INTRODUCCIÓN A LA PROBABILIDAD
|
|
|
- Trinidad Pinto Ruiz
- hace 9 años
- Vistas:
Transcripción
1 INTRODUIÓN L PROBBILIDD EXPERIMENTOS LETORIOS Y DETERMINISTS Los experimetos o feómeos cuyo resultado o puede coocerse hasta haber realizado la experiecia se llama aleatorios o estocásticos. uado el resultado puede preverse de atemao se llama determiistas. ESPIO MUESTRL Se llama espacio muestral asociado a ua experiecia al cojuto de todos los posibles resultados de la misma. Se desiga por " Ω". Puede ser: adiscreto y fiito ( lazar u dado y mirar el resultado bdiscreto e Ifiito umerable( lazar ua moeda hasta que salga cara cotiuo ( medida del diámetro de las mazaas de u huerto SUESOS ELEMENTLES. Sucesos que asociamos a cada uo de los posibles resultados del espacio muestral que o se puede descompoer e otros más secillos. SUESO LETORIO Llamaremos suceso aleatorio a cualquier subcojuto del espacio muestral, es decir a la uió de varios sucesos elemetales Ejercicio: 1. Describe el espacio muestral asociado al experimeto y cueta el úmero de sucesos elemetales. a Lazar dos moedas b Lazar u dado c Lazar ua chicheta al aire d Sacar ua carta de la baraja de 40. f Lazar tres moedas h Lazar dos dados SUESO ONTRRIO DE OTRO. Si es u suceso, se llama suceso cotrario de, y se desiga por se verifica, siempre que o se verifica. SUESO SEGURO Y SUESO IMPOSIBLE Suceso seguro es el que se verifica siempre. Se represeta por Ω. Suceso imposible es el que o se verifica uca. UNIÓN DE SUESOS, al suceso defiido por la codició de que Se llama uió de los sucesos y B al suceso que se verifica siempre que se verifica, se verifica B, o ambos a la vez. Se expresa B. Págia 1
2 INTERSEION DE SUESOS Se llama itersecció de los sucesos y B al suceso que se verifica siempre que se verifica y B a la vez. Se expresa B. SUESOS INOMPTIBLES Dos sucesos se llama icompatibles cuado B. Es decir cuado al verificarse uo de ellos o puede verificarse el otro. E caso cotrario se llama compatibles. SUESO ONTENIDO EN OTRO Se dice que u suceso está coteido e otro B, si siempre que ocurre, ocurre B. Se represeta B. DIFERENI DE SUESOS Se llama diferecia de dos sucesos y B, y se expresa B, al suceso que se verifica cuado ocurre y o ocurre B. Es decir, B B Ejercicio l sacar ua carta de ua baraja cosidera los sucesos: sacar oros, B sacar ua figura Describe los sucesos:, B, B, B, B FREUENI RELTIV DE UN SUESO uado u experimeto se realiza "N" veces, habiédose realizado el suceso, veces, diremos que la frecuecia relativa del suceso es el cociete fr( N DEFINIION DE PROBBILIDD La frecuecia relativa de u determiado suceso, tiede a aproximarse a u úmero fijo al aumetar el úmero de veces que se repite u experimeto. este úmero se le llama probabilidad del suceso. Se desiga P. ( Propiedades: 0 < P < 1 1. (. Si y B so sucesos icompatibles se verifica que P ( + 3. Si y B so sucesos compatibles se verifica que + 4. Si es el suceso cotrario de, se verifica que 1 5. Si es el suceso imposible: 0 6. Si Ω es el suceso seguro : P ( Ω 1, etoces P ( P ( 7. Si B <. LEY DE LPLE. Si el espacio muestral se compoe de " " sucesos elemetales equiprobables y el suceso es la uió de "r" sucesos elemetales, geeralizado la propiedad, se obtiee la llamada Ley de Laplace º casos favorables º casos posibles Págia
3 PROBBILIDD ONDIIOND SUESO ONDIIONDO El suceso que cosiste e que se verifique, siempre que haya ocurrido B e el mismo experimeto, se deomia suceso codicioado por B, y se represeta por B. PROBBILIDD ONDIIOND Se defie la probabilidad del suceso codicioado por el suceso B, y se escribe B ( P B P ( P ( SUESOS DEPENDIENTES E INDEPENDIENTES. REGL DEL PRODUTO Dos sucesos y B se llama idepedietes si P ( P ( probabilidad de. E este caso se verifica siempre que tambié P ( B Por tato segú la defiició aterior se verifica: P B P P B, es decir, si ocurrido B o se altera la. 1. Si y Bso sucesos idepedietes: ( ( (. Si y Bso sucesos idepedietes: P ( B P ( Las dos últimas expresioes se deomia "REGL DEL PRODUTO" para la itersecció de sucesos. EJERIIO 1 E ua baraja de 40 cartas se extrae sucesivamete dos cartas si devolver la primera. Determia: a. Probabilidad de obteer dos copas b. Probabilidad de obteer dos cartas del mismo palo c. Probabilidad de obteer dos cartas de diferete palo d. Probabilidad de obteer al meos u as TEOREM DE L PROBBILIDD TOTL uado u suceso B puede presetarse codicioado por otros 1,, 3,...,, icompatibles dos a dos, y tales que su uió es el suceso seguro, se verifica: P. B / +. B / +. B / B / ( Para llegar a este resultado utilizaremos el diagrama de árbol del tipo siguiete y asigaremos a cada rama la probabilidad de que se presete el suceso que aparece al fial de la misma. Observa que las probabilidades de la seguda rama so probabilidades codicioadas. Observa que al suceso B puede llegarse a través de los camios 1,, 3,..., y que EJERIIO. Ua empresa elabora sus productos e cuatro fábricas: F 1, F, F 3 y F 4. El porcetaje de producció total que se fabrica e cada factoría es del 40%, 30%, 0% y 10%, respectivamete, y además el porcetaje de evasado icorrecto e cada factoría es del 1%, %, 7% y 4%. Tomamos u producto de la empresa al azar. uál es la probabilidad de que sea defectuoso? i 1 i 1 Págia 3
4 Llamado M "el producto mal evasado", y B al producto bie evasado, se tiee que este producto puede proceder de cada ua de las cuatro factorías y, por tato, segú el teorema de la probabilidad total y teiedo e cueta las probabilidades del diagrama de árbol, teemos: ( ( ( / + ( ( / + ( ( / + ( ( / P M P F P M F P F P M F P F P M F P F P M F FÓRMUL DE BYES E las codicioes del teorema aterior, aplicado la defiició de probabilidad codicioada, podemos calcular la probabilidad de que el suceso B se haya presetado a través de algua raa cocreta, esto es, la probabilidad a posteriori ( sabiedo que ha ocurrido el suceso. Esta fórmula se cooce como Fórmula de Bayes: /. B /. B /. B / +. B / B / 1 1 EJERIIO 3. Teemos tres uras: co 3 bolas rojas y 5 egras, B co bolas rojas y 1 egra y co bolas rojas y 3 egras. Escogemos ua ura al azar y extraemos ua bola. Si la bola ha sido roja, cuál es la probabilidad de haber sido extraída de la ura? Llamamos R "sacar bola roja" y N "sacar bola egra". E el diagrama de árbol adjuto puede verse las distitas probabilidades de ocurrecia de los sucesos R o N para cada ua de las tres uras. La probabilidad pedida es P ( R. Utilizado el teorema de Bayes, teemos: 1 3 R / R / / R R R / + R / + R / Págia 4
5 EJERIIO 4. Ua determiada efermedad puede estar provocada por tres causas,, B o e las proporcioes 30%, 0% y 50%, respectivamete. El tratamieto de esta efermedad requiere hospitalizació e el 0% de los casos si está provocada por, e el 55% de los casos si está provocada por B y e el 10% de los casos si está provocada por. U efermo hospitalizado tiee diagosticada esta efermedad, cuál es la probabilidad de que la causa sea? Solució H H 0.77 H EJERIIO 5. E u determiado país, 64 de cada mujeres de raza egra muere e el parto mietras que la proporció es de sólo 17 de cada para las mujeres de raza blaca. El 90% de los partos correspode a mujeres de raza blaca. Ua mujer acaba de fallecer a cosecuecia del parto, calcular la probabilidad de que sea de raza egra. Solució: M N N N M M Págia 5
Probabilidad FENÓMENOS ALEATORIOS
Probabilidad FENÓMENOS ALEATORIOS E el mudo real hay feómeos regidos por leyes de tipo empírico (basadas e la experiecia), lógico o deductivo, e los que el efecto está determiado por ciertas causas. El
CÁLCULO DE PROBABILIDADES :
CÁLCULO DE PROBBILIDDES : Experimeto aleatorio. Espacio muestral. Sucesos. Álgebra de sucesos. Frecuecias. Propiedades. Probabilidad. Resume de Combiatoria. Probabilidad codicioada. Teoremas. PROBBILIDD
Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1
Tema 10 Cálculo de probabilidades Matemáticas CCSSII 2º Bachillerato 1 TEMA 10 CÁLCULO DE PROBABILIDADES 10.1 EXPERIENCIAS ALEATORIAS. SUCESOS EXPERIENCIAS DETERMINISTAS Y ALEATORIAS Se llama experiecia
Probabilidad. Departamento de Análisis Matemático Universidad de La Laguna. 1. Introducción 1
Probabilidad BENITO J. GONZÁLEZ RODRÍGUEZ ([email protected]) DOMINGO HERNÁNDEZ ABREU ([email protected]) MATEO M. JIMÉNEZ PAIZ ([email protected]) M. ISABEL MARRERO RODRÍGUEZ ([email protected]) ALEJANDRO SANABRIA
PROBABILIDAD. El espacio muestral de un experimento aleatorio es el conjunto de todos los resultados posibles que pueden producirse.
PROAILIDAD 1.- EXPERIMENTOS ALEATORIOS De forma geeral podemos distiguir etre experimetos determiistas y experimetos aleatorios. Las leyes de la física, de la química y de otras ciecias os provee de ecuacioes
(PROBABILIDAD) (tema 15 del libro)
(PROBABILIDAD) (tema 15 del libro) 1. EXPERIMENTOS ALEATORIOS. ESPACIO MUESTRAL. SUCESOS Defiició: U feómeo o experiecia se dice aleatorio cuado al repetirlo e codicioes aálogas o se puede predecir el
T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos:
T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Variable aleatoria: defiició y tipos: Ua variable aleatoria es ua fució que asiga u úmero real, y sólo uo, a cada uo de los resultados de u eperimeto aleatorio.
Matemáticas 1º Bachillerato CCNN. Tema 8:Probabilidad
Tema 8:Probabilidad 0.- Itroducció 1.- Experimetos Aleatorios 2.- Espacio Muestral 3.- Sucesos 4.- Frecuecias 5.- Probabilidad 6.- Regla de Laplace 7.- Probabilidad Codicioada 8.- Sucesos Idepedietes 9.-
DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS
DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS ESPACIO MUESTRAL. El cojuto de todos los resultados posibles de u eperimeto estadístico deotado por S o Ω VARIABLE. Se deomia variable a la
Tema 12: IDEA DE PROBABILIDAD
Tema 12: IDEA DE PROBABILIDAD 1.- Experimetos aleatorios U experimeto se llama aleatorio cuado se cooce todos los posibles resultados del mismo, pero o puede predecirse cuál de ellos se producirá e ua
Slide 1. Slide 2. Slide 3. Universidad Diego Portales Facultad de Economía y Negocios. Capítulo 4 Introducción a la Probabilidad.
Slide 1 Uiversidad Diego Portales Facultad de Ecoomía y Negocios Martes 13 de Abril, 2010 Slide 1 Slide 2 Capítulo 4 Itroducció a la Probabilidad Temas Pricipales: Experimetos, Reglas de Coteo, y Asigació
2 FUNDAMENTOS DE PROBABILIDAD
2 FUNDAMENTOS DE PROBABILIDAD T al vez el estudio de la probabilidad toma setido cuado se percibe y se acepta la existecia de la aleatoriedad e diversos aspectos de la vida diaria. Si embargo, si cosideramos
Series de números reales
Tema 6 Series de úmeros reales 6. Series de úmeros reales. Defiició 6. Sea {a } ua sucesió de úmeros reales y cosideremos la sucesió {S }, defiida por S = a + a + + a, para cada IN, que llamaremos sucesió
OPCIÓN A EJERCICIO 1_A
IES Fco Ayala de Graada Sobrates de 005 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 3 (1 puto) Sea las matrices A= 0 1 y B = 1-1 - 0 1 1 De las siguietes operacioes, alguas o se puede
Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)
Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA
Sucesiones y series de números reales
38 Matemáticas : Cálculo diferecial e IR Capítulo Sucesioes y series de úmeros reales Sucesioes Defiició 37- Llamaremos sucesió de úmeros reales a cualquier aplicació f: N R y la represetaremos por { a,
TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas
TEMA 5: Gráficos de Cotrol por Atributos 1 Gráfico de cotrol para la fracció de uidades defectuosas 2 Gráfico de cotrol para el úmero medio de discoformidades por uidad Selecció del tamaño muestral 3 Clasificació
INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA.
INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA. Població: El cojuto de todos los elemetos o idividuos que posee ua determiada característica o cualidad de iterés. Existe situacioes e las que o es posible aalizar
una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:
Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes
MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS
Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:
Guía 1 Matemática: Estadística NM 4
Cetro Educacioal Sa Carlos de Aragó. Sector: Matemática. Prof.: Ximea Gallegos H. 1 Guía 1 Matemática: Estadística NM 4 Nombre: Curso: Fecha. Uidad: Estadística y Probabilidades. Apredizajes Esperados:
Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas
Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales
Estado gaseoso. Mezclas de gases ideales presión parcial de un gas en una mezcla de gases ideales ley de Dalton
Estado gaseoso Ecuació de estado de los gases perfectos o ideales Mezclas de gases ideales presió parcial de u gas e ua mezcla de gases ideales ley de Dalto Feómeos de disolució de gases e líquidos leyes
Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......
1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros
1. Demuestra que si p es un natural y p es compuesto, entonces existe un divisor m de p con 1 < m p.
Divisibilidad Matemática discreta Dados dos úmeros aturales a y b, escribiremos a b y leeremos a divide a b si existe u c N tal que ac = b. E este caso, decimos que a es u divisor de b o que b es divisible
Sucesiones de números reales
Sucesioes de úmeros reales Sucesioes Ejercicio. Prueba que si x
Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20
Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra
Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia
M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo Objetivos Tratar co muestras aleatorias y su distribució muestral e ejemplos de tamaño reducido. Tratar co la distribució de la
Combinatoria. Tema Principios básicos de recuento
Tema 4 Combiatoria La combiatoria, el estudio de las posibles distribucioes de objetos, es ua parte importate de la matemática discreta, que ya era estudiada e el siglo XVII, época e la que se platearo
Resolución N 2. Axiomas de Probabilidades. Ejercicios Resueltos. Profesor: Iván Rapaport Z. Auxiliar: Abelino Jiménez G.
Resolució N 2 Axiomas de Probabilidades Profesor: Ivá Rapaport Z Auxiliar: Abelio Jiméez G Ejercicios Resueltos 1 Cierta efermedad se trasmite e forma geética de los padres a los hijos, del siguiete modo:
TEMA 7: TEORÍA DE LA PROBABILIDAD
7.. Itroducció... 7.2 Espacio Muestral... 2 7.3 ocepto de σ-álgebra.... 5 7.4. Defiició clásica de probabilidad.... 6 7.5. Defiició frecuetista de probabilidad.... 6 7.6. Defiició axiomática de probabilidad...
Series de potencias. Desarrollos en serie de Taylor
Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de
R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.
R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de
IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 4) Solución Germán-Jesús Rubio Luna OPCIÓN A
IES Fco Ayala de Graada Sobrates de 004 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A ( putos) Sabemos que el precio del kilo de tomates es la mitad que el del kilo de care. Además, el
FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y
CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos
CAPÍTULO 6 DISTRIBUCIONES MUESTRALES
CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es saber acerca del comportamieto de parámetros poblacioales tales como: la media ( ), la variaza ( ) o la proporció ( p ). Para
GUIA DE ESTUDIO Nro 1
MATERIA: MATEMÁTICA I CURSO: I AÑO EJE ESTRUCTURAL I: CONCEPTOS FUNDAMENTALES DEL ALGEBRA GRUPOS CONCEPTUALES: - Epresioes algebraicas. Poliomios. - Ecuacioes. Iecuacioes. TEMARIO: GUIA DE ESTUDIO Nro
Construcción de los números reales.
B Costrucció de los úmeros reales. E el cojuto C de las sucesioes de Cauchy de úmeros racioales defiimos la relació siguiete: si (x ) =1 e (y ) =1 so dos sucesioes de C etoces (x ) =1 (y ) =1, si lím (x
CI2612: Algoritmos y Estructuras de Datos II. Espacio de probabilidad. Objetivos. Blai Bonet
CI2612: Algoritmos y Estructuras de Datos II Blai Boet Aálisis probabiĺıstico Uiversidad Simó Boĺıvar, Caracas, Veezuela Objetivos Espacio de probabilidad Ituitivamete, utilizamos la idea de probabilidad
Preguntas más Frecuentes: Tema 2
Pregutas más Frecuetes: Tema 2 Pulse sobre la preguta para acceder directamete a la respuesta 1. Se puede calcular la media a partir de las frecuecias absolutas acumuladas? 2. Para calcular la media aritmética,
Ejercicios resueltos de probabilidad
Ejercicios resueltos de probabilidad. El 70% de empresas tiee errores e sus activos fiacieros, el 60% tiee errores e sus pasivos fiacieros y el 40% tiee errores e sus activos y e sus pasivos fiacieros.
Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad
Evaluació NOMBRE APELLIDOS CURSO GRUPO FECHA CALIFICACIÓN Calcula el térmio geeral de ua progresió geométrica que tiee de térmio a y por razó /. a) b) c) El 6 es: a) b) 0 c) / 6 7 El es: a) b) c) 0 El
Importancia de las medidas de tendencia central.
UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació
6. DISTRIBUCIONES MUESTRALES
6. DISTRIBUCIONES MUESTRALES DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es saber acerca del comportamieto de parámetros poblacioales tales como: la media ( ), la variaza ( ) o la proporció
Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones
Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos
CAPÍTULO 6 DISTRIBUCIONES MUESTRALES
CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es coocer acerca del comportamieto de parámetros poblacioales tales como: la media ( μ ), la variaza ( ) o la proporció ( p ).
SUCESIONES Y SERIES Una sucesión es un conjunto de números ordenados bajo cierta regla específica. 7, 10, 13, 16, 19, 22, 25,...
SUCESIONES Y SERIES. Ua sucesió es u cojuto de úmeros ordeados bajo cierta regla específica. E muchos problemas cotidiaos se preseta sucesioes, como por ejemplo los días del mes, ya que se trata del cojuto
EJERCICIOS DE SERIES DE FUNCIONES
EJERCICIOS DE SERIES DE FUNCIONES. Campo de covergecia. Covergecia uiforme. Determiar el campo de covergecia de la serie 2 se x. Aplicado el criterio de la raíz, la serie es absolutamete covergete cuado:
9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras.
Hoja de Problemas º Algebra II 9. Hallar u úmero de cuatro cifras que sea igual al cubo de la suma de las cifras. Solució: Sea el úmero buscado co a que si o, o seria de cuatro cifras. Teemos que ( ) como
DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS)
DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS) www.cedicaped.com DISTRIBUCIÓN DE PROBABILIDAD Recordemos que el Espacio Muestral es el cojuto de todos y
Sucesiones de números reales Sucesiones convergentes: límite de una sucesión
Sucesioes de úmeros reales Sucesioes covergetes: límite de ua sucesió Tato e la educació secudaria obligatoria como e el bachillerato se habla poco de las sucesioes de úmeros reales. Si acaso se dedica
IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna 12 2 = 3 12. , es decir
IES Fco Ayala de Graada Sobrates de 008 (Modelo Juio) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 008 (MODELO ) OPCIÓN A EJERCICIO _A 0 a b Sea las matrices A= y B= 0 6 a) ( 5 putos)
SOLUCIONES DE LAS ACTIVIDADES Págs. 23 a 43
TEMA. SUCESIONES DE NÚMEROS. LOGARITMOS SOLUCIONES DE LAS ACTIVIDADES Págs. a a 8 + ( ); Y fialmete: a 7 8 + (7 ) 86 0 7 + 0. S 0 Págia 7 [ ( 7 + 9 5) ] 95. a) 6 : pero 0 : 6,6 o es PG b) 6 : ( ) : 6 :
TRABAJO DE GRUPO Series de potencias
DPTO. MATEMÁTICA APLICADA FACULTAD DE INFORMÁTICA (UPM) TRABAJO DE GRUPO Series de potecias CÁLCULO II (Curso 20-202) MIEMBROS DEL GRUPO (por orde alfabético) Nota: Apellidos Nombre Este trabajo sobre
4. CONCEPTO BASICOS DE PROBABILIDADES
4. CONCEPTO BASICOS DE PROBABILIDADES Dr. http://math.uprm.edu/~edgar UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ 41 4.1 Espacio Muestral y Evetos 4.1.1 1 Experimetos Aleatorios y Espacios
Límite y Continuidad de Funciones.
Límite Cotiuidad de Fucioes. Eleazar José García. [email protected]. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por
Ejemplos: Resultado obtenido en la tirada de un dado. Resultado obtenido en el lanzamiento de una moneda.
IS adre oveda (Guadix Matemáticas plicadas a las SS II UNIDD 9: OILIDD. La probabilidad se ocupa del estudio de los feómeos aleatorios, es decir, feómeos cuya ocurrecia está sujeta al azar. cocreto, la
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas 4 y por tanto P( M ) = 5
. El 70% de empresas tiee errores e sus activos fiacieros, el 60% tiee errores e sus pasivos fiacieros y el 40% tiee errores e sus activos y e sus pasivos fiacieros. Obté razoadamete el porcetaje de empresas
Sucesiones numéricas.
SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El
1. Serie de Potencias
. Serie de Potecias Recordemos que dada ua sucesió {b } N, podemos defiir ua serie: E el caso particular e que b = a (x c) b la serie tedría la forma b = a (x c) y es llamada serie de potecias cetrada
4. Sucesiones de números reales
4. Sucesioes de úmeros reales Aálisis de Variable Real 2014 2015 Ídice 1. Sucesioes y límites. Coceptos básicos 2 1.1. Defiició de sucesió... 2 1.2. Sucesioes covergetes... 2 1.3. Sucesioes acotadas...
MUESTREO Y ESTIMACIÓN ESTADÍSTICA
1 MUESTREO Y ESTIMACIÓN ESTADÍSTICA Muestreo. Métodos de muestreo Se llama població al cojuto de idividuos que posee cierta característica. Ua muestra es ua parte de esa població. Muestreo es el proceso
Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma:
Semiario Uiversitario de Igreso 07 oliomio de ua sola variable a0; a; a;...; a úmeros reales y N 0, llamaremos poliomio de la variable a toda epresió algebraica etera de la forma: a0 a a... a Los poliomios
OPCIÓN A EJERCICIO 1_A 1-2 1 Sean las matrices A =
IES Fco Ayala de Graada Sobrates de 007 (Juio Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1-1 x -x Sea las matrices A, X y e Y -1 3 0 - z (1 puto) Determie la matriz iversa de A. ( putos)
1. QUÉ ES LA ESTADÍSTICA?
1. QUÉ ES LA ESTADÍSTICA? Cuado coloquialmete se habla de estadística, se suele pesar e ua relació de datos uméricos presetada de forma ordeada y sistemática. Esta idea es la cosecuecia del cocepto popular
UNITAT 2. ÁLGEBRA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS
UNITAT. ÁLGEBRA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.1.- POLINOMIOS FACTORIZACIÓN. REGLA DE RUFFINI U poliomio co idetermiada x es ua expresió de la forma: Los úmeros que acompaña a la icógita se
IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11
IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como
Series alternadas Introducción
Sesió 26 Series alteradas Temas Series alteradas. Covergecia absoluta y codicioal. Capacidades Coocer y aplicar el criterio para estudiar series alteradas. Coocer y aplicar el teorema de la covergecia
Departamento de Matemáticas
MA5 Clase 5: Series de potecias. Operacioes co series de potecias. Series de potecias Elaborado por los profesores Edgar Cabello y Marcos Gozález Cuado estudiamos las series geométricas, demostramos la
Curso: 3 E.M. ALGEBRA 8
Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: POLINOMIOS Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/ Actitudes: Respeto, Solidaridad,
UNIDAD 3.- INFERENCIA ESTADÍSTICA I
UNIDAD 3.- INFERENCIA ESTADÍSTICA I 1. ESTADÍSTICA INFERENCIAL. MUESTREO La Estadística es la ciecia que se preocupa de la recogida de datos, su orgaizació y aálisis, así como de las prediccioes que, a
Qué es la estadística?
Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma
TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García
TEORÍA DE CÁLCULO I Para Grados e Igeiería Capítulo 3: Sucesioes y series Domigo Pestaa Galvá José Mauel Rodríguez García Figuras realizadas co Arturo de Pablo Martíez TEMA 3. Sucesioes y series 3. Sucesioes
METODO DE ITERACION DE NEWTON
METODO DE ITERACION DE NEWTON Supogamos que queremos resolver la ecuació f( ) y lo que obteemos o es la solució eacta sio sólo ua buea aproimació, para obteer esta aproimació observemos la siguiete figura
La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:
SUCESIONES Págia 50 PARA EMPEZAR, REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja,
