Tema 12. Integrales impropias
|
|
- Teresa Soriano Godoy
- hace 5 años
- Vistas:
Transcripción
1 Tem 2. Integrles impropis Jun Medin Molin 3 de mrzo de 2005 Introducción En este tem trtremos el estudio de ls integrles impropis que pueden ser de dos tipos, integrles donde el intervlo de integrción no está cotdo, o ien, integrles donde l función integrr no está cotd. Este tem present grndes nlogís con el tem de sucesiones y series, por lo que es muy recomendle que se compre mos tems durnte su estudio. Pr el desrrollo hemos considerdo los siguientes prtdos: Integrles impropis de primer especie. Criterios de convergenci: Criterio de comprción, criterio del límite y criterio de l integrl pr series numérics. Integrles impropis de segund especie. Criterios de convergenci: Criterio de comprción y criterio del límite. Integrles impropis de primer especie Ls integrles impropis de primer especie son quells donde lgunos de los límites de integrción es infinito. Definición i) Si f :[, + [ R tl que f es integrle en [, ] pr todo >,sedefine f(x)dx =lim Z t t f(x)dx. Si el vlor nterior es finito, diremos que l integrl nterior es convergente,sies+ o diremos que es divergente y si no existe diremos que es oscilnte.
2 ii) Si f :],] R tl que f es integrle en [, ] pr todo <, se define Z Z f(x)dx = lim f(x)dx. t t Si el vlor nterior es finito, diremos que l integrl nterior es convergente,sies+ o diremos que es divergente y si no existe diremos que es oscilnte. iii) Si f : R R integrle en [, ] pr todo, R, <,entonces diremos que l integrl impropi R + f(x)dx es convergente si existe R tl que R f(x)dx y R + f(x)dx son convergentes y en ese cso se define Z f(x)dx = f(x)dx + f(x)dx. Se verific que el vlor nterior no depende del R escogido. Definición 2 Si f :], + [ R, sedefine el vlor principl de f en ], + [ como VP Z t f(x)dx = lim f(x)dx. t t Entonces se tiene el siguiente resultdo: Proposición Si f :], + [ R tl que R + f(x)dx es convergente, entonces VP f(x)dx = f(x)dx. L función f : R R tl que f(x) =x muestr que el recíproco del resultdo nterior no es cierto. Al igul que en l integrl de Riemnn, ls integrles impropis son fáciles de clculr cundo se conoce un primitiv del integrndo. Teorem i) Si f :[, + [ R tl que R + f(x)dx es convergente y F (x) es un primitiv de f(x), entonces: f(x)dx = lim F (t) F (). t + 2
3 ii) Si f :],] R tl que R primitiv de f(x), entonces: f(x)dx es convergente y F (x) es un Z f(x)dx = F () lim t F (t). iii) Si f :], + [ R tl que R + f(x)dx es convergente y F (x) es un primitiv de f(x), entonces: f(x)dx = lim F (x) lim F (x). x + x Como y semos, puede que se muy difícil o incluso imposile encontrr un primitiv de un función dd. Así, serí muy interesnte otener criterios que permitn conocer el crácter de un integrl impropi sin conocer su vlor. Vmos introducir criterios pr funciones f :[, + [ R tles que f(x) 0prtodox [, + [. De form nálog se tienen los criterios pr integrles impropis del tipo R f(x)dx siendo f(x) 0prtodo x ],[. Se oserv enseguid l nlogí entre estos criterios y los que se tiene pr ls series de términos positivos. Más trde introduciremos un resultdo que relcion mos conceptos. Proposición 2 Se f : [, + [ R tl que f(x) 0 pr todo x [, + [, siendof integrle en [, ] pr todo >. Si lim x + f(x) > 0 entonces R + f(x)dx es divergente. Así, plicndo este criterio se otiene l divergenci de integrles impropis del tipo R + x n dx siendo >0yn 0ode R + x 2 +dx, perono x 2 +2 podemos decir nd sore el crácter de l integrl impropi R + e x2 dx. 0 Los siguientes criterios permiten deducir el crácter de cierts integrles impropis prtir del conocimiento del crácter de integrles impropis de otrs funciones. Proposición 3 Sen f,g :[, + [ R positivs tles que f,g son integrles en [, ] pr todo >y supongmos que f(x) g(x) pr todo x [, + [. Entonces: i) Si R + f(x)dx es convergente, entonces R + g(x)dx es convergente. ii) Si R + g(x)dx es divergente, entonces R + f(x)dx es divergente. 3
4 El siguiente criterio se le conoce como criterio del límite: Proposición 4 Sen f,g :[, + [ R positivs tles que f,g son integrles en [, ] pr todo >.Sel = lim x + R. Entonces: f(x) g(x) i) Si l>0, R + f(x)dx es convergente (divergente) si y sólo si R + g(x)dx es convergente (divergente). ii) Si l =0y R + f(x)dx es divergente, entonces R + g(x)dx es divergente. iii) Si l =0y R + g(x)dx es convergente, entonces R + f(x)dx es convergente. Es sencillo demostrr que si >0, entonces R + es convergente si x α α > ydivergentesiα. El criterio nterior juntos con el crácter de ls integrles impropis nteriores permiten otener el crácter de muchs integrles impropis. El resultdo nterior relcion los conceptos de serie e integrl impropi: Proposición 5 Se f :[, + [ R decreciente, continu y positiv tl que lim x + f(x) =0. Entonces R + f(x)dx es convergente si y sólo si f(n) es convergente. P n= De este resultdo se deduce por ejemplo que P n= α > ydivergentesiα. Introducimos l convergenci solut: n α es convergente si Definición 3 Si f :[, + [ R, sediceque R f(x)dx es solutmente convergente si R + f(x) dx es convergente. Al igul que en series se otiene: Proposición 6 Un integrl impropi de primer especie solutmente convergente es convergente. Integrles impropis de segund especie Definición 4 i) Si f[, [ integrle en [, c] pr todo c ], [ y lim x f(x) =, sedefine R f(x)dx = lim R t t f(x)dx. Si este límite es finito, se dice que l integrl impropi es convergente, si es infinito se dice que es divergente y si no existe se dice que es oscilnte. 4
5 ii) Si f :], ] R integrle en [c, ] pr todo c ], [ y lim x + f(x) =, sedefine R f(x)dx = lim R t + f(x)dx. t Si este límite es finito, se dice que l integrl impropi es convergente, si es infinito se dice que es divergente y si no existe se dice que es oscilnte. En los resultdos que se enuncin desde este punto hst el finl de l sección, ls integrles impropis que precen tienen su singulridd en el límite inferior. Los resultdos nálogos pr cundo se tiene l singulridd en el extremo superior son tmién ciertos. Tmién, pr este tipo de integrles impropis se tiene un resultdo nálogo l regl de Brrow: Proposición 7 Se f :], ] R tl que lim x + f(x) =, siendo f(x)dx convergente. Si F (x) es un primitiv de f(x), entonces: R Z f(x)dx = F () lim t + F (t). Tmién se tienen un criterio de comprción y un criterio del límite: Proposición 8 Sen f,g :], ] R positivs, integrles en [c, ] pr todo c ], [ tles que lim x + f(x) =lim x + g(x) =. Si f(x) g(x) pr todo x ], ] entonces: i) Si R g(x)dx es convergente. ii) Si R f(x)dx es divergente. Proposición 9 Sen f, g :], ] R positivs, integrles en [c, ] pr todo c ], [ tles que lim x + f(x) = lim x + g(x) =. Sel =lim f(x) x + g(x) R. Entonces: i) Si l 6= 0, R g(x)dx es convergente. ii) Si l =0y R f(x)dx es convergente. iii) Si l =0y R f(x)dx es divergente, entonces R g(x)dx es divergente. De este criterio, junto con el hecho de que pr funciones del tipo f(x) = se tiene que R (x ) α (x x 0 dx es convergente si α < y divergente si α, ) α se otiene l convergenci de muchs integrles impropis de segund especie. 5
6 Definición 5 Si f :], ] R tl que lim x + f(x) =, sediceque R f(x)dx es solutmente convergente si R f(x) dx es convergente. Entonces se otiene: Proposición 0 Un integrl impropi de segund especie solutmente convergente es convergente. Biliogrfí. T. Apostol, Clculus Vol.. Ed. Reverte. 2. G. Brdley, K. Smith, Cálculo de un vrile. Ed. Prentice Hll. 3. J. Burgos, Cálculo infinitesiml de un vrile. Ed. McGrw-Hill. 4. J. S. Cnovs, J. A. Murillo, Fundmentos Mtemáticos de l Ingenierí. Ed. Diego Mrín. 5. F. Coquillt, Cálculo integrl (Metodologí y prolems). Ed. Autor. 6. A. de l Vill, A. Grcí, Cálculo I: Teorí y prolems de nálisis mtemático de un vrile. CLAGSA. 7. B. P. Demidovich, 5000 prolems de nálisis mtemático. Ed. Prninfo. 8. B. P. Demidovich, Prolems y ejercicios de nálisis mtemático. Ed. Prninfo. 9. J. Fernández, M. Sánchez, Ejercicios y complementos de nálisis mtemático I. Ed. Tecnos. 0. M. Frnco, F. Mrtínez, R. Molin, Cálculo I. Ed. Diego Mrín.. G. Thoms, R. Finney, Cálculo de un vrile. Ed. Addison Wesley. 6
Integrales impropias
Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección
INTEGRALES IMPROPIAS. 1. Integral de una función acotada, definida en un intervalo no acotado (Integral impropia de 1ª especie). Ejemplo: 1 x.
INTEGRALES IMPROPIAS Hst hor hemos estudido l integrl de Riemnn de un función f cotd y definid en un intervlo cerrdo y cotdo [, ], con., Ahor generlizmos este concepto.. Integrl de un función cotd, definid
Cálculo integral de funciones de una variable
Lino Alvrez - Aure Mrtínez CÁLCULO II Cálculo integrl de funciones de un vrible 1 L integrl de Riemnn Se f : [, b] R R un función cotd en [, b]. Definición 1.- Un prtición P = {t 0, t 1,..., t n } del
Integral impropia Al definir la integral definida b
Mte Univ II, 14 FCE-BUAP CÁLCULO INTEGRAL ALEJANDRO RAMÍREZ PÁRAMO 1. Sucesiones y series Integrl impropi Al definir l integrl definid b f(x)dx, pretendimos que l función f estb definid; demás de cotd,
7.1. Definición de integral impropia y primeras propiedades
Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,
Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas
Cpítulo 8 Integrles Impropis 8.. Introducción L integrl de Riemnn tl como l hemos estudido, está definid únicmente pr funciones cotds y definids sobre intervlos cerrdos y cotdos. En este cpítulo estudiremos
TEMA 6. INTEGRAL DE RIEMANN. 6.1 INTEGRAL DE RIEMANN 6.1.1 Partición de un intervalo
TEMA 6. INTEGRAL DE RIEMANN 6.1 INTEGRAL DE RIEMANN 6.1.1 Prtición de un intervlo Se f :, y fx K x,. Definición: Un prtición de, es un conjunto ordendo y finito de números reles y distintos P x 0,...,x
Sean dos funciones f y g de variable real definidas en un dominio DŒÑ Definición g es una primitiva de f si f(x)=g (x) "x D
INTEGRAL DE RIEMANN 1- Primitivs e integrl indefinid - Integrl de Riemnn 3- Interpretción geométric de ls integrles de Riemnn 4- Propieddes de ls integrles de Riemnn 5- Cmio de vrile en ls integrles de
Funciones de una variable real II Integrales impropias
Universidd de Murci Deprtmento Mtemátics Funciones de un vrible rel II Integrles impropis B. Cscles, J. M. Mir y L. Oncin Deprtmento de Mtemátics Universidd de Murci Grdo en Mtemátics 202-203 (22/04/203??/05/203)
Herramientas digitales de auto-aprendizaje para Matemáticas
Mtemático Tem: L integrl Integrl Herrmients digitles de uto-prendizje pr Mtemátics, Grupo de Innovción Didáctic Deprtmento de Mtemátics Universidd de Extremdur Mtemático Tem: L integrl Integrl Mtemático
Teoría Tema 7 Integral definida. Área encerrada por una curva
Colegio Mrist L Inmculd de Grnd Profesor Dniel Prtl Grcí www.dniprtl.net Asigntur: Mtemátics II 2ºBchillerto Teorí Tem 7: Integrl definid. Áre encerrd por un curv págin /0 Teorí Tem 7 Integrl definid.
La Integral Definida
Nivelción de Mtemátic MTHA UNLP ID Introducción Prtición L Integrl Definid Un prtición del intervlo [, b] es un sucesión de números = x x x x n = b, entre y b, tl que x i x i+ (i =,,, n ) Ejemplo: se llm
Integración de funciones de una variable real
Cpítulo 5 Integrción de funciones de un vrible rel 5.1. Introducción Los inicios del Cálculo Integrl se remontn Arquímedes, mtemático, físico e ingeniero griego del S.III A.C., quién clculó el áre de numeross
2. LAS INTEGRALES DEFINIDA E INDEFINIDA
2. LAS INTEGRALES DEFINIDA E INDEFINIDA Ojetivo: El lumno identificrá los conceptos de ls integrles definid e indefinid y los plicrá en el cálculo y otención de integrles Notción sum Se k un numero rel
AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA
GUIA DE INTEGRALES DEFINIDAS INTEGRAL DEFINIDA. APLICACIONES DE LA INTEGRAL DEFINIDA Teorem Fundmentl del Cálculo Áre jo l curv de un región Áre entre dos regiones COMPETENCIA: Resolver integrles plicndo
Funciones de variable compleja
Funciones de vrible complej Integrles impropis. Mrí Eugeni Torres Universidd Ncionl de Entre Ríos Fcultd de Ingenierí Funciones de Vrible Complej (Bioingenierí, Pln 28) Myo 29 Integrles impropis Alcnce
Funciones de una variable real II Integrales impropias
Universidd de Murci Deprtmento Mtemátics Funciones de un vrible rel II Integrles impropis B. Cscles, J. M. Mir y L. Oncin Deprtmento de Mtemátics Universidd de Murci Grdo en Mtemátics 203-204 Contents
7. Integrales Impropias
Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Bsdo en el punte del curso Cálculo (2d semestre), de Roerto Cominetti, Mrtín Mtml y Jorge
LA INTEGRAL DE RIEMANN
LA INTEGRAL DE RIEMANN En este tem se introduce el Cálculo Integrl que demás de permitir clculr longitudes, áres y volúmenes, tiene multiples plicciones en l Ciencis, Ingenierí, etc... En primer lugr,
La Integral de Riemann
Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función potencil Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función
Anexo 3: Demostraciones
170 Mtemátics I : Cálculo integrl en IR Anexo 3: Demostrciones Integrl de Riemnn Demostrción de: Propieddes 264 de l págin 142 Propieddes 264.- Se f: [, b] IR un función cotd. ) Pr tod P P[, b], se verific
5.2 Integral Definida
80 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 5 5.2 Integrl Definid Definición de Integrl Definid El concepto de integrl definid se construye prtir de l ide de psr l límite un sum cundo el número de sumndos
1.4. Sucesión de funciones continuas ( )
1.4. Sucesión de funciones continus (18.04.2017) Se {f n } un sucesión de funciones f n, definids en I. Si {f n } converge uniformemente f en I y ls f n son continus en I, entonces f es continu en I. D:
Primitivas e Integrales
Cpítulo 25 Primitivs e Integrles En este cpítulo vmos trbjr con funciones de un vrible. En él estbleceremos un cso prticulr del Teorem Fundmentl del Cálculo Integrl (ver [3] pr el cso generl), con el que
Matemáticas Empresariales I. Integral Definida
Mtemátics Empresriles I Lección 8 Integrl Definid Mnuel León Nvrro Colegio Universitrio Crdenl Cisneros M. León Mtemátics Empresriles I 1 / 31 Construcción de l integrl definid Se f un función definid
La integral de Riemann
L integrl de Riemnn 1 Vmos dr un definición precis de l integrl de un función definid en un intervlo. Este tiene que ser un intervlo cerrdo y cotdo, es decir [,] con < R, y l definición que dremos de integrl
1. INTEGRALES DEFINIDAS E IMPROPIAS
. INTEGRALES DEFINIDAS E IMPROPIAS.. INTEGRAL DEFINIDA Se y = f(x) definid pr todo x [, b]. Consideremos un prtiión P del intervlo [, b] P {x 0 = < x < x 2 < < x n = b} Sen P = máx{x i x i }, s n = n m
INTEGRALES IMPROPIAS
INTEGRALES IMPROPIAS INDICE.- Integrles impropis de primer espeie....- Integrles impropis de segund espeie.- Integrles impropis del tipo C... 8 4.- Criterios de omprión 8.- Biliogrfi 0 DEFINICION DE INTEGRALES
Teóricas de Análisis Matemático (28) - Práctica 10 - Área entre curvas. y = f (x) f (x)dx A =
Teórics de nálisis Mtemático 28) - Práctic 0 - Áre entre curvs Práctic 0 - Prte Áre entre curvs Un de ls plicciones del cálculo de integrles definids es el cálculo de áres de regiones cotds del plno delimitds
Z ξ. g(t)dt y proceda como sigue:
Prolems Prolem.9. Sen f(x) y g(x) funciones continus en [,] y f (x) continu y de signo constnte en [,]. demuestre que (,) tl que f(x)g(x)dx = f() g(x)dx+ f() g(x)dx. R Pr esto considere l función G(x)
Integración de funciones reales de una variable real. 24 de octubre de 2014
Cálculo Integrción de funciones reles de un vrible rel 24 de octubre de 2014 c Dpto. de Mtemátics UDC Integrción de funciones reles de un vrible rel L integrl indefinid. Cálculo de primitivs L integrl
Aplicaciones del cálculo integral
Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:
Teorema fundamental del Cálculo.
Sesión Teorem fundmentl del Cálculo (TFC) Tems Teorem fundmentl del Cálculo. Cpciddes Conocer y comprender el TFC. Aplicr el TFC en el cálculo de derivds e integrles definids.. Introducción I. Brrow Inglés.
Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua.
Integrción indefinid y definid. Aplicciones de l integrl: vlor medio de un función continu. Jun Ruiz 1 Mrcos Mrvá 1 1 Deprtmento de Mtemátics. Universidd de Alclá de Henres. Contenidos Introducción 1 Introducción
INTEGRALES IMPROPIAS
NOTAS PARA LOS ALUMNOS DE ANALISIS MATEMATICO III INTEGRALES IMPROPIAS Ing. Jun Scerdoti Deprtmento de Mtemátic Fcultd de Ingenierí Universidd de Buenos Aires V INDICE INTEGRALES IMPROPIAS.- PUNTOS SINGULARES
Integral de Riemann. Introducción a la integración numérica.
Cálculo Mtemático (Práctics) M. I. Berenguer Mldondo mribel@ugr.es. 1 Integrl de Riemnn. Introducción l integrción numéric. En est práctic usremos l clculdor ClssPd pr trtr el problem de integrción. Se
Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida
Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de
INTEGRAL DEFINIDA APLICACIÓN al CÁLCULO de ÁREAS
INTEGRAL DEFINIDA APLICACIÓN l CÁLCULO de ÁREAS Isc Brrow (60-677), teólogo y mtemático inglés, mestro de Newton y precursor de l regl que llev su nomre. MATEMÁTICAS II º Bchillerto Alfonso González IES
7 Integral triple de Riemann
Miguel eyes, pto. de Mtemátic Aplicd, FI-UPM 1 7 Integrl triple de iemnn 7.1 efinición Llmremos rectángulo cerrdo de 3 (prlelepípedo) l producto de tres intervlos cerrdos y cotdos de, es decir = [, b]
INTEGRAL DEFINIDA. El hallar el área aproximada bajo la curva por suma de n áreas rectangulares de igual ancho x
en INTEGRAL DEFINIDA El concepto de integrl definid está relciondo con el vlor que determin el áre jo l curv dd por un función f (x) el [, ]. (ve l intervlo gráfic) Uno de los primeros psos pr llegr este
5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN.
5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 5.4.1. El áre de un círculo medinte proximción por polígonos regulres. 5.4.1. El áre
VISUALIZACIÓN DE LA RELACIÓN GEOMÉTRICA ENTRE LOS TEOREMAS FUNDAMENTALES DEL CÁLCULO CON GEOGEBRA
VISUALIZACIÓN DE LA RELACIÓN GEOMÉTRICA ENTRE LOS TEOREMAS FUNDAMENTALES DEL CÁLCULO CON GEOGEBRA Doris Espernz Álvrez Quintero Profesor Colegio Los Nogles Bogotá D.C, Colombi dorislv@gmil.com Mrth Cristin
Función no Acotada en uno o en los dos extremos del Intervalo de Integración. f (x) d x = lim
Función no Acotd en uno o en los dos etremos del Intervlo de Integrción Si f () está definid sobre (, b] y si f () cundo, se define f () d = lim f () d ε + +ε Si f () está definid sobre [, b) y si f ()
X = x ) pierde su significado. Lo que se hace es sustituir la definida sólo para x,..., por una función f (x)
rte Vriles letoris. Vriles letoris continus En l sección nterior se considerron vriles letoris discrets, o se vriles letoris cuo rngo es un conjunto finito o infinito numerle. ero h vriles letoris cuo
INTEGRALES IMPROPIAS INTRODUCCION
INTEGRALES IMPROPIAS INTRODUCCION Cundo intentmos explicr que er un integrl hicimos vris suposiciones: l función dentro de l integrl estb definid en un intervlo FINITO [,b], l función no tení discontinuiddes.
El Teorema Fundamental del Cálculo
del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su
Notas de Integral de Riemann-Stieltjes
Nots de Integrl de Riemnn-Stieltjes 1. Definición y propieddes Dds funciones g, F : [, b] R que cumpln ciertos requisitos, definiremos l expresión g(x)df(x) de tl mner que cundo consideremos el cso prticulr
4. Definición: Convergencia uniforme de una sucesión de funciones
1. Teorem de l funcion invers Se A un ierto de R N, f : A R m un funcion de clse n (n 1), se A tl que det(jf()) 0. Entonces existe un entorno U de tl que U A tl que: (1). det(jf (x)) 0 pr todo x U (2).
MATEMÁTICAS 2º BACH CIENCIAS INTEGRAL DEFINIDA
Profesor: Fernndo Ureñ Portero 1. APROXIMACIÓN DE ÁREAS BAJO UNA CURVA Hy infinidd de funciones extríds del mundo rel (científico, económico, físic )pr ls cules tiene especil relevnci clculr el áre jo
LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.
Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función
5. Aplicación de la Integral de Riemann
Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencil e Integrl 8-2 Ingenierí Mtemátic Universidd de Chile SEMANA 9: APLICACIONES DE LA INTEGRAL 5. Aplicción
Fórmulas de cuadratura.
PROYECTO DE ANALISIS MATEMATICO I : Integrción numéric. Ojetivos: Aprender los métodos más sencillos de integrción númeric y plicrlos en diversos prolems. Fórmuls de cudrtur. Se (x un unción continu deinid
SEMANA 8: INTEGRAL DE RIEMANN
Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Ingenierí Mtemátic Universidd de Chile SEMANA 8: INTEGRAL DE RIEMANN 4.6. Teorem Fundmentl
D I F E R E N C I A L
D I F E R E N C I A L µ dy y = d Si un función y = f() dmite derivd finit en un punto su incremento puede epresrse como y = f () + ε, siendo ε un infinitésimo pr 0. Al primer término se lo llm diferencil
4.6. Teorema Fundamental del Cálculo
Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 07-2 SEMANA 8: INTEGRAL DE RIEMANN 4.6. Teorem Fundmentl del Cálculo Proposición 4.5. Se un
5. Integral y Aplicaciones
Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción
7.1. Definición de la Integral de Riemann
Cpítulo 7 Integrl de Riemnn 71 Definición de l Integrl de Riemnn En este cpítulo supondremos, menos que se indique lo contrrio, que < b y f : [, b] R es un función cotd Definición 71 Un prtición del intervlo
3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL
3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus
INTEGRAL DEFINIDA. ln ln ln dx 3. t t. 1 5 ln t t 5t 1 ln 1 7 ln 1. [7.1] Calcular: Solución. [7.2] Calcular: Solución INTEGRAL DEFINIDA
INTEGRAL DEFINIDA INTEGRAL DEFINIDA [7.] Clclr: d 5 dt t d t t dt 5 5t t / t 5t t 5t / / t d dt 5 t t t dt 5 5 5 5 ln t t 5t ln 7 ln 5 / 9 t 7 7 7 7 7 7 ln ln ln 5 5 7 9 6 [7.] Clclr: ln 5 e e e d e t
Transparencias de MATEMÁTICAS. Gabriel Soler López
Trnsprencis de MATEMÁTICAS Gbriel Soler López Documento compildo con L A TEX el 11 de enero de 2012 Cpítulo 7 Repso del cálculo diferencil de un vrible 1. Introducción los números reles En este tem se
Relación entre el cálculo integral y el cálculo diferencial.
Relción entre el cálculo integrl y el cálculo diferencil. Por: Miguel Solís Esquinc Profesor de tiempo completo Universidd Autónom de Chips En est sección presentmos l relción que gurdn l función derivd
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid
CÁLCULO ELEMENTAL APUNTES. Valor absoluto. Definición 1. El valor absoluto del número real a, que se designa por a, se define por. a si a < 0.
CÁLCULO ELEMENTAL APUNTES Vlor bsoluto Definición 1. El vlor bsoluto del número rel, que se design por, se define por { si 0, = si < 0. Definición 2. L distnci entre los números x 1 y x 2 de l rect rel
6.1 Sumas de Riemann e integral definida
Tem 6 Integrción Definid 6.1 Sums de Riemnn e integrl definid Supongmos que estmos interesdos en clculr el áre que se encuentr bjo un curv y = f(x) en un intervlo [, b] (pr simplificr, consideremos el
6.1. Integral de Riemann de una función.
Tem 6 L integrl definid 6.. Integrl de Riemnn de un función. En un principio (Euler), el cálculo integrl se definí como l operción invers l diferencición, sin embrgo, en l primer mitd del siglo XIX se
Cálculo de áreas de figuras planas. Cálculo de volúmenes de sólidos de revolución. Cálculo de áreas de superficies de revolución.
APLICACIONES DE LA INTEGRAL DEFINIDA Cálculo de áres de figurs plns. Cálculo de volúmenes de sólidos de revolución. Cálculo de longitud de rco de curv. Cálculo de áres de superficies de revolución. Cálculo
Inecuaciones con valor absoluto
Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor
int(s) o int(s, var) S puede ser una expresión simbólica o el nombre de una expresión simbólica.
Práctic 3: Cálculo Integrl con MtLb Curso 2010-2011 1 1 Introducción Un de los pquetes más útiles pr el cálculo con MtLb lo constituye Symbolic Mth Toolbox, que permite relizr cálculo simbólico vnzdo,
INTEGRAL DEFINIDA. 6.1 Aproximación intuitiva al concepto de integral definida. Propiedades con respecto al integrando y al intervalo de integración.
INTEGRAL DEFINIDA Apuntes de A. Cñó Mtemátics II 6. Aproimción intuitiv l concepto de integrl definid. Propieddes con respecto l integrndo y l intervlo de integrción. 6. El teorem fundmentl del cálculo
TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO CALCULO DIFERENCIAL. Integral Indefinida
Integrl Indefinid Estmos costumrdos decir que el producto el cociente son operciones inverss. Lo mismo sucede con l potencición l rdicción. Vmos estudir hor l operción invers de l diferencición. Dd l función
Tema 4: Integrales Impropias
Prof. Susn López 1 Universidd Autónom de Mdrid Tem 4: Integrles Impropis 1 Integrl Impropi En l definición de un integrl definid f (x) se exigió que el intervlo [, b] fuese finito. Por otro ldo el teorem
METODOS NUMERICOS TALLER 7, SEMESTRE Se obtuvieron los siguientes datos de la distancia recorrida por un cohete contra el tiempo:
METODOS NUMERICOS 697 TALLER 7, SEMESTRE Tem: Derivción e integrción numérics Se recomiend relizr los ejercicios propuestos en el texto guí, en prticulr los siguientes: Sección :,,, 7, 8,, Sección :, 8
Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).
64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls
MÉTODOS DE INTEGRACIÓN
Mtemátics II LE.Tem 4: Introducción l teorí de integrción Integrles inmedits MÉTODOS DE INTEGRACIÓN x α = xα+ α+ + C, si α - (f(x)) α f '(x) = (f(x))α+ + C, si α - α + x = x + C f '(x) = f(x) + C f(x)
Tema9. Sucesiones. Tema 9. Sucesiones.
Tem 9. Sucesiones.. Definición. Forms de definir un sucesión.. Progresión ritmétic... Definición.. Sum progresión ritmétic. Progresión geométric... Definición.. Sum finit de progresión geométric... Sum
Integrales Impropias. ,b) , c) Cuando no existe límite se dice que no existe valor de la integral o ésta es. 0 senxdx
Integrles Imrois. INTEGRALES IMPROPIAS L integrl f ()d se die imroi si ourre l menos un de ls hiótesis siguientes: º, o mos son infinitos. º L funión f() no está otd en el intervlo [,]. Ejemlos: d ; d
(Ésta es una versión preliminar de la teoría del tema.)
Estudio de funciones periódics Ést es un versión preliminr de l teorí del tem. Un función fx se dice que es periódic de periodo cundo fx = fx +, x. Si se conoce fx en el intervlo [, ] su ciclo, se l conoce
Integral Definida. Aplicaciones
Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució
CAPÍTULO XII. INTEGRALES IMPROPIAS
CAPÍTULO XII. INTEGRALES IMPROPIAS SECCIONES A. Integrles impropis de primer especie. B. Integrles impropis de segund especie. C. Aplicciones l cálculo de áres y volúmenes. D. Ejercicios propuestos. 9
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS Aplicciones de Trigonometrí de Triángulos Rectángulos Un triángulo tiene seis
Tema 11: Integrales denidas
Tem : Integrles denids My 9, 7 Denición y propieddes Denición. Si f ) es un función continu en un intervlo [, b] y denid positiv, f ), l integrl denid en ese intervlo l denimos como: f ). Si f ) > l integrl
λ = A 2 en función de λ. X obtener las relaciones que deben
Modelo. Ejercicio. Clificción áxi: puntos. Dds ls trices, ) (,5 puntos) Hllr los vlores de pr los que existe l triz invers. ) ( punto) Hllr l triz pr 6. c) (,5 puntos) Resolver l ecución tricil X pr 6.
X obtener las relaciones que deben
odelo. Ejercicio. Clificción áxi puntos ) ( punto) Dd l triz y l triz t z y x X otener ls relciones que deen cuplir x, y, z, t pr que l triz X verifique X X. ) (, puntos) Dr un ejeplo de l triz X distint
a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA
UNIDAD 6: Integrles Definids. Aplicciones. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como por ejemplo
Integración numérica: Regla del trapecio Método de Romberg
Clse No. 18: Integrción numéric: Regl del trpecio Método de Romberg MAT 251 Dr. Alonso Rmírez Mnznres CIMAT A.C. e-mil: lrm@ cimt.mx web: http://www.cimt.mx/ lrm/met_num/ Dr. Joquín Peñ Acevedo CIMAT A.C.
Tema 4. Integración de Funciones de Variable Compleja
Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores
La Integral Multiplicativa
Universidd del Pís Vsco Mtemátic Aplicd y Estdístic L Integrl Multiplictiv Jun-Miguel Grci Extrcto: Se nliz l relción de l integrl multiplictiv de Volterr con l derivd logrítmic y los sistems diferenciles
3.- Derivada e integral de funciones de variable compleja.
3.- Derivd e integrl de funciones de vrile complej. ) Derivds, funciones nlítics e interpretción geométric. ) Regls de diferencición. c) Ecuciones de uch-riemnn. d) Funciones rmónics. e) Integrción complej.
TEMA 4. Cálculo integral
TEMA 4. Cálculo integrl En este tem considerremos el cálculo integrl, que es un complemento nturl del cálculo diferencil y tiene múltiples plicciones en otrs ciencis. 4.. Introducción l cálculo integrl
Integral de Cauchy: Alternativa a la Integral de Riemann
Divulgciones Mtemátics Vol. 11 No. 1(2003), pp. 49 53 Integrl de Cuchy: Alterntiv l Integrl de Riemnn Cuchy integrl: An lterntive to the Riemnn integrl Nelson Vilori (nelson@ul.ve) Universidd de Los Andes.
6. Variable aleatoria continua
6. Vrile letori continu Un diálogo entre C3PO y Hn Solo, en El Imperio Contrtc, cundo el Hlcón Milenrio se dispone entrr en un cmpo de steroides: - C3PO: Señor, l proilidd de sorevivir l pso por el cmpo
2.3.1 Cálculo de primitivas
Mtemátics I.3 Lists de ejercicios de Cálculo Integrl.3 Lists de ejercicios de Cálculo Integrl.3. Cálculo de primitivs 75. Encontrr l epresión de ls siguientes integrles indefinids: ) p) tg b) e sen cos
Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica
Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel
Aplicaciones del Cálculo diferencial e integral
Aplicciones del Cálculo diferencil e integrl Integrción numéric con Mxim http://euler.us.es/~rento/ Rento Álvrez-Nodrse Universidd de Sevill Rento Álvrez-Nodrse Universidd de Sevill Aplicciones del Cálculo
Universidad Antonio Nariño Matemáticas Especiales
Universidd Antonio Nriño Mtemátics Especiles Guí N 4: Integrción omplej Grupo de Mtemátics Especiles Resumen Se estudi el concepto de integrción tnto pr funciones de vrible rel y vlor complejo, como pr
APLICACIONES DE LA INTEGRAL DEFINIDA. A1. Curvas expresadas en forma explícita (Coordenadas Cartesianas)
ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA APLICACIONES DE LA INTEGRAL DEFINIDA CÁLCULO DE ÁREAS Y VOLÚMENES (De revolución) A. Cálculo
Revista digital Matemática, Educación e Internet (www.cidse.itcr.ac.cr/revistamate/). Vol. 12, N o 1. Agosto Febrero 2012.
Artículo de sección Revist digitl Mtemátic, Educción e Internet www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel
Funciones ortogonales y series de Fourier
TEMA 4 Funciones ortogonles y series de Fourier Ls series e integrles de Fourier constituyen un tem clásico del Análisis Mtemático. Desde su prición en el siglo XVIII en el estudio de ls vibrciones de
Complementos de Matemáticas, ITT Telemática
Complementos de Mtemátics, ITT Telemátic Tem 3. Deprtmento de Mtemátics, Universidd de Alclá Índice 1 básic 2 Obtención de ls regls de cudrtur 3 Error de cudrtur 4 Regls compuests Introducción Integrl
EJERCICIOS DE INTEGRALES IMPROPIAS
EJERCICIOS DE INTEGRALES IMPROPIAS. Integrles impropis de primer especie. Clculr Pr n, n con >. F (b) = b n n+ = n + Si n >, entonces F (b) =, con lo que Si n