EJERCICIOS DE SELECTIVIDAD MATRICES.
|
|
|
- Jorge Parra Alcaraz
- hace 9 años
- Vistas:
Transcripción
1 8 EJERIIOS DE SELETIVIDD MTRIES a) Dada la ariz calcule el valor de a para que sea la ariz nula b) Dada la ariz calcule la ariz b) alcule la ariz inversa de Sean las arices 6 a) alcule los valores de a b para que b) Para a b resuelva la ecuación aricial a) Dadas las arices calcule los producos b) Dadas las arices calcule la ariz que verifique la ecuación a) Halle la ariz que verifica la ecuación b) Deerine los valores de e que cuplen la igualdad 6 Sean las arices siguienes: a) alcule b) Deerine la ariz cuadrada de orden en la ecuación aricial Sean las arices a) Encuenre el valor o valores de de fora que b) Igualene para que c) Deerine para que Sea la ariz a) Deerine la ariz inversa de 9 a) Sea la ariz alcule el valor de b para que b) Dadas las arices resuelva la ecuación aricial donde es una ariz cuadrada de orden
2 Marices º achillerao urso 9- Sean las arices a) alcule b) Halle la ariz que verifica 6 Sean las arices a) alcule b) Deerine la ariz para que Sean las arices a) Encuenre el valor o valores de de fora que b) Igualene para que c) Deerine para que a) Sean las arices alcule a) Sean las arices ( ) Eplique qué diensión debe ener la ariz para que enga senido la ecuación Maricial Resuelva dicha ecuación 6 7 Sean las arices a) alcule la ariz b) Halle la ariz que verifique a) Sean las arices De las siguienes operaciones algunas no se pueden realizar; razone por qué Efecúe las que se puedan realizar: ; ; ; 8 Sean las arices a) Deerine el valor de en la ariz para que se verifique la igualdad
3 Marices º achillerao urso 9- b) Obenga la ariz al que I 9 Sean las arices a) alcule si eise la ariz inversa de b) Si I calcule e Sean las arices a) alcule siendo ) ( I I la ariz idenidad de orden b) Obenga la ariz calcule si es posible c) alcule la ariz que verifica De una ariz se sabe que su segunda fila es ( ) su segunda coluna es Halle los resanes eleenos de sabiendo que b) Dada la ariz halle Sean las arices a) alcule la ariz P que verifica P ( indica raspuesa de ) b) Deerine la diensión de la ariz M para que pueda efecuarse el produco M c) Deerine la diensión de la ariz N para que N sea una ariz cuadrada b) Sean las arices ; alcule ( I ) - ; I es la ariz unidad de orden la raspuesa de ) Sean las arices M N a) alcule la ariz M M M ; (M indica la raspuesa de M ) b) alcule la ariz M resuelva la ecuación N M M donde es una ariz
4 Marices º achillerao urso 9-6 Sea la ariz a) Halle los valores de para los que se verifica b) Para halle - opruebe el resulado calculando - 7 b) Resuelva la ecuación 8 Sea la ariz a) alcule los valores de para que dicha ariz enga inversa b) Haciendo resuelva la ecuación aricial I donde I es la ariz unidad de orden es una ariz cuadrada de orden 9 b) Deerine la ariz de orden que verifica la igualdad 7 Sea la ariz 6 a) Deerine para qué valores del paráero eise b) alcule para b) Dada la ariz deerine si eise la ariz que verifique Sean las arices a) Realice cuando sea posible los siguienes producos de arices: b) Resuelva la ecuación aricial Sea la ariz 6 a) alcule los valores de para que dicha ariz enga inversa b) Haciendo resuelva la ecuación aricial ( )
5 Marices º achillerao urso 9- b) Siendo razone si posee solución la ecuación aricial en caso afiraivo resuélvala Resuelva la siguiene ecuación aricial: siendo 6 a) Deerine los valores de e que hacen ciera la siguiene igualdad: b) Deerine la ariz de orden que verifica la igualdad 7 Se considera la ariz a) alcule los valores de para los que no eise la inversa de b) Para calcule si es posible
EJERCICIOS DE MATRICES
EJERCICIOS DE MTRICES. Resuelva la siguiene ecuación aricial: X B C, siendo, 4 C.. Deerine la ari X de orden al que: X.. Se considera la ari. a) Calcule los valores de para los que no eise la inversa de.
EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES
ES Padre Poveda (Guadi) Maemáicas plicadas a las SS EJEROS UNDDES : MTRES Y DETERMNNTES (-M--) Sean las marices D a) ( punos) Resuelva la ecuación maricial D ( D) b) ( puno) Si las marices D son las marices
Sean A y B dos matrices cuadradas de orden 3 cuyos determinantes son
TEMA : MATRICES Y DETERMINANTES 0.- 0 Dada la mariz A a) Calcula los valores de para los que la mariz A A no iene inversa. b) Para 0, halla la mariz X que verifica la ecuación AX A I, siendo I la mariz
Ejercicios Selectividad Matemáticas Apl. CCSS II. Operaciones con matrices. Matrices inversas. Ecuaciones matriciales. Rango de una matriz.
Ejercicios Selecividad Maemáicas pl. SS II loque: Álgebra lineal. MTRIES Operaciones con marices. Marices inversas. Ecuaciones mariciales. Rango de una mari.. Si son dos marices cualesquiera, es correca
EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES
IES Padre Poveda (Guadi) Maemáicas plicadas a las SS II EJERIIOS UNIDDES : MTRIES Y DETERMINNTES (6-M--) a) ( punos) Si es una mariz de dimensión m n, indique la dimensión de una I mariz si se verifica
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES
PROBLEMS RESUELTOS SELECTIVIDD NDLUCÍ 0 MTEMÁTICS II TEM : MTRICES Y DETERMINNTES Junio, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción Reserva, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción Reserva
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES
PROBLEMS RESUELTOS SELECTIVIDD NDLUCÍ 0 MTEMÁTICS II TEM : MTRICES Y DETERMINNTES Junio, Ejercicio, Opción Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción Reserva, Ejercicio, Opción B Reserva, Ejercicio,
Ecuaciones Matriciales y Determinantes.
Ecuaciones Mariciales y Deerminanes. Ecuaciones Mariciales. Tenemos que obener la mariz incógnia, que generalmene se denoa como X, despejándola de la igualdad. Para conseguirlo enemos las siguienes reglas:
ÁLGEBRA: Ejercicios de Exámenes
MATEMÁTICAS º BACH CC. Y TECNOL. CURSO 4-5.-Se pide a) (p) Enuncia breveente: qué es el rango de una atri cuándo una atri es regular. b) (5p) Discutir según los valores del paráetro el rango de la atri
a a a a
JUNIO 2012 GENERAL 1. Se consideran las matrices: A = 3 1 0 1 3 0 0 0 2 e I 3 = 1 0 0 0 1 0 a) Resuelve la ecuación det (A x I 3 ) = 0. (1 punto) JUNIO 2012 ESPECÍFICA a 1 2 a 1 2. Dado el número real
2º de Bachillerato Matemáticas Aplicadas a las Ciencias Sociales. Modalidad semipresencial. MATRICES Y SISTEMAS
IES Fra artolomé de las asas urso / º de achillerato Matemáticas plicadas a las iencias Sociales Modalidad semipresencial FIH : MTRIES Y SISTEMS º- alcula,, t t t t siendo, las siguientes matrices: º-
ACTIVIDADES SELECTIVIDAD MATRICES
ACTIVIDADES SELECTIVIDAD MATRICES Ejercicio 1 Para qué valores de m tiene solución la ecuación matricial? (b) Resuelve la ecuación matricial dada para. Ejercicio 2 Siendo I la matriz identidad de orden
MATEMÁTICAS APLICADAS A LAS CC. SS. II 2007/2008 ÁLGEBRA. a) Plantee, sin resolver, un sistema de ecuaciones asociado al siguiente problema:
MATEMÁTICAS APLICADAS A LAS CC SS II ÁLGEBRA 1 Un cliene de un supermercado ha pagado un oal de 156 euros por 24 liros de leche, 6 kg de jamón serrano y 12 liros de aceie de oliva Planee y resuelva un
1. Realizando las operaciones indicadas y aplicando la igualdad de matrices, obtenemos:
Unidad 1 Marices 5 SOLUCIONES 1. Realizando las operaciones indicadas y aplicando la igualdad de marices, obenemos: Resolviendo el sisema, a = 5, b = 12, c = 6, d= 4. 2. La solución en cada caso queda:
1.- DETERMINANTE DE UNA MATRIZ CUADRADA
1 Calcule los siguientes determinantes: a) 4 7 5 Resuelva la ecuación 1.- DETERMINANTE DE UNA MATRIZ CUADRADA Solución : 7 b) 1 3 5 4 + x x = 0 1 3 1 0 3 1 4 1 3 Solución : c) 3 4 1 Solución : 35 0 1.
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES Junio, Ejercicio 3, Opción B Reserva 2, Ejercicio 3, Opción A Reserva 3, Ejercicio 3, Opción B Reserva 4,
Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución:
3 Determinantes. Determinantes de orden y 3 por Sarrus Piensa y calcula 3 6 Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4 8 3 8 6 4 = 4 4 = 0 Aplica la teoría. Calcula
Es cierta para x = 0. d) Sí, son soluciones. Se trata de una identidad pues es cierta para cualquier valor de x.
EJERCICIOS RESUELTOS MÍNIMOS 3º ESO TEMA 4 ECUACIONES Ejercicio nº 1.- Dada la siguiente igualdad: x 1 3 9 x 5 3x = x responde razonadamente: a) Es cierta si sustituimos la incógnita por el valor cero?
01 Ejercicios de Selectividad Matrices y Sistemas de Ecuaciones
01 Ejercicios de Selecividad Marices y Sisemas de Ecuaciones Ejercicios propuesos en 009 1- [009-1-A-1] a) [1 5] En un comercio de bricolaje se venden lisones de madera de res longiudes: 090 m, 150 m y
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES Junio, Ejercicio 3, Opción B Reserva 2, Ejercicio 3, Opción A Reserva 3, Ejercicio 3, Opción B Reserva 4,
EJERCICIOS DE MATRICES
EJERCICIOS DE MTRICES ) Sean las matrices y definidas como: y. Halla una matriz tal que verifique = +. Sol: = ) Una fábrica produce tres tipos de artículos y distribuyendo su producción entre cuatro clientes.
TEMA 1: MATRICES. x 2. Ejercicio y B =, se pueden encontrar matrices C y D para que existan los productos ACB y BDA?.
TEMA : MATRICES Ejercicio.- 0 2 2 Dadas las matrices A = y B = -2 0 5, calcula BBt AA t. Ejercicio 2.- 0 x 2 Sean las matrices A =, B = y C =, halla x e y para que se 2 y verifique ABC = A t C. Ejercicio
Determina si existe, la matriz X que verifica. propiedades que utilices, los siguientes determinantes:
1. Considera las matrices A=( ) ( ). Determina si existe, la matriz X que verifica.sol ( ) 2. Se sabe que ( ).Calcula, indicando las propiedades que utilices, los siguientes determinantes: a) SOL. a) 24
6. Obtén las matrices A y B que verifiquen el sistema. 7. Encuentra una matriz X que cumpla. siendo. 9. Resuelve la siguiente ecuación matricial:
Ejercicios. Escribe la matriz traspuesta de: 2 3 3 B= 0 4 3 2 4 C= 2 3 2. Se consideran las matrices: 0 3 2 2 2 2 0 2 3 B= 0 4 C=2 4 3 0 2 5 Calcula: 3A, 3A + 2C, A C, C A y A B. 3. Dadas las matrices
ÁLGEBRA (Selectividad 2014) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2014
ÁLGEBR (Selecividad 04) LGUNOS PROBLEMS DE ÁLGEBR PROPUESTOS EN LS PRUEBS DE SELECTIVIDD DE 04 Casilla y León, junio 4 a a+ a+ Sea la mariz = a a+ 3 a+ 4 a a+ 5 a+ 6 a) Discuir su rango en función de los
Curso ON LINE Tema 5 LAS MATRICES
Curso ON LINE Tema LAS MATRICES Introducción a las matrices. Concepto de matri. Terminología: - Elemento, fila, columna dimensión u orden. Representación algebraica de una matri. Igualdad de matrices.
Ejercicios de Matrices, determinantes y sistemas de ecuaciones lineales. Álgebra 2008
Ejercicios de Matrices, determinantes sistemas de ecuaciones lineales. Álgebra 8 - Dado el sistema de ecuaciones lineales 5 (a) ['5 puntos] Clasifícalo según los valores del parámetro λ. (b) [ punto] Resuélvelo
= A, entonces A = 0. Y si A es una matriz. y comprobar el resultado. ,, ;,, es el mismo que el generado
EJERCICIOS. APLICACIONES DE LOS DETERMINANTES. 1. Calcular el siguiene deerminane de orden n: 1 n n n n n n n n n n n n n. Demosrar que si A es una mariz al que n n, se verifica lo anerior? A = A, enonces
Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II
Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas plicadas a las iencias Sociales II ntonio Francisco Roldán López de Hierro * onvocatoria de
MATRICES Octubre 2015
MATRICES Octubre 015 5 4 1. Sea la matriz 1 1 4 4 1 a) Prueba que 0 donde I es la matriz identidad y 0 es una matriz con todos sus elementos igual a 0. b) Calcula A 3. (J 007) Sean las matrices 0, 1,,
= ( 1) i (3i j) a = ( 1) (3.2 4) = Por tanto, A= x y y+ z x+ z 1 x = = Resolución 3.- OPERACIONES CON MATRICES.
º CHILLERTO MTEMÁTICS II TEM.- MTRICES CTIVIDDES PROFESOR: RFEL NÚÑEZ NOGLES.- CONCEPTO DE MTRIZ Ejercicio de clase : (a) Escriba la mariz de orden x 4 en la que a ij = ( ) i (3i j) a = ( ) (3. ) = a =
{ } n 2 n n. n n n n. n n 3 n. a b c. A = = ; calcular el valor de 2, 2 t t. a Calcular el siguiente determinante de orden n:
EJERCICIOS. PLICCIONES DE LOS DETERMINNTES.. Calcular el siguiene deerminane de orden n: n n n n n n n n n n n n n. Demosrar que si es una mariz al que n n, se verifica lo anerior? =, enonces. Y si es
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES
PROLEMS RESUELTOS SELECTIVIDD NDLUCÍ 06 MTEMÁTICS PLICDS LS CIENCIS SOCILES TEM : MTRICES Junio, Ejercicio, Opción Reserva, Ejercicio, Opción Reserva, Ejercicio, Opción Reserva 3, Ejercicio, Opción Reserva
Ecuaciones. 3º de ESO
Ecuaciones 3º de ESO El signo igual El signo igual se utiliza en: Igualdades numéricas: 2 + 3 = 5 Identidades algebraicas: (x + 4) x = x 2 + 4 4x Fórmulas: El área, A,, de un círculo de radio r es: A =
EJERCICIOS PAU MAT II CC SOC. ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com 5 2. 1 1 3 0.
MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES - Sean las matrices 0 /2 0, siendo a un número real cualquiera. 3/4 0 a) Obtenga la matriz A 204. b) Para a=2, resuelva la ecuación matricial A 3 X-4B=O.
GUÍA DE EJERCICIOS OPERATORIA MATRICES
INSTITUTO DE ESTUDIOS NCRIOS GUILLERMO SUERCSEU Fundado en 99 GUÍ DE EJERCICIOS OPERTORI MTRICES INVESTIGCION DE OPERCIONES SEMESTRE - I.- GUI DE EJERCICIOS DE MTRICES. Sean las matrices y definidas como:
BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES.
BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. Matrices: Se llama matriz de dimensión m n a un conjunto de números reales dispuestos en m filas y n columnas de la siguiente forma: 11 a 12 a 13... a 1n A= a a 21
Problemas Tema 3 Enunciados de problemas sobre complejos
página 1/6 Problemas Tema 3 Enunciados de problemas sobre complejos Hoja 1 1. Dados los complejos: z 1 = 2 + 3i z 2 = 2 - i z 3 = 1 + 4i z 4 = 5 2i Calcula (z 1 + z 2)(z 3 z 4) -28 + 16i 2. Calcula (2
Junio 2008: Sean las matrices B = Junio 2008: Calcular el rango de la matriz
Septiembre 008: Sea A una matriz 3 x 3 de columnas C 1, C y C 3 (en ese orden). Sea B la matriz de columnas C 1 + C, C 1 + 3C 3 y C (en ese orden). Calcular el determinante de B en función de A. (1 punto)
MATRICES. M(n) ó M nxn A =
MTRICES Definición de mari. Una mari de orden m n es un conjuno de m n elemenos perenecienes a un conjuno, que para nosoros endrá esrucura de cuerpo conmuaivo y lo denoaremos por K, dispuesos en m filas
ECUACIÓN DE LA RECTA. Dibujando los ejes de coordenadas y representando el punto vemos que está situado sobre el eje de abscisas.
ECUACIÓN DE LA RECTA. El punto (, 0) está situado: a) Sobre el eje de ordenadas. b) En el tercer cuadrante. c) Sobre el eje de abscisas. (Convocatoria junio 00. Examen tipo D) Dibujando los ejes de coordenadas
I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. SEGUNDA EVALUACIÓN. ÁLGEBRA MATERIA: MATEMÁTICAS II OPCIÓN A
Examen Parcial Álgebra Maemáicas II Curso 9- I E S TENE SN SESTIÁN DE LOS REYES EMEN PRCIL SEGUND EVLUCIÓN ÁLGER Curso 9- -III- MTERI: MTEMÁTICS II INSTRUCCIONES GENERLES Y VLORCIÓN El examen consa de
EJERCICIOS PROPUESTOS
8 Deerminanes. Ejercicio resuelo. EJERCICIOS PROPUESTOS. Calcula el valor de los siguienes deerminanes. 8 4 5 0 0 6 c) 4 5 4 8 6 4 8 4 5 0 6+ 0 0+ 5 00 5 6 0+ 000 0 48 0 6 ( ) ( ) ( ) ( ) ( ) 4 5 5 + 4
BLOQUE 1 : ÁLGEBRA. EJERCICIO 1 Resuelve la ecuación : EJERCICIO 4 Dado el sistema de ecuaciones :
EJERCICIO 1 Resuelve la ecuación : BLOQUE 1 : ÁLGEBRA = 0 EJERCICIO 2 Dado el sistema de ecuaciones : a) Discutirlo según los distintos valores de k. b) Resolverlo en los casos en que sea posible. EJERCICIO
Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 5. Números complejos
Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN 3 Dado el número complejo z3i, su conjugado, z, su opuesto, z, y su inverso,, son: z a) z 3, z 3, z 3 3 3 b) z 3, z 3, z 3 c) z 3, z 3, z 3
ÁLGEBRA: Ejercicios de Exámenes
MATEMÁTICAS º BACH CC. Y TECNOL. ÁLGEBRA: Ejercicios de Eáenes CURSO 3-4.-Dadas las atrices, donde B t es la atri traspuesta de B e I la atri unidad de orden 3. a) (6p.)Estudiar según el paráetro el rango
EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.
MATRICES Y DETERMINANTES 0 - Considera las matrices 0 y. Determina, si existe, la 2 3 matriz X que verifica AX+B=A 2. Andalucía - Junio 204 Opción B - Oficial 2- Sabiendo que el determinante de la matriz
ARITMÉTICA Y ÁLGEBRA
ARITMÉTICA Y ÁLGEBRA 1.- Discutir el siguiente sistema, según los valores de λ: Resolverlo cuando tenga infinitas soluciones. Universidad de Andalucía SOLUCIÓN: Hay cuatro ecuaciones y tres incógnitas,
MATEMÁTICAS II. ANDALUCÍA Pruebas de acceso a la Universidad SOLUCIONES 1. (2001-1A-3) Tienen inversa las matrices A y D.
MTEMÁTICS II NDLUCÍ Pruebas de acceso a la Universidad ÁLGEBR SOLUCIONES. (--) Tienen inversa las marices y D. = y D =. (-B-) a) Rango de. Si a y Si a = o Sisema = B a, ( ) R = a =, ( ) R = Si a y a, S.C.D.
RESOLUCIÓN DE PROBLEMAS MEDIANTE ECUACIONES. 2.- La suma de dos números es 15 y su producto es 26. Cuáles son dichos números?
RESOLUCIÓN DE PROBLEMAS MEDIANTE ECUACIONES 1.- El perímetro de un rectángulo es 4 cm y su área es 0 cm. Cuáles son sus dimensiones? Sea = altura ; y = base Como perímetro es 4: + y = 1 y = 1 Como el área
EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique.
IES Pdre Poved (Gudi) Memáics plicds ls SS II Deprmeno de Memáics loque I: Álgebr Linel Profesor: Rmón Lorene Nvrro Uniddes : Mrices Deerminnes EJERIIOS UNIDDES : MTRIES Y DETERMINNTES (Jun-96) Encuenre
Junio 2008: Sean las matrices B = Junio 2008: Calcular el rango de la matriz
Septiembre 2008: Sea A una matriz 3 x 3 de columnas C 1, C 2 y C 3 (en ese orden). Sea B la matriz de columnas C 1 + C 2, 2C 1 + 3C 3 y C 2 (en ese orden). Calcular el determinante de B en función de A
Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución:
3 Determinantes. Determinantes de orden 2 y 3 por Sarrus Piensa y calcula 3 6 Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4 8 3 8 6 4 = 24 24 = 0 Aplica la teoría.
Más ejercicios y soluciones en fisicaymat.wordpress.com MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES
MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES - Considere el sistema 3 5 7 0 3 3 6 0 3 4 6 0 a) Estudie para qué valores del número real a, la única solución del sistema es la nula. b) Resuélvalo, si
MATEMÁTICAS 2º BACH CIENCIAS ÁLGEBRA: Ejercicios de Exámenes
MATEMÁTICAS º BACH CIENCIAS CURSO 5-6 +.-Dada la atri A = ( 3 + ). Se pide: a) (3p) Estudiar el rango de A en función del paráetro. b) (3p) Calcular para que A tenga inversa. c) (4p) Para = calcular A
y C= a 0 1
.- CONCEPTO DE MATRIZ Escriba la matriz 2 x 3 en la que a ij = i 4j 2 Calcule, si es posible, los valores de a b para que sean iguales las matrices 3a b 9 b a 7 2b a 7 A= B= a+ b 2 a 3b 3 3 a 3.- OPERACIONES
1. Determine la matriz
1. matriz A) 3. Se define la matriz tal que es la matriz que se obtiene de intercambiar la fila con su antecesor. suma de los elementos de la matriz B) A) 30 B) 31 28 D) 33 34 4. Dada la matriz D) Determine
TEMA 7: MATRICES. OPERACIONES.
TEMA 7: MATRICES. OPERACIONES. 1. MATRICES. TIPOS DE MATRICES. Se llama matriz de orden m x n (m filas y n columnas) a un conjunto de m n elementos, distribuidos en m filas y n columnas y encerrados entre
EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique.
ES Pdre Poved (Gudi) Memáics plicds ls SS Deprmeno de Memáics loque : Álgebr Linel Profesor: Rmón Lorene Nvrro Uniddes : Mrices Deerminnes EJEROS UNDDES : MTRES Y DETERMNNTES (Jun-96) Encuenre un mriz
Tema 2: Determinantes
Tema : Determinantes.- a) Encontrar los valores de λ para los que la matriz λ A = 0 λ λ 0 es invertible b) Para λ = hallar la inversa de A comprobar el resultado c) Resolver el sistema x 0 A = 0 z 0 para
EJERCICIOS DE MATRICES, DETERMINANTES Y PROBLEMAS. 1. (2001) De las matrices,,,
EJERCICIOS DE MATRICES, DETERMINANTES Y PROBLEMAS SELECTIVIDAD 1. (2001) De las matrices,,, determina cuáles tienen inversa y en los casos en que exista, calcula el determinante de dichas matrices. 2.
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA : MATRICES Y DETERMINANTES Juio, Ejercicio 3, Opció B Reserva 2, Ejercicio 3, Opció A Reserva 2, Ejercicio 3, Opció B Reserva 3, Ejercicio
Capítulo 12. Sistemas de control
Capítulo 12 Sistemas de control 1 Caso estacionario En un sistema de control el punto de equilibrio se determina resolviendo las ecuaciones que definen el sistema simultáneamente. Supondremos dos procesos
4 ACTIVIDADES DE REFUERZO
4 ACTIVIDADES DE REFUERZO. Resuelve estas ecuaciones de primer grado. a) 5( ) 7( + ) = b) ( + ) 5 = + 8 5. Halla los valores de a y b para que las siguientes ecuaciones sean equivalentes. 4 = = a + = b.
Matrices y Determinantes
ONTENIDOS.- MP ONEPTUL DE L UNIDD....- DEFINIIÓN....- TIPOS DE MTRIES....- OPERIONES ON MTRIES... SUM... PRODUTO DE UN NÚMERO REL POR UN MTRIZ... PRODUTO DE MTRIES... 6 POTENI DE UN MTRIZ UDRD... 7.- INVERS
Ecuaciones de primer grado con denominadores
Ecuaciones de primer grado con denominadores x 1 3 =x 1 3 ) x 1 3 =x 3 1 ) 4x 1 3 =x 3 1 3 ) x 5 =3x 8 5 5 ) 3x 3 5 = x 7 5 4 5 ) x 3 = x 1 3 ) x 3 1 5 = x 6 3 6 15 ) 4x 6 =5 x 4 3 17 ) 6x 5 =3 x 1 ) 5x
GEOMETRIA ANALITICA- GUIA DE EJERCICIOS DE LA RECTA Y CIRCUNFERENCIA PROF. ANNA LUQUE
Ejercicios resueltos de la Recta 1. Hallar la ecuación de la recta que pasa por el punto (4. - 1) y tiene un ángulo de inclinación de 135º. SOLUCION: Graficamos La ecuación de la recta se busca por medio
Ejercicios de Matrices, determinantes y sistemas de ecuaciones lineales. Álgebra 2008
Ejercicios de Matrices, determinantes sistemas de ecuaciones lineales. Álgebra 8 - Dado el sistema de ecuaciones lineales 5 (a) ['5 puntos] Clasifícalo según los valores del parámetro λ. (b) [ punto] Resuélvelo
EJERCICIOS DE TRIGONOMETRÍA
EJERIIOS DE TRIGONOMETRÍA EJERIIOS PROPUESTOS 1. El vigía de un barco pirata observa el punto más alto de un acantilado bajo un ángulo de 60º. Si el barco se aleja 100 m se observa bajo un ángulo de 45º.
Curso: Álgebra. 1.- Determine el valor de la determinante
1.- Determine el valor de la determinante 5.- Determine el valor de verdad de las siguientes afirmaciones: I) Sea P una matriz no singular entonces A) B) C) D) 2.-Determine el valor de verdad de las siguientes
DETERMINANTES. Resuelve los siguientes sistemas y calcula el determinante de cada matriz de coeficientes: 2x + 3y = x + 6y = 16.
DETERMINANTES REFLEXIONA Y RESUELVE Determinantes de orden 2 Resuelve los siguientes sistemas y calcula el determinante de cada matriz de coeficientes: 2x + y = 29 5x y = 8 a b x y = 5 10x + 6y = 16 4x
BOLETÍN DE MATRICES 2 IES A Sangriña Curso 2016/ Calcula la matriz inversa, si existe, usando el método de Gauss:
*** OBLIGATORIOS *** 1. Efectúa todos los posibles productos: 2. Calcula la matriz inversa, si existe, usando el método de Gauss: 3. Sean y. Encuentra X para que cumpla: 3 X 2 A = 5 B 4. Encuentra dos
MATRICES: CÁLCULO DE LA INVERSA MEDIANTE EL DETERMINANTE Y LA ADJUNTA:
MTRICES: TEORÍ COMPLEMEMENTRI Existe otro método para calcular la inversa y que sólo usaremos para matrices cuadradas de orden o de orden 3. Para ello es necesario conocer estos dos conceptos: CÁLCULO
ACTIVIDADES INICIALES
2 Determinantes ACTIVIDADES INICIALES I. Enumera las inversiones que aparecen en las siguientes permutaciones y calcula su paridad, comparándolas con la permutación principal 1234. a) 1342 b) 3412 c) 4321
Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II
Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II Antonio Francisco Roldán López de Hierro * Convocatoria
Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3
1.- DETERMINANTE DE UNA MATRIZ CUADRADA Determinante de una matriz cuadrada de orden 1 Dada una matriz cuadrada de orden 1, A = (a), se define det A = det (a) = a Determinante de una matriz cuadrada de
ÁLGEBRA SELECTIVIDAD C y L
ÁLGEBRA SELECTIVIDAD C y L JUNIO 2004 1. Se tiene una matriz M cuadrada de orden 3 cuyas columnas son respectivamente C1, C2 y C3 y cuyo determinante vale 2. Se considera la matriz A cuyas columnas son
IES Fco Ayala de Granada Suplente Junio de 2017 (Modelo 4) Solución Germán-Jesús Rubio Luna. Opción A
IES Fco Ayala de Granada Suplene Junio de 07 (Modelo 4) Germán-Jesús Rubio Luna Opción A Ejercicio opción A, Suplene Junio 07 (modelo 4) x+ si x < 0 Se sabe que la función f : R R dada por f(x) = x + acos(x)
