ); min: (,-e) c) (0,-). ; -. 8, 4 b) crec: (-,-) (,+ ); ma: (-,-4); min: (,4) 5. '69, '9 6., ; a) -, 4, b) ma: (0,4), (4,4); min:, a) = 0 ; y = 9. a) 4, -0 b) y = y = ; y = a) con: ; der: - {0} b) y = 0; = c) a), -7 b) y = - ; y = y = -+4 ; 4 7. = 0; y = + 8. cuadrado de lado cm 9. a) Creciente:,+. Decreciente: 0,. Mínimo:, b), y 5. a=6, b=9. a) -{0} b) Creciente en -,0,+ c) Máimo: 0,0. Mínimos: -,- 4,, cm (circunferencia) y 56 cm 4. 0,0 5. a) No corta a los ejes. 8 Asíntotas: = 0 b) Creciente: -,-,+. Mínimo:,4. Máimo: -,-4 c) 4 7., 0, -, 8. a) =0, y= b) Creciente: -,-,+. Ma: -,-, min:,. c) a) y=0 b) Creciente:,. Ma:, 4, min:,0 c) e Base: 4 cm. Altura: 5 cm 40. a) y = + b) Creciente en 0,4. Ma. abs: 4 c) Convea: 0,,4. P. infleión: y. 4. (a) tangente, +y- = 0 normal, -y- = 0 (b) convea en, + cóncava en -, 4. (a). punto de infleión para = No (b) creciente en (,+ ) min. (,e) (a) Punto de la gráfica: (,e) Recta tangente: y - e = 0 (b) e (a) = ; y = - (b) Encima para > 48. (0,) (,+ ) ; 50. (a). hor. y = 0, vert. = 0, = ; (b) Decreciente en (c) {-,} 46. Máimo en -,e. Punto de infleión en (-,e). - + si 0 < < - si > (a) y = ; (b) creciente en [-,], má., e, 5. ; ; -{,5} 5. ; 5. 7 de julio de 05 Página 6 de 7

7 (a) Un máimo relativo en (0,8). Mínimos relativos en -,0 y,0 (b) (-,4) ; + 6, y - 6, , 6, 57. = 60 m., y = 70 m y + = 0 ; y = 59. Asíntotas: = 0 ; y = Crecimiento: -,-,+ Máimo: = - Mínimo: = ; y = 4 + ln 7 de julio de 05 Página 7 de 7

x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.

x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1. . [0] [SEP-B] Sea la función f definida por f() = e- para. - a) Estudia las asíntotas de la gráfica de f. b) Halla los etremos relativos (abscisas donde se obtienen y valores que se alcanzan) y los intervalos

Más detalles

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS Ejercicios de continuidad y derivabilidad. Selectividad de 008, 009, 00 y 0 Anális 008 Ejercicio.- Sean f : R R y g : R R las funciones definidas por f() = + a + b y g() = c e -(+). Se sabe que las gráficas

Más detalles

ANÁLISIS (Selectividad)

ANÁLISIS (Selectividad) ANÁLISIS (Selectividad) 1 Sea f : R R la función definida por f() ln ( +1). (a) Determina los intervalos de crecimiento y decrecimiento y los etremos relativos de la función f (puntos donde se alcanzan

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión

Más detalles

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto

Más detalles

EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.

EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress. FUNCIONES I: LÍMITES, CONTINUIDAD Y DERIVAVILIDAD 1- Sea : definida por a) Halla a, b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1/2 y que la recta tangente en el punto de

Más detalles

. (Nota: ln x denota el logaritmo neperiano de x).

. (Nota: ln x denota el logaritmo neperiano de x). e - si 0. [04] [ET-A] Sea la función f() = k si = 0 a) Determine razonadamente el valor del parámetro k para que la función sea continua para todos los números reales. b) Estudie si esta función es derivable

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 03 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

, siendo ln(1+x) el logaritmo neperiano de 1+x. x

, siendo ln(1+x) el logaritmo neperiano de 1+x. x Selectividad CCNN 00. [ANDA] [JUN-B] Considera la función f: definida por f() = (+)e -. (a) Halla las asíntotas de la gráfica de f. (b) Determina los etremos de f y los puntos de infleión de su gráfica.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 017 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción

Más detalles

Profesor: Fernando Ureña Portero

Profesor: Fernando Ureña Portero MATEMÁTICAS º BACH CC. Y TECNOL. CURSO 13-14 1.-Dada la función a) (3p.) Dominio de f() b) (3 p.) Calcular. Es posible calcular? Por qué? c) (4p.) Calcular.- Estudiar la continuidad de la función: { 3.-a)

Más detalles

5x 2 +2 (x-6) 1-2x-e x +sen(3x) 1. [2014] [JUN-A] Calcular justificadamente: a) lim. ; b) lim x. x 2-1 (2x-1)

5x 2 +2 (x-6) 1-2x-e x +sen(3x) 1. [2014] [JUN-A] Calcular justificadamente: a) lim. ; b) lim x. x 2-1 (2x-1) --e +sen(). [04] [JUN-A] Calcular justificadamente: a) lim ; b) lim 5 + (-6) - (-) a+ln(-) si < 0. [04] [JUN-B] Dada la función f() = e - (donde ln denota logaritmo neperiano) se pide: si 0 a) Calcular

Más detalles

4. [2012] [JUN-A] Sea f una función continua en el intervalo [2,3] y F una primitiva de f tal que F(2) = 1 y F(3) = 2. Calcula: 3 5f(x)-7 dx

4. [2012] [JUN-A] Sea f una función continua en el intervalo [2,3] y F una primitiva de f tal que F(2) = 1 y F(3) = 2. Calcula: 3 5f(x)-7 dx . [] [SEP-B] Sea f: la función definida por f() = 9-. a) Halla la ecuación de la recta tangente a la gráfica de f en el punto de abscisa =. b) Esboza el recinto limitado por la gráfica de f, la recta +y

Más detalles

x 2 dx. 2x 2-2x-4 1. [2014] [EXT-A] Calcula x dx. (Sugerencia: integración por partes) cos 2 x 2. [2014] [EXT-B] Calcula

x 2 dx. 2x 2-2x-4 1. [2014] [EXT-A] Calcula x dx. (Sugerencia: integración por partes) cos 2 x 2. [2014] [EXT-B] Calcula . [] [ET-A] Calcula d. --. [] [ET-B] Calcula / d. (Sugerencia: integración por partes) cos. [] [JUN-A] Sean f: y g: las funciones definidas respectivamente por: f() = y g() = +. a) Esboza las gráficas

Más detalles

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva.

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva. EJERCICIOS PARA PREPARAR EL EXAMEN GLOBAL DE ANÁLISIS ln ) Dada la función f ( ) = +, donde ln denota el logaritmo - 4 neperiano, se pide: a) Determinar el dominio de f y sus asíntotas b) Calcular la recta

Más detalles

tiene un máximo relativo en x = asíntota horizontal la recta y = 3. Razonar si para a = 2 y b = 3 la función f(x) tiene algún mínimo relativo.

tiene un máximo relativo en x = asíntota horizontal la recta y = 3. Razonar si para a = 2 y b = 3 la función f(x) tiene algún mínimo relativo. Selectividad CCNN 006. [ANDA] [SEP-A] Sea f: la función definida por f() = -. a) Estudia la derivabilidad de f. b) Determina los intervalos de crecimiento y decrecimiento de f. c) Calcula los etremos relativos

Más detalles

Propiedades de las funciones derivables. Representación gráfica de funciones. Determinar los puntos de inflexión. (Junio 1997)

Propiedades de las funciones derivables. Representación gráfica de funciones. Determinar los puntos de inflexión. (Junio 1997) Matemáticas II. Curso 008/009 de funciones 1 1. Determinar las asíntotas de f () =. Estudiar la concavidad y conveidad. 1 + Determinar los puntos de infleión. (Junio 1997) 1 Por un lado, lim 1 = 0 y =

Más detalles

FUNCIONES. 7.(99).- Hallar la longitud de los lados del triángulo isósceles de área máxima cuyo perímetro sea 60 m.

FUNCIONES. 7.(99).- Hallar la longitud de los lados del triángulo isósceles de área máxima cuyo perímetro sea 60 m. Enunciados de problemas de selectividad. Matemáticas II. Funciones FUNCIONES.(97).- Hay alguna función f() que no tenga límite cuando y que, sin embargo, [f()] sí tenga límite cuando?. Si la respuesta

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA : FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A

Más detalles

Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Propuestos

Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Propuestos Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Propuestos Crecimiento y decrecimiento. Máimos y mínimos relativos; puntos de infleión

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Problemas Tema 3 Enunciados de problemas de Derivabilidad

Problemas Tema 3 Enunciados de problemas de Derivabilidad página / Problemas Tema 3 Enunciados de problemas de Derivabilidad Hoja. Calcula la derivada de f ()= +3 8 +9 +3. Encuentra tres números no negativos que sumen 4 y tales que uno sea doble de otro y la

Más detalles

9.- DERIVADAS 2.- DERIVADA DE UNA FUNCIÓN. 2 utilizando la definición y halla su valor en xo = REGLAS DE DERIVACIÓN

9.- DERIVADAS 2.- DERIVADA DE UNA FUNCIÓN. 2 utilizando la definición y halla su valor en xo = REGLAS DE DERIVACIÓN 9- DERIVADAS - DERIVADA EN UN PUNTO Calcula la derivada de y = + en o = utilizando la definición Solución: y'() = 8 Calcula la derivada de - en o = utilizando la definición Solución: y '() = -6 Calcula

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

1. Estudia la derivabilidad de la función )En qué punto del intervalo (0,ð) la recta tangente a y=tg(x) tiene pendiente 2?.

1. Estudia la derivabilidad de la función )En qué punto del intervalo (0,ð) la recta tangente a y=tg(x) tiene pendiente 2?. ejerciciosyeamenes.com EXAMEN DERIVADAS. Estudia la derivabilidad de la función si f ()= si > 3. )En qué punto del intervalo (0,ð) la recta tangente a y=tg() tiene pendiente?. 4. Ecuación de la recta tangente

Más detalles

Alonso Fernández Galián

Alonso Fernández Galián Alonso Fernández Galián TEMA 3: ESTUDIO Y REPRESENTACIÓN DE FUNCIONES Para representar gráficamente una función deben estudiarse los siguientes aspectos: i) Dominio. ii) Puntos de corte con los ejes de

Más detalles

xln(x+1). 5. [2013] [EXT-A] a) Hallar lim x+1+1 dx. x+1 b) Calcular

xln(x+1). 5. [2013] [EXT-A] a) Hallar lim x+1+1 dx. x+1 b) Calcular . [0] [ET-A] a) Hallar el punto en el que la recta tangente a la gráfica de la función f() = -+ es paralela a la recta de ecuación y = 5-7. b) Calcular el área delimitada por la parábola de ecuación y

Más detalles

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

1 1. [2014] [EXT-A] Dada la función f(x) = x+1 + x

1 1. [2014] [EXT-A] Dada la función f(x) = x+1 + x . [4] [ET-A] Dada la función f() = + +, se pide: +4 a) Determinar el dominio de f y sus asíntotas. b) Calcular f'() y determinar los etremos relativos de f(). c) Calcular f()d 5sen + si

Más detalles

RELACION DE PROBLEMAS DE ANÁLISIS. Problemas propuestos para la prueba de acceso del curso 1996/97.

RELACION DE PROBLEMAS DE ANÁLISIS. Problemas propuestos para la prueba de acceso del curso 1996/97. RELACION DE PROBLEMAS DE ANÁLISIS Problemas propuestos para la prueba de acceso del curso 996/97. º. - De una función continua f: R R se sabe que F: R R es una primitiva suya, entonces también lo es la

Más detalles

ANÁLISIS MATEMÁTICO I (2012)

ANÁLISIS MATEMÁTICO I (2012) ANÁLISIS MATEMÁTICO I (2012) TRABAJO PRÁCTICO 4 Etremos y teorema del valor medio Ejercicio 1. Decir si las siguientes afirmaciones son correctas. En caso contrario, justificar la respuesta. 1. El teorema

Más detalles

Problemas de selectividad. Análisis

Problemas de selectividad. Análisis Departamento de Matemáticas Página 1 Problemas de selectividad. Anális 14.01.- De entre todos los triángulos rectángulos de área 8 cm, determina las dimenones del que tiene la hipotenusa de menor longitud.

Más detalles

1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución:

1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución: RELACIÓN DE PROBLEMAS DE SELECTIVIDAD DE ANÁLISIS. I Departamento de Matemáticas 1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función

Más detalles

MATEMÁTICAS 2º BACH CIENCIAS ANÁLISIS: Ejercicios de Exámenes Profesor: Fernando Ureña Portero

MATEMÁTICAS 2º BACH CIENCIAS ANÁLISIS: Ejercicios de Exámenes Profesor: Fernando Ureña Portero MATEMÁTICAS º BACH CIENCIAS ANÁLISIS: Ejercicios de Eámenes.-Calcular los siguientes límites: CURSO 5-6 a) (4 p.)lim +e/ 0 +e / b) (3 p.)lim 0 cos() e sen() c) (3 p.)lim 0 ( e + )/.-a)(4 p.)calcular el

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en un punto

Más detalles

TEMA 10. CÁLCULO DIFERENCIAL

TEMA 10. CÁLCULO DIFERENCIAL TEMA 0. CÁLCULO DIFERENCIAL Problemas que dieron lugar al cálculo diferencial. (Estos dos problemas los resolveremos más adelante) a) Consideremos la ecuación de movimiento de un móvil en caída libre en

Más detalles

1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones:

1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones: APLICACIONES DE DERIVADAS 1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones: a. 6 9 b. c. 2 d. 2 e. f. 1 2. Estudia los intervalos de crecimiento y decrecimiento de las siguientes

Más detalles

CONTINUIDAD Y DERIVABILIDAD

CONTINUIDAD Y DERIVABILIDAD . Sea la función f ( ) = 6 CONTINUIDAD Y DERIVABILIDAD a. Determine sus puntos de corte con los ejes. b. Calcule sus etremos relativos y su punto de infleión. c. Represente gráficamente la función.. Sea

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS II TEMA : FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción A Reserva, Ejercicio,

Más detalles

6 si x -4 (x+2) 2 si -4 < x -1 4 si x > x+1 si 0 x 1 x si 1 < x < 3 6-x si 3 x 4

6 si x -4 (x+2) 2 si -4 < x -1 4 si x > x+1 si 0 x 1 x si 1 < x < 3 6-x si 3 x 4 . Calcula la derivada de las siguientes funciones:. y = 2-2 +2 2. y = 2-2 2 +2. y = 2 -ln +e 4. y = 2 e 2 5. y = e 6. y = 2 ln 2 7. y = 2-8. y = e. y = 2 + 4. y = ln 2-5. y = 2 2 2 6. y = 2-9. y = e 2

Más detalles

para = 1. b) Calcúlese f(x)dx. x+a si x < 1 x 2-2 si 1 x 3. x+b si x > 3

para = 1. b) Calcúlese f(x)dx. x+a si x < 1 x 2-2 si 1 x 3. x+b si x > 3 . [4] [ET-A] Se considera la función real de variable real definida por f() = e +. a) Esbócese la gráfica de la función f. b) Calcúlese el área del recinto plano acotado limitado por la gráfica de la función,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción A Reserva,

Más detalles

1. Calcular el dominio de f(x)= 2. Averiguar en qué valores del intervalo [0,2 ] está definida la función. 3. Calcular

1. Calcular el dominio de f(x)= 2. Averiguar en qué valores del intervalo [0,2 ] está definida la función. 3. Calcular . Calcular el dominio de f()= ln(0 ) ln. Averiguar en qué valores del intervalo [0,] está definida la función f()= 3 sen 3 3sen 3 0 lim 3 5 4 3. Calcular 4. Averiguar el valor de k para que la función

Más detalles

ejerciciosyexamenes.com

ejerciciosyexamenes.com ejerciciosyeamenes.com Eamen de derivadas 1. Razona la verdad o falsedad de las siguientes afirmaciones: a) f() toma todos los valores entre f(a) y f(b), es continua? b) Si f'() > 0 y g'() > 0 en [a,b]

Más detalles

x = 0, la recta tangente a la gráfica de f (x)

x = 0, la recta tangente a la gráfica de f (x) CÁLCULO DIFERENCIAL JUNIO 004 1. Sea la función e y = estúdiese su monotonía, etremos relativos y asíntotas. (Solución: Es derivable en todos los puntos ecepto en =0. Creciente si < 0. No tiene asíntotas

Más detalles

EJERCICIOS RESUELTOS TEMA 2: DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES.

EJERCICIOS RESUELTOS TEMA 2: DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES. EJERCICIOS RESUELTOS TEMA : DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES. Ejercicio 1 Calcula las funciones derivadas de las siguientes funciones y simplifícalas: a) f ( ) sine b)

Más detalles

MODELO 1 EXAMEN DE CÁLCULO DIFERENCIAL. siendo a un nº real

MODELO 1 EXAMEN DE CÁLCULO DIFERENCIAL. siendo a un nº real MODELO 1 EXAMEN DE CÁLCULO DIFERENCIAL 1. Escribe la ecuación de la recta normal a la curva de ecuación: arcsen abscisa 1. Haz un estudio de todas las asíntotas de la función: 1 e f ( ). Halla los valores

Más detalles

APLICACIÓN DERIVADAS

APLICACIÓN DERIVADAS APLICACIÓN DERIVADAS 1 RELACIÓN ENTRE LA MONOTONÍA DE UNA FUNCIÓN Y SU DERIVADA Si f ( 0 ) > 0 f es creciente en 0. Si f ( 0 ) < 0 f es decreciente en 0. EJERCICIOS: 1º.- Dada la función y = 3 3 2 9 +

Más detalles

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES 1. Sea f : (0, + ) definida como f () = Ln a) Probar que la función derivada f es decreciente en todo su dominio. b) Determinar los intervalos de crecimiento

Más detalles

3. y = (2x+1)2 2x+3. x, x < 2 x+1, x 2

3. y = (2x+1)2 2x+3. x, x < 2 x+1, x 2 Derivadas. Dada la siguiente función, calcular, por la definición, la derivada que se indica:. f() = - ; f (-). f() = ; f (0). f() = ln ; f () 4. f() = - ; f (0) 5. f() = +, < 0, 0 ; f (0) 6. f() = sen,

Más detalles

Hallar el dominio de las siguientes funciones : 1. log F(x) = 234. F(x) = x F(x) = ln( F(x) = 9 3. x.calcular simplificando

Hallar el dominio de las siguientes funciones : 1. log F(x) = 234. F(x) = x F(x) = ln( F(x) = 9 3. x.calcular simplificando Hallar el dominio de las siguientes funciones : 4. F() = 3 8 0 6 5. F() = 3 7 6. F() = 6 7. F() = 9 4 8. F() = ln 9. F() = e e 30. F() = e 3 3. F() = log 7 3. F() = sen 33. F() = 3 8 34. F() = 3 3 4 35.

Más detalles

Idea de Derivada. Tasa de variación media e instantánea

Idea de Derivada. Tasa de variación media e instantánea Idea de Derivada. Tasa de variación media e instantánea.- La variación de la altura de un niño con el paso de los años, se recoge en la guiente tabla: Edad (años) 0 6 9 8 Altura (cm.) 8 6 74 78 80 a) Representar

Más detalles

APLICACIONES DE LA DERIVADA Y OPTIMIZACIÓN

APLICACIONES DE LA DERIVADA Y OPTIMIZACIÓN APLICACIONES DE LA DERIVADA Y OPTIMIZACIÓN 1. Calcular, aplicando la definición de derivada: f (), siendo f (x) = 3x 1 1 f ( ), siendo f (x) = x 1 Solución: 1; 4. Determinar el dominio y la expresión de

Más detalles

ANÁLISIS DE FUNCIONES

ANÁLISIS DE FUNCIONES ANÁLISIS DE FUNCIONES.- Calcula f() de manera que f () = Ln( + ) y que f(0) = 0. (nota: Ln significa logaritmo neperiano). Universidad de Andalucía Se trata de resolver la integral que hemos de hacerlo

Más detalles

1. [2014] [EXT-A] a) La derivada de la función f(x) es: (x-1) 3 (x-3). Determine la función f(x) sabiendo que f(0) = 1. +2x+2. x 3

1. [2014] [EXT-A] a) La derivada de la función f(x) es: (x-1) 3 (x-3). Determine la función f(x) sabiendo que f(0) = 1. +2x+2. x 3 [4] [EXT-A] a) La derivada de la función f() es: (-) (-) Determine la función f() sabiendo que f() = b) Determine el límite: lim + ++ ++ + [4] [EXT-B] a) Dadas las funciones f() = y g() = - +, determine

Más detalles

x = 1 Asíntota vertical

x = 1 Asíntota vertical EJERCICIO Sea la función f ( ). a) Indique el dominio de definición de f, sus puntos de corte con los ejes, sus máimos mínimos, eisten, sus intervalos de crecimiento decrecimiento. b) Obtenga las ecuaciones

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A xcos(x)+b sen(x) Ejercicio 1.- [2 5 puntos] Sabiendo que lím x 0 x 3 es finito, calcula b y el valor del límite. Ejercicio 2.- Sean f : R R y g : R R las funciones definidas mediante f(x) = x(x

Más detalles

Ejercicios de integración

Ejercicios de integración 1. Calcular las siguientes integrales: 1) ) 8) + 1 d ) + 6 6 + 1 d 5) + + 1 + 1 7) d 8) + Ejercicios de integración d ) + + 1 d 6) ( + 1) + + d + d 9) ( + + 1) ln d + 1 + + 1) d 11) d 1) + + 1 d + 1 1)

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.4. APLICACIONES DE LA DERIVABILIDAD

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.4. APLICACIONES DE LA DERIVABILIDAD TEMA. FUNCIONES REALES DE VARIABLE REAL.4. APLICACIONES DE LA DERIVABILIDAD .4. APLICACIONES DE LA DERIVABILIDAD.4.1. Intervalos de crecimiento y decrecimiento.4.. Etremos locales de una función.4.3. Intervalos

Más detalles

2) Estudia crecimiento, decrecimiento y existencia de extremos relativos. x 4x

2) Estudia crecimiento, decrecimiento y existencia de extremos relativos. x 4x EJERCICIOS DE ANÄLISIS 1) Estudia el dominio, ceros y signo, continuidad, límites en caso que tienda a + y -, máimos y mínimos relativos de las siguientes funciones. Realiza en cada caso el bosquejo correspondiente.

Más detalles

APLICACIONES DE LA DERIVADA CCSS

APLICACIONES DE LA DERIVADA CCSS APLICACIONES DE LA DERIVADA CCSS Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN 1 PROBLEMAS DE OPTIMIZACIÓN Planteamiento y resolución de los problemas de optimización Se quiere construir una caja, sin tapa, partiendo de una lámina rectangular de cm de larga por de ancha. Para ello

Más detalles

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES IES Padre Poveda (Guadi) EJERCICIOS UNIDADES y : INTEGRACIÓN DE FUNCIONES (5-M-A-) (5 puntos) Calcula el valor de a > sabiendo que el área del recinto comprendido entre la parábola y + a y la recta y es

Más detalles

Criterio 1: Sea f una función derivable en (a,b). f es estrictamente creciente en el intervalo abierto (a, b) si f es positiva en dicho intervalo.

Criterio 1: Sea f una función derivable en (a,b). f es estrictamente creciente en el intervalo abierto (a, b) si f es positiva en dicho intervalo. UNIDAD. APLICACIONES DE LAS DERIVADAS.. Información etraída de la primera derivada.. Información etraída de la segunda derivada.. Derivabilidad en intervalos: Teorema de Rolle, del valor medio y Caucy..4

Más detalles

EXAMEN DE MATEMÁTICAS (2º DE BACHILLERATO) ANÁLISIS (DERIVADAS)

EXAMEN DE MATEMÁTICAS (2º DE BACHILLERATO) ANÁLISIS (DERIVADAS) EXAMEN DE MATEMÁTICAS (º DE BACHILLERATO) ANÁLISIS (DERIVADAS) 009 1 (CLS09) (1 punto) Probar que la ecuación e + 0 tiene alguna solución (CLJ13) (1 punto) Sea la función + Calcula sus asíntotas y estudia

Más detalles

8 Aplicaciones. de las derivadas. 1. Máximos, mínimos y monotonía. Piensa y calcula. Aplica la teoría

8 Aplicaciones. de las derivadas. 1. Máximos, mínimos y monotonía. Piensa y calcula. Aplica la teoría 8 Aplicaciones de las derivadas. Máimos, mínimos y monotonía Piensa y calcula Dada la gráfica de la función f() = representada en el margen, halla los máimos y los mínimos relativos y los intervalos de

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS UNIDAD APLICACIONES DE LAS DERIVADAS Página 98 Relación del crecimiento con el signo de la primera derivada Analiza la curva siguiente: f decrece f' < 0 f crece f' > 0 f decrece f' < 0 f crece f' > 0 f

Más detalles

MATEMÁTICAS 1º BAC Aplicaciones de las derivadas

MATEMÁTICAS 1º BAC Aplicaciones de las derivadas . Queremos construir una caja abierta, de base cuadrada y volumen 56 litros. Halla las dimenones para que la superficie, y por tanto el coste, sea mínimo.. Entre todos los rectángulos de área 6 halla el

Más detalles

1.- Simplifica al máximo la expresión: 2.- Obtener de manera razonada las soluciones de la primera vuelta de la

1.- Simplifica al máximo la expresión: 2.- Obtener de manera razonada las soluciones de la primera vuelta de la Colegio del Sagrado Corazón EXAMEN Trigonometría CLASE:1º BACHILLERATO FECHA:9/10/15 tg 1.- Simplifica al máimo la epresión: sen sen sen sen.- Obtener de manera razonada las soluciones de la primera vuelta

Más detalles

1. y = 3x 5-4x y = x+ln x 3. y = 2x 2 -e 2 4. y = xe x 5. y = x x 6. y = x+2 x-2

1. y = 3x 5-4x y = x+ln x 3. y = 2x 2 -e 2 4. y = xe x 5. y = x x 6. y = x+2 x-2 Colección A.. Calcula la derivada de las siguientes funciones:. y = 5-4 -4. y = +ln. y = -e 4. y = e 5. y =. y = + 7. y = ln 8. y = e + 9. y = (+) 0. y =. y = e -. y = (-)e - e. y = - 4. y = ln 5. y =

Más detalles

x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4

x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4 CÁLCULO. Curso 2003-2004. Tema 7. Derivabilidad.. Estudiar la continuidad y la derivabilidad de las funciones: {, si 0 (a) e, si > 0 2 +, si > 0 (b), si = 0 2. Dada la función (c) 2 si < 0 e, si > 0 2

Más detalles

( ) según los valores del parámetro a. Ejercicio 3. Calcula el valor de los siguientes determinantes teniendo en cuenta estos datos:

( ) según los valores del parámetro a. Ejercicio 3. Calcula el valor de los siguientes determinantes teniendo en cuenta estos datos: MATEMÁTICAS II ÁLGEBRA Y ANÁLISIS ACTIVIDADES PAU Ejercicio. Condera las matrices A = m, B = y C =. (a) Para qué valores de m tiene solución la ecuación matricial A.X + B = C? (b) Resuelve la ecuación

Más detalles

TEMA 8 : APLICACIÓN DE LAS DERIVADAS

TEMA 8 : APLICACIÓN DE LAS DERIVADAS TEMA 8 : APLICACIÓN DE LAS DERIVADAS 1. MONOTONÍA Una función es creciente en un punto 0 cuando para puntos próimos a 0 se cumple que al aumentar también aumenta f() y al disminuir también disminuye f().

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO EXAMEN DE MATEMATICAS II ª ENSAYO (ANÁLISIS) Apellidos: Nombre: Curso: º Grupo: Día: CURSO 56 Instrucciones: a) Duración: HORA y MINUTOS. b) Debes elegir entre realizar únicamente los cuatro ejercicios

Más detalles

TEMA 2: CÁLCULO DIFERENCIAL DE UNA VARIABLE.

TEMA 2: CÁLCULO DIFERENCIAL DE UNA VARIABLE. ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA TITULACIONES Ingeniería Industrial (GITI/GITI+ADE) Ingeniería de Telecomunicación (GITT/GITT+ADE) CÁLCULO Curso 05-06 TEMA : CÁLCULO

Más detalles

Hacia la universidad Análisis matemático

Hacia la universidad Análisis matemático Hacia la universidad Análisis matemático OPCIÓN A. a) Deriva las funciones f( ) = 8, g ( ) =, h ( ) = e. f( ) si 0 b) Indica si la función m ( ) = es continua en =. g ( ) si < c) Escribe la ecuación de

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad Sea f : R R la función definida por f() = e /. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas?

Más detalles

I. Para cada una de las siguientes funciones calcular la derivada del orden pedido y simplificarlas. x 8(4 3 x ) x.. Sol. ). Sol.

I. Para cada una de las siguientes funciones calcular la derivada del orden pedido y simplificarlas. x 8(4 3 x ) x.. Sol. ). Sol. UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE FARMACIA CATEDRA DE MATEMATICA-FISICA GUÍA N 5 : Derivadas n-ésimas y aplicaciones de la derivada I. Para cada una de las siguientes funciones calcular la derivada

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un

Más detalles

Repaso general de matemáticas I. 2) 4 e indica el dominio e imagen de p. D x,,

Repaso general de matemáticas I. 2) 4 e indica el dominio e imagen de p. D x,, . Sea F( ) arcsen. Repaso general de matemáticas I π π a) Obtén la gráfica de h ( ) = F ( ) - e indica el dominio e imagen de h. D, ; I, π π b) Obtén la gráfica de g( ) F( ) e indica el dominio e imagen

Más detalles

Aplicaciones de la derivada. n la presente Unidad estudiamos la monotonía ( crecimiento y decrecimiento de

Aplicaciones de la derivada. n la presente Unidad estudiamos la monotonía ( crecimiento y decrecimiento de UNIDAD 9 Aplicaciones de la derivada n la presente Unidad estudiamos la monotonía ( crecimiento y decrecimiento de E las funciones), así como sus máimos y mínimos, estos conceptos tienen muchas aplicaciones

Más detalles

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x 1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.

Más detalles

x 3 si 10 <x 6; x si x>6;

x 3 si 10 <x 6; x si x>6; CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E000 A Primer parcial + 1 +8 1 a Trace su gráfica b Determine su dominio, rango y raíces Sean si 10 < 6; f

Más detalles

TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos

TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos 64 TEMA 9. Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Resueltos Crecimiento y decrecimiento. Máimos y mínimos relativos; puntos de infleión. Dada la función

Más detalles

o Una función es creciente en un intervalo [a,b] si dados dos puntos cualesquiera del intervalo, x 1, x 2, x 1 < x 2 se cumple que f(x 1 ) < f(x 2 )

o Una función es creciente en un intervalo [a,b] si dados dos puntos cualesquiera del intervalo, x 1, x 2, x 1 < x 2 se cumple que f(x 1 ) < f(x 2 ) Aplicaciones de la derivada MATEMÁTICAS II CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN Definiciones Se dice que una función f es creciente en un punto si para cualquier punto de un entorno de, (, + ) se

Más detalles

EXAMEN GLOBAL. 4. Dada la función y = 1/x. Existe algún punto en el que la recta tangente esté inclinada 45º?, y 135º?. Calcula esa recta tangente.

EXAMEN GLOBAL. 4. Dada la función y = 1/x. Existe algún punto en el que la recta tangente esté inclinada 45º?, y 135º?. Calcula esa recta tangente. ejerciciosyeamenes.com. a) Enunciado y demostración del teorema del seno. b) Dos coches parten al mismo tiempo de un mismo punto. Van por carreteras rectas que forman entre sí un ángulo de 30º. El primer

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo que te llevará al final, serán tus pasos, no el camino. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo que te llevará al final, serán tus pasos, no el camino. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B 9--4 Lo que te llevará al final, serán tus pasos, no el camino Análisis Fito y los Fitipaldis OPCIÓN A.- a) Hallar las dimensiones que hacen mínimo el coste de un contenedor

Más detalles

(1-mx)(2x+3) x 2 +4 = 6. x > -1

(1-mx)(2x+3) x 2 +4 = 6. x > -1 . [04] [EXT-A] Sea la función f(x) = e x +ax+b a) Calcular a y b para que f(x) tenga un extremo en el punto (,). b) Calcular los extremos de la función f(x) cuando a = 0 y b = 0.. [04] [EXT-B] En la figura

Más detalles

en su construcción sea mínima. Sol: r = 3, h =

en su construcción sea mínima. Sol: r = 3, h = RELACIÓN DE PROBLEMAS ) Encontrar los etremos absolutos de y 6+ definida en [0, ]. Sol. Má en 0 y ; mín -/ en,5. ) Hallar dos números positivos cuya suma sea 0, sabiendo que su producto es máimo. Sol.:

Más detalles

a) p = ½. b) p = 0. c) Ninguna de las anteriores. Solución: Para que sea continua en x = 0 debe cumplirse que lím

a) p = ½. b) p = 0. c) Ninguna de las anteriores. Solución: Para que sea continua en x = 0 debe cumplirse que lím Matemáticas Empresariales I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES si 0. La función f ( ) sen es continua en = 0 si: p si 0 a) p = ½. b) p = 0. Para que sea continua en = 0 debe cumplirse que

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles