Taller 3 cálculo integral: Preparación tercer parcial. Profesor Jaime Andrés Jaramillo. UdeA.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Taller 3 cálculo integral: Preparación tercer parcial. Profesor Jaime Andrés Jaramillo. UdeA."

Transcripción

1 Taller cálculo integral: Preparación tercer parcial. Profesor Jaime Andrés Jaramillo. UdeA. 7- Área de una región plana. Determine el área de la región acotada por las gráficas de las ecuaciones dadas 7 d) e) f) g) h) i) ln e e j) k) 9 / e l) cos π sen m) e ln n) o) 6 p) 8 q)

2 r) sen cos sobre el intervalo π, π. (Zill Wright,. p. 99). Volumen de un Sólido de Revolución. (Método de los anillos) Determine el volumen del sólido de revolución generado cuando la región acotada por las gráficas de las ecuaciones dadas gira en torno del eje indicado En torno a ( primercuadrante) entornoaeje 9 entornoaeje. (Método de las capas) Determine el volumen del sólido de revolución generado cuando la región acotada por las gráficas de las ecuaciones dadas gira en torno del eje indicado eje eje En torno a - En torno a

3 . Determine el volumen del sólido de revolución generado cuando la región acotada por las gráficas de las ecuaciones dadas gira en torno del eje indicado eje 9 eje En torno a la recta d), eje e) eje f) eje g) En torno a la recta h) ln eje i) eje j) eje k) 9 eje l) ln ) ( e En torno a la recta ln

4 m) n) o) p) sen cos π π En torno a la π recta e / 9 eje sen( ) π eje eje q) En torno a - r) ; 6 En torno a s) En torno a eje t) En torno a u) tan π El eje En torno a. Considere la región acotada por las gráficas de ;

5 Determinar: Área de la región Volumen del sólido de revolución generado, si gira en torno a la recta: Trabajo i. ii. 6 iii. iv. 6. Encuentre el trabajo realizado (no es tema del curso) Una fuerza de libras comprime un resorte de pulgadas un total de pulgadas. Cuánto trabajo se realiza al comprimir el resorte 7 pulgadas adicionales? Un resorte tiene una longitud natural de cm, si se requiere una fuerza de N para mantener el resorte estirado cm. Halle el trabajo realizado para estirar el resorte desde su longitud natural a una longitud de 8 cm. Un resorte tiene una longitud natural de 8 pulgadas. Si una fuerza de libras estira el resorte pulgada, determinar el trabajo realizado al estirar el resorte de 8 pulgadas a pulgadas. d) Una fuerza de kg alarga un resorte cm. Determine el trabajo requerido para alargar el resorte cm más.

6 e) Un resorte tiene una longitud natural de 6cm. Si dinas lo comprimen, cm, calcular el trabajo efectuado al comprimirlo desde,6 cm hasta, cm. Qué trabajo se requiere para hacer que el resorte llegue a 9 cm, partiendo de su estado comprimido de, cm? f) Suppose that a spring has a natural length of feet and that a force of pounds is needed to compress the spring to a length of 8 inches. Find the amount work that is necessar to stretch the spring from a length of. foot to a length of feet. g) A spring has a natural length of cm. If a N force is required to keep it stetched to a length of cm, how much work is required to stretch it from cm to cm? h) A cable whose weight densit is lb/ft is used to lift 8 lb of coal up a mineshaft ft deep. Find the work done. i) Una fuerza de 7N se requiere para mantener estirado un resorte.m de su longitud normal. Encuentre el trabajo realizado al estirar el resorte.m. j) Compute the work done in empting an inverted conical tank that is ft tall and has a diameter at the top of ft and that has a water level of ft. Note the weight densit of water is 6.lb ft k) Un cable que pesa libras/pie se está desenrollando de un tambor cilíndrico. Si ha pies desenrollados, calcular el trabajo realizado por la fuerza de la gravedad para desenrollar otros pies. l) Compute the work done b lifting. kg verticall. meters. State answer in both metric and English units. m) Compute the work required to lift a ton space module 8 miles above the surface of the earth, given that the radius of the earth is about, miles n) If a tank is made revolving the graph of the equation ( and measured in meters).m about the ais for m m, how much work does it take to fill the tank to the top with water? o) Un tanque esférico de almacenamiento de agua de SEDAPAL de m de radio está instalado de modo tal que su parte superior queda a m sobre el piso. Si en cierto momento se encuentra lleno de agua hasta la mitad de su capacidad se pide calcular el trabajo que debe realizar una bomba para desaguar parcialmente el tanque, sabiendo que esta debe elevar el agua hasta la parte superior del mismo, pero que se desean dejar veinte centímetros de agua al fondo. p) Un contratista construe un gran recipiente (para almacenar agu en forma de un semicilindro circular recto. Al instalarlo en el campo, la cara rectangular de doce metros de longitud tres de diámetro es apoada horizontalmente sobre una base de concreto armado de un metro de altura. Si se vierte agua al tanque hasta cubrir la mitad de su radio, se pide

7 calcular el trabajo en que debe realizar una bomba para desaguar el tanque, si el agua debe bombearse hasta un punto dos metros mas alto que la parte superior del mismo. q) Un reservorio en forma de cono circular recto tiene un diámetro de m en la parte inferior una altura de 8 m. Si el tanque se llena con agua dulce hasta una altura de m, se pide calcular el trabajo para desaguarlo. Suponga que el tanque se apoa sobre el suelo que el agua debe bombearse hasta una altura de m, es decir dos metros mas arriba que el vértice del cono. Longitud de Arco Área de una Superficie de Revolución 7. Encuentre la longitud de arco de la gráfica de la función en el intervalo indicado / en[,] en 6 [,] ( ) en[,] d) 6 en [,] e) ln(sen) π π en [, ] 6 f) 8 en [,] g) 7( e / en [-,] e /) h) 8 de a 8. Encuentre el área de la superficie de revolución que se genera cuando la porción de la gráfica indicada gira en torno al eje de revolución en [,] eje en [, ] eje en [,] eje d) desde hasta, en torno al eje e) en [,9] En torno al eje f) ln en [,7] En torno al eje Centroide de una Región Plana

8 9. Encuentre las coordenadas del centroide de la región acotada por las gráficas de las ecuaciones dadas 6 d) 9 e) 6 f) g) h) i) Teoremas de Pappus. Encuentre el volumen del sólido de revolución generado si la región acotada por las gráficas dadas gira en torno a los ejes que se indican: En torno a: 6 6

9 . Determinar el volumen del sólido de revolución generado si la región acotada por las gráficas de ; gira en torno a la recta. Tenga en cuenta que la distancia entre la recta a b c el punto (, ), puede a b c determinarse con la fórmula a b

10 ALGUNAS RESPUESTAS. d. 7 Unidades de área f. Unidades de área h. Unidades de área π k. Unidades de área. b.. 6 Unidades de volumen 7π. e. Unidades de volumen g. V π 8. Unidades de vol. u. V. 8 Unidades de vol. 7. a.. Unidades de longitud c. Unidades de longitud 7 e. ln[( )/( )]. 76 f.. 87 Unidades de longitud g. s e e Unid. long.,unid. long. 8. a. ( / / ) 99, π Unidades de área S π Unidades de área. b. 7 c. π Unidades de área f. [ ln( )] π Unidades de área , 6., 8., i., (,6;,) 8 687π. Centroide, ; V 6,7Unid. Vol

11 Referencias Zill, D. and Wright, W. (). Cálculo de una variable. ta ed. Méico: McGraw Hill Interamericana.

En las figuras 1 a 8 que aparecen a continuación elija el elemento diferencial de área más apropiado y luego calcule el área de la región.

En las figuras 1 a 8 que aparecen a continuación elija el elemento diferencial de área más apropiado y luego calcule el área de la región. Módulos 8 al 5 I. Áreas entre curvas En las figuras a 8 que aparecen a continuación elija el elemento diferencial de área más apropiado luego calcule el área de la región. Figura Figura Figura Figura Capítulo

Más detalles

Respuestas al desarrollo de la competencia del capítulo 3

Respuestas al desarrollo de la competencia del capítulo 3 Respuestas Respuestas al desarrollo de la competencia del capítulo ÁREA NETA CON SIGNO En los problemas del al, dibuja la región delimitada por la gráfica de la función dada en el intervalo indicado calcula

Más detalles

Rotaciones alrededor de los ejes cartesianos

Rotaciones alrededor de los ejes cartesianos Sólido de revolución Un sólido de revolución es un cuerpo que puede obtenerse mediante una operación geométrica de rotación de una superficie plana alrededor de una recta que se contenida en su mismo plano.

Más detalles

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0.

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0. . Encuentre el área de la región limitada por las curvas indicadas:.. y = x, y = x +... x = y, x = y +... y = x +, y = x +, y = x....5..6..7..8..9..0....... y = x + 8x 7, y = x. y = x, y = x +, x =, x

Más detalles

Respuestas a la evaluación de la competencia del capítulo 3

Respuestas a la evaluación de la competencia del capítulo 3 Respuestas Respuestas a la evaluación de la competencia del capítulo En los ejercicios del al 7, dibuja la región que queda comprendida bajo la gráfica de la función dada en el intervalo indicado calcula

Más detalles

Lic. Saúl Villamizar Valencia 53 SÓLIDOS DE REVOLUCIÓN Y ESFERA

Lic. Saúl Villamizar Valencia 53 SÓLIDOS DE REVOLUCIÓN Y ESFERA Lic. Saúl Villamizar Valencia 53 SÓLIDOS DE REVOLUCIÓN Y ESFERA 54 Actualización Permanente en el Área Matemática 1. Cilindro Definiciones Se llama superficie cilíndrica la engendrada por una recta que

Más detalles

INSTITUTO TECNOLÓGICO METROPOLITANO FACULTAD DE CIENCIAS EXACTAS Y APLICADAS JEFATURA DE EDUCACIÓN Y CIENCIAS BÁSICAS

INSTITUTO TECNOLÓGICO METROPOLITANO FACULTAD DE CIENCIAS EXACTAS Y APLICADAS JEFATURA DE EDUCACIÓN Y CIENCIAS BÁSICAS INSTITUTO TECNOLÓGICO METROPOLITANO FACULTAD DE CIENCIAS EXACTAS Y APLICADAS JEFATURA DE EDUCACIÓN Y CIENCIAS BÁSICAS Taller : Cálculo diferencial Resuelva las preguntas a 4, de acuerdo con el gráfico

Más detalles

Contenido 1. Integrales Dobles 2. Integrales Triples

Contenido 1. Integrales Dobles 2. Integrales Triples Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................

Más detalles

Aplicaciones físicas

Aplicaciones físicas Problemas propuestos con solución Aplicaciones físicas ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ulles Índice 1 Integral doble: valor medio 1 2 Integral doble:

Más detalles

3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p

3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p ilindro y tronco de cilindro 1. En el gráfico se muestra un cilindro recto de base circular, además, T es punto de contacto de la recta PT en la superficie cilíndrica. Si PT=15 y P=8, calcule la distancia

Más detalles

INTEGRAL DEFINIDA. senx. sen PROBLEMAS. 1º-Calcular las siguientes integrales definidas: E[x]dx

INTEGRAL DEFINIDA. senx. sen PROBLEMAS. 1º-Calcular las siguientes integrales definidas: E[x]dx INTEGRAL DEFINIDA. PROBLEMAS. º-Calcular las siguientes integrales definidas: π sen. ln(+ )d. d. + sen - cos -π +. d.5 -) - ( - d.6 E[]d -.7 E[] d.8 cos d - º-Calcular el área limitada por las gráficas

Más detalles

= = y x 1 3 = xsenx. cos. y x

= = y x 1 3 = xsenx. cos. y x Tallr cálculo ingral: Prparación sgundo quiz sgundo parcial. Profsor Jaim Andrés Jaramillo. jaimaj@concpocompuadors.com. ITM. - A. Drmin l ára d la rgión bajo la gráfica usando la fórmula n i i n f lím

Más detalles

P.D. LA ENTREGA ES MAÑANA LUNES 01 DE JULIO A LAS 13 HORAS, EN LA UNIVERSISDAD ALAS PERUANAS, SEAN PUNTUALES, Y EVITEMOS LOS INCONVENIENTES.

P.D. LA ENTREGA ES MAÑANA LUNES 01 DE JULIO A LAS 13 HORAS, EN LA UNIVERSISDAD ALAS PERUANAS, SEAN PUNTUALES, Y EVITEMOS LOS INCONVENIENTES. PRÁCTICA DIRIGIDA: 1. Vásquez Ángulo, Hans Jaramillo Falcón, Yovel 3. Leyva Espíndola, Ygnacio Aguirre Cortéz, Franco 5. Meza Salazar, Erick 6. Meza Alvarez, Henrry 7. Bautista Tarazona, Jhames 8. Rivera

Más detalles

Guía de Integrales Definidas. Matemáticas II Prof. Wilson Herrera.

Guía de Integrales Definidas. Matemáticas II Prof. Wilson Herrera. Wilson Herrera 1 Guía de Integrales Definidas. Matemáticas II Prof. Wilson Herrera. 1. Calcular las siguientes integrales: a) b) c) d) e) f ) g) h) 1 8 4 1 6 3 3 1 ( + 3) ( + 3 ) 1 + y dy y 5 + 3 1 + 3

Más detalles

Cálculo Diferencial Agosto 2015

Cálculo Diferencial Agosto 2015 Laboratorio # 1 Desigualdades I.- Determinar los valores de que satisfacen simultáneamente las dos ecuaciones dadas. 1) 2 3 x 3 < 4 6 y x 1 > 1 3 2) 5x 4 > 1 4 y x + 1 2 1 2 3) 7x 7 1 7 y 4x + 4 > 1 4

Más detalles

I. Para cada una de las siguientes funciones calcular la derivada del orden pedido y simplificarlas. x 8(4 3 x ) x.. Sol. ). Sol.

I. Para cada una de las siguientes funciones calcular la derivada del orden pedido y simplificarlas. x 8(4 3 x ) x.. Sol. ). Sol. UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE FARMACIA CATEDRA DE MATEMATICA-FISICA GUÍA N 5 : Derivadas n-ésimas y aplicaciones de la derivada I. Para cada una de las siguientes funciones calcular la derivada

Más detalles

Cálculo Integral Enero 2015

Cálculo Integral Enero 2015 Cálculo Integral Enero 015 Laboratorio # 1 Antiderivadas I.- Halle las siguientes integrales indefinidas. 10) ) 6) 1 1 1 1 16) 1 8) 9) 18) II.- Calcule 1.. 1 Cálculo Integral Enero 015 Laboratorio # Aplicaciones

Más detalles

( ) 5 x [ ) [ ) VERSIÓN 0. cos ln e π. sgn 3

( ) 5 x [ ) [ ) VERSIÓN 0. cos ln e π. sgn 3 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS SEGUNDA EVALUACIÓN DE MATEMÁTICAS INGENIERÍAS GUAYAQUIL, AGOSTO 27 DE 2012 Nombre: Paralelo: VERSIÓN 0 INSTRUCCIONES Escriba sus

Más detalles

APLICACIONES DE LA INTEGRAL ( ( ) ( )) A = f x g x dx EJERCICIOS: 5) Calcular el área de la región limitada por las líneas y = xln(x), y = x.

APLICACIONES DE LA INTEGRAL ( ( ) ( )) A = f x g x dx EJERCICIOS: 5) Calcular el área de la región limitada por las líneas y = xln(x), y = x. APLICACIONES DE LA INTEGRAL Si R es la región limitada por las líneas y f() y y g(), con f() g(), entre a y b, el área de R viene dada por la integral A: b a ( ( ) ( )) A f g EJERCICIOS: ) Calcular el

Más detalles

Universidad de Antioquia, Depto. de Matematicas

Universidad de Antioquia, Depto. de Matematicas minuto. Si la cantidad máxima de sal en el tanque se obtiene a los 0 minutos. Cual era la cantidad de sal inicial en el tanque? (ta.: 375 libras) Ejercicio 10. Un tanque contiene 00 litros de una solución

Más detalles

Ejercicios propuestos

Ejercicios propuestos Ejercicios propuestos 1. Encuentre el área total y el volumen de un cubo si la diagonal de una de sus caras mide 6 cm. 2. Encuentre el volumen de un cubo si la longitud de su diagonal mayor mide 8 cm.

Más detalles

0.Mínimo de alumnos 12, Máximo Saberes teóricos

0.Mínimo de alumnos 12, Máximo Saberes teóricos 0.Mínimo de alumnos 12, Máximo 30 1.Saberes teóricos 1. Conceptos de función, límite de funciones, y continuidad. 2. Reglas de diferenciación. 3. Aplicaciones del cálculo de derivadas: Problemas de valores

Más detalles

UNIDAD IV. Ecuaciones diferenciales Lineales

UNIDAD IV. Ecuaciones diferenciales Lineales UNIDAD IV Ecuaciones diferenciales Lineales 24 UNIDAD 4 0, ECUACIONES DIFERENCIALES LINEALES Se llama ecuación lineal de primer orden a la que es lineal con respecto a la función incógnita y su derivada.

Más detalles

TALLER 5. GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA

TALLER 5. GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA TALLER 5. GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA. 01-1 Profesor: Jaime Andres Jaramillo González. jaimeaj@conceptocomputadores.com Parte de este documento es tomado

Más detalles

Taller 3 cálculo diferencial cdx24

Taller 3 cálculo diferencial cdx24 Taller cálculo diferencial cd4 Profesor Jaime Andrés Jaramillo González. jaimeaj@conceptocomputadores.com. www.jaimeaj.conceptocomputadores.com ITM 04- Derivadas de Orden Superior. Encuentre ' a. ( ) /

Más detalles

Volumen de Sólidos de Revolución

Volumen de Sólidos de Revolución 60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido

Más detalles

CUERPOS DE REVOLUCIÓN

CUERPOS DE REVOLUCIÓN PROPÓSITOS: Identificar los cuerpos redondos o de revolución. Resolver problemas, donde se aplique el volumen y área de cuerpos de revolución. CUERPOS DE REVOLUCIÓN Existen cuerpos geométricos que no tienen

Más detalles

Cálculo Integral Área de una superficie de revolución. Universidad Nacional de Colombia

Cálculo Integral Área de una superficie de revolución. Universidad Nacional de Colombia Cálculo Integral Área de una superficie de revolución Jeanneth Galeano Peñaloza - Claudio Rodríguez Beltrán Universidad Nacional de Colombia Segundo semestre de 2015 Área de una superficie de revolución

Más detalles

Examen estandarizado A

Examen estandarizado A Examen estandarizado A Elección múltiple 1. Qué figura es un poliedro? A B 7. Halla el área de la superficie de la pirámide regular. A 300 pies 2 15 pulg B 340 pies 2 C D C 400 pies 2 D 700 pies 2 10 pulg

Más detalles

PROBLEMAS PROPUESTOS

PROBLEMAS PROPUESTOS PROBLEMAS PROPUESTOS 1. Una partícula que se mueve en el plano X, Y un desplazamiento r= 2i + 3j mientras que por ella actúa una fuerza constante F= 5i + 2j.Calcular el trabajo realizado. 2. Un bloque

Más detalles

EJERCICIOS GRUPO 1 DERIVADAS. 1. Usando la definición calcule la derivada de las siguientes funciones.

EJERCICIOS GRUPO 1 DERIVADAS. 1. Usando la definición calcule la derivada de las siguientes funciones. INSTRUCCIÓN. Resuelve los problemas propuestos del modo siguiente: primero en forma individual, luego en forma grupal y por último preséntalo en forma grupal en un máimo de cinco (05) integrantes. EJERCICIOS

Más detalles

FICHA TEMA 9: CUERPOS GEOMETRICOS NOMBRE Y APELLIDOS: Ejercicio nº 1.-Escribe el nombre de cada uno de los elementos de este poliedro:

FICHA TEMA 9: CUERPOS GEOMETRICOS NOMBRE Y APELLIDOS: Ejercicio nº 1.-Escribe el nombre de cada uno de los elementos de este poliedro: FICHA TEMA 9: CUERPOS GEOMETRICOS CURSO: 2 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Escribe el nombre de cada uno de los elementos de este poliedro: Ejercicio nº 2.- Cuáles de las siguientes figuras

Más detalles

INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS. 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2.

INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS. 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2. INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2. 1 1 4, 0 1 a.- (, ) = 2 1 4, 1 2 2 1 < 3, 0 < 1 b.- (, ) = 1 1 < 3, 1 2 3 3 4,

Más detalles

VOLUMEN DE CUERPOS GEOMÉTRICOS

VOLUMEN DE CUERPOS GEOMÉTRICOS ADAPTACIÓN CURRICULAR VOLUMEN DE CUERPOS GEOMÉTRICOS 1. Unidades de medida de volumen. Volumen de prismas. Volumen de pirámides 4. Volumen de cilindros 5. Volumen de conos 6. Volumen de esferas En la adaptación

Más detalles

Práctico 2:Diferenciación

Práctico 2:Diferenciación Práctico 2:Diferenciación. La siguiente función refleja la posición de un automóvil que se desplaza sobre una recta 00t si 0 t x = f (t) = 00 si t.25 (t.25) + 00 si.25 t 2.75 350 3 (a) Halle la razón de

Más detalles

5) Discute la existencia de los límites siguientes y calcula su valor cuando sea posible: x 2 3. x 1 x 1

5) Discute la existencia de los límites siguientes y calcula su valor cuando sea posible: x 2 3. x 1 x 1 Matemáticas I Hoja 6: Derivadas e integración de funciones reales de una variable real Grado en Ingeniería Química Curso 08/09 ) Se considera la función f() = 3 3 9 + en el intervalo cerrado [, 6]. Cuáles

Más detalles

EXERCISES. product of one of them by the square of the other takes a maximum value.

EXERCISES. product of one of them by the square of the other takes a maximum value. EXERCISES EXERCISE 1 If f : R R is defined by f(x) = e x (x 2), a) Find the asymptotes of f. b) Find where f is increasing or decreasing and the local maxima or minima. c) Find the inflection points of

Más detalles

CUERPOS DE REVOLUCIÓN. Los cuerpos de revolución son los cuerpos geométricos que se forman al girar una figura plana alrededor de un eje.

CUERPOS DE REVOLUCIÓN. Los cuerpos de revolución son los cuerpos geométricos que se forman al girar una figura plana alrededor de un eje. CUERPOS DE REVOLUCIÓN Los cuerpos de revolución son los cuerpos geométricos que se forman al girar una figura plana alrededor de un eje. En este módulo veremos los tres más sencillos: cilindro, cono y

Más detalles

x = 3 tendrá una ecuación y = 5 tendrá una ecuación Sesión 15 2 D. Ecuación general. C) D)

x = 3 tendrá una ecuación y = 5 tendrá una ecuación Sesión 15 2 D. Ecuación general. C) D) Sesión 15 + 4+ 8+ 4= D. Ecuación general. 4 8 4= + 1+ 1 = 1.- Halla la ecuación de la parábola con foco F(6, ) directriz =. + 8 4 36= + 4+ 8 36= 8+ 4+ 36= 8 4+ 36= 4 + 8 36=.- La ecuación de la parábola

Más detalles

2 Calcula la superficie total de cada cuerpo:

2 Calcula la superficie total de cada cuerpo: 8 Pág. Calcula la superficie total de cada cuerpo: A cm B C D cm A Área lateral πrh π,5 5π Área bases (πr ) π,5,5π Área total 5π +,5π 7,5π 86, B Área lateral πrg π 5 5π Área base πr π 9π Área total 5π

Más detalles

Cálculo Integral Agosto 2015

Cálculo Integral Agosto 2015 Cálculo Integral Agosto 5 Laboratorio # Antiderivadas I.- Halle las siguientes integrales indefinidas. ) (x 5 8x + 3x 3 ) ) (y 3 6y 6 5 + 8) dy 3) (y 3 + 5)(y + 3) dy 4) (t 3 + 3t + ) (t 3 + 5) dt 5) (3y

Más detalles

TALLER 5. GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA

TALLER 5. GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA TALLER 5. GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA. 013-1 Profesor: Jaime Andres Jaramillo González. jaimeaj@conceptocomputadores.com Parte de este documento es tomado

Más detalles

EXAMEN FINAL GEOMETRÍA APLICADA. EJERCICIO PROYECCIÓN DIÉDRICA.

EXAMEN FINAL GEOMETRÍA APLICADA. EJERCICIO PROYECCIÓN DIÉDRICA. EJERCICIO PROYECCIÓN DIÉDRICA. El segmento A (-3; 2; 5) B (2;,3; 6) es una arista de un octaedro situado en el primer diedro, cuyo vértice más alto C tiene de cota 8 cm. 1º. Determinar las proyecciones

Más detalles

Soluciones de la relación de ejercicios del TEMA 4

Soluciones de la relación de ejercicios del TEMA 4 Soluciones de la relación de ejercicios del TEMA. Aplica el Teorema Fundamental del Cálculo Integral, para resolver: (a) d ( +t dt) d Sean f,g,h :, definidas por h() = +t dt, f(t) = +t y g() =. Como f

Más detalles

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad Sea f : R R la función definida por f() = e /. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas?

Más detalles

UNIVERSIDAD POLITÉCNICA SALESIANA NOMBRE: DAVID CUEVA EDGAR QUIZPI ANDRES LOJA TEMA: SOLIDOS DE REVOLUCION CARRERA: INGENIERÍA ELECTRICA

UNIVERSIDAD POLITÉCNICA SALESIANA NOMBRE: DAVID CUEVA EDGAR QUIZPI ANDRES LOJA TEMA: SOLIDOS DE REVOLUCION CARRERA: INGENIERÍA ELECTRICA UNIVERSIDAD POLITÉCNICA SALESIANA NOMBRE: DAVID CUEVA EDGAR QUIZPI ANDRES LOJA TEMA: SOLIDOS DE REVOLUCION CARRERA: INGENIERÍA ELECTRICA MATERIA: CALCULO VECTORIAL GRUPO: NUMERO 2 INTRODUCCION Para el

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión

Más detalles

ANÁLISIS MATEMÁTICO I TEMA V : INTEGRALES Hoja 1. A) Calcular las siguientes integrales definidas aplicando la Regla de Barrow: 4x dx 3) I= π 0

ANÁLISIS MATEMÁTICO I TEMA V : INTEGRALES Hoja 1. A) Calcular las siguientes integrales definidas aplicando la Regla de Barrow: 4x dx 3) I= π 0 ANÁLISIS MATEMÁTICO I TEMA V : INTEGRALES Hoja A) Calcular las siguientes integrales definidas aplicando la Regla de Barrow: ) I= ( + ) ) I= / 4 π 0 cos 4) I= e ( + ) 6) I= 4 0 ( y) / dy B) Hallar el valor

Más detalles

ALUMNO SEGUIMIENTO TALLER. 7. Qué estudia la trigonometría?

ALUMNO SEGUIMIENTO TALLER. 7. Qué estudia la trigonometría? AREA TRIGONOMETRIA PERIODO 2 GRADO 10 TEMA E DOCENTE Diana Patricia Valencia Valencia ALUMNO SEGUIMIENTO TALLER NOTA 1 NOTA 2 NOTA 3 NOTA 4 Identifica ángulos orientados positiva o negativamente en el

Más detalles

Geometría en 3D: Preguntas del Capítulo

Geometría en 3D: Preguntas del Capítulo Geometría en 3D: Preguntas del Capítulo 1. Cuáles son las similitudes y las diferencias entre prismas y pirámides? 2. Cómo se nombran los poliedros? 3. Cómo encuentras la sección transversal de una figura

Más detalles

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE AMPLIACIÓN

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE AMPLIACIÓN Pág. ENUNCIADOS Se desea fabricar un tubo de 2 m de largo y 5 cm de diámetro soldando los dos bordes de un rectángulo. Cuáles deben ser las dimensiones del rectángulo si en las soldaduras se solapan 5

Más detalles

PROBLEMAS DE CINEMÁTICA 4º ESO

PROBLEMAS DE CINEMÁTICA 4º ESO PROBLEMAS DE CINEMÁTICA 4º ESO 1. La velocidad de sonido en el aire es de 340 m/s y en el agua de 1345 m/s. Cuántos segundos antes llegará por el agua un sonido que tiene que recorrer en ambos medios 6

Más detalles

FORMULARIO (ÁREAS DE FIGURAS PLANAS)

FORMULARIO (ÁREAS DE FIGURAS PLANAS) FORMULARIO (ÁREAS DE FIGURAS PLANAS) Rectángulo Triángulo Paralelogramo Cuadrado Cuadrilátero cuyos lados forman ángulos de 90º. Es la porción de plano limitada por tres segmentos de recta. Cuadrilátero

Más detalles

1) ( ) 2 ( 1) 2) ( ) ( 2 )( ) 3) ( ) 4 4) ( ) = 8 5) ( ) = 4 6) ( ) = 4. 6 x

1) ( ) 2 ( 1) 2) ( ) ( 2 )( ) 3) ( ) 4 4) ( ) = 8 5) ( ) = 4 6) ( ) = 4. 6 x MATEMÁTICA II (MECÁNICA) EXAMEN II I PARTE: APLICAR EL CRITERIO DE LA PRIMERA DERIVADA A LAS SIGUIENTES FUNCIONES: Determinar: a.) Intervalos donde la función Crece b.) Intervalos donde la función Decrece.

Más detalles

Trabajo Práctico 1b - Dinámica del punto

Trabajo Práctico 1b - Dinámica del punto Facultad de Ingeniería - U.N.L.P. Mecánica Racional - Curso 2017 / 2 semestre Trabajo Práctico 1b - Dinámica del punto Problema 1. Obtener las ecuaciones del movimiento vertical ascendente y descendente

Más detalles

Cálculo Integral Enero 2016

Cálculo Integral Enero 2016 Cálculo Integral Enero 6 Laboratorio # Antiderivadas I.- Halle las siguientes integrales indefinidas. ) ( + + ) ) ( + ) ( ) ) ( w + ) (w ) dw ) ( + ) 5) (y ) dy 6) ( +)( 5) 6 7) + 8) ( +) 5 y+ dy ) (y+5

Más detalles

Guía de Problemas. Hidrostática.

Guía de Problemas. Hidrostática. Guía de Problemas. Hidrostática. 1. Un tanque cerrado está parcialmente lleno con glicerina. Si la presión del aire dentro del tanque es de 6 psi (41,37 kpa) y el nivel de glicerina es de 10 ft (3,05 m),

Más detalles

Práctica adicional. Nombre Fecha Clase

Práctica adicional. Nombre Fecha Clase Práctica adicional Investigación 1 1. Los cuatro modelos planos de abajo se doblan formando cajas rectangulares. Al doblar el modelo plano iii se forma una caja abierta. Al doblar los otros modelos planos

Más detalles

APLICACIONES. 1. La siguiente ecuación representa un movimiento sobreamortiguado de un sistema masa resorte:

APLICACIONES. 1. La siguiente ecuación representa un movimiento sobreamortiguado de un sistema masa resorte: 1 APLICACIONES. 1. La siguiente ecuación representa un movimiento sobreamortiguado de un sistema masa resorte: d d t d dt 0 Donde, es la constante de amortiguamiento, m = es la masa del objeto, m m = 1.5

Más detalles

Taller 3. Cálculo

Taller 3. Cálculo Taller. Cálculo 1. 016- Proesor Jaime Andrés Jaramillo González. jaimeaj@conceptocomputadores.com. UdeA Parte 1: Aplicaciones de la derivada: Etremos de una unción. c) A un abricante de latas le solicitan

Más detalles

Nombre: Cédula: Sección:

Nombre: Cédula: Sección: U.L.A. FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA MECÁNICA MECÁNICA DE FLUIDOS Mérida, 27/11/2008 Nombre: Cédula: Sección: PRIMER PARCIAL TEORÍA 1. Se tiene un trozo de hierro y uno de brea, cuál de

Más detalles

Escuela Politécnica Superior de Málaga. CÁLCULO

Escuela Politécnica Superior de Málaga. CÁLCULO Escuela Politécnica Superior de Málaga. CÁLCULO. Cálculo en una variable.. Prueba que y 3 no son números racionales. En los números que se describen a continuación, Cuáles son racionales y cuales no? Encontrar

Más detalles

ESTATICA DE LAS PARTICULAS ESTATICA. Jorge Enrique Meneses Flórez

ESTATICA DE LAS PARTICULAS ESTATICA. Jorge Enrique Meneses Flórez 2. DE LAS PARTICULAS 2. DE LAS PARTICULAS 2.1 Introducción Estudiar el efecto de las fuerzas sobre las partículas Sustituir dos o mas fuerzas por una RESULTANTE Relaciones necesarias para EQUILIBRIO de

Más detalles

Integración 416. a) Limitada por y = x 2 + 1,y = 0,x = 1,x = 1 alrededor del eje OX: b) Limitada por y = x,x = 4,y = 0 alrededor del eje OX:

Integración 416. a) Limitada por y = x 2 + 1,y = 0,x = 1,x = 1 alrededor del eje OX: b) Limitada por y = x,x = 4,y = 0 alrededor del eje OX: Integración 416 Problema 2 En los siguientes apartados usar el método de discos para hallar el volumen del sólido generado al girar la región dada entre los límites dados sobre el eje indicado: a) Limitada

Más detalles

1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones:

1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones: APLICACIONES DE DERIVADAS 1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones: a. 6 9 b. c. 2 d. 2 e. f. 1 2. Estudia los intervalos de crecimiento y decrecimiento de las siguientes

Más detalles

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 13

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 13 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1 / 13 Rectas paralelas y perpendiculares Dos rectas no verticales son paralelas si tienen la misma pendiente Dos rectas con pendientes m 1 y m 2 son

Más detalles

MATEMÁTICAS II Soluciones Hoja Integración Aproximada Curso 07-08

MATEMÁTICAS II Soluciones Hoja Integración Aproximada Curso 07-08 Ejercicio : Para proceder a pintarlo, se necesita conocer las medidas del techo de cierto edificio singular. Dicho techo tiene forma geométrica de embudo invertido, similar a la de la superficie de revolución

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS AÑO: 017 PERÍODO: PRIMER TÉRMINO MATERIA: Cálculo de una variable PROFESOR: EVALUACIÓN:

Más detalles

Tema 4: Centro de masas

Tema 4: Centro de masas Tema 4: Centro de masas Mecánica Racional, 2º, Grado en Ingeniería Civil Escuela Técnica Superior de Ingenieros Universidad de Sevilla 1 Índice Definición y propiedades Cálculo de centro de masa Cuerpos

Más detalles

VOLÚMENES DE POLIEDROS PRISMA:

VOLÚMENES DE POLIEDROS PRISMA: VOLÚMENES DE POLIEDROS CONCEPTO: El volumen es la medida de la capacidad que posee un sólido. Todo sólido requiere tres dimensiones: largo, ancho y altura (profundidad ó espesor), es por ello que el volumen

Más detalles

CALCULO DE CENTROS DE MASA

CALCULO DE CENTROS DE MASA CALCULO DE CENTOS DE MASA Determinar la posición del C.M. de un semicono. Solución: I.T.I., I.T.T., 4 Sea el semicono de la figura orientado a lo largo del eje X, de altura radio. Dado que el plano XY

Más detalles

Serie de ejercicios de Estática 2. CONCEPTOS BÁSICOS DE LA ESTÁTICA

Serie de ejercicios de Estática 2. CONCEPTOS BÁSICOS DE LA ESTÁTICA ACADEMIA DE ESTÁTICA DIVISIÓN DE CIENCIAS BÁSICAS FACULTAD DE INGENIERÍA Serie de ejercicios de Estática 2. CONCEPTOS BÁSICOS DE LA ESTÁTICA Contenido del tema: 2.1 Representación vectorial de una fuerza.

Más detalles

Problemas Tema 3 Enunciados de problemas de Derivabilidad

Problemas Tema 3 Enunciados de problemas de Derivabilidad página / Problemas Tema 3 Enunciados de problemas de Derivabilidad Hoja. Calcula la derivada de f ()= +3 8 +9 +3. Encuentra tres números no negativos que sumen 4 y tales que uno sea doble de otro y la

Más detalles

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto

Más detalles

67.18 Mecánica de Fluidos

67.18 Mecánica de Fluidos Ejercicio 2.1. Un tanque cerrado está parcialmente lleno con glicerina. Si la presión del aire dentro del tanque es de 6 psi (41,37 kpa) y el nivel de glicerina es de 10 ft (3,05 m), cual será la presión

Más detalles

Ámbito científico tecnológico

Ámbito científico tecnológico Dirección Xeral de Educación, Formación Profesional e Innovación Educativa Educación secundaria para personas adultas Ámbito científico tecnológico Educación a distancia semipresencial Módulo Unidad didáctica

Más detalles

ENERGÍA ELECTROSTÁTICA

ENERGÍA ELECTROSTÁTICA ENERGÍA ELECTROSTÁTICA PREGUNTAS. Qué significado físico tiene la energía electrostática de una distribución de carga?. La energía contenida en una distribución de carga, puede ser considerada según dos

Más detalles

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra. Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =

Más detalles

Uso no comercial 12.4 CUERPOS REDONDOS

Uso no comercial 12.4 CUERPOS REDONDOS 1.4 CUERPOS REDONDOS Designamos en general como cuerpos redondos el conjunto de puntos del espacio obtenido cuando una figura gira alrededor de una recta, de tal forma que cada punto de la figura conserva,

Más detalles

EXAMEN DE FÍSICA. 24 DE JUNIO DE TEORÍA. GRUPOS 16(B) Y 17(C)

EXAMEN DE FÍSICA. 24 DE JUNIO DE TEORÍA. GRUPOS 16(B) Y 17(C) Página 1 de 8 Índice de exámenes EXAMEN DE FÍSICA. 24 DE JUNIO DE 1999. TEORÍA. GRUPOS 16(B) Y 17(C) C1. Tenemos una superficie cónica de radio r = 0.5 m y altura h 2 m (ver figura), dentro de un campo

Más detalles

14 CUERPOS GEOMÉTRICOS. VOLÚMENES

14 CUERPOS GEOMÉTRICOS. VOLÚMENES EJERCICIOS PARA ENTRENARSE Poliedros 14.33 Calcula la suma de los ángulos de las caras que concurren en un vértice de los poliedros regulares. Qué observas? TETRAEDO: En un vértice concurren tres triángulos

Más detalles

Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES. Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile

Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES. Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 4: Mecánica de fluidos Martes 25 de Septiembre, 2007

Más detalles

Cálculo Diferencial Agosto 2018

Cálculo Diferencial Agosto 2018 Laboratorio # 1 Desigualdades I.- Encontrar valores de que satisfacen simultáneamente las dos condiciones. 1) [2 3] 9 1 y 2 + 8 + 6 + 3 < 10 2) 3 6 > 1 2 y 2 1 6 3) 1 1 3 y + 1 > 1 4 4) 3 < < 9 y + 5 10

Más detalles

Taller 2 cálculo diferencial cdx24: Preparación segundo parcial

Taller 2 cálculo diferencial cdx24: Preparación segundo parcial Taller cálculo diferencial cd: Preparación segundo parcial Profesor Jaime Andrés Jaramillo González jaimeaj@conceptocomputadores.com. ITM 0- Funciones eponenciales logarítmicas. Epresa como un único logaritmo.

Más detalles

UNIDADES TECNOLÓGICAS DE SANTANDER DEPARTAMENTO DE CIENCIAS BÁSICAS CÁLCULO MULTIVARIABLE Primer Parcial

UNIDADES TECNOLÓGICAS DE SANTANDER DEPARTAMENTO DE CIENCIAS BÁSICAS CÁLCULO MULTIVARIABLE Primer Parcial Primer Parcial Identifica los criterios de convergencia para determinar si una serie es convergente o no. 1,2 Representa una función mediante una serie de potencias estableciendo el intervalo de convergencia.

Más detalles

XVI FESTIVAL ACADÉMICO DE LA DGETI 2016

XVI FESTIVAL ACADÉMICO DE LA DGETI 2016 XVI FESTIVAL ACADÉMICO DE LA DGETI 2016 PROBLEMAS PARA ETAPA 1 1. Cuáles de las siguientes correspondencias son funciones? a) a cada persona hace corresponder su madre biológica. b) a cada madre biológica

Más detalles

TALLER 5. GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA

TALLER 5. GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA TALLER 5. GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA. 013- Profesor: Jaime Andres Jaramillo González. jaimeaj@conceptocomputadores.com Parte de este documento es tomado

Más detalles

UCV-INGENIERÍA ECUACIONES DIFERENCIALES (0256)

UCV-INGENIERÍA ECUACIONES DIFERENCIALES (0256) UCV-INGENIERÍA ECUACIONES DIFERENCIALES (056) EJERCICIOS PROPUESTOS SOBRE ECUACIONES DIFERENCIALES Tema : Introducción a las Ecuaciones diferenciales ordinarias de primer orden sus aplicaciones. Contenidos

Más detalles

GUIA DE PROBLEMAS Nº6: HIDROSTÁTICA- HIDRODINÁMICA. Premisa de Trabajo:

GUIA DE PROBLEMAS Nº6: HIDROSTÁTICA- HIDRODINÁMICA. Premisa de Trabajo: GUIA DE PROBLEMAS Nº6: HIDROSTÁTICA- HIDRODINÁMICA Premisa de Trabajo: En la resolución de cada ejercicio debe quedar manifiesto: Las características del fluido y del flujo del fluido, la expresión de

Más detalles

MATE1207 Cálculo Vectorial Tarea 2 Individual Entregue a su profesor en la Semana 11 (Ma Vi. 21 de Octubre)

MATE1207 Cálculo Vectorial Tarea 2 Individual Entregue a su profesor en la Semana 11 (Ma Vi. 21 de Octubre) Universidad de los Andes Departamento de Matemáticas MAT27 Cálculo Vectorial Tarea 2 Individual ntregue a su profesor en la Semana (Ma. 8 - Vi. 2 de Octubre) Segundo xamen Parcial: Sábado 29 de Octubre,

Más detalles

Para más información vea el recuadro de Apuntes de Matemáticas de la Lección del texto Core Connections en español, Curso 3.

Para más información vea el recuadro de Apuntes de Matemáticas de la Lección del texto Core Connections en español, Curso 3. CILINDROS VOLUMEN Y ÁREA SUPERFICIAL VOLUMEN DE UN CILINDRO El volumen de un cilindro es el área de su base multiplicado por su altura: V = B h Dado que la base de un cilindro es un círculo de área A =

Más detalles

MECÁNICA. Cinemática 3D del Sólido Rígido

MECÁNICA. Cinemática 3D del Sólido Rígido DEPARTAMENTO DE INGENIERÍA MECÁNICA MECÁNICA Cinemática 3D del Sólido Rígido 1.-(bj15_7) La barra doblada ABCD gira con respecto a una línea que une los puntos A y D con una velocidad angular de 75 rad/s

Más detalles

Álgebra Lineal Agosto 2016

Álgebra Lineal Agosto 2016 Laboratorio # 1 Vectores I.- Calcule el producto escalar de los dos vectores y el coseno del ángulo entre ellos u = i 2j + 3k; v = 3i 2j + 4k 3) u = 15i 2j + 4k; v = πi + 3j k 3) u = 2i 3j; v = 3i + 2j

Más detalles

Figura plana Área Ejemplo Cuadrado. Área =

Figura plana Área Ejemplo Cuadrado. Área = ersión: Septiembre 01 Áreas y volúmenes Por Sandra Elvia Pérez Márquez Áreas de figuras planas Las aplicaciones de las figuras planas requieren, por lo general, conocer (o calcular) dos características

Más detalles

Aplicaciones de la Integral Definida

Aplicaciones de la Integral Definida CAPITULO 7 Aplicaciones de la Integral Definida 1 Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr)

Más detalles

Unidad III. Si f es una funcion que asume valores tanto positivos como negativos sobre [a,b], entonces la integral definida :

Unidad III. Si f es una funcion que asume valores tanto positivos como negativos sobre [a,b], entonces la integral definida : Unidad III Aplicaciones de la integral. 3.1 Áreas. 3.1.1 Área bajo la gráfica de una función. Si f es una funcion que asume valores tanto positivos como negativos sobre [a,b], entonces la integral definida

Más detalles

5.1 a Localícese el centroide del área plana mostrada en la figura. Fig. 5.1 Fig. 5.2 Fig. 5.3

5.1 a Localícese el centroide del área plana mostrada en la figura. Fig. 5.1 Fig. 5.2 Fig. 5.3 5.1 a 5.7.- Localícese el centroide del área plana mostrada en la figura. Fig. 5.1 Fig. 5.2 Fig. 5.3 Fig. 5.4 Fig. 5.5 Fig. 5.6 Fig. 5.7 5.8.- El primer momento del área sombreada con respecto del eje

Más detalles