Respuestas al desarrollo de la competencia del capítulo 3

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Respuestas al desarrollo de la competencia del capítulo 3"

Transcripción

1 Respuestas Respuestas al desarrollo de la competencia del capítulo ÁREA NETA CON SIGNO En los problemas del al, dibuja la región delimitada por la gráfica de la función dada en el intervalo indicado calcula el área neta con signo.. f( ) = ;, = A =. A =.. f( ) = ;, = A =.7. f( ) = ;, = A =. A =.

2 Respuestas. f( ) = ;, =. f( ) = cos ; π π, = A = A =. f( ) = ln ;,e = sen 7. f( ) = ; π, π sen d =.. f( ) = e

3 Respuestas 9. f = + ln ( ) ;, =. 7. f( ) = ;,.7. f( ) = sec ; π π,.77. f = + ( ) ;,.97. f( ) = ;,....

4 Respuestas π π. f( ) = sen ;,.7.. π/.. f( ) = senh( );,.9 ÁREA TOTAL En los problemas del al, calcula el área total de la región limitada por la gráfica de la función dada en el intervalo indicado.. f( ) = ;, = 7. f( ) = + ;, = f

5 Respuestas [ ]. f( ) = sen( );, π = π π/ π π/ π 9. f( ) = ;, = 7. f( ) = 9 ;, = ÁREA ENTRE CURVAS En los problemas del al, utiliza la integral definida para encontrar el área de la región limitada por las gráficas de las ecuaciones dadas. Realice un bosquejo de la región asegúrese de encontrar las intersecciones.. = = =

6 Respuestas. = +, = = = = + =. = = = 97 g. = = = c h

7 Respuestas 7 En los problemas del al, construe la integral definida que calcula el área de la región iluminada en la gráfica dada. Evalúa la integral comprueba tu respuesta con el comando IntegralEntre[ <Función>, <Función>, <Etremo inferior del intervalo>, <Etremo superior del intervalo> ] de GeoGebra.. A = f() = g() = 7. A = f() =. g() =.. A = f() =.... g() =

8 Respuestas 9. A = f() =... g() =. A. = = + LONGITUD DE ARCO En los problemas de al, calcula la longitud de arco de la curva cua ecuación es dada en el intervalo indicado. Comprueba tu resultado con el comando Longitud[ <Función>, <Etremo inferior del intervalo>, <Etremo superior del intervalo>] de GeoGebra.. = f( ) ;,.77. f( ) = + ;, =. f( ) = + ( ) ;, = 7. + = ;, = 9. f( ) = ;,.

9 Respuestas 9. f = ( ) ( ) ln sec ; π,.7 7. f( ) = ;, = π. e = cos ; π π, f( ) = ln( ) ;,.97. g( ) = + ; =.. g = ( ) () lnsen ; π π. e. Un cable que cuelga. Su forma viene dada así: = + a) La altura de los postes si los cables están sujetos en su parte más alta: e = + e + e e =. metros. b) El cable mide. metros de longitud.. Un proectil lanzado desde el nivel del suelo sigue esta traectoria: = ( )metros. a) El proectil avanza m. b) La longitud de arco es el recorrido del proectil, El recorrido del proectil es de 9. metros. c) La velocidad media del proectil es m m v= 9. =.. s s e. Encuentra la longitud de arco de la curva = arco de la curva es igual a π. sobre el intervalo,. La longitud de MÉTODO DE DISCOS En los problemas del al, emplea el método de discos para calcular el volumen del sólido de revolución cuando la región limitada por las funciones dadas se hace rotar alrededor del eje indicado. Comprueba la respuesta usando el comando integral de Geogebra para evaluar la integral del volumen.

10 Respuestas. = entre = = alrededor del eje. V= π f () = =. = entre = = alrededor del eje f () = Sólido de revolución Sólido de revolución. 7. f( ) = e con alrededor del eje V. f () = e. c Sólido de revolución. = +, =, = = alrededor del eje. V = π f () = + Sólido de revolución

11 Respuestas 9. =, = = alrededor de la recta. V = π Sólido de revolución. = cos, = π π en torno al eje. V π = f () = cos () - / / Sólido de revolución. = cos, = = en torno al eje. V. f () = cos () - / / Sólido de revolución

12 Respuestas. =, = = en torno al eje. V = π = Sólido de revolución -. =, = = en torno a la recta. V = π = Sólido de revolución. Un jarrón tiene secciones circulares de radio = + sen centímetros, en π. Calcula su volumen ha z un esbozo del jarrón. El volumen es de.7 cm Jarrón

13 Respuestas MÉTODO DE ARANDELAS En los ejercicios al 7, representa la región R limitada por las ecuaciones dadas emplea el método de arandelas para calcular el volumen del sólido generado al girar la región alrededor del eje indicado. Traza un rectángulo típico, así como la arandela que se genera.. =, =, =, = alrededor del eje. V= 9π. A B - -. =, = = =,, alrededor del eje V = π A B - 7. =, = = =,, alrededor del eje. V=π

14 Respuestas. =,=, =, = alrededor del eje. V = π. A.. B - 9. = +, = + ; =, = alrededor del eje. V = π =, =,= alrededor del eje. V = π - - A B

15 Respuestas. =, =,= alrededor de la recta =. V = π f. =, =,= alrededor de la recta =. V = π = f

16 Respuestas 7. = 9, = alrededor del eje. V = π =, = alrededor del eje. V = π. A B - -. =, = con alrededor del eje. V = π g

17 Respuestas 7 9. =, = con alrededor de la recta. V = π = = - g 7. =, =, = alrededor de la recta =. V = π = = - -. =, = alrededor del eje. V = π - -

18 Respuestas 9. =, = alrededor del eje. V = π - - A X B - 7. = +, =, = = alrededor de la recta =. V = π f () = + Sólido de revolución MÉTODO DE CASQUETES En los problemas del 7 al, representa la región R limitada por las ecuaciones dadas emplea el método de arandelas para calcular el volumen del sólido generado al girar la región alrededor del eje indicado. Traza un rectángulo típico, así como la arandela que se genera. 7. =, =, =, = alrededor del eje. V = π z 7 -

19 Respuestas 9 7. =, = = =,, alrededor del eje. V = π Z 7-7. =, = alrededor del eje. V = π = +, =, = alrededor del eje. V = π

20 Respuestas 7. =, = + alrededor de la recta =. V = π - g =,=, = alrededor del eje. V = π = ln, =,= alrededor del eje. V= π =

21 Respuestas 7. = e, =, = alrededor del eje. V = =,= en el primer cuadrante, alrededor del eje. V = π =,= alrededor de la recta =. V = π - -

22 Respuestas. Qué volumen posee la ojiva? El volumen de la bala sin agujero es: = π cm El volumen del material retirado para hacer el agujero es: = π 9 cm El volumen de la ojiva con el agujero es: V = V V.7 cm. Un joero tiene una bola de oro de cm de radio, taladra un agujero en forma de cilindro al centro de la bola de. cm de radio. V. cm ÁREA SUPERFICIAL En los problemas al 9, calcula el área de la superficie de revolución que se engendra cuando la parte de la gráfica de la ecuación dada en el intervalo indicado gira alrededor del eje mencionado. Comprueba tu respuesta con la vista CAS de GeoGebra.. =,, alrededor del eje. A.799

23 Respuestas. = +,, alrededor del eje. A.. = e, =, = alrededor del eje. A = cos( ),, π alrededor del eje. A. 7. =,, alrededor del eje. A.. = +, alrededor del eje. A.7 9. =, alrededor del eje. A =, alrededor del eje. A 9. INTEGRALES IMPROPIAS En los problemas del 9 al, evalúa la integral impropia dada o muestra que es divergente. Comprueba la solución en la vista CAS del programa GeoGebra. 9. d = ln La integral es convergente. 9. cosh d = La integral es divergente. e 9. d = La integral es convergente. 9. = d La integral es convergente. 9. e d = La integral es convergente. 9. ( + ) d = La integral es divergente.

24 Respuestas e 97. d = e + La integral es divergente. 9. e sen d = La integral es convergente. 99. d = La integral es convergente. π. tand= l La integral es divergente.. e d = e La integral es convergente.. = d 7 La integral es convergente.. = d 9 9 La integral es convergente.. = + d La integral es divergente.. = d. La integral es convergente. d = π La integral es convergente.

25 Respuestas 7. d = 9 9 π La integral es convergente.. d = 9 La integral es divergente. 9. = 9 d π La integral es convergente.. d = La integral es convergente.. = d La integral es convergente.. d = lim d + lim + c c c c La integral es divergente. d CENTROIDES En los problemas del al, calcula el centro de masas de una lámina delgada cua región está limitada por las ecuaciones dadas. Usar el applet propuesto para dibujar la región el centro de masas.. = +, =, = = = C 9, - C M = (.,.7)

26 Respuestas. =, =, = = C, 7 - C M = (.,.9). = sen, = sen, π π π = C, - - C M = (.7,.7). =, =, 9 C M = 7 C, 9 - C M = (.,.)

27 Respuestas 7 7. =, =,. = C,. C M. C M = (.,.)..... = +, =, = C, C M C M = (.,.) 9. =, = -+ B C =, C A = (, -)

28 Respuestas. =, = -+ C = 9, C M = (-.,.) - a -. = ( ) +, = C = (,.) - A B C M = (,.). = + π, = sen, π C = (.7,.) C M A B - C M = (.7,.)

29 Respuestas 9 TRABAJO. Un tanque tiene la forma de un cono circular recto de pies de altura una base de pies de diámetro. El tanque se encuentra como cono invertido con su vértice a nivel del suelo está lleno hasta / partes de su capacidad con agua. Calcula el trabajo realizado para vaciar el tanque si el agua se bombea desde arriba del tanque. W 77 lb-pie pies A pies pies B - -. Un tanque cua forma es una semiesfera de radio pies, está completamente lleno de agua. Encuentra el trabajo requerido para vaciar el tanque si el agua se etrae por la parte superior. W W 997. lb-pie - + ( ) = Un cable de acero que pesa lb/pie es utilizado para levantar un piano de lb de peso. Calcula el trabajo realizado para elevar el piano hasta una azotea de pies de altura. W= lb-pie. Encuentra el trabajo realizado para bombear toda la salmuera hasta la parte superior del depósito. W= lb-pie pie pie

30 Respuestas 7. Un tanque en forma de cubo, inicialmente, está lleno con pie de agua, una grúa lo eleva desde el suelo. Si el cubo empieza a drenar agua por la parte de abajo en el preciso instante en que empieza a elevarse a razón de pie por cada pies de elevación. Calcula el trabajo realizado hasta el instante en que el depósito queda vació el peso del depósito: W= lb-pie

Respuestas a la evaluación de la competencia del capítulo 3

Respuestas a la evaluación de la competencia del capítulo 3 Respuestas Respuestas a la evaluación de la competencia del capítulo En los ejercicios del al 7, dibuja la región que queda comprendida bajo la gráfica de la función dada en el intervalo indicado calcula

Más detalles

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0.

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0. . Encuentre el área de la región limitada por las curvas indicadas:.. y = x, y = x +... x = y, x = y +... y = x +, y = x +, y = x....5..6..7..8..9..0....... y = x + 8x 7, y = x. y = x, y = x +, x =, x

Más detalles

APLICACIONES DE LA INTEGRAL ( ( ) ( )) A = f x g x dx EJERCICIOS: 5) Calcular el área de la región limitada por las líneas y = xln(x), y = x.

APLICACIONES DE LA INTEGRAL ( ( ) ( )) A = f x g x dx EJERCICIOS: 5) Calcular el área de la región limitada por las líneas y = xln(x), y = x. APLICACIONES DE LA INTEGRAL Si R es la región limitada por las líneas y f() y y g(), con f() g(), entre a y b, el área de R viene dada por la integral A: b a ( ( ) ( )) A f g EJERCICIOS: ) Calcular el

Más detalles

I. Para cada una de las siguientes funciones calcular la derivada del orden pedido y simplificarlas. x 8(4 3 x ) x.. Sol. ). Sol.

I. Para cada una de las siguientes funciones calcular la derivada del orden pedido y simplificarlas. x 8(4 3 x ) x.. Sol. ). Sol. UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE FARMACIA CATEDRA DE MATEMATICA-FISICA GUÍA N 5 : Derivadas n-ésimas y aplicaciones de la derivada I. Para cada una de las siguientes funciones calcular la derivada

Más detalles

Volumen de Sólidos de Revolución

Volumen de Sólidos de Revolución 60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido

Más detalles

Lic. Saúl Villamizar Valencia 53 SÓLIDOS DE REVOLUCIÓN Y ESFERA

Lic. Saúl Villamizar Valencia 53 SÓLIDOS DE REVOLUCIÓN Y ESFERA Lic. Saúl Villamizar Valencia 53 SÓLIDOS DE REVOLUCIÓN Y ESFERA 54 Actualización Permanente en el Área Matemática 1. Cilindro Definiciones Se llama superficie cilíndrica la engendrada por una recta que

Más detalles

INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS. 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2.

INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS. 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2. INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2. 1 1 4, 0 1 a.- (, ) = 2 1 4, 1 2 2 1 < 3, 0 < 1 b.- (, ) = 1 1 < 3, 1 2 3 3 4,

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión

Más detalles

Rotaciones alrededor de los ejes cartesianos

Rotaciones alrededor de los ejes cartesianos Sólido de revolución Un sólido de revolución es un cuerpo que puede obtenerse mediante una operación geométrica de rotación de una superficie plana alrededor de una recta que se contenida en su mismo plano.

Más detalles

Volumen de Revolución Ejemplo. Se obtiene al hacer girar una región limitada alrededor de un eje. Por ejemplo, si la función: f(x) x el eje 0x:

Volumen de Revolución Ejemplo. Se obtiene al hacer girar una región limitada alrededor de un eje. Por ejemplo, si la función: f(x) x el eje 0x: Volumen de Revolución Ejemplo Se obtiene al hacer girar una región limitada alrededor de un eje. Por ejemplo, si la función: f(x) x 2 1 gira sobre el eje 0x: Sólidos de Revolución conocidos ALGUNAS APLICACIONES

Más detalles

Contenido 1. Integrales Dobles 2. Integrales Triples

Contenido 1. Integrales Dobles 2. Integrales Triples Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS. Hallar el área de la región limitada por la parábola y = y el eje OX. Los cortes de la gráfica de y = con el eje OX son los valores de tales que =, esto es, = y =. El

Más detalles

UNIDADES TECNOLÓGICAS DE SANTANDER DEPARTAMENTO DE CIENCIAS BÁSICAS CÁLCULO MULTIVARIABLE Primer Parcial

UNIDADES TECNOLÓGICAS DE SANTANDER DEPARTAMENTO DE CIENCIAS BÁSICAS CÁLCULO MULTIVARIABLE Primer Parcial Primer Parcial Identifica los criterios de convergencia para determinar si una serie es convergente o no. 1,2 Representa una función mediante una serie de potencias estableciendo el intervalo de convergencia.

Más detalles

Aplicaciones físicas

Aplicaciones físicas Problemas propuestos con solución Aplicaciones físicas ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ulles Índice 1 Integral doble: valor medio 1 2 Integral doble:

Más detalles

Taller 3 cálculo integral: Preparación tercer parcial. Profesor Jaime Andrés Jaramillo. UdeA.

Taller 3 cálculo integral: Preparación tercer parcial. Profesor Jaime Andrés Jaramillo. UdeA. Taller cálculo integral: Preparación tercer parcial. Profesor Jaime Andrés Jaramillo. jaimeaj@conceptocomputadores.com. UdeA. 7- Área de una región plana. Determine el área de la región acotada por las

Más detalles

5) Discute la existencia de los límites siguientes y calcula su valor cuando sea posible: x 2 3. x 1 x 1

5) Discute la existencia de los límites siguientes y calcula su valor cuando sea posible: x 2 3. x 1 x 1 Matemáticas I Hoja 6: Derivadas e integración de funciones reales de una variable real Grado en Ingeniería Química Curso 08/09 ) Se considera la función f() = 3 3 9 + en el intervalo cerrado [, 6]. Cuáles

Más detalles

Álgebra Lineal Agosto 2016

Álgebra Lineal Agosto 2016 Laboratorio # 1 Vectores I.- Calcule el producto escalar de los dos vectores y el coseno del ángulo entre ellos u = i 2j + 3k; v = 3i 2j + 4k 3) u = 15i 2j + 4k; v = πi + 3j k 3) u = 2i 3j; v = 3i + 2j

Más detalles

Aplicaciones de la derivada (VI)

Aplicaciones de la derivada (VI) UNIVERSIDAD DEL CAUCA Facultad de Ciencias Naturales, Eactas de la Educación Departamento de Matemáticas CÁLCULO I Ejercicios Aplicaciones de la derivada (VI). Determine cuál de las tres funciones siguientes

Más detalles

EJERCICIOS GRUPO 1 DERIVADAS. 1. Usando la definición calcule la derivada de las siguientes funciones.

EJERCICIOS GRUPO 1 DERIVADAS. 1. Usando la definición calcule la derivada de las siguientes funciones. INSTRUCCIÓN. Resuelve los problemas propuestos del modo siguiente: primero en forma individual, luego en forma grupal y por último preséntalo en forma grupal en un máimo de cinco (05) integrantes. EJERCICIOS

Más detalles

APLICACIONES. 1. La siguiente ecuación representa un movimiento sobreamortiguado de un sistema masa resorte:

APLICACIONES. 1. La siguiente ecuación representa un movimiento sobreamortiguado de un sistema masa resorte: 1 APLICACIONES. 1. La siguiente ecuación representa un movimiento sobreamortiguado de un sistema masa resorte: d d t d dt 0 Donde, es la constante de amortiguamiento, m = es la masa del objeto, m m = 1.5

Más detalles

ANÁLISIS MATEMÁTICO I TEMA V : INTEGRALES Hoja 1. A) Calcular las siguientes integrales definidas aplicando la Regla de Barrow: 4x dx 3) I= π 0

ANÁLISIS MATEMÁTICO I TEMA V : INTEGRALES Hoja 1. A) Calcular las siguientes integrales definidas aplicando la Regla de Barrow: 4x dx 3) I= π 0 ANÁLISIS MATEMÁTICO I TEMA V : INTEGRALES Hoja A) Calcular las siguientes integrales definidas aplicando la Regla de Barrow: ) I= ( + ) ) I= / 4 π 0 cos 4) I= e ( + ) 6) I= 4 0 ( y) / dy B) Hallar el valor

Más detalles

Cálculo Integral Enero 2016

Cálculo Integral Enero 2016 Cálculo Integral Enero 6 Laboratorio # Antiderivadas I.- Halle las siguientes integrales indefinidas. ) ( + + ) ) ( + ) ( ) ) ( w + ) (w ) dw ) ( + ) 5) (y ) dy 6) ( +)( 5) 6 7) + 8) ( +) 5 y+ dy ) (y+5

Más detalles

Cálculo Diferencial e Integral - Volumen de un sólido. Prof. Farith J. Briceño N.

Cálculo Diferencial e Integral - Volumen de un sólido. Prof. Farith J. Briceño N. Cálculo Diferencial e Integral - Volumen de un sólido. Prof. Farith J. Briceño N. Objetivos a cubrir Volumen de un sólido : Secciones transversales. Volumen de un sólido de revolución : Método del disco.

Más detalles

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS Ejercicios de continuidad y derivabilidad. Selectividad de 008, 009, 00 y 0 Anális 008 Ejercicio.- Sean f : R R y g : R R las funciones definidas por f() = + a + b y g() = c e -(+). Se sabe que las gráficas

Más detalles

Cálculo II. Volúmenes de Sólidos. M. en C. Ricardo Romero. Grupo CTG87 Trimestre 11-P. Departamento de Ciencias Básicas, UAM-A

Cálculo II. Volúmenes de Sólidos. M. en C. Ricardo Romero. Grupo CTG87 Trimestre 11-P. Departamento de Ciencias Básicas, UAM-A Cálculo II Volúmenes de Sólidos M. en C. Ricardo Romero Departamento de Ciencias Básicas, UAM-A Grupo CTG87 Trimestre 11-P Grupo CTG87 Trimestre 11-P 1 / Programa 1 Cálculo de volúmenes a partir de secciones

Más detalles

UNIDAD IV. Ecuaciones diferenciales Lineales

UNIDAD IV. Ecuaciones diferenciales Lineales UNIDAD IV Ecuaciones diferenciales Lineales 24 UNIDAD 4 0, ECUACIONES DIFERENCIALES LINEALES Se llama ecuación lineal de primer orden a la que es lineal con respecto a la función incógnita y su derivada.

Más detalles

Repaso general de matemáticas I. 2) 4 e indica el dominio e imagen de p. D x,,

Repaso general de matemáticas I. 2) 4 e indica el dominio e imagen de p. D x,, . Sea F( ) arcsen. Repaso general de matemáticas I π π a) Obtén la gráfica de h ( ) = F ( ) - e indica el dominio e imagen de h. D, ; I, π π b) Obtén la gráfica de g( ) F( ) e indica el dominio e imagen

Más detalles

XVI FESTIVAL ACADÉMICO DE LA DGETI 2016

XVI FESTIVAL ACADÉMICO DE LA DGETI 2016 XVI FESTIVAL ACADÉMICO DE LA DGETI 2016 PROBLEMAS PARA ETAPA 1 1. Cuáles de las siguientes correspondencias son funciones? a) a cada persona hace corresponder su madre biológica. b) a cada madre biológica

Más detalles

En las figuras 1 a 8 que aparecen a continuación elija el elemento diferencial de área más apropiado y luego calcule el área de la región.

En las figuras 1 a 8 que aparecen a continuación elija el elemento diferencial de área más apropiado y luego calcule el área de la región. Módulos 8 al 5 I. Áreas entre curvas En las figuras a 8 que aparecen a continuación elija el elemento diferencial de área más apropiado luego calcule el área de la región. Figura Figura Figura Figura Capítulo

Más detalles

Cálculo Integral Agosto 2016

Cálculo Integral Agosto 2016 Cálculo Integral Agosto 6 Laboratorio # Antiderivadas I.- Realice la antidiferenciación indicada ) ( + 7/ ) ) w ( w + ) dw ) (z / + z /5 + )dz ) + ) (w + w)(w + ) dw ) k (k +) / dk ) (y / + y 5/ )(y +

Más detalles

UNIDAD IX: APLICACIONES DE LAS INTEGRALES DEFINIDAS.

UNIDAD IX: APLICACIONES DE LAS INTEGRALES DEFINIDAS. UNIDAD IX: APLICACIONES DE LAS INTEGRALES DEFINIDAS. Área de un sector en coordenadas polares. Área de una superficie de revolución. Volumen de un sólido de revolución. Objetivos Instructivos. Con esta

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL. 1. (5 puntos) Bosquejar la región en el primer cuadrante que está

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL. 1. (5 puntos) Bosquejar la región en el primer cuadrante que está ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS RÚBRICA DE LA SEGUNDA EVALUACIÓN DE CÁLCULO DE UNA VARIABLE. (5 puntos) Bosquejar la región

Más detalles

( x) ( ) = D) k( x) ( ) = es una función: 3 x. = + + es una función: h x e + = C) ( ) g x A) B) Sesión 2

( x) ( ) = D) k( x) ( ) = es una función: 3 x. = + + es una función: h x e + = C) ( ) g x A) B) Sesión 2 Sesión Unidad I Clasificación dibujo de gráfica de funciones. D. Clasificación de funciones. h ( ) 0.- La función es una función: Creciente Trascendente Irracional Constante Logarítmicas.- Una función

Más detalles

Guía de Integrales Definidas. Matemáticas II Prof. Wilson Herrera.

Guía de Integrales Definidas. Matemáticas II Prof. Wilson Herrera. Wilson Herrera 1 Guía de Integrales Definidas. Matemáticas II Prof. Wilson Herrera. 1. Calcular las siguientes integrales: a) b) c) d) e) f ) g) h) 1 8 4 1 6 3 3 1 ( + 3) ( + 3 ) 1 + y dy y 5 + 3 1 + 3

Más detalles

1) ( ) 2 ( 1) 2) ( ) ( 2 )( ) 3) ( ) 4 4) ( ) = 8 5) ( ) = 4 6) ( ) = 4. 6 x

1) ( ) 2 ( 1) 2) ( ) ( 2 )( ) 3) ( ) 4 4) ( ) = 8 5) ( ) = 4 6) ( ) = 4. 6 x MATEMÁTICA II (MECÁNICA) EXAMEN II I PARTE: APLICAR EL CRITERIO DE LA PRIMERA DERIVADA A LAS SIGUIENTES FUNCIONES: Determinar: a.) Intervalos donde la función Crece b.) Intervalos donde la función Decrece.

Más detalles

1. Suponiendo que la ecuación dada de ne a y como función implícita de x calcular dy dx ; d2 y

1. Suponiendo que la ecuación dada de ne a y como función implícita de x calcular dy dx ; d2 y FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA E.U. P. de Sevilla, curso 8-9 Ingeriería Técnica Instrial. Esecialidades Electricidad, Electrónica Mecánica. Bloue II: Cálculo diferencial e integral de funciones

Más detalles

2015/2. Ejercicios cálculo diferencial cdx24 Derivada y aplicaciones

2015/2. Ejercicios cálculo diferencial cdx24 Derivada y aplicaciones 015/ Ejercicios cálculo diferencial cd4 Derivada y aplicaciones 6. Encuentre la derivada de la función usando la definición de derivada, y muestre que obtiene el mismo resultado encontrándola nuevamente

Más detalles

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra. Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =

Más detalles

Cálculo Integral Enero 2015

Cálculo Integral Enero 2015 Cálculo Integral Enero 015 Laboratorio # 1 Antiderivadas I.- Halle las siguientes integrales indefinidas. 10) ) 6) 1 1 1 1 16) 1 8) 9) 18) II.- Calcule 1.. 1 Cálculo Integral Enero 015 Laboratorio # Aplicaciones

Más detalles

UCV-INGENIERÍA ECUACIONES DIFERENCIALES (0256)

UCV-INGENIERÍA ECUACIONES DIFERENCIALES (0256) UCV-INGENIERÍA ECUACIONES DIFERENCIALES (056) EJERCICIOS PROPUESTOS SOBRE ECUACIONES DIFERENCIALES Tema : Introducción a las Ecuaciones diferenciales ordinarias de primer orden sus aplicaciones. Contenidos

Más detalles

Cálculo Integral Área de una superficie de revolución. Universidad Nacional de Colombia

Cálculo Integral Área de una superficie de revolución. Universidad Nacional de Colombia Cálculo Integral Área de una superficie de revolución Jeanneth Galeano Peñaloza - Claudio Rodríguez Beltrán Universidad Nacional de Colombia Segundo semestre de 2015 Área de una superficie de revolución

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-103-6-M-2-00-2017 CURSO: SEMESTRE: Segundo CÓDIGO DEL CURSO: 103 TIPO DE EXAMEN: Segunda Retrasada FECHA DE

Más detalles

Práctica 5 Cálculo integral y sus aplicaciones

Práctica 5 Cálculo integral y sus aplicaciones Práctica 5 Cálculo integral y sus aplicaciones 5.1.- Integración con Mathematica o Integrales indefinidas e integrales definidas Mathematica nos permite calcular integrales mediante la instrucciones: Integrate[expresión

Más detalles

14 CUERPOS GEOMÉTRICOS. VOLÚMENES

14 CUERPOS GEOMÉTRICOS. VOLÚMENES EJERCICIOS PARA ENTRENARSE Poliedros 14.33 Calcula la suma de los ángulos de las caras que concurren en un vértice de los poliedros regulares. Qué observas? TETRAEDO: En un vértice concurren tres triángulos

Más detalles

Taller 3 cálculo diferencial cdx24

Taller 3 cálculo diferencial cdx24 Taller cálculo diferencial cd4 Profesor Jaime Andrés Jaramillo González. jaimeaj@conceptocomputadores.com. www.jaimeaj.conceptocomputadores.com ITM 04- Derivadas de Orden Superior. Encuentre ' a. ( ) /

Más detalles

V = volumen del cilindro exterior menos volumen del hueco

V = volumen del cilindro exterior menos volumen del hueco 1 (Apuntes en revisión para orientar el aprendizaje) CÁLCULO DE VOLÚMENES MEDIANTE CORTEZAS CILÍNDRICAS Este método se asa en utilizar anillos cilíndricos de poco grosor llamados cortezas que se ilustra

Más detalles

Ejercicios propuestos

Ejercicios propuestos Ejercicios propuestos 1. Encuentre el área total y el volumen de un cubo si la diagonal de una de sus caras mide 6 cm. 2. Encuentre el volumen de un cubo si la longitud de su diagonal mayor mide 8 cm.

Más detalles

Ecuaciones Diferenciales (0256) Tema 1. Ecuaciones Diferenciales de 1 er Orden

Ecuaciones Diferenciales (0256) Tema 1. Ecuaciones Diferenciales de 1 er Orden Jah0 Ecuaciones Diferenciales (056) Tema Ecuaciones Diferenciales de er Orden.- Determine el grado, el orden linealidad de las siguientes ecuaciones diferenciales: a) d ( cos ) d 0 b) '' ' ' ( ' ) 0 d

Más detalles

1. Calcula el área y volumen de los siguientes cuerpos geométricos:

1. Calcula el área y volumen de los siguientes cuerpos geométricos: 1. Calcula el área y volumen de los siguientes cuerpos geométricos: 2.- Dibuja los siguientes cuerpos geométricos y calcula su área. a) Prisma de altura 24 cm y cuya base es un rombo de diagonales 18 y

Más detalles

ESQUEMA GENERAL DE LA CLASIFICACIÓN DE LOS CUERPOS GEOMÉTRICOS REGULARES ESFERA

ESQUEMA GENERAL DE LA CLASIFICACIÓN DE LOS CUERPOS GEOMÉTRICOS REGULARES ESFERA ESQUEMA GENERAL DE LA CLASIFICACIÓN DE LOS CUERPOS GEOMÉTRICOS POLIEDROS REGULARES Tetraedro ( 4 triángulos equiláteros) Hexaedro o cubo( 6 cuadrados) Octaedro( 8 triángulos equiláteros) Dodecaedro ( 12

Más detalles

Cálculo Integral Agosto 2015

Cálculo Integral Agosto 2015 Cálculo Integral Agosto 5 Laboratorio # Antiderivadas I.- Halle las siguientes integrales indefinidas. ) (x 5 8x + 3x 3 ) ) (y 3 6y 6 5 + 8) dy 3) (y 3 + 5)(y + 3) dy 4) (t 3 + 3t + ) (t 3 + 5) dt 5) (3y

Más detalles

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto

Más detalles

= en los puntos (0;1) y (1;0,5) Determine la razón de cambio promedio de la función en cada intervalo: x

= en los puntos (0;1) y (1;0,5) Determine la razón de cambio promedio de la función en cada intervalo: x Trabajo Práctico N : DERIVADA Y DIFERENCIAL Ejercicio : Halle la pendiente de la gráfica de la función en los puntos dados aplicando la definición de derivada de una función en un punto. Después halle

Más detalles

Área entre curvas. Ejercicios resueltos. 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x.

Área entre curvas. Ejercicios resueltos. 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x. Área entre curvas Ejercicios resueltos 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x. En primer lugar hallamos los puntos de corte de las dos funciones para conocer los límites

Más detalles

De x = 1 a x = 6, la recta queda por encima de la parábola.

De x = 1 a x = 6, la recta queda por encima de la parábola. Área entre curvas El área comprendida entre dos funciones es igual al área de la función que está situada por encima menos el área de la función que está situada por debajo. Ejemplos 1. Calcular el área

Más detalles

ANÁLISIS (Selectividad)

ANÁLISIS (Selectividad) ANÁLISIS (Selectividad) 1 Sea f : R R la función definida por f() ln ( +1). (a) Determina los intervalos de crecimiento y decrecimiento y los etremos relativos de la función f (puntos donde se alcanzan

Más detalles

Apéndice 10: Integral de Riemann

Apéndice 10: Integral de Riemann Apéndice : Integral de Riemann. Otras aplicaciones geométricas.. Volúmenes mediante secciones planas transversales Supongamos que tenemos un sólido del que se conoce (), el área de la sección plana obtenida

Más detalles

Examen estandarizado A

Examen estandarizado A Examen estandarizado A Elección múltiple 1. Qué figura es un poliedro? A B 7. Halla el área de la superficie de la pirámide regular. A 300 pies 2 15 pulg B 340 pies 2 C D C 400 pies 2 D 700 pies 2 10 pulg

Más detalles

Ejercicios Propuestos. Tarea No. 2. f z, y. z 1. Encontrar las derivadas parciales,, x. de los siguientes ejercicios: a. z = x 5 y 4 + ye 2x b. c. d.

Ejercicios Propuestos. Tarea No. 2. f z, y. z 1. Encontrar las derivadas parciales,, x. de los siguientes ejercicios: a. z = x 5 y 4 + ye 2x b. c. d. Ejercicios Propuestos. Tarea No.. f z 1. Encontrar las derivadas parciales,, x x f z, z de los siguientes ejercicios: x a. z = x 5 4 + e x b. c. d. e. f. g. f(x,, z) = xsen(z) xzsen() h. i. f(x,, z) =

Más detalles

CÁLCULO ELEMENTAL PROBLEMAS. Valor absoluto. Funciones y sus gráficas

CÁLCULO ELEMENTAL PROBLEMAS. Valor absoluto. Funciones y sus gráficas CÁLCULO ELEMENTAL PROBLEMAS Valor absoluto - Resolver las ecuaciones siguientes: (i) 2x 6 = x (ii) x + 8 = 3x 4 2- Resolver la inecuación 2x 3 4 Funciones y sus gráficas 3- Dada f(x) = 2x 2 x, hallar f(

Más detalles

Práctica 5 Máximos y Mínimos. Multiplicadores de Lagrange. Escuela de Matemática Instituto Tecnológico de Costa Rica

Práctica 5 Máximos y Mínimos. Multiplicadores de Lagrange. Escuela de Matemática Instituto Tecnológico de Costa Rica Práctica 5 Máximos y Mínimos. Multiplicadores de Lagrange. Escuela de Matemática Instituto Tecnológico de Costa Rica http://www.cidse.itcr.ac.cr 7 de junio de 008 . Para cada una de las funciones que se

Más detalles

INTEGRAL DEFINIDA. senx. sen PROBLEMAS. 1º-Calcular las siguientes integrales definidas: E[x]dx

INTEGRAL DEFINIDA. senx. sen PROBLEMAS. 1º-Calcular las siguientes integrales definidas: E[x]dx INTEGRAL DEFINIDA. PROBLEMAS. º-Calcular las siguientes integrales definidas: π sen. ln(+ )d. d. + sen - cos -π +. d.5 -) - ( - d.6 E[]d -.7 E[] d.8 cos d - º-Calcular el área limitada por las gráficas

Más detalles

MODELO 1 EXAMEN DE CÁLCULO DIFERENCIAL. siendo a un nº real

MODELO 1 EXAMEN DE CÁLCULO DIFERENCIAL. siendo a un nº real MODELO 1 EXAMEN DE CÁLCULO DIFERENCIAL 1. Escribe la ecuación de la recta normal a la curva de ecuación: arcsen abscisa 1. Haz un estudio de todas las asíntotas de la función: 1 e f ( ). Halla los valores

Más detalles

Geometría en el espacio

Geometría en el espacio Geometría en el espacio 3º E.S.O. PARTE TEÓRICA 1.- Define los siguientes conceptos: Poliedro: Vértice de un poliedro: Cara de un poliedro: Arista de un poliedro: Poliedro regular: 2.- Di cuáles son los

Más detalles

2 Calcula la superficie total de cada cuerpo:

2 Calcula la superficie total de cada cuerpo: 8 Pág. Calcula la superficie total de cada cuerpo: A cm B C D cm A Área lateral πrh π,5 5π Área bases (πr ) π,5,5π Área total 5π +,5π 7,5π 86, B Área lateral πrg π 5 5π Área base πr π 9π Área total 5π

Más detalles

SECUELA SUGERIDA PARA RESOLVER PROBLEMAS DE EXTREMOS

SECUELA SUGERIDA PARA RESOLVER PROBLEMAS DE EXTREMOS (Apuntes en revisión para orientar el aprendizaje) SECUELA SUGERIDA PARA RESOLVER PROBLEMAS DE EXTREMOS - Leer cuidadosamente el enunciado para comprender la problemática presentada y ver qué se pretende

Más detalles

2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima.

2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima. cos() - e + a. [04] [ET-A] Sabiendo que lim 0 sen() es finito, calcula a y el valor del límte.. [04] [ET-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima..

Más detalles

Universidad de Antioquia, Depto. de Matematicas

Universidad de Antioquia, Depto. de Matematicas minuto. Si la cantidad máxima de sal en el tanque se obtiene a los 0 minutos. Cual era la cantidad de sal inicial en el tanque? (ta.: 375 libras) Ejercicio 10. Un tanque contiene 00 litros de una solución

Más detalles

850 CAPÍTULO 12 Funciones vectoriales

850 CAPÍTULO 12 Funciones vectoriales 850 CAPÍTULO Funciones vectoriales Eploración de velocidad Considérese el círculo dado por Usar una herramienta de graficación en modo paramétrico para repretar este círculo para varios valores de. Cómo

Más detalles

PAU: Aplicaciones de la derivada MATEMÁTICAS II 1. 2cos. x 0 x 0

PAU: Aplicaciones de la derivada MATEMÁTICAS II 1. 2cos. x 0 x 0 PAU: Aplicaciones de la derivada MATEMÁTICAS II JULIO 0 ESPECÍFICA. Calcule a para que las siguientes funciones: sen a cos f( ) g() tengan el mismo límite en el punto 0. Calculamos cada límite: sen a 0

Más detalles

Prisma, cilindro y cono. Anselmo necesita elaborar una pieza de madera maciza que tiene una forma como esta:

Prisma, cilindro y cono. Anselmo necesita elaborar una pieza de madera maciza que tiene una forma como esta: Prisma, cilindro y cono Lección 5 Anselmo necesita elaborar una pieza de madera maciza que tiene una forma como esta: Cuánto mide el ancho de la pieza? Cuánto mide el largo de la pieza? Cuánto mide la

Más detalles

CURSO DE NIVELACIÓN Guía 13 FUNCIONES Y TRIGONOMETRÍA

CURSO DE NIVELACIÓN Guía 13 FUNCIONES Y TRIGONOMETRÍA FUNCIONES Y TRIGONOMETRÍA 1. Determine el dominio de las siguientes funciones: a) f() = + 7 b) g() = + 7, 0 6 c) f() = 5 d) f() = 5 + + 1 e) f() = 1 f ) f() = 1 g) f() = ( 1)( )( ) h) g() = i) g() = 1

Más detalles

RECTAS, PLANOS EN EL ESPACIO.

RECTAS, PLANOS EN EL ESPACIO. COMUNICACIÓN MATEMÁTICA: Grafica rectas, planos y sólidos geométricos en el espacio RESOLUCIÓN DE PROBLEMAS Resuelve problemas geométricos que involucran rectas y planos en el espacio. Resuelve problemas

Más detalles

x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.

x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1. . [0] [SEP-B] Sea la función f definida por f() = e- para. - a) Estudia las asíntotas de la gráfica de f. b) Halla los etremos relativos (abscisas donde se obtienen y valores que se alcanzan) y los intervalos

Más detalles

Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras.

Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras. CLASIFICASION DE CUERPOS GEOMETRICOS 1 2 Cuerpos Geométrico s Ángulo diedro: es el ángulo formado por dos caras del poliedro. El ángulo formado por tres o más caras que concurren en un vértice, se denomina

Más detalles

f(x) = xe para x -1 y x 0, MATEMÁTICAS II PROBLEMAS DE FUNCIONES. Ejercicio 1. (Reserva 1 Septiembre 2013 Opción A) Sea f la función definida por

f(x) = xe para x -1 y x 0, MATEMÁTICAS II PROBLEMAS DE FUNCIONES. Ejercicio 1. (Reserva 1 Septiembre 2013 Opción A) Sea f la función definida por MATEMÁTICAS II PROBLEMAS DE FUNCIONES. Ejercicio. (Reserva Septiembre 0 Opción A) f() = para > 0, (donde ln denota el logaritmo neperiano). ln() a) [ 5 puntos] Estudia y determina las asíntotas de la gráfica

Más detalles

Práctico 2:Diferenciación

Práctico 2:Diferenciación Práctico 2:Diferenciación. La siguiente función refleja la posición de un automóvil que se desplaza sobre una recta 00t si 0 t x = f (t) = 00 si t.25 (t.25) + 00 si.25 t 2.75 350 3 (a) Halle la razón de

Más detalles

Integración 416. a) Limitada por y = x 2 + 1,y = 0,x = 1,x = 1 alrededor del eje OX: b) Limitada por y = x,x = 4,y = 0 alrededor del eje OX:

Integración 416. a) Limitada por y = x 2 + 1,y = 0,x = 1,x = 1 alrededor del eje OX: b) Limitada por y = x,x = 4,y = 0 alrededor del eje OX: Integración 416 Problema 2 En los siguientes apartados usar el método de discos para hallar el volumen del sólido generado al girar la región dada entre los límites dados sobre el eje indicado: a) Limitada

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-07-4-M--00-07 CURSO: SEMESTRE: Primero CÓDIGO DEL CURSO: 07 TIPO DE EXAMEN: Eamen Final FECHA DE EXAMEN: 8

Más detalles

Soluciones de la relación de ejercicios del TEMA 4

Soluciones de la relación de ejercicios del TEMA 4 Soluciones de la relación de ejercicios del TEMA. Aplica el Teorema Fundamental del Cálculo Integral, para resolver: (a) d ( +t dt) d Sean f,g,h :, definidas por h() = +t dt, f(t) = +t y g() =. Como f

Más detalles

( ) ( x) ( ) LA DERIVADA UNIDAD III. = 5 y con la semiamplitud EJERCICIOS ABIERTOS. lim. x 2

( ) ( x) ( ) LA DERIVADA UNIDAD III. = 5 y con la semiamplitud EJERCICIOS ABIERTOS. lim. x 2 LA DERIVADA UNIDAD III EJERCICIOS ABIERTOS Cuál es la diferencia entre entorno entorno reducido? Obtener el entorno del punto a con la semiamplitud δ 0.. Obtener el entorno reducido del punto a con la

Más detalles

x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4

x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4 CÁLCULO. Curso 2003-2004. Tema 7. Derivabilidad.. Estudiar la continuidad y la derivabilidad de las funciones: {, si 0 (a) e, si > 0 2 +, si > 0 (b), si = 0 2. Dada la función (c) 2 si < 0 e, si > 0 2

Más detalles

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA. Calcular las siguientes integrales definidas: b) d e d c) + d d) d e) sen d f) + d d ( ) En primer lugar se ha calculado una primitiva de f() Barrow. y después

Más detalles

Análisis Matemático I (Lic. en Cs. Biológicas)

Análisis Matemático I (Lic. en Cs. Biológicas) Análisis Matemático I (Lic. en Cs. Biológicas) Segundo cuatrimestre 2017 Práctica 4: Derivadas Notaciones: Dada una función f : R R, un punto a R y un número R que llamaremos incremento en, se define el

Más detalles

MATERIA:_Matemáticas V 5010 CICLO ESCOLAR_ PROFESOR:

MATERIA:_Matemáticas V 5010 CICLO ESCOLAR_ PROFESOR: MATERIA:_Matemáticas V 5010 CICLO ESCOLAR_2014-2015 PROFESOR: Relaciones y funciones. Para las siguientes funciones encuentra el dominio por medio de su regla de correspondencia e intervalo correspondiente

Más detalles

CUERPOS DE REVOLUCIÓN

CUERPOS DE REVOLUCIÓN PROPÓSITOS: Identificar los cuerpos redondos o de revolución. Resolver problemas, donde se aplique el volumen y área de cuerpos de revolución. CUERPOS DE REVOLUCIÓN Existen cuerpos geométricos que no tienen

Más detalles

P.D. LA ENTREGA ES MAÑANA LUNES 01 DE JULIO A LAS 13 HORAS, EN LA UNIVERSISDAD ALAS PERUANAS, SEAN PUNTUALES, Y EVITEMOS LOS INCONVENIENTES.

P.D. LA ENTREGA ES MAÑANA LUNES 01 DE JULIO A LAS 13 HORAS, EN LA UNIVERSISDAD ALAS PERUANAS, SEAN PUNTUALES, Y EVITEMOS LOS INCONVENIENTES. PRÁCTICA DIRIGIDA: 1. Vásquez Ángulo, Hans Jaramillo Falcón, Yovel 3. Leyva Espíndola, Ygnacio Aguirre Cortéz, Franco 5. Meza Salazar, Erick 6. Meza Alvarez, Henrry 7. Bautista Tarazona, Jhames 8. Rivera

Más detalles

GRADO DE INGENIERÍA AEROESPACIAL. CURSO MATEMÁTICAS II. DPTO. DE MATEMÁTICA APLICADA II

GRADO DE INGENIERÍA AEROESPACIAL. CURSO MATEMÁTICAS II. DPTO. DE MATEMÁTICA APLICADA II GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Ejercicios Eámenes Anteriores. Ejercicio. Se dobla en dos una hoja de cartulina de 4 por 36 cm para formar un rectángulo de 4 por 8 cm, como se muestra en la figura

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE MATEMÁTICAS

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE MATEMÁTICAS UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE MATEMÁTICAS CÁLCULO INTEGRAL PRIMER EXAMEN EXTRAORDINARIO Sinodales: M.I. Mayverena Jurado Pineda

Más detalles

1. Estudia la derivabilidad de la función )En qué punto del intervalo (0,ð) la recta tangente a y=tg(x) tiene pendiente 2?.

1. Estudia la derivabilidad de la función )En qué punto del intervalo (0,ð) la recta tangente a y=tg(x) tiene pendiente 2?. ejerciciosyeamenes.com EXAMEN DERIVADAS. Estudia la derivabilidad de la función si f ()= si > 3. )En qué punto del intervalo (0,ð) la recta tangente a y=tg() tiene pendiente?. 4. Ecuación de la recta tangente

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS APLICACIONES DE LAS DERIVADAS Apuntes de A. Cabañó. Calcula la tasa de variación media de la función +- en los intervalos: a) [-,0], b) [0,], c) [,]. Sol: a) 0; b) ; c) 6. Calcula la tasa de variación

Más detalles

Examen A del capítulo

Examen A del capítulo Eamen A del capítulo Usar después del capítulo Indica si el sólido es un poliedro. Si es así, halla el número de caras, vértices y aristas.. 2. 3.. Determina si el poliedro es regular y/o conveo. 2. 4.

Más detalles

Universidad Icesi Departamento de Matemáticas y Estadística

Universidad Icesi Departamento de Matemáticas y Estadística Universidad Icesi Departamento de Matemáticas y Estadística Solución del tercer eamen parcial del curso Cálculo una variable Grupo: Uno Período: Inicial del año Prof: Rubén D. Nieto C. PUNTO. a. Después

Más detalles

Universidad de Costa Rica. Instituto Tecnológico de Costa Rica TERCER EXAMEN PARCIAL CÁLCULO. Miércoles 3 de setiembre de 2014

Universidad de Costa Rica. Instituto Tecnológico de Costa Rica TERCER EXAMEN PARCIAL CÁLCULO. Miércoles 3 de setiembre de 2014 Universidad de Costa Rica Instituto Tecnológico de Costa Rica TERCER EXAMEN PARCIAL CÁLCULO Miércoles 3 de setiembre de 04 INSTRUCCIONES Lea cuidadosamente, cada instrucción y pregunta, antes de contestar.

Más detalles

1 Indica cuáles de las siguientes parábolas están abiertas hacia arriba y cuáles hacia abajo:

1 Indica cuáles de las siguientes parábolas están abiertas hacia arriba y cuáles hacia abajo: Indica cuáles de las siguientes parábolas están abiertas hacia arriba y cuáles hacia abajo: 3 + x y = 3 x x + x 3 + x y = 3 x x + x Abierta hacia arriba Abierta hacia abajo Abierta hacia abajo Calcula

Más detalles

Ejercicio 3: Analice las siguientes gráficas de funciones y determine los valores de x, si existen, en los cuales f, no es derivable.

Ejercicio 3: Analice las siguientes gráficas de funciones y determine los valores de x, si existen, en los cuales f, no es derivable. Trabajo Práctico N 3: DERIVADA Y DIFERENCIAL Ejercicio 1: Para cada una de las siguientes funciones: i. Halle la expresión de la derivada en el punto indicado en cada caso, aplicando la definición de la

Más detalles

MATEMÁTICAS II Soluciones Hoja Integración Aproximada Curso 07-08

MATEMÁTICAS II Soluciones Hoja Integración Aproximada Curso 07-08 Ejercicio : Para proceder a pintarlo, se necesita conocer las medidas del techo de cierto edificio singular. Dicho techo tiene forma geométrica de embudo invertido, similar a la de la superficie de revolución

Más detalles