(Método de Paolo Ruffini)
|
|
|
- Juana Torregrosa Bustos
- hace 7 años
- Vistas:
Transcripción
1 División de polinomios (Método de Paolo Ruffini) Al empezar nuestra Historia Matemática, desde muy pequeños vimos las primeras cifras: 1; ; ; etc. y luego de eso, tratábamos de relacionarlas mediante las operaciones aritméticas fundamentales: adición, sustracción, multiplicación y división. Y es aquí donde, quizás para mucha gente, empieza el GRAN DOLOR DE CABEZA con respecto a las Matemáticas, al tratar de resolver ejercicios un tanto más complejos. Sin embargo, esto no tiene necesariamente que ser así, pues la Matemática puede ser disfrutada a plenitud aplicándola a hechos reales vividos día a día. Debemos recordar que la primera operación vista fue: LA SUMA (+), con ejercicios clásicos como lo son: + ; 5 + ; etc. Posteriormente, vimos una operación opuesta a la anterior: LA DIFERENCIA ( ), y resolvimos ejercicios como: 7 - ; 5-1; etc. Luego conocimos lo que se denominaba suma abreviada, o sea: LA MULTIPLICACIÓN ( ), y calculamos productos como: ; 5 4; etc. Y finalmente llegamos a una operación opuesta a la multiplicación: LA DIVISIÓN ( ). Aquí, distinguimos los siguientes elementos: DIVIDENDO RESIDUO DIVISOR COCIENTE Bueno, pero a lo mejor te preguntas: Y qué tiene que ver con el Álgebra?, pues la respuesta es muy sencilla. Toda nuestra Historia Matemática vivida de manera aritmética, (es decir, utilizando únicamente números), será repetida, pero ahora de manera algebraica (es decir, utilizando polinomios). Si quieres, puedes revisar este libro y notarás que la SUMA y DIFERENCIA de polinomios, las vimos en el capítulo III. El PRODUCTO, lo vimos en los capítulos IV, V y VI; y ahora nos toca estudiar la DIVISIÓN, capítulo VII. Así, que, sin más ni más, empecemos con el tema: DIVISIÓN DE POLINOMIOS. División de polinomios Parte teórica ORDENANDO Y COMPLETANDO DIVIDENDO P (x) d (x) RESIDUO R (x) Q (x) DIVISOR COCIENTE OBSERVACIÓN: Para poder dividir dos polinomios éstos deben encontrarse completos y ordenados. Ejemplos: 1. Sea el polinomio: P (x) = 5x + + x + x ORDENANDO P (x) = x + x + 5x +. Sea el polinomio: Q (x) = x + 5x - 1 COMPLETANDO Q (x) = x + 0x + 5x - 1. Sea el polinomio: J (x) = x - x + x J (x) = x 4 + 0x - x + x + 5 Métodos de División: Existen varias maneras de dividir polinomios, pero dos son los más destacados: a. Método de Horner b. Método de Ruffini Por su grado de complejidad, esta vez veremos únicamente el método de Ruffini. Método de Paolo Ruffini OJO Aquí, se hará uso del siguiente diagrama: Aquí va el coeficiente independiente del divisor, pero con signo opuesto COEFICIENTES DEL DIVIDENDO COEFICIENTES DEL COCIENTE RESIDUO Las operaciones a realizar con los coeficientes son: La división es un proceso en el cual, conocidos dos polinomios llamados: DIVIDENDO y DIVISOR, se obtienen otros dos llamados COCIENTE y RESIDUO. S U M A COLOCANDO PRODUCTO
2 Ejemplo: Dividir: x 4 x 5x cociente: Q (x) = 1x - x + 9 residuo: R (x) = 0 Solución:. Dividir: x x Completamos el diagrama con los coeficientes, teniendo mucho cuidado con los signos. Luego procedemos con las operaciones x - 1 = 0 x = Q (x) = 1x - x + 1 y R (x) = 0 = x - x El resultado será completo con las variables, obteniéndose: Cociente Q (x) = x + 5x + 0x + 1 = x + 5x + 1 Residuo R (x) = Problemas resueltos 4. Dividir: x x 8 ordenando el polinomio dividendo: x 4x x 8 x 7 1. Dividir: x + = x = x - 4 = 0 x = cociente: Q (x) = 1x + 0x + 1 ; R (x) = - 4 = x + 1 cociente: Q (x) = 1x + 4 = x + 4 residuo: R (x) = Dividir: x 4 60 ordenando y completando el polinomio dividendo: x 4 0x 0x x 0x Dividir: x - = 0 x = completanto y ordenando el dividendo: x 0x 07 cociente: Q (x) = 1x + x + 4x + 8 = x + x + 4x residuo: R = - 44 x + = 0 x = (x)
3 Problemas resueltos Bloque II Bloque I 1. Dividir: 4x 5x En los siguientes ejercicios, calcular el cociente y residuo: e indicar su residuo x 5x 1 a) 1 b) - 1 c) 7x 50 5 x x x 8x x 4 1 x x x 1 d) - e) 0. Al dividir, su cociente es: 6x x 4 a) x + 1 b) x c) x + 1 d) x - 1 e) x 4-1. Dividir: x x e indicar el término independiente de su cociente. a) 1 b) c) 4. Dividir: x x 5 e indicar la suma de coeficientes del cociente. a) 1 b) - 1 c) d) - e) 0 5. Indicar la suma de coeficientes del cociente al dividir: x x 5x 6 x 9 a) 5 b) 10 c) - 5 d) - 10 e) 0 6. Completar el siguiente diagrama de Ruffini: x 5x 6 11.Al dividir: su residuo: a) 1 b) c) 4x x x 6 1.Al dividir: su cociente es: Luego, indicar la suma de valores hallados. a) 0 b) 0 c) 8 d) 14 e) 1 a) x - b) x - c) x + d) x + e) x +
4 7. Completa el siguiente diagrama y luego indica el producto de los valores hallados: 4. Dividir: x x a) 1 b) 14 c) d) 16 e) 17-4 a) - 1 b) 1 c) 1 d) 16 e) 0 8. Hallar a, para que la división: sea exacta. a) - 1 b) - c) - d) - 4 e) Determinar el valor de n, si la división: x x 5x (n 7) tiene residuo nulo. a) 9 b) c) 5 d) 8 e) 7 x 5x x a x 4 x 5x (n ) 10.Sabiendo que la división: es exacta, determinar el valor de n. a) 1 b) c) Bloque III 1. Dividir: x 5 a) x - 4 b) x + n c) x - 6 d) x + 6 e) x 14 9x x. Dividir: 7 x a) 0 b) 1 c) d) e) 4. Dividir: x x 6 x 9 a) x b) x - 6 c) x + 6 d) x - 7 e) x Dividir: x 4 x 4 a) x - 4x + 15x - 60 b) x + 4x - 15x - 60 c) x - 4x - 15x - 60 d) x - x - x - 60 e) x - x + 15x Efectuar la siguiente división con respecto a la variable a. a - a b + 4ab - 5b (a - b) a) b b) 4b c) 5b d) 6b e) 7b 7. Efectuar la siguiente división, con respecto a la variable x. 1x x y + 8x y + 6xy + 4y 4 (x - y) a) 6y 4 b) 9y 4 c) 40y 4 d) 41y 4 e) 4y 4 8. Dividir: x5 1 a) x b) x 4 + x + x + x + 1 c) x 4 - x + x + x + 1 d) x 4 - x - x - x - 1 e) x 4 - x - x - x Efectuar la siguiente división: x 4-4x + 16 (x + 4) calcular el residuo. a) 04 b) 08 c) 09 d) 1 e) Relacione los residuos de cada uno de las divisiones. I. x 1 II. x 4 1 III. x6 1 a) R(I) = R(II) = R(III) b) R(III) > R(II) > R(I) R(III) c) R(III) < R(II) < R(I) d) R(I) = R(II) = e) Ninguna
5 Autoevaluación 1. Indicar el cociente al dividir: x 6x 1x 8 a) x + 4x + 4 b) x - 4x - 4 c) x - 4x + 4 d) x + 4x - 4 e) 0. Al dividir: x x 6x se obtiene como cociente: a) x + 1 b) x + 1 c) x - 1 d) x - 1 e) x + 1. Indicar el residuo al dividir: x5 7x 6 4. Calcular el residuo de la siguiente división: x 5x x 7 a) 1 b) - c) - d) - 4 e) Determinar el valor de n, para que la división: x 17x 7x (n 8) tenga como residuo 16. a) - 10 b) - 0 c) 10 d) 0 e) 0 a) 1 b) c)
6 NOTAS CURIOSAS... Áreas y punto(s)... Si nos pidieran calcular el área de una figura como el cuadrado, el triángulo, el círculo, etc. pues bastaría aplicar las fórmulas ya conocidas. Sin embargo hay figuras para las cuales no existen fórmulas de cálculo de área. Es por este motivo, que el matemático checoslovaco G. Pick, publicó en 1899 una manera sencilla y bonita para el área de un polígono cuyos vértices son puntos de una red. Observa el siguiente gráfico: Hallar el área de la figura dibujada a la izquierda. Para resolver este problema, aplicaremos la fórmula de Pick: ÁREA = B + I - 1 donde: B = puntos en el borde de la figura I = puntos en el interior de la figura En nuestro caso tendremos: B = 7; I = 1; luego el área será: Veamos un ejemplo más: Área = =,5 u Hallar el área de la figura ubicada a la izquierda. Del gráfico tenemos: B = 9; I = 4 Luego el área es: 9 Área = = 4,5 + = 7,5 u... y ahora un trabajo para ti..., determina el área de: A B C
7
División de polinomios
División de polinomios: Horner División de polinomios Es aquella operación algebraica que tiene como objetivo encontrar dos únicos polinomios llamados cociente entero q(x) y residuo R(x) a partir de otros
UNIDAD DIDÁCTICA #5 CONTENIDO I. PRODUCTOS NOTABLES III. DIVISIÓN DE POLINOMIOS II. CUBO DE LA SUMA O DIFERENCIA DE DOS CANTIDADES
UNIDAD DIDÁCTICA #5 CONTENIDO I. PRODUCTOS NOTABLES II. CUBO DE LA SUMA O DIFERENCIA DE DOS CANTIDADES III. DIVISIÓN DE POLINOMIOS IV. FACTORIZACIÓN DE EXPRESIONES ALGEBRAICAS I. PRODUCTOS NOTABLES Los
MONOMIOS Y POLINOMIOS
Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas y se representan por letras.
EXPRESIONES ALGEBRAICAS.
EXPRESIONES ALGEBRAICAS. Se dice expresión algebraica aquella que está formada por números y letras unidos mediante signos. 4x 2 + 1 2 3y Observa que existen dos variables x e y. En la siguiente expresión
Cantidades imaginarias - numeros complejos
Cantidades imaginarias - numeros complejos Las operaciones directas (Suma, multiplicación y potenciación) no crearon problema de cálculo, por ser siempre realizables. En cambio las operaciones inversas
Ejercicio 1 Completa: Monomio Coeficiente Parte literal Grado
Soluciones a los ejercicios de Álgebra, primera parte: Ejercicio 1 Completa: Monomio Coeficiente Parte literal Grado 3xz 3 xz 3 1x zy 1 4 abc 1 5 x 5 3 x zy 6 4 abc 6 x 1 Ejercicio Halla el valor numérico
Expresiones algebraicas
Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas
Tema 2 Algebra. Expresiones algebraicas Índice
Tema 2 Algebra. Expresiones algebraicas Índice 1. Expresiones algebraicas comunes... 2 2. Valor numérico de una expresión algebraica... 2 3. Tipos de expresiones algebraicas... 2 4. Monomios... 2 4.1.
Expresiones algebraicas
Polinomios Expresiones algebraicas Una expresión algebraica es cualquier combinación de números y letras relacionados por operaciones aritméticas: suma, resta, producto, división y potenciación. Ejemplos
EJERCICIOS DE POLINOMIOS
EJERCICIOS DE POLINOMIOS NOMBRE:... Nº:... º....- Escribe el grado, el número de términos y el nombre (monomio, binomio, trinomio, polinomio) que recibe cada una de las siguientes expresiones algebraicas:
OBJETIVOS CONTENIDOS PROCEDIMIENTOS
Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender el concepto de polinomio y otros asociados
UNIDAD DE APRENDIZAJE I
UNIDAD DE APRENDIZAJE I Saberes procedimentales Interpreta y utiliza correctamente el lenguaje simbólico para el manejo de expresiones algebraicas. 2. Identifica operaciones básicas con expresiones algebraicas.
El cuadrado de la suma de dos números es igual al cuadrado del primero más el cuadrado del segundo más el doble producto del primero por el segundo.
IDENTIDADES NOTABLES Definición Qué es una identidad notable? Es una identidad algebraica que, por su relevancia y por la gran cantidad de veces que se usa en las operaciones matemáticas, recibe el nombre
Comprueba que 5 2 es una raíz del polinomio 2x3 9x x 5. EJERCICIO RESUELTO. Entonces: x 3 + 2x x + 3 = ( x + 1) ( x 2 + x + 3)
Polinomios 7. Teorema del resto. Factorización Polinomios Actividades Aprenderás a Identificar el resto de la división de un polinomio por un binomio de la forma a como el valor numérico para = a. Aplicar
Se dice que dos monomios son semejantes cuando tienen la misma parte literal
Expresiones algebraicas 1 MONOMIOS Conceptos Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural.
TEMA: 5 ÁLGEBRA 3º ESO
TEMA: 5 ÁLGEBRA 3º ESO 1. MONOMIO Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. Ejemplo: x
RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO
OBJETIVO RECONOCER EL GRADO, EL TÉRMINO Y LOS COEICIENTES DE UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma de monomios, que son los términos del polinomio.
SERIE INTRODUCTORIA. REPASO DE ALGEBRA.
SERIE INTRODUCTORIA. REPASO DE ALGEBRA. 1.- REDUCCION DE TÉRMINOS SEMEJANTES. Recuerde que los términos semejantes son aquellos que tienen las mismas letras con los mismos exponentes. Ejemplos: *7m; 5m
Curs MAT CFGS-18
Curs 2015-16 MAT CFGS-18 Factorización de un polinomio Sacar factor común Consiste en aplicar la propiedad distributiva: a b + a c + a d = a (b + c + d) Descomponer en factores sacando factor común y hallar
RESUMEN DE ALGEBRA. CONCEPTO: El pensador principal del algebra es Al-Hwarizmi; es de origen árabe.
RESUMEN DE ALGEBRA CONCEPTO: El pensador principal del algebra es Al-Hwarizmi; es de origen árabe. El álgebra es la rama del conocimiento de la matemática; es decir se desprende de ella. Estudia realidades
I.E.S. Tierra de Ciudad Rodrigo Departamento de Matemáticas TEMA 6. POLINOMIOS
TEMA 6. POLINOMIOS Una expresión algebraica es un conjunto de letras y números unidos por los signos matemáticos. Las expresiones algebraicas surgen de traducir al lenguaje matemático enunciados en los
POLINOMIOS Y FRACCIONES ALGEBRAICAS
POLINOMIOS Y FRACCIONES ALGEBRAICAS Monomio: Monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. 2x
UNIDAD DIDÁCTICA #1 CONTENIDO
UNIDAD DIDÁCTICA #1 CONTENIDO OPERACIONES CON DECIMALES MULTIPLICACION DE DECIMALES DIVISIÓN DE DECIMALES OPERACIONES COMBINADAS CON DECIMALES POTENCIACIÓN DE DECIMALES HOJA DE EVALUACIÓN BIBLIOGRAFÍA
Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios.
Productos notables Sabemos que se llama producto al resultado de una multiplicación. También sabemos que los valores que se multiplican se llaman factores. Se llama productos notables a ciertas expresiones
UNIDAD 4. POLINOMIOS. (PÁGINA 263)
UNIDAD 4. POLINOMIOS. (PÁGINA 263) LENGUAJE ALGEBRAICO Una expresión algebraica es aquella que combina: números, operaciones y letras. Ejemplos de expresiones algebraicas: 3 + x x 2 y x + y x 2 y LENGUAJE
CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA
http:/// CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA DESARROLLA EN FORMA RESUMIDA CADA UNIDAD CON: I. GUIONES DE CONFERENCIAS II. FICHAS DE ESTUDIO III. LABORATORIOS DE EJERCICIOS Trata las unidades siguientes:
Un monomio es el producto indicado de un número por una o varias letras GRADO 4º
TEMA. POLINOMIOS OPERACIONES. MONOMIOS Un monomio es el producto indicado de un número por una o varias letras GRADO º COEFICIENTE PARTE LITERAL. VALOR NUMÉRICO DE UN MONOMIO Es el resultado que se obtiene
1. EXPRESIONES ALGEBRAICAS.
TEMA 3: POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas
Operaciones algebraicas
Operaciones algebraicas Por: Oliverio Ramírez Juárez Muchas veces para solucionar problemas cotidianos, éstos se tienen que transformar de lenguaje común a lenguaje algebraico, para así obtener una respuesta
La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes.
Suma de monomios Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes. ax n + bx n = (a + b)x
5.- Potencia de 1 Un número racional elevado a 1 es igual a sí mismo.
POTENCIAS DE EXPONENTE ENTERO Y BASE RACIONAL 1.- 2.- 3.- PROPIEDADES DE LAS POTENCIAS DE NÚMEROS RACIONALES Pulsa en las siguientes pestañas para analizar cada una de las propiedades de la multiplicación:
OPERACIONES CON POLINOMIOS
4. 1 UNIDAD 4 OPERACIONES CON POLINOMIOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas en los que apliques las operaciones de suma, resta, multiplicación y división de polinomios.
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las
RESUMEN DE CONCEPTOS
RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo
Colegio La Salle Envigado FORMANDO EN VALORES PARA LA VIDA GUIA FACTORIZACION
GUIA FACTORIZACION Esta guía tiene como objetivo afianzar los conocimientos teórico-prácticos en los diferentes casos de factorización, para ello se darán en esta guía algunos ejercicios de factorización
Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto
Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto En esta unidad vas a comenzar el estudio del álgebra, el lenguaje de las matemáticas. Vas a aprender
EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Y POLINOMIOS
EXPRESIONES ALGEBRAICAS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman VARIABLES, INCÓGNITAS o INDETERMINADAS
Notas teóricas. a) Suma y resta Se agrupan los monomios del mismo grado y se opera.
MATEMÁTICAS EJERCICIOS RESUELTOS DE POLINOMIOS POLINOMIOS A. Introducción Teoría B. Ejercicios resueltos B.. Sumas y restas B.. Multiplicación B.3. División B.4. Sacar factor común B.5. Simplificar fracciones
POLINOMIOS En esta unidad aprenderás a:
POLINOMIOS En esta unidad aprenderás a: Reconocer polinomios y calcular su valor numérico Realizar operaciones con polinomios. Manejar la regla de Ruffini y el teorema del resto para encontrar las raíces
UNIDAD DE APRENDIZAJE III
MATEMÁTICAS I ALGEBRA Unidad de Aprendizaje III UNIDAD DE APRENDIZAJE III Saberes procedimentales Saberes declarativos Expresa un polinomio en sus factores primos A Concepto de factores primos algebraicos
Ejercicios... Julio Yarasca
Ejercicios... Julio Yarasca 4 de junio de 2015 Capítulo 1 Productos Notables 1.1. Teoría Tenemos los siguientes productos notables 1. Binomio al cuadrado 2. Identidades de Lagrange 3. Diferencia de Cuadrados
M.C.D. - M.C.M. de polinomios
M.C.D. - M.C.M. de polinomios M.C.D. y M.C.M. de polinomios Máximo común divisor (M.C.D.) Mínimo común múltiplo (M.C.M.) Propiedades el el 1 M.C.D. de dos o más polinomios es otro polinomio que tiene la
Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio
TRABAJO PRÁCTICO Nº 5. MONOMIOS Y POLINOMIOS TEORÍA Y PRÁCTICA Monomios Un monomio es una expresión algebraica formada por: - una parte numérica, llamada coeficiente, y - una parte literal, formada por
UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES
UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES Temario: Definición de epresiones algebraicas y clasificación. Polinomio, grado. Operaciones. Regla de Ruffini. Factorización de Polinomios.
Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática II Año PAI VII Grado
Actualizado en febrero del 2013 Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática II Año PAI VII Grado CONTENIDOS OBJETIVOS ESPECÍFICOS HABILIDADES CRITERIOS DE EVALUACIÓN
Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5
Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1 POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio entre otro monomio de grado igual
Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +...
Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x 1 + a 0 Siendo a n, a n -1... a 1, a o números,
MATERIALES: Cuaderno de 100h cuadriculado, block de hojas milimetradas, calculadora, lápiz, borrador, lapicero de color verde
MATERIALES: Cuaderno de 00h cuadriculado, block de hojas milimetradas, calculadora, lápiz, borrador, lapicero de color verde FACTORIZACION - Casos de Factorización - Factor común - Factor común por agrupación
EXPRESIONES ALGEBRAICAS. POLINOMIOS
Unidad didáctica 5 EXPRESIONES ALGEBRAICAS. POLINOMIOS. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones
Leyes de exponentes: Potenciación y Radicación
CAPÍTULO I Leyes de eponentes: Potenciación y Radicación 0. Simplificar:. n + 0. n +. n ; n N. n n+ A) B) E) 8 0. Dar el valor de verdad de las siguientes proposiciones: I. 0 7 II. Si : n < 0 0 n = 0 =
Expresiones algebraicas
Epresiones algebraicas Matemáticas I 1 Epresiones algebraicas Epresiones algebraicas. Monomios y polinomios. Monomios y polinomios. Una epresión algebraica es una combinación de letras, números y signos
Fundamentos de la Matemática UNEFA NÚCLEO TÁCHIRA GUÍA DE ESTUDIO CON FINES INSTRUCCIONALES
UNIDAD I: EXPRESIONES ALGEBRAICAS. El ÁLGEBRA es la rama de las Matemáticas que estudia la cantidad considerada del modo más generalizado posible, siendo los árabes los primeros en desarrollarla. En Álgebra
Tema 4. Polinomios Operaciones
Tema 4. Polinomios Operaciones 1. Expresiones algebraicas. Identidades y ecuaciones.. Monomios.1. Definiciones.. Operaciones con monomios. Polinomios.1. Definiciones.. Operaciones con polinomios Tema.
2. EXPRESIONES ALGEBRAICAS
2. EXPRESIONES ALGEBRAICAS Tales como, 2X 2 3X + 4 ax + b Se obtienen a partir de variables como X, Y y Z, constantes como -2, 3, a, b, c, d y cobinadas utilizando la suma, resta, multiplicación, división
Representación Gráfica (recta numérica)
NÚMEROS NATURALES ( N ) Representación Gráfica (recta numérica) 0 1 2 3 4 R Mediante un punto negro representamos el 1, el 3 y el 4 NÚMEROS ENTEROS ( Z ) - 2-1 0 1 2 R Mediante un punto negro representamos
(a+b) (a b)=a 2 b 2 OBJETIVOS CONTENIDOS PROCEDIMIENTOS
Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender el concepto de polinomio y otros asociados
Partes de un monomio
Monomios Un monomio es una epresión algebraica en la que la únicas operaciones que afectan a las letras son la multiplicación y la potencia de eponente natural. Son monomios: NO son monomios: 1 yz 1 abc
UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS ENTEROS
C u r s o : Matemática Material N 02 GUÍA TEÓRICO PRÁCTICA Nº 2 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS ENTEROS NÚMEROS ENTEROS ( ) Los elementos del conjunto enteros. OPERATORIA EN ADICIÓN = {, -3,
TRABAJO PRÁCTICO Nº 4 FUNCIONES POLINÓMICAS
TRABAJO PRÁCTICO Nº 4 FUNCIONES POLINÓMICAS En este eje intentaremos continuar desarrollando en los estudiantes la competencia básica de Resolución de Problemas y además las siguientes competencias específicas
Título: mar 6-1:39 PM (Página 1 de 20)
TEMA 5. ÁLGEBRA El lenguaje algebraico es un lenguaje matemático que combina números y letras unidos mediante operaciones aritméticas (+, -,, :) para expresar la realidad de forma concisa, inequívoca y
TEMA 3. POLINOMIOS Y FRACCIONES ALGEBRAICAS. Ficha 0
Ficha 0 Un monomio es una expresión algebraica formada por el producto de un número, llamado coeficiente, por una o más variables con exponente natural o cero, llamadas parte literal. El grado es la suma
Vamos a ver por separado las operaciones básicas con expresiones algebraicas para monomios y polinomios.
L as operaciones con expresiones algebraicas son las mismas operaciones que se realizan con los números reales. Es decir, que con las expresiones algebraicas podemos realizar las cuatro operaciones básicas
ECUACIONES.
. ECUACIONES... Introducción. Recordemos que el valor numérico de un polinomio (y, en general, de cualquier epresión algebraica) se calcula sustituyendo la/s variable/s por números (que, en principio,
Calcular el cociente y el resto en las siguientes divisiones: 6x 3 + 5x 2 9x 3x 2. (b)
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I o Bachillerato Internacional. Grupo I. Curso 2009/200. Hoja de ejercicios III Polinomios EJERCICIO Calcular el cociente y el resto en las siguientes divisiones:.
Uniboyacá GUÍA DE APRENDIZAJE NO 7. Psicología e Ingeniería Ambiental
Uniboyacá GUÍA DE APRENDIZAJE NO 7 1. IDENTIFICACIÓN Programa académico Psicología e Ingeniería Ambiental Actividad académica o curso Matemáticas básicas Semestre Segundo de 2012 Actividad de aprendizaje
TEMA 5. FACTORIZACIÓN DE POLINOMIOS.
TEMA 5. FACTORIZACIÓN DE POLINOMIOS. 1. SACAR FACTOR COMÚN Cuando todos los términos de un polinomio, P(x), son múltiplos de un mismo monomio, M(x), podemos extraer M(x) como factor común. Por ejemplo:
PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas
PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas que se resuelven siguiendo Reglas y Fórmulas específicas para cada caso y cuyo resultado puede ser escrito por simple inspección, es decir
CUADERNO Nº 4 NOMBRE: FECHA: / / Polinomios
Polinomios Contenidos 1. Expresiones algebraicas De expresiones a ecuaciones Valor numérico Expresión en coeficientes. División de polinomios División División con coeficientes Regla de Ruffini Teorema
TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas
º ESO 1. Expresiones algebraicas En matemáticas es muy común utilizar letras para expresar un resultado general. Por ejemplo, el área de un b h triángulo es base por altura dividido por dos y se expresa
PRÁCTICO: : POLINOMIOS
Página: 1 APUNTE TEÓRICO-PRÁCTICO PRÁCTICO: : POLINOMIOS UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Razonamiento y Resolución de Problemas Carreras: Lic. en Economía, Lic. en Administración, Lic. en
CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García
INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica
UNIDAD 1 NUMEROS COMPLEJOS
UNIDAD 1 NUMEROS COMPLEJOS El conjunto de los números complejos fue creado para poder resolver algunos problemas matemáticos que no tienen solución dentro del conjunto de los números reales. Por ejemplo
Números Naturales. Cero elemento neutro: = 12 Sucesión fundamental : se obtiene el siguiente número = 9
Números Naturales Cuando comenzamos a contar los objetos, los años, etc, nos hemos encontrado con los números de forma natural; por eso a este conjunto de números así aprendidos se les denomina números
1. dejar a una lado de la igualdad la expresión que contenga una raíz.
1. Resuelve las siguientes ecuaciones reales: Solución x 1 + x = 0 ; 3 x = 3 ; ln(x 1) + 4 = ln 3 Ecuaciones con raíces: No todas las ecuaciones de este tipo son sencillas de resolver, pero podemos intentar
TEMA 4: EXPRESIONES ALGEBRAICAS.
TEMA 4: EXPRESIONES ALGEBRAICAS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. CURSO 2011-2012 Página 1 de 14 Profesor: Manuel González de León Curso
POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO
POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO Dado que los polinomios se utilizan para describir curvas de diferentes tipos, la gente los utiliza en el mundo real para dibujar curvas. Por ejemplo,
Potencias y raíces Matemáticas 1º ESO
Potencias y raíces Matemáticas 1º ESO ÍNDICE 1. Potencias 2. Propiedades de potencias 3. Cuadrados perfectos 4. Raíces cuadradas 1 1. POTENCIAS Una potencia es una multiplicación en la que todos los factores
Mó duló 06: Á lgebra Elemental II
INTERNADO MATEMÁTICA 016 Guía para el Estudiante Mó duló 06: Á lgebra Elemental II Objetivo: Factorizar expresiones algebraicas y generalizar la operatoria de fracciones por medio del álgebra, que le permita
LOS NUMEROS IRRACIONALES Y SU REPRESENTACIÓN EN LA RECTA NUMERICA
GUIA Nº 1: LOS NÚMEROS REALES 1 GRADO: 8º PROFESORA: Eblin Martínez M. ESTUDIANTE: PERIODO: I DURACIÓN: 20 Hrs LOGRO: Realizo operaciones con números naturales, enteros, racionales e irracionales. INDICADORES
Polinomios III. I. Fracciones algebraicas con polinomios. 1. Simplificación de fracciones algebraicas. 2. Amplificación de fracciones algebraicas
Polinomios III Finalmente veremos en esta última ficha lo correspondiente a fracciones terminando de esta manera con los polinomios. I. Fracciones algebraicas con polinomios Definiremos como una fracción
FACTORIZACIÓN GUÍA CIU NRO:
República Bolivariana de Venezuela Ministerio de la Defensa Universidad Nacional Experimental Politécnica de la Fuerza Armada Núcleo Caracas Curso de Inducción Universitaria CIU Cátedra: Razonamiento Matemático
C U R S O : MATEMÁTICA
C U R S O : MATEMÁTICA GUÍA TEÓRICO PRÁCTICA Nº 2 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS ENTEROS VALOR ABSOLUTO Es la distancia que existe entre un número y el 0-3 -2-1 0 1 2 3 Z -3 = 3, 3 = 3 DEFINICIÓN:
Lección 10: División de Polinomios. Dra. Noemí L. Ruiz Limardo 2009
Lección 10: División de Polinomios Dra. Noemí L. Ruiz Limardo 009 Objetivos de la lección Al finalizar esta lección los estudiantes: Dividirán polinomios de dos o más términos por polinomios de uno y dos
Es una división de polinomios por el método de coeficientes separados.
Baldor Ejercicio 58 - #13 Dividir por coeficientes separados: entre Es una división de polinomios por el método de coeficientes separados. Procedimiento general para la división de polinomios por el método
53 ESO ÍNDICE: 1. EXPRESIONES ALGEBRAICAS 2. MONOMIOS 3. POLINOMIOS 4. IDENTIDADES 5. DIVISIÓN DE POLINOMIOS 6. FRACCIONES ALGEBRAICAS
53 ESO ÍNDICE: 1. EXPRESIONES ALGEBRAICAS. MONOMIOS 3. POLINOMIOS 4. IDENTIDADES 5. DIVISIÓN DE POLINOMIOS 6. FRACCIONES ALGEBRAICAS El lenguaje algebraico 5. 1 1. EXPRESIONES ALGEBRAICAS LENGUAJE ALGEBRAICO
Tema 3: Multiplicación y división.
Tema 3: Multiplicación y división. SELECCIÓN DE EJERCICIOS RESUELTOS 2. Determina el menor número natural que multiplicado por 7 nos da un número natural que se escribe usando únicamente la cifra 1. Y
GESTIÓN ACADÉMICA GUÍA DIDÁCTICA HACIA LA EXCELENCIA COMPROMISO DE TODOS!
PÁGINA: 1 de 16 Nombres y Apellidos del Estudiante: Docente: Área: Matemáticas Grado: OCTAVO Periodo: TERCERO Duración: 20 horas guía 1 Asignatura: Matemáticas ESTÁNDAR: Construyo expresiones algebraicas
TEMA 1 NÚMEROS NATURALES
TEMA 1 NÚMEROS NATURALES Criterios De Evaluación de la Unidad 1 Efectuar correctamente operaciones combinadas de números naturales, aplicando correctamente las reglas de prioridad y haciendo un uso adecuado
Preparación para Álgebra 1 de Escuela Superior
Preparación para Álgebra 1 de Escuela Superior Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales
Titulo: FACTORIZACION (Descomposición Factorial) Año escolar: 2do: año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo
Tema 3. Polinomios y fracciones algebraicas
Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.
open green road Guía Matemática PRODUCTOS NOTABLES profesor: Nicolás Melgarejo .co
Guía Matemática PRODUCTOS NOTABLES profesor: Nicolás Melgarejo.co 1. Introducción Es usual en matemática intentar simplificar todas las expresiones y definiciones, utilizando el mínimo de elementos o símbolos
TRABAJO DE MATEMÁTICAS. PENDIENTES DE 1º ESO. (2ª parte)
TRABAJO DE MATEMÁTICAS PENDIENTES DE 1º ESO. (2ª parte) NÚMEROS RACIONALES REDUCCIÓN DE FRACCIONES AL MISMO DENOMINADOR Para reducir varias fracciones al mismo denominador se siguen los siguientes pasos:
Cuando p(a) = 0 decimos que el valor a, que hemos sustituido, es una raíz del polinomio.
Regla de Ruffini Teorema del resto Polinomios y fracciones algebraicas Dividir un polinomio por -a Regla de Ruffini Factorización de polinomios Divisibilidad de polinomios Fracciones algebraicas Operaciones
Matemáticas Universitarias
Matemáticas Universitarias 1 Sesión No. 2 Nombre: Expresiones algebraicas y sus operaciones Objetivo de la asignatura: En esta sesión el estudiante aplicará las operaciones básicas como suma, resta, multiplicación
El simbolismo del lenguaje algebraico ha ido modificándose al paso del tiempo. Sus orígenes se remontan a Babilonia, Egipto, Grecia y Arabia.
SUMA Y RESTA ALGEBRAICA El álgebra es una rama de la Matemáticas, que se caracteriza por el empleo de letras para representar números, con ellas y con los símbolos que se han utilizado para indicar operaciones
UNIDAD I FUNDAMENTOS BÁSICOS
República Bolivariana de Venezuela Universidad Alonso de Ojeda Administración Mención Gerencia y Mercadeo UNIDAD I FUNDAMENTOS BÁSICOS Elaborado por: Ing. Ronny Altuve Ciudad Ojeda, Mayo 2016 ÁLGEBRA Es
PRUEBA EXTAORDINAORIA DE SEPTIEMBRE DE 2014 CONTENIDOS MÍNIMOS DE MATEMÁTICAS
IES SAN BENITO PRUEBA EXTAORDINAORIA DE SEPTIEMBRE DE 2014 CONTENIDOS MÍNIMOS DE MATEMÁTICAS MATEMÁTICAS 1º ESO *SISTEMA DE NUMERACIÓN DECIMAL. N OS NATURALES. POTENCIAS Y RAICES Ordenación de los números
