( ) (ma) ,
|
|
|
- Patricia Cano Sosa
- hace 8 años
- Vistas:
Transcripción
1 Discrimina el tipo de relación de proporcionalidad entre dos magnitudes. Modela fórmulas a partir de las relaciones de proporcionalidad entre magnitudes. Evalúa fórmulas relacionadas con la ingeniería redondeando el resultado a dos cifras decimales. Pregunta ejemplo 1 En un circuito eléctrico, como el que se muestra en la figura, se mantiene constante el valor del voltaje V y se varía la resistencia R, medida en ohmios ( ). Luego se mide experimentalmente la intensidad de la corriente, en miliamperios (ma). La siguiente tabla muestra los registros obtenidos: I ( ) (ma) ,5 500 R a) Analice la tabla e indique el tipo de proporcionalidad que existe entre I y R. b) Encuentre la fórmula que relaciona y R. c) Use la fórmula hallada en el punto b) para calcular la intensidad de corriente que le corresponde a una resistencia de 135. I I Calcula el producto polinomios de hasta dos variables mediante métodos clásicos o abreviados. Calcula la división de polinomios de una variable entre divisores binomios mediante el método de Ruffini. Pregunta ejemplo a) Las longitudes de los lados de un rectángulo, expresadas en centímetros, son 00x 100y y 300x 400y. Además la longitud del lado de un cuadrado, en metros, es x y. i. Encuentre el perímetro del rectángulo, expresado en centímetros. ii. Encuentre la suma de las áreas del rectángulo y el cuadrado, expresada en metros cuadrados.
2 5 3 b) Divida x 5x 4x 3x entre x usando el método de Ruffini. Indique el cociente y residuo obtenido. Expresa en factores una expresión algebraica de hasta dos variables mediante el uso de identidades algebraicas, factor común, aspa simple, o divisores binomios. Resuelve inecuaciones factorizables mediante el análisis de los signos de cada factor. Pregunta ejemplo 3 a) Factorice la siguiente expresión algebraica 4 3 x x x x b) Resuelva la siguiente inecuación 4 3 x x x x Indicador Utiliza con fluidez las leyes de exponentes para simplificar expresiones algebraicas. Pregunta ejemplo 4 a) Supongamos que un protón tiene forma cúbica cuya arista es de pies. Calcule, en cm 3, el volumen de un protón. 3, b) Use el resultado de la pregunta anterior para calcular la densidad de un protón, en g/cm 3, sabiendo que la masa de un millón de protones es (Considere 1 kg=, lb) 3, lb. Despeja una variable a partir de una fórmula dada en contexto. Evalúa fórmulas relacionadas con la ingeniería redondeando el resultado a dos cifras decimales. Resuelve situaciones que involucran variación porcentual. Pregunta ejemplo 5 En el diseño de una red se utiliza la siguiente ecuación para calcular la velocidad v m/s: del agua en v Q 900 D Donde Q es el rango de flujo del líquido (m 3 /h) y D el diámetro interno de la tubería (m). a) Despeje D en términos de las otras variables. b) Calcule la velocidad del agua si el rango de flujo del fluido es 80 l/h y el diámetro interno de la tubería es de 1 pulgada. (Considere 1l=1000 cm 3 ; 1 pulgada=,54 cm).
3 c) Si a partir de los valores indicados en b), Q aumenta en 0% y D disminuye en 10%, indique qué sucede con v. Aumenta o disminuye?, en qué porcentaje? Evalúa fórmulas relacionadas con la ingeniería redondeando el resultado a dos cifras decimales. Resuelve problemas en contexto que involucren ecuaciones lineales o cuadráticas. Resuelve problemas en contexto que involucren inecuaciones lineales o cuadráticas. Pregunta ejemplo 6 El consumo de gasolina G (en millas/galón) de un vehículo conducido a v millas/hora, está determinado por G 10 0,9v 0,01v, siempre que la velocidad v millas/hora y 75 millas/hora. se mantenga entre 10 a) Calcule el consumo de gasolina correspondiente a una velocidad de 96,6 Considere 1 milla = 1,61 km. b) Calcule la mayor velocidad para la cual el consumo de gasolina es de millas/galón. c) Para que intervalo de velocidades el consumo de gasolina no es mayor que millas/galón. km/hora. 9,5 Resuelve ecuaciones racionales de una incógnita que derivan en ecuaciones lineales o cuadráticas. Resuelve inecuaciones racionales mediante el análisis de los signos de cada factor. Expresa en factores una expresión algebraica de hasta dos variables mediante el uso de identidades algebraicas, factor común, aspa simple, o divisores binomios. Pregunta ejemplo 7 a) Determine el conjunto solución de la siguiente ecuación: x 6 x x x x 4 b) Determine el conjunto solución de la siguiente inecuación: x x 3 x 30
4 Resuelve problemas que involucren modelar situaciones mediante una ecuación lineal o cuadrática. Resuelve problemas de contexto que involucre perímetros, áreas o volúmenes. Pregunta ejemplo 8 Para el desarrollo de un proyecto se requiere una pieza de latón, de 45 cm de perímetro, que tiene la forma de un cuadrado con un semicírculo encima de él, tal como se muestra en la figura. a) Defina adecuadamente su incógnita y plantee una ecuación que permita calcular la longitud del lado del cuadrado de dicha pieza. b) Resuelva la ecuación planteada en el punto a). Resuelve problemas de contexto que involucre perímetros, áreas o volúmenes. Pregunta ejemplo 9 En la figura se muestra el diseño de una pieza plana. Las medidas están dadas en centímetros. a) Calcule el perímetro de la pieza mostrada en pulgadas. (Considere =3,1416; 1 pulgada=,54 cm)
5 b) Calcule el área de la pieza mostrada en pies cuadrados (Considere =3,1416; 1 pie= cm) 30,48 Identifica los parámetros en la ecuación de una recta, circunferencia o parábola. Recodifica la recta, circunferencia o parábola en diversas representaciones. Pregunta ejemplo 10 a) Si L origen. es la recta de ecuación 3x y 6 0, determine su pendiente y abscisa en el b) Se tiene la circunferencia de ecuación y las coordenadas de su centro. x y x y 6 6 0, determine su radio Modela la ecuación de una recta, circunferencia o parábola a partir de la información contenida en un gráfico. Recodifica la recta, circunferencia o parábola en diversas representaciones. Identifica los parámetros en la ecuación de una recta, circunferencia o parábola. Pregunta ejemplo 11 a) En la figura, el punto V es el vértice de la parábola y F general de dicha parábola. su foco. Hallar la ecuación b) Se tiene la parábola de ecuación de su vértice y foco. y x y , determine las coordenadas Resuelve problemas en contexto que involucren ecuaciones de la recta, circunferencia o parábola. Recodifica la recta, circunferencia o parábola en diversas representaciones. Identifica los parámetros en la ecuación de una recta, circunferencia o parábola.
6 Pregunta ejemplo 1 El techo de un galpón abierto tiene la forma de un arco parabólico y está sostenido por una estructura de vigas metálicas. Las vigas verticales de las paredes laterales tienen 5 m de altura, las vigas verticales centrales distan 7 m entre sí y están ubicadas a 5 m de distancia de las paredes laterales. a) Determine la altura de las vigas verticales centrales. b) A qué altura del punto más alto del techo estará ubicado el foco de la parábola?
Preparación para Álgebra universitaria con trigonometría
Preparación para Álgebra universitaria con trigonometría Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares.
PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO.
PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO. FACULTAD DE MATEMATICAS UNIVERSIDAD VERACRUZANA 2010 Xalapa, Ver. México 1 1. La distancia entre dos puntos en la recta real es 5. Si uno de los puntos
Álgebra 2. Plan de estudios (305 temas)
Álgebra 2 Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales pueden personalizar el
Trabajo de Matemáticas AMPLIACIÓN 3º ESO
Trabajo de Matemáticas AMPLIACIÓN º ESO ACTIVIDADES DE AMPLIACIÓN TEMA : NÚMEROS FRACCIONARIOS O RACIONALES Problema nº Un grifo tarda en llenar un depósito horas y otro tarda en llenar el mismo depósito
Ejercicios ( ) EJERCICIOS PRIMERA EVALUACIÓN PARA ALUMNOS CON MATEMATICAS DE 3º DE ESO PENDIENTE
Pendientes º ESO Primera evaluación Pág. / 9 Temario TEMA.- NÚMEROS RACIONALES. Repaso breve de números racionales y operaciones en forma de fracción. Repaso de las formas decimales y de la fracción generatriz.
Contenidos mínimos del área de matemáticas 1º ESO
1º ESO Unidad didáctica nº1: Los números naturales. Divisibilidad. Operaciones con números naturales: suma, resta, multiplicación y Calcular múltiplos y divisores de un número. Descomposición factorial
RESPUESTAS. Examen UNI 2015 I. Matemática
RESPUESTAS Examen UNI 05 I Matemática Pregunta 0 Semanalmente, un trabajador ahorra cierta cantidad en soles, y durante 0 semanas ahorra las siguientes cantidades: 5 9 8 8 5 6 7 7 7 9 9 6 8 6 6 0 8 9 5
Primaria Sexto Grado Matemáticas (con QuickTables)
Primaria Sexto Grado Matemáticas (con QuickTables) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios
Preparación para Álgebra 1 de Escuela Superior
Preparación para Álgebra 1 de Escuela Superior Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales
Matemáticas III. Geometría analítica
Matemáticas III. Geometría analítica Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales
Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias
Guía de Estudio Para Ciencias Agropecuarias Unidad: Geometría Analítica Los siguientes ejercicios están relacionados con los principales temas de Geometría Analítica e involucra todos los conocimientos
Examen estandarizado A
Examen estandarizado A Elección múltiple 1. Qué figura es un poliedro? A B 7. Halla el área de la superficie de la pirámide regular. A 300 pies 2 15 pulg B 340 pies 2 C D C 400 pies 2 D 700 pies 2 10 pulg
Preparación para cálculo
Preparación para cálculo Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares. Plan de estudios (406 temas)
CONTENIDOS MÍNIMOS del ÁREA DE MATEMÁTICAS
Dpto. de Matemáticas IES Las Breñas 4º ESO OPCIÓN B CONTENIDOS MÍNIMOS del ÁREA DE MATEMÁTICAS 1: Números reales. Septiembre-2016 Números no racionales. Expresión decimal - Reconocimiento de algunos irracionales.
La asignatura de Matemática estimula el desarrollo de diversas habilidades:
La asignatura de Matemática estimula el desarrollo de diversas habilidades: Intelectuales, como: El razonamiento lógico y flexible, la imaginación, la inteligencia espacial, el cálculo mental, la creatividad,
Funciones. Rectas y parábolas
0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo de la figura, calcula: el perímetro. el área. P I E N S A C A L C U L A Perímetro = ( + ) = 6 Área = = Indica cuál de las siguientes gráficas
Matemáticas 2 Agosto 2015
Laboratorio # 1 Línea recta I.-Determina la ecuación de la recta que satisface las siguientes condiciones y exprésala en la forma general. Pasa por el punto (1,5) y tiene pendiente 2 Pasa por y Pendiente
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto
1. Los números reales. 2. Representación. 3. Densidad de los números racionales. 4. Propiedades de los números reales
EJES ARTICULADORES Y PRODUCTIVOS DEL AREA SISTEMA DE CONOCIMIENTOS GRADO: 10 11 1. Los números reales 1. Desigualdades. 2. Representación 2. Propiedades. 3. Densidad de los números racionales 4. Propiedades
Preparación matemática para la física universitaria
Preparación matemática para la física universitaria Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares. Plan
LAS MEDICIONES FÍSICAS. Estimación y unidades
LAS MEDICIONES FÍSICAS Estimación y unidades 1. Cuánto tiempo tarda la luz en atravesar un protón? 2. A cuántos átomos de hidrógeno equivale la masa de la Tierra? 3. Cuál es la edad del universo expresada
MUESTRA GLOBAL MÓDULO de MATEMÁTICA INGRESO 2015
LEER: El listado siguiente, es solo una serie de formas de ejercicios que pueden aparecer en el examen. Sin embargo, el Global está planificado para 2 horas reloj, por lo que la extensión será menor, es
Tutoría Completa - Curso de Matemática para 1, 2 y 3 Básico
Tutoría Completa - Curso de Matemática para 1, 2 y 3 Básico Contenido 1 Básico 1. Proposiciones y cuantificadores a. Proposiciones b. Negación c. Conjunción d. Disyunción e. Condicional f. Doble condicional
CONTENIDOS: ALGEBRA. 1. SISTEMA DE LOS NÚMEROS REALES
UNIVERSIDAD TÉCNICA DE MANABÍ FACULTAD DE CIENCIAS INFORMÁTICAS CARRERA DE INGENIERÍA EN SISTEMAS INFORMÁTICOS CONTENIDOS DE MATEMÁTICAS PARA LA PRUEBA DE CONOCIMIENTOS OBJETIVO: Diagnosticar los conocimientos
BANCO DE PREGUNTAS DE MATEMÁTICAS EXACTAS ÁLGEBRA Tablas de verdad. 3. Complete la tabla de verdad poniendo los operadores lógicos correspondientes
BANCO DE PREGUNTAS DE MATEMÁTICAS EXACTAS ÁLGEBRA Tablas de verdad Desarrolle la tabla de verdad 1 (p q) r 2 [(p q) p] q 3 Complete la tabla de verdad poniendo los operadores lógicos correspondientes (p
APLICACIONES DE LA DERIVADA
APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión
18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso.
PRIMER CURSO DE E.S.O Criterios de calificación: 80% exámenes, 10% actividades, 10% actitud y trabajo 1 Números naturales. 2 Potencias de exponente natural. Raíces cuadradas exactas. 3 Divisibilidad. Concepto
Precálculo. Plan de estudios (1170 temas)
Precálculo Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales pueden personalizar el
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A xcos(x)+b sen(x) Ejercicio 1.- [2 5 puntos] Sabiendo que lím x 0 x 3 es finito, calcula b y el valor del límite. Ejercicio 2.- Sean f : R R y g : R R las funciones definidas mediante f(x) = x(x
Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones
Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción
Introducción La Circunferencia Parábola Elipse Hiperbola. Conicas. Hermes Pantoja Carhuavilca
Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica I Contenido 1 Introducción 2 La Circunferencia 3 Parábola 4 Elipse 5 Hiperbola Objetivos Se persigue que el estudiante:
Expresiones algebraicas
Epresiones algebraicas 1. Si es la edad de Juan, escribe la epresión algebraica de: La mitad de su edad El doble de su edad menos tres El triple de su edad más uno La edad que tendrá dentro de cinco años
EJERCICIOS DE RECUPERACIÓN DE MATEMÁTICAS 2º ESO. 2ª PARTE
EJERCICIOS DE RECUPERACIÓN DE MATEMÁTICAS 2º ESO. 2ª PARTE CURSO 2015/2016 NOMBRE: IES ALCARRIA BAJA. MONDÉJAR UNIDAD 5. LENGUAJE ALGEBRAICO 1º) Traduce a lenguaje algebraico los siguientes enunciados:
y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0.
. Encuentre el área de la región limitada por las curvas indicadas:.. y = x, y = x +... x = y, x = y +... y = x +, y = x +, y = x....5..6..7..8..9..0....... y = x + 8x 7, y = x. y = x, y = x +, x =, x
LA ECUACIÓN CUADRÁTICA
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: EDISON MEJIA MONSALVE TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N 0 FECHA DURACION 3
DEPARTAMENTO DE MATEMÁTICAS
DEPARTAMENTO DE MATEMÁTICAS 1. PRIMER CURSO 1.1. CONTENIDOS - Números naturales. - Múltiplos y divisores. Máximo común divisor y Mínimo común múltiplo. - Números enteros. - Números decimales. Aproximación
Un segundo ohmímetro mide la misma resistencia y obtiene los siguientes resultados: R B1 = ( 98 ± 7 ) Ω R B2 = ( 100 ± 7 ) Ω R B3 = ( 103 ± 7 ) Ω
Relación de problemas: MEDIDAS Y ERRORES. 1) En la medida de 1 m se ha cometido un error de 1 mm, y en 300 Km, 300 m. Qué error relativo es mayor?. ) Como medida de un radio de 7 dm hemos obtenido 70.7
tiene un máximo relativo en x = asíntota horizontal la recta y = 3. Razonar si para a = 2 y b = 3 la función f(x) tiene algún mínimo relativo.
Selectividad CCNN 006. [ANDA] [SEP-A] Sea f: la función definida por f() = -. a) Estudia la derivabilidad de f. b) Determina los intervalos de crecimiento y decrecimiento de f. c) Calcula los etremos relativos
TEMAS 4 LAS FUNCIONES ELEMENTALES
TEMA 4 FUNCIONES ELEMENTALES MATEMÁTICAS CCSSI º Bach. TEMAS 4 LAS FUNCIONES ELEMENTALES Son funciones? EJERCICIO : Indica cuáles de las siguientes representaciones corresponden a la gráfica de una función.
PROGRAMA DE REFUERZO 3º Evaluación
COLEGIO INTERNACIONAL SEK EL CASTILLO DEPARTAMENTO DE MATEMÁTICAS PROGRAMA DE REFUERZO 3º Evaluación MATEMÁTICAS 3º de E.S.O. ALUMNO: Ref E3.doc3 Página 1 Matemáticas 3º ESO MATEMÁTICAS 3º E.S.O. (010/011)
Magnitud: cualidad que se puede medir. Ej. Longitud y temperatura de una varilla
Curso nivelación I Presentación Magnitudes y Medidas El método científico que se aplica en la Física requiere la observación de un fenómeno natural y después la experimentación es decir, reproducir ese
Ecuaciones cuadráticas. Guía de trabajo Tema: Ecuaciones cuadráticas Curso: 3 B, 3 D, 3 F (todos)
Ecuaciones cuadráticas. Guía de trabajo Tema: Ecuaciones cuadráticas Curso: B, D, F (todos) Introducción. En las semanas anteriores nos hemos abocado al estudio de la función cuadrática. Así, has aprendido
UNIDAD 2: ELEMENTOS GEOMÉTRICOS
UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este
UNIDADES 1 y 2: FRACCIONES Y DECIMALES. POTENCIAS Y RAÍCES. NÚMEROS APROXIMADOS. 1º.- Ordena de menor a mayor las siguientes fracciones:
UNIDADES y : FRACCIONES Y DECIMALES. POTENCIAS Y RAÍCES. NÚMEROS APROXIMADOS. º.- Ordena de menor a mayor las siguientes fracciones: ; 6 5 7 4 ; 5 4 ; ; ; 8 6 9 º.- Efectúa las siguientes operaciones y
MATEMÁTICAS 3º ESO PENDIENTES HOJA 1 GEOMETRÍA PLANA. 1.- Calcular el área y el perímetro de los siguientes polígonos:
MATEMÁTICAS º ESO PENDIENTES HOJA GEOMETRÍA PLANA.- Calcular el área y el perímetro de los siguientes polígonos: a) Un cuadrado de lado 5 cm de lado b) Un cuadrado de diagonal 0 cm. c) Un rectángulo de
CONTENIDOS MÍNIMOS 1ºESO. -Realización de las cuatro operaciones (suma, resta, multiplicación y división) mediante los algoritmos tradicionales.
DEPARTAMENTO DE: MATERIA: CONTENIDOS MÍNIMOS Matemáticas Matemáticas 1ºESO Números naturales y enteros: -Comparar y ordenar números. -Representar en la recta. -Realización de las cuatro operaciones (suma,
1. a) Qué significa una potencia de exponente negativo?... ; b)
MATEMÁTICAS - SEPTIEMBRE TAREA DE VERANO 4º E.S.O.-B 1. a) Qué significa una potencia de eponente negativo?..... b) Simplificar: b 1) : b 4 ) b ) 9 1 b 4) 1 4. Simplificar potencias: a) 4 ( ) d) 9000 0'000000006
NÚMEROS REALES 2, FUNCIONES ORIENTADOR: ESTUDIANTE: FECHA:
DEPARTAMENTO DE MATEMÁTICAS ÁREA DE MATEMÁTICAS TEMA : PERÍODO: ORIENTADOR: ESTUDIANTE: E-MAIL: FECHA: NÚMEROS REALES, FUNCIONES SEGUNDO EJES TEMÁTICOS La recta numérica Suma de Números Enteros Resta de
E. P. E. T. N 20 MATEMÁTICA 2 TRABAJO PRÁCTICO: PROPORCIONALIDAD. PROFESORES: Carlos Pavesio. Mauro Candellero. María Angélica Netto.
E. P. E. T. N 0 MATEMÁTICA TRABAJO PRÁCTICO: PROPORCIONALIDAD PROFESORES: Carlos Pavesio Mauro Candellero María Angélica Netto Sergio Garcia Contenidos Conceptuales - Matemática - año - Año 01 Unidad Nº
UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES
UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES Al finalizar esta unidad: - Describirás verbalmente en que consiste el cambio y cuáles son los aspectos involucrados en él. - Identificarás
1- Dar la ecuación ordinaria de la circunferencia de centro C( - 8; 2) y r = 5. Graficar. R: (x +8) 2 + (y 2) 2 = 25
SECCIONES CONICAS CIRCUNFERENCIA 1- Dar la ecuación ordinaria de la circunferencia de centro C( - 8; 2) r = 5. Graficar. R: ( +8) 2 + ( 2) 2 = 25 2- Dar la ecuación general de la circunferencia de centro
Lección 2.4. Funciones Polinómicas. 08/10/2013 Prof. José G. Rodríguez Ahumada 1 de 24
Lección.4 Funciones Polinómicas 08/10/013 Prof. José G. Rodríguez Ahumada 1 de 4 Actividades.4 Referencia Texto: Seccíón 3.6 Funciones Cuadráticas; Ejercicios de Práctica: Problemas impares 13-1, 37-41
1.- Un jardín rectangular tiene por ancho Xm y largo X+10, encontrar la función que describe el área del jardín y graficar.
1.- Un jardín rectangular tiene por ancho Xm y largo X+1, encontrar la función que describe el área del jardín y graficar. Largo=X+3 Ancho=X Área=(Largo)(ancho) Area=(X+3)X A x = X 2 + 3X La grafica de
El curso está dividido en tres evaluaciones, de acuerdo con la programación general del Colegio, temporalizados así:
b) Distribución temporal de las unidades didácticas El curso está dividido en tres evaluaciones, de acuerdo con la programación general del Colegio, temporalizados así: 1ª EVALUACIÓN Tema 1 Tema 2 Tema
QUÉ ES LA TEMPERATURA?
1 QUÉ ES LA TEMPERATURA? Nosotros experimentamos la temperatura todos los días. Cuando estamos en verano, generalmente decimos Hace calor! y en invierno Hace mucho frío!. Los términos que frecuentemente
GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA
ESCUELA PREPARATORIA OFICIAL No. 268 GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA Profra: Citlalli Artemisa García García 1) Qué es la pendiente? 2) Cómo es la pendiente de rectas
5ta OLIMPIADA CIENTÍFICA ESTUDIANTIL PLURINACIONAL BOLIVIANA FÍSICA 2da Etapa ( Exámen Simultaneo ) 6to de Primaria
6to de Primaria cálculos auxiliares al reverso de la página. Tiempo 2 horas. 1. (10%) Encierra en un círculo los incisos que corresponden a estados de la materia. a) líquido b) transparente c) gaseoso
CENTRO REGIONAL UNIVERSITARIO BARILOCHE TALLER DE MATEMATICA INGRESO 2016 LIC. ENFERMERÍA PRACTICO UNIDAD 3
PRACTICO UNIDAD 3 Nota: Los ejercicios propuestos en los prácticos deben servirle para afianzar y practicar temas. Si nota que algunos ejercicios ya los sabe hacer bien, continúe con otros que le impliquen
LA ECUACIÓN CUADRÁTICA
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : ASIGNATURA: DOCENTE: TIPO DE GUIA: MATEMÁTICAS MATEMÁTICAS EDISON MEJIA MONSALVE CONCEPTUAL - EJERCITACION PERIODO GRADO 9 N 0 4 FECHA 7 DE ABRIL
Academia de Matemáticas T.M Geometría Analítica Página 1
INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos
MATEMÁTICA CPU MÓDULO 1. Números reales Ecuaciones e inecuaciones. Representaciones en la recta y en el plano.
MATEMÁTICA CPU MÓDULO Números reales. Ecuaciones e inecuaciones. Representaciones en la recta y en el plano.. Marcar con una cruz los conjuntos a los cuales pertenecen los siguientes números: N Z Q R 8
Matemáticas. Tercero ESO. Curso 2012-2013. Exámenes
Matemáticas. Tercero ESO. Curso 0-03. Exámenes . 9 de octubre de 0 Ejercicio. Calcular: 3 5 4 + 3 0 3 7 8 5 3 5 4 + 3 0 5 + 6 0 3 0 3 7 8 5 3 56 0 3 8 0 84 74 5 5 5 Ejercicio. Calcular: 5 6 [ ( 3 3 3 )]
IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS
Ejercicios de continuidad y derivabilidad. Selectividad de 008, 009, 00 y 0 Anális 008 Ejercicio.- Sean f : R R y g : R R las funciones definidas por f() = + a + b y g() = c e -(+). Se sabe que las gráficas
MATEMÁTICAS. PRIMERO DE E.S.O.
MATEMÁTICAS. PRIMERO DE E.S.O. Unidad 1: Números naturales. Potencias y raíces. Números naturales. Representación geométrica. Operaciones. Sistema de numeración decimal. Operaciones combinadas. Jerarquía.
Geometría Analítica Agosto 2016
Laboratorio #1 Distancia entre dos puntos I.- Demostrar que los puntos dados no son colineales. 1) A (0, 5), B(3, 1), C( 11, 27) 2) A (1, 4), B( 2, 10), C(5, 5) II.- Demostrar que los puntos dados forman
TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19
TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19 Introducción 19 Lenguaje común y lenguaje algebraico 22 Actividad 1 (Lenguaje común y lenguaje algebraico) 23 Actividad 2 (Lenguaje común y
t = Vf Vi Vi= Vf - a t Aceleración : Se le llama así al cambio de velocidad y cuánto más rápido se realice el cambio, mayor será la aceleración.
Las magnitudes físicas Las magnitudes fundamentales Magnitudes Derivadas son: longitud, la masa y el tiempo, velocidad, área, volumen, temperatura, etc. son aquellas que para anunciarse no dependen de
FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico
1(10) Ejercicio nº 1 Dos cargas eléctricas iguales, situadas en el vacío a 0,2 milímetros de distancia, se repelen con una fuerza de 0,01 N. Calcula el valor de estas cargas. Ejercicio nº 2 Hallar a qué
4. Escribe la fracción generatriz e indica de que tipo es cada número decimal. a. 7. b. 0.16
REPASO NÚMEROS REALES, POTENCIAS Y RAÍCES 3ºESO Alumno/a : 1. Dibuja un diagrama que exprese las relaciones existentes entre cada uno de los conjuntos numéricos. Indica el conjunto numérico más pequeño
Contenidos Mínimos MATEMÁTICAS 3º ESO ENSEÑANZAS ACADÉMICAS. U 1 Fracciones y decimales. CRITERIOS DE EVALUACIÓN. ESTÁNDARES DE APRENDIZAJE EVALUABLES
Septiembre 2.016 Contenidos Mínimos MATEMÁTICAS 3º ESO ENSEÑANZAS ACADÉMICAS U 1 Fracciones y decimales. Números racionales. Expresión fraccionaria - Números enteros. - Fracciones. - Fracciones propias
FACULTAD DE INGENIERIA CIVIL CARRERA DE INGENIERIA CIVIL ASIGNATURAS, CAPÍTULOS Y CONTENIDOS PARA EL CAN
FACULTAD DE INGENIERIA CIVIL CARRERA DE INGENIERIA CIVIL ASIGNATURAS, CAPÍTULOS Y CONTENIDOS PARA EL CAN ASIGNATURA: MATEMÁTICAS (128 HORAS 16 SEMANAS) Componente 1: Lógica Matemática Componente 2: Algebra
EJEMPLO DE PREGU,TAS
EJEMPLO DE PREGU,TAS MATEMÁTICAS PRIMERO, SEGU,DO Y TERCERO DE BACHILLERATO 1. Lógica proposicional Esta competencia se refiere al conocimiento que usted posee sobre el lenguaje de las proposiciones y
EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.
FUNCIONES I: LÍMITES, CONTINUIDAD Y DERIVAVILIDAD 1- Sea : definida por a) Halla a, b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1/2 y que la recta tangente en el punto de
ENSEÑANZA BASICA COLEGIO JUAN IGNACIO MOLINA POSTULANTES A 7º BÁSICO
ENSEÑANZA BASICA POSTULANTES A 7º BÁSICO - Género literario (Comprensión Lectora) - Texto argumentativo - Vocabulario - Medios de comunicación masiva - Factores y múltiplos. - Números primos y compuestos,
La prueba extraordinaria de septiembre está descrita en los criterios y procedimientos de evaluación.
La prueba extraordinaria de septiembre está descrita en los criterios y procedimientos de evaluación. Los contenidos mínimos de la materia son los que aparecen con un * UNIDAD 1: LOS NÚMEROS NATURALES
MATEMÁTICAS 6 GRADO. Código de Contenido El alumno empleará la lectura, escritura y comparación de diferentes cantidades de cifras numéricas.
MATEMÁTICAS 6 GRADO Código Materia: Matemáticas (Español) = MSP Eje 1= Sentido numérico y pensamiento algebraico. Eje 2= Forma, espacio y medida. Eje 3= Manejo de la información. Código: Materia. Grado.
No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.
FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números
Indicar y Justificar la verdad (V) o falsedad (F) de las siguientes afirmaciones:
GEOMETRÍ DEL ESIO ompetencias: Reconoce a la recta y el plano en R. Describir las posiciones relativas entre dos planos y entre una recta y un lano. Describir el Teorema de las tres perpendiculares. Definir
Colegio Decroly Americano Matemática 7th Core, Contenidos I Período
Matemática 7th Core, 2015-2016 Contenidos I Período 1. Sentido Numérico a. Identificar y escribir patrones. b. Escribir números en forma de exponentes. c. Escribir cantidades en notación científica. d.
3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p
ilindro y tronco de cilindro 1. En el gráfico se muestra un cilindro recto de base circular, además, T es punto de contacto de la recta PT en la superficie cilíndrica. Si PT=15 y P=8, calcule la distancia
PREGUNTAS DE EJEMPLO MATEMÁTICA PRIMER CICLO MEDIO
PREGUNTAS DE EJEMPLO MATEMÁTICA PRIMER CICLO MEDIO MODALIDAD FLEXIBLE DECRETO Nº211 1. En el siguiente sistema de ecuaciones: Cuál es el valor de y? A. 4 B. 0 C. 6 D. 8 2. Cuál es el resultado de ( 5)
ECUACIONES E INECUACIONES
ECUACIONES E INECUACIONES 1.- Escribe las expresiones algebraicas que representan los siguientes enunciados: a) Número de ruedas necesarias para fabricar x coches. b) Número de céntimos para cambiar x
Contenidos Mínimos de 1º ESO Matemáticas 1º E.S.O.
Contenidos Mínimos de 1º ESO Matemáticas 1º E.S.O. - Realizar operaciones básicas con números naturales. - Resolver problemas aritméticos con números naturales. - Calcular potencias y raíces cuadradas
Problemas Tema 3 Enunciados de problemas de Derivabilidad
página / Problemas Tema 3 Enunciados de problemas de Derivabilidad Hoja. Calcula la derivada de f ()= +3 8 +9 +3. Encuentra tres números no negativos que sumen 4 y tales que uno sea doble de otro y la
1. GENERALIDADES SOBRE LOS POLINOMIOS.
GENERALIDADES SOBRE LOS POLINOMIOS Funciones polinómicas LAS DEFINICIONES Sea p la función definida por: p ( ) = 2( 2 ) + 2 ( 2 ) + 2 2, p es una función de R en R Y para todo real, se tiene p ( ) = 2
UNIDAD 1: DIVISIBILIDAD Y NÚMEROS ENTEROS
UNIDAD 1: DIVISIBILIDAD Y NÚMEROS ENTEROS 1. *Representar números enteros sobre la recta numérica, compararlos y ordenarlos. 2. *Sumar y restar números enteros teniendo en cuenta el signo que presentan.
CONTENIDOS DIAGNÓSTICO DE ADMISIÓN MATEMÁTICA
5º BÁSICO Números Naturales Leer, escribir y ordenar Descomponer en forma aditiva. Operatoria básica en los naturales (suma resta, multiplicación y división) Resolución de problemas Fracciones y Números
Introducción...5. Unidad 1 Razones y porcentajes...7. Unidad 2 Operaciones Unidad 3 Factores y múltiplos...51
Índice Introducción... Unidad 1 Razones y porcentajes...7 6.RP.1 6.RP..a 6.RP., 6.RP..b 6.RP..d 6.RP..c Lección 1 Razones...8 Lección Razones equivalentes...1 Lección Tasas...16 Lección 4 Conversiones
Bloque 1. Contenidos comunes. (Total: 3 sesiones)
4º E.S.O. OPCIÓN A 1.1.1 Contenidos 1.1.1.1 Bloque 1. Contenidos comunes. (Total: 3 sesiones) Planificación y utilización de procesos de razonamiento y estrategias de resolución de problemas, tales como
EJERCICIOS DE REPASO PARA PREPARAR EL EXAMEN DE SEPTIEMBRE 2007 DE MATEMÁTICAS B PARA LOS CURSOS 4º ESO A Y 4º ESO B
EJERCICIOS DE REPASO PARA PREPARAR EL EXAMEN DE SEPTIEMBRE 007 DE MATEMÁTICAS B PARA LOS CURSOS 4º ESO A Y 4º ESO B ) Clasifica los siguientes números como naturales, enteros, racionales e irracionales,
FUNCIONES CUADRÁTICAS
FUNCIONES CUADRÁTICAS A la función polinómica de segundo grado f(x) = ax 2 + bx + c, siendo a, b, c, números reales y a 0 se la denomina función cuadrática. Dominio de una función cuadrática es el conjunto
NÚMEROS ENTEROS. 2º. Representa en una recta numérica los números: (+4), (-3), (0), (+7), (-2), (+2) y luego escríbelos de forma ordenada.
URB. LA CANTERA S/N. HTTP:/WWW.MARIAAUXILIADORA.COM º ESO 1º. Indica el número que corresponde a cada letra. NÚMEROS ENTEROS º. Representa en una recta numérica los números: (+) (-) (0) (+) (-) (+) y luego
AUTOEVALUACIÓN PROBLEMAS CON ECUACIONES DE SEGUNDO GRADO. OPCIONES DE PROBLEMA
AUTOEVALUACIÓN PROBLEMAS CON ECUACIONES DE SEGUNDO GRADO. OPCIONES DE PROBLEMA ORIENTACIONES RESPUESTA 1 5,6,7 ó -5,-6,-7 trabajo. Excelente. Buen 1. Hallar tres números enteros consecutivos sabiendo que
PROYECTO MATEM CURSO PRECÁLCULO UNDÉCIMO AÑO MODALIDAD ANUAL ORIENTACIONES PARA EL PLANEAMIENTO ANUAL
Universidad de Costa Rica Instituto Tecnológico de Costa Rica PROYECTO MATEM CURSO PRECÁLCULO UNDÉCIMO AÑO MODALIDAD ANUAL ORIENTACIONES PARA EL PLANEAMIENTO ANUAL 2016 I PARCIAL ÁLGEBRA Y GEOMETRÍA ANALÍTICA
APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente
APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente
Revisora: María Molero
57 Capítulo 5: INECUACIONES. Matemáticas 4ºB ESO 1. INTERVALOS 1.1. Tipos de intervalos Intervalo abierto: I = (a, b) = {x a < x < b}. Intervalo cerrado: I = [a, b] = {x a x b}. Intervalo semiabierto por
Inecuaciones en. Desigualdad: se llama desigualdad a toda relación entre expresiones numéricas o algebraicas. Propiedades de las desigualdades:
Inecuaciones en Introducción Desigualdad: se llama desigualdad a toda relación entre epresiones numéricas o algebraicas unidas por uno de los cuatro signos de desigualdad,,,, Por ejemplo: 6 ; ; 8, etc....
Cronograma de guías y contenidos
Liceo Juan Antonio Nivel: PRIMER AÑO MEDIO aplicación del lenguaje algebraico 09 Septiembre 23 Septiembre Guía N 1 Guía N 2 Unidad : Lenguaje Algebraico Transformar expresiones algebraicas no fraccionarias
Volumen de Sólidos de Revolución
60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido
( ), está dada por: g ( x) = log 2 ( x),x > 0. # % 3x log 2 ( 5), x 1 & + -, . log 2. log 2 ( x 3
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS CURSO DE NIVELACIÓN 05 S SEGUNDA EVALUACIÓN DE MATEMÁTICAS PARA INGENIERÍAS Y EDUCACIÓN
