Examen de admisión
|
|
|
- Cristóbal Giménez Santos
- hace 7 años
- Vistas:
Transcripción
1 Examen de admisión 018- PREGUNTAS Y RESPUESTAS UNI Matemática PREGUNTA N.º 1 Sean P (x) =9 x ; Q (x) =ax 3 x+3. Determine el valor de a para que P (x) (Q (x) 1) sea divisible por x 3 y satisfaga que la suma de los coeficientes de los términos del cociente sea 1. A) 1 B) C) 3 D) 4 E) 5 PREGUNTA N.º Determine cuántos números de 3 cifras que son divisibles por 11 tienen por suma de sus cifras igual a 15. A) 5 B) 6 C) 7 D) 8 E) 9 PREGUNTA N.º 3 Sean las clases de equivalencia de números racionales a m r b ; y n s Dadas las siguientes proposiciones: I. Si a m b =φ, entonces an=bm. n II. Si a m b n φ, entonces n m =. b a III. Si a m r b + n = an+ bm r s, entonces bn s. cuáles son correctas? A) solo I B) solo II C) solo III D) II y III E) I y III PREGUNTA N.º 4 Halle el menor valor de a+n, donde a; n; M N, tales que ( 3a) 9( 3a) 9( 3a) = 59M n cifras n cifras N es el conjunto de los números naturales. A) 1 B) C) 3 D) 4 E) 5 PREGUNTA N.º 5 Se tiene dos barras de oro, en la primera el 80% del peso total es oro y en la segunda el 75% de su peso es oro, siendo esta el cuádruple de la anterior. Si se mezclan, determine la pureza resultante de dicha mezcla. A) 0,755 B) 0,760 C) 0,765 D) 0,770 E) 0,775 PREGUNTA N.º 6 En un total de 15 personas, 10 son hombres y 5 son mujeres, van a ser divididos al azar en cinco grupos con 3 personas cada uno. Calcule la probabilidad que en cada uno de los cinco grupos siempre haya una mujer. A) 0,05 B) 0,06 C) 0,07 D) 0,08 E) 0,09 1
2 UNI 018- PREGUNTA N.º 7 Señale la alternativa correcta después de determinar si cada proposición es verdadera (V) o falsa (F). I. 111 (3) =3 (5) II. 0,5=01, () 5 III. 0, a() 11 =0, 4() 5, donde a=10. A) FVF B) FVV C) VFF D) VVF E) VVV PREGUNTA N.º 8 Indique el valor de verdad de las siguientes proposiciones I. Si a b N y b N, entonces a N. II. Si a b N y a N, entonces b N. III. si a N, entonces a N. N es el conjunto de los números naturales. A) V F F B) V F V C) V V F D) V V V E) F V F PREGUNTA N.º 9 Sea A una matriz cuadrada de orden n e I la matriz identidad del mismo orden. I. Si A ki =0, k número real, entonces A T ki =0 II. Si A =I A, entonces A =0. III. Si B=( 1) n+1 A A n, entonces B = A 3n. B) VFV C) VVF D) FFV E) VFF LUMBRERAS Editores PREGUNTA N.º 10 Sea la matriz 101 A= I. det( n A ) = npara todo n N. II. A n = 10n 010 para todo n N. 001 III. Si B es la matriz inversa de A n, entonces ( n) = para todo n N. det B B) VFV C) FVV D) FVF E) FFF n PREGUNTA N.º 11 I. Si a los términos de una progresión aritmética se le aumenta un valor constante, entonces se forma una progresión aritmética con la misma razón. II. Si la progresión tiene una cantidad par de términos, la suma de los términos extremos de una progresión aritmética (primero y último) es igual a la suma de los términos centrales. III. Si a los términos de una progresión aritmética se le multiplica por el valor constante, entonces se forma una progresión aritmética con la misma razón. B) VVF C) VFV D) FVV E) VFF
3 Solucionario de Matemática Academia CÉSAR VALLEJO PREGUNTA N.º 1 Determine el conjunto de valores de K para que el siguiente sistema lineal en x e y admita al menos una solución. (K+3)x+Ky =5K 9 (K+4)x+(3K )y=k+1 A) ; 3; B) ; ; 3 3; C) ; ; D) ; ; 3 3; E) ; ; PREGUNTA N.º 13 Respecto al sistema de ecuaciones lineales en x, y, (1 l)x+y=c x ly=c x y=(1+l)c I. Si l =, el sistema tiene solución para todo c R. II. Si l=0, el sistema no tiene solución. III. Si l=1, el sistema tiene solución única para cada valor real de c. B) VFV C) VFF D) FVF E) VVF PREGUNTA N.º 14 En una granja de pollos se da una dieta para engordar con una composición mínima de 15 unidades de una sustancia A, y 0 unidades de una sustancia B. En el mercado solo se encuentran dos clases de compuestos: el tipo M con una composición de 1 unidad A y 5 unidades de B, y el tipo N con una composición de 5 unidades de A y 1 de B. UNI Matemática El precio del tipo M es de 1000 soles y el del tipo N es de 3000 soles. El dueño de la granja quiere saber qué cantidades se han de comprar de cada tipo para cubrir las necesidades con un costo mínimo. Si x: número de unidades del compuesto M que se compran y: número de unidades del compuesto N que se compran modele el problema que responda a la inquietud del dueño de la granja. A) mín(1000x y) sujeto a x + 5y 15 5x+y 0 B) mín(3000x +1000y) sujeto a x+5y 15 5x + y 0 C) mín(1000x y) sujeto a x + 5y 15 5x+y 0 D) mín(1000x y) sujeto a x+5y 0 5x+y 15 E) mín(3000x y) sujeto a x+5y 15 5x+y 0 3
4 UNI 018- PREGUNTA N.º 15 Sea M= x R x+ + x 3 0 x + 1 x 4 Cuántos números enteros hay en M C? A) 0 B) 1 C) D) 3 E) 4 PREGUNTA N.º 16 La ecuación cuadrática x +bx+c=0 tiene como conjunto solución ( -1; + 1), es el discriminante de la ecuación. Determine la suma de sus raíces. A) B) 4 C) 6 D) 8 E) 1 PREGUNTA N.º 17 El mayor rango de la función x { } A) 3; \ 5; 5 B) [-3; C) [-3; \{} D) [-; \{3} E) [-, \{1} PREGUNTA N.º x + 15 es x 5 Considere la siguiente función f: [0; 6] [-4; 4] cuya gráfica se muestra a continuación: Y X LUMBRERAS Editores I. f es biyectiva. II. f (x) -f (x) > 0 para todo x [0; 6]. III. g (x) = f (x) + f (x) es inyectiva. B) VVF C) VFF D) FFV E) FFF PREGUNTA N.º 19 Dado xyz = 1 4, calcule ( ) + ( ) + ( ) ( ) ( ) 4 4 xy+ z xy z xy z E= 6 6 xy+ z xyz A) 1 4 B) 1 C) 1 D) E) 4 PREGUNTA N.º 0 I. La función f (x) =4 x +4 x es monótona. II. La función g (x) =4 x 4 x posee en algún x 0 R su valor mínimo. III La función h (x) = x 3 x es una función impar. B) VVF C) VFV D) FVV E) FFF 4
5 Solucionario de Aptitud Académica y Humanidades Academia CÉSAR VALLEJO UNI Aptitud Académica y Humanidades PREGUNTA N.º 1 En un ángulo triedo isósceles una cara es recta y la medida del ángulo entre dichas caras y la arista opuesta es 45º. Calcule la medida de una de las caras congruentes. A) 30º B) 45º C) 60º D) arctan 3 E) arcos 1 3 PREGUNTA N.º Desde un punto O fuera del plano de un triángulo ABC, cuyo perímetro es p, se proyecta dicho triángulo ABC sobre un plano Q paralelo al plano del triángulo. Si A B C es el triángulo proyectado y AA =AO, entonces el perímetro del triángulo A B C es PREGUNTA N.º 4 Se tiene un tronco de cilindro circular meto con AB=8 cm como diámetro de la base, y generatrices AC > cm y BD= cm. La bisectriz del ángulo ACD corta a AD en E de tal forma que AE = Si AC +CD=18 cm, halle volumen (cm 3 ) del tronco de cilindro. A) 60π B) 70π C) 80π D) 90π E) 100π PREGUNTA N.º 5 Se tiene conos rectos de la misma altura h y bases del mismo radio R. Si el vértice de cada cono está en el centro de la base del otro cono, el volumen común (en u 3 ) a los conos es A) p B) p C) p D) 3p E) 4p A) πrh 4 D) πrh 1 B) πrh 6 C) E) πrh 8 πrh 13 PREGUNTA N.º 3 En el exterior de un poliedro convexo, se toma un punto, el cual se une con los vértices de la cara más próxima; este nuevo poliedro posee 16 aristas, su número de vértices es igual al número de caras, y el número de aristas excede en 4 a las del poliedro inicial. Determine el número de caras del poliedro inicial. A) 5 B) 6 C) 7 D) 8 E) 9 PREGUNTA N.º 6 Se tienen dos esferas concéntricas. Se traza un plano secante a la esfera mayor y tangente a la esfera menor, determinando un círculo de área 16π m. Calcule el área, en m, del casquete menor formado en la esfera mayor sabiendo que el radio de la esfera menor es 3 m. A) 16 π B) 18 π C) 0 p D) π E) 4 π 1
6 UNI 018- PREGUNTA N.º 7 Indique la alternativa correcta después de determinar si cada proposición es verdadera (V) o falsa (F), según el orden dado. I. Si las diagonales de un cuadrilátero se bisecan, entonces el cuadrilátero es un paralelogramo. II. Si las diagonales de un cuadrilátero son perpendiculares y congruentes, entonces el cuadrilátero es un cuadrado. III. Si las diagonales de un trapecio son congruentes, entonces el trapecio es isósceles. A) VVF B) VFF C) VFV D) FVF E) VVV LUMBRERAS Editores PREGUNTA N.º 30 En un triángulo rectángulo ABC recto en B, se ubican los puntos M y N, puntos medios de los lados AB y BC, respectivamente. En AC se ubican los puntos R y H, de modo que R AH. Sabiendo que el área de la región formada por el cuadrilátero RMNH es la mitad del área formada por la región triangular ABC, calcule RH/MN. A) 0,5 B) 0,50 C) 0,75 D) 1 E) 1,5 PREGUNTA N.º 8 Sean ABCD un cuadrado y AEF un triángulo equilátero, ambos inscritos en la misma circunferencia, de modo que AF y CD se intersecan en el punto I; ID= cm. Halle el radio de la circunferencia (en cm). A) - 6 B) + 6 C) + 6 D) 6 + E) 6 + PREGUNTA N.º 9 En la figura mostrada, determine PO (en cm), tal que PC es la bisectriz interior en el triángulo BPN; ms BNO=mS ROP; AP=4 cm y ON=3 cm. A R B C N P O A) B) 4 C) 6 D) 8 E) 10 PREGUNTA N.º 31 En una circunferencia, dos cuerdas paralelas miden cm y 6 cm. Si la distancia entre ellas es cm, calcule el radio (en cm) de dicha circunferencia. A) 3 B) 10 C) 3 D) 4 E) 3 PREGUNTA N.º 3 Un cuadrilátero ABCD está inscrito en una circunferencia; tiene por lados AB= 7a cm, BC=15a cm, CD=0a cm y AD=4a cm. Si M y N son puntos medios de las diagonales AC y BD, respectivament, y MN=15 cm, calcule el perímetro del cuadrilátero ABCD (en cm). A) 130 B) 13 C) 135 D) 140 E) 14
7 Solucionario de Aptitud Académica y Humanidades Academia CÉSAR VALLEJO UNI Aptitud Académica y Humanidades PREGUNTA N.º 33 La distribución diaria (en horas) de luz solar durante el año en Lima está dada por la función π ft ()= ( t ) sen t ; 0 365, 365 donde t es el número de días trascurridos desde el inicio del año. Determine en qué fecha del año se tiene la menor cantidad de luz. A) 9 de nov. B) 7 de nov. C) 4 de nov. D) 0 de nov. E) 15 de nov. PREGUNTA N.º 34 Resuelva la siguiente inecuación: 3x cos x+ 0 π π A) x + 3 ; π B) x + ; π C) x ; π D) x ; 3 5π E) x ; + 1 PREGUNTA N.º 35 Sea ABCD un cuadrilátero con AB=3 cm, BC=4 cm, CD= cm y AD=5 cm. Calcule el valor de E= 16 + cosb 5cosD. A) 1 B) 3/ C) D) 5/ E) 3 PREGUNTA N.º 36 ( ) Dado el punto P= 3 ;, determine las nuevas coordenadas del punto luego de que los ejes coordenados giran un ángulo de 30º en sentido antihorario. A) 3; 1 B) 3; 5 C) D) 3; ; 3 1 E) ; 4 PREGUNTA N.º 37 Dados dos ángulos, calcule la medida del menor ángulo en radianes si la diferencia de los cuatro tercios del número de grados sexagesimales de uno y los tres quintos del número de grados centesimales del otro es 0. Además, son complementarios. A) 4 7 π B) 4 9 π C) 9 π D) π 9 E) π 16 3
8 UNI 018- PREGUNTA N.º 38 En la circunferencia trigonométrica del gráfico mostrado si AM =, calcule la ordenada del punto P. P Y LUMBRERAS Editores PREGUNTA N.º 39 Si el ángulo q satisface sen(q)=1 - sen (q), calcule M= csc (q) - tan (q) A) 1 B) C) 3 D) E) 5 O q A X PREGUNTA N.º 40 Determine el conjunto solución de M 1 4 tan() 1 + tan() 6 > 0 para ππ ;. A) C) D) tan() tan() 1 cos() cos() 1 cos() 1 cos() B) E) tan() 1 tan() sen() sen() 1 A) arctan1 ()<< π B) arctan()<< 1 arctan() 3 ; arctan6 ()<< π C) arctan() < q < arctan(6) D) arctan(1) < q < arctan(); arctan6 ()<< π E) arctan6 ()<< π 4
Academia PITÁGORAS. Academia PITÁGORAS
MATEMÁTICA 0. Sean las clases de equivalencia de números racionales: a b, m n y r s Dadas las siguientes proposiciones: a m I. Si = Φ, entonces an= bm b n a m II. Si Φ, entonces b n n b ' m a a m r III.
cesar I preguntas y respuestas CREEMOS EN LA EXIGENCIA UNI Matemática Examen de admisión Pregunta N. o 1 Pregunta N. o 4 Pregunta N.
UNI Examen de admisión preguntas y respuestas 0 -I Matemática Pregunta N. o Indique la secuencia correcta después de determinar si cada proposición es verdadera (V) o falsa (F). I. En un conjunto de 4
CESAR VALLEJO CREEMOS EN LA EXIGENCIA MATEMÁTICA ACADEMIA. Pregunta N. o 1. Pregunta N. o 4. Pregunta N. o 2. Pregunta N. o 5. Pregunta N.
MTEMÁTI Pregunta N. o Determine la suma del número n más pequeño y del número N más grande cuatro cifras que sean divisibles por ; 3; 4; ; 7; y 4, simultáneamente a n y N. Pregunta N. o 4 Se tiene un terreno
2015 -II. preguntas y respuestas. Matemática. Pregunta N. o 1. Pregunta N. o 4. Pregunta N. o 2. Pregunta N. o 5. Pregunta N. o 3. Examen de admisión
05 -II Examen de admisión preguntas y respuestas Matemática Pregunta N. o Sea {x, y} R de modo que + = 3x y x + 3y 5x + y El valor de x + y es x y 9 Pregunta N. o Una raíz de ecuación x +mx (m+) es el
RESPUESTAS. Examen UNI 2014 I. MATEMÁTICA PARTE 1. Matemática
ESPUESTS Examen UNI 04 I Matemática MTEMÁTIC PTE Pregunta 0 Las notas obtenidas por tres postulantes acen un promedio de 5. La relación entre las notas del primero y el segundo es 4/5 y la relación entre
cesar Preguntas y respuestas 2016-II Examen de admisión CREEMOS EN LA EXIGENCIA Matemática ( ) = Pregunta N. o 1 Pregunta N. o 2 Pregunta N.
Matemática Examen de admisión 016-II Preguntas y respuestas Pregunta N. o 1 Señale la alternativa que presenta la secuencia correcta después de determinar si la proposición es verdadera (V) o falsa (F).
EJERCICIOS ÁREAS DE REGIONES PLANAS
EJERCICIOS ÁREAS DE REGIONES PLANAS 1. En un triángulo equilátero se inscribe una circunferencia de radio R y otra de radio r tangente a dos de los lados y a la primera circunferencia, hallar el área que
1. He escrito el No he escrito el He escrito el No he escrito el 4.
º Nivel. El número que está justamente entre 8 y 0 es 80 B) 0 C) 8 E) 80. Halla la suma de todos los primos comprendidos entre y 00 que verifiquen ser múltiplos de más y múltiplos de 5 menos. 8 B) 7 C)
RESPUESTAS. Examen UNI 2015 I. Matemática
RESPUESTAS Examen UNI 05 I Matemática Pregunta 0 Semanalmente, un trabajador ahorra cierta cantidad en soles, y durante 0 semanas ahorra las siguientes cantidades: 5 9 8 8 5 6 7 7 7 9 9 6 8 6 6 0 8 9 5
Preguntas propuestas. Aptitud Académica Matemática Cultura General Ciencias Naturales
reguntas propuestas 5 2015 ptitud cadémica atemática ultura General iencias aturales IVEL ÁSIO Geometría Áreas de regiones circulares ) p ) 2 π 1. En el gráfico mostrado, ==4. Halle el área de la región
( ), está dada por: g ( x) = log 2 ( x),x > 0. # % 3x log 2 ( 5), x 1 & + -, . log 2. log 2 ( x 3
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS CURSO DE NIVELACIÓN 05 S SEGUNDA EVALUACIÓN DE MATEMÁTICAS PARA INGENIERÍAS Y EDUCACIÓN
Preguntas propuestas. Semestral. Aptitud Académica Cultura General Matemática Ciencias Naturales
reguntas propuestas 1 Semestral UI 0 1 5 ptitud cadémica ultura General atemática iencias aturales IVEL ÁSIO riángulo ) 70º ) 60º E) 40º 1. el gráfico, calcule. 4. ado el gráfico, calcule a si m+n=10º.
TEMA 11: ÁREA Y FIGURAS GEOMÉTRICAS.
TEMA 11: ÁREA Y FIGURAS GEOMÉTRICAS. LOS POLÍGONOS El polígono es una porción del plano limitado por una línea poligonal cerrada. Un polígono se nombra con las letras mayúsculas situadas en los vértices.
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL EXAMEN DE UBICACIÓN DE MATEMÁTICAS CARRERAS DE INGENIERÍAS
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL EXAMEN DE UBICACIÓN DE MATEMÁTICAS CARRERAS DE INGENIERÍAS 00-0 Guayaquil, 8 de diciembre de 009 NOMBRE: No. DE CÉDULA DE IDENTIDAD: FIRMA: INSTRUCCIONES Escriba
PRUEBA DE MATEMÁTICA FACSÍMIL N 1
PRUEBA DE MATEMÁTICA FACSÍMIL N. A, B, C y D son números naturales tales que A > B, C > D, B < D y C < A. Cuál de las siguientes alternativas indica un orden creciente de estos números? A) A C D B B) B
2015 -I. preguntas y respuestas. Matemática. Pregunta N. o 1. Pregunta N. o 4. Pregunta N. o 2. Pregunta N. o 5. Pregunta N. o 3. Examen de admisión
05 -I Examen de admisión preguntas y respuestas Matemática Pregunta N. o Sea el número E= 00 + 00. alcule el residuo de dividir E entre 7. 0 Pregunta N. o uántos números de la forma (a )(b)(a ) son primos?
MATEMÁTICA N O 7. Santillana FASCÍCULO PSU N O 7 MATEMÁTICA. Santillana
FASCÍCULO PSU N O 7 MATEMÁTICA 1 1. al multiplicar (a ) 2 por a 6 se obtiene: A) a 11 B) a 12 C) a 6 D) a 4 2. Se tienen dos triángulos semejantes, luego: I. Tienen la misma forma II. Tiene sus lados respectivos
Repaso. Aptitud Académica Humanidades Matemática Ciencias Naturales
Repaso UNI 016 ptitud cadémica Humanidades atemática iencias Naturales Figuras planas NIVEL ÁSIO 1. En un triángulo, m =60º, m =40º, en la prolongación de y se ubican los puntos y N, respectivamente, tal
Docente: Aldo Salinas Encinas Página 1
1- Dada la polinomial Tal que ; considere distintos Determine el valor de A) 0 B) 1 C) 3 D) E) 7 2- Dada la Podemos afirmar que: I) Las 4 raíces son reales II) Posee 2 raíces imaginarias III) La suma de
MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes
MÓDULO Nº 3 Nivelación Matemática 2005 Módulo Nº3 Contenidos Polígonos Circunferencia y Círculo Volúmenes Nivelación Polígonos Polígono Regular: Son aquellos polígonos que tienen todos sus lados y ángulos
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL EXAMEN DE UBICACIÓN DE MATEMÁTICAS CARRERAS DE INGENIERÍAS
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL EXAMEN DE UBICACIÓN DE MATEMÁTICAS CARRERAS DE INGENIERÍAS 00-0 Guayaquil, 8 de diciembre de 009 NOMBRE: No. DE CÉDULA DE IDENTIDAD: FIRMA: INSTRUCCIONES Escriba
TORNEOS GEOMÉTRICOS 2016 Primera Ronda. Primer Nivel - 5º Año de Escolaridad
TORNEOS GEOMÉTRICOS 2016 Primera Ronda Primer Nivel - 5º Año de Escolaridad 1- En el triángulo rectángulo ABC cuyo ángulo en C mide 48º se trazan la bisectrices de los ángulos B y C, que se cortan en O.
TORNEOS GEOMÉTRICOS 2016 Segunda Ronda. Primer Nivel - 5º Año de Escolaridad. Apellido Nombres.. DNI Tu Escuela. Localidad Provincia
TORNEOS GEOMÉTRICOS 2016 Segunda Ronda Primer Nivel - 5º Año de Escolaridad justificar tus respuestas. hacerla cada participante. 1. Halla la suma de los ángulos marcados en el cuadrilátero inscripto en
27.- La diferencia entre el lado de un triangulo equilátero y su altura es 12 cm. Cuanto mide el perímetro del triangulo?
EJERCICIOS 1.- Calcular la altura a la hipotenusa de un triángulo rectángulo cuyos catetos miden 6 y 8 cm. 5 2.- En un triángulo rectángulo, un cateto mide 15 cm., y la proyección del otro sobre la hipotenusa
TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008
TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES Universidad de Antioquia Departamento de Matemáticas Septiembre 2008 1. Sea ABCD un rectángulo, E punto medio de, a) Calcular el área del rectángulo
3º - Matemática B La Blanqueada Nocturno Práctico Nº 6 - Repaso
3º - Matemática B La Blanqueada Nocturno Práctico Nº 6 - Repaso 1) Hallar los puntos de corte de la recta x+ y= 3 y la cfa: x 2 + y 2 = 5 2) Sea v= ( 1,2) tal que OB v. Halle el área del triángulo OBC
( ) 5 x [ ) [ ) VERSIÓN 0. cos ln e π. sgn 3
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS SEGUNDA EVALUACIÓN DE MATEMÁTICAS INGENIERÍAS GUAYAQUIL, AGOSTO 27 DE 2012 Nombre: Paralelo: VERSIÓN 0 INSTRUCCIONES Escriba sus
SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL C
XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA MEP ITCR UCR UNA UNED - MICIT SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL C 01 1. Un factor de la factorización completa de corresponde a mx y + 9y m x y x 4
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL EXAMEN DE UBICACIÓN DE MATEMÁTICAS CARRERAS DE INGENIERÍAS
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL EXAMEN DE UBICACIÓN DE MATEMÁTICAS CARRERAS DE INGENIERÍAS 0-0 Guaaquil, 7 de diciembre de 00 NOMBRE: No. DE CÉDULA DE IDENTIDAD: FIRMA: INSTRUCCIONES Escriba sus
EXAMEN A: Ejercicio nº 1.- Página 1 de 25 Indica el valor de los ángulos señalados en cada figura: Ejercicio nº 2.- La siguiente figura es una esfera de centro C y radio 3 unidades. Cómo definirías dicha
2. De acuerdo a lo determinado en el numeral anterior, alguno de los polígonos es simple?. Justifique su respuesta.
8.16 EJERCICIOS PROPUESTOS Temas: Poligonal. Polígonos. Cuadriláteros convexos. 1. En las figuras siguientes B está entre A y C; K, está entre S y M; D, H, V, T son colineales. O está entre P y Q y O está
TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia
TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS Universidad de Antioquia Profesor: Manuel J. Salazar J. 1. El producto de las medidas de las diagonales de un cuadrilátero inscrito es
4. Resolver un triángulo rectángulo e isósceles en el que la hipotenusa tiene 9 pies de longitud.
7 CAPÍTULO SIETE Ejercicios propuestos 7.5 Triángulos 1. Construya de ser posible los siguientes triángulos ABC. En caso de que existan, determine sus cuatro puntos característicos empleando regla y compás.
INECUACIONES Y VALOR ABSOLUTO
INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.
( ) { } < θ < 2π, entonces el valor de tan( 2θ ) es igual a: ! " ! x + π 2 " && dos funciones de! "!,
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS CURSO DE NIVELACIÓN 014 S SEGUNDA EVALUACIÓN DE MATEMÁTICAS PARA INGENIERÍAS Y EDUCACIÓN
Cuadriláteros - Áreas cuadrangulares
3A Cuadriláteros - Áreas cuadrangulares EJERCICIOS PROPUESTOS 1. En un rombo de lado 6 cm, uno de sus ángulos mide 60º. Calcula la longitud de la diagonal menor. A. 6 cm C. 4 cm B. 5 cm D. 3 cm. En un
UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA
C u r s o : Matemática Material N 18 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA GUÍA TEÓRICO PRÁCTICA Nº 15 SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando
8. POLÍGONOS Y FIGURAS CIRCULARES
8. POLÍGONOS Y FIGURAS CIRCULARES 1. Los ángulos del triángulo ABC de la siguiente gura miden: m A = 60 o, m B = 100 o. Prolongando AB tal que BD = BC, los ángulos del triángulo CBD miden: a) B 80 o, C
Temas para el curso 0 de matemáticas, Día Temas Fecha
Temas para el curso 0 de matemáticas, 004-05. 1. Números enteros y factores primos.. Matrices y determinantes ( y ).. Sistemas de ecuaciones lineales ( y ). 4. Coordenadas cartesianas en dos y tres dimensiones.
EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?
Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de
PRECÁLCULO -Décimo Año- III EXAMEN PARCIAL 2014
Universidad de Costa Rica Instituto Tecnológico de Costa Rica PRECÁLCULO -- III EXAMEN PARCIAL 014 Nombre: código: Colegio: Fórmula 1 Sábado 4 de octubre de 014 INSTRUCCIONES 1. El tiempo máximo para resolver
6. Sean dos funciones según sus respectivos dominios
1. Determine el valor de verdad de las siguientes afirmaciones: I.- Existen funciones que son pares e impares a la vez II.- Si es inyectiva Si A) VVV B) VFV C) FVF D) VFF FFV 2. Sea funciones reales de
EJERCICIOS PARA VERANO. MATEMÁTICAS I 1º BACH
Desarrollar los siguiente valores absolutos f(x) = x² + 5x 4 - x - 2 f(x) = x² -4x + 3 + x - 3 f(x) = x x f(x) = x / x Resolver las ecuaciones exponenciales: Resolver los sistemas de ecuaciones exponenciales:
PSU Nº h y k son dos números reales tales que hk > 0 y h < 0. Cuál de las siguientes expresiones representa un número negativo?
PSU Nº. h y k son dos números reales tales que hk > 0 y h < 0. uál de las siguientes expresiones representa un número negativo? k -h -(h + k) (h - k) Ninguna de las anteriores. uál de las siguientes expresiones
PARABOLA Y ELIPSE. 1. La ecuación general una parábola es: x y 40 = 0. Poner la ecuación en la forma: (x h) 2 = 4p (y k).
PARABOLA Y ELIPSE 1. La ecuación general una parábola es: x + 0y 40 = 0. Poner la ecuación en la forma: (x h) = 4p (y k). x = 0 (y ) (x ) = 0y x = 0 (y ) x = 0 (y + ) (x 40) = 0y. Hallar la ecuación de
Introducción a la geometría
Introducción a la geometría Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares. Plan de estudios (217 temas)
TORNEOS GEOMÉTRICOS 2016 Primera Ronda. Primer Nivel - 5º Año de Escolaridad. Apellido Nombres.. DNI Tu Escuela. Localidad Provincia
Primer Nivel - 5º Año de Escolaridad 1- En el triángulo rectángulo ABC cuyo ángulo en C mide 48º se trazan la bisectrices de los ángulos B y C, que se cortan en O. Calcula la medida de los ángulos del
( ) x p( x) d b ) a. 2) Dado el conjunto Re =! " y el predicado de una variable p( x): x = x
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS CURSO DE NIVELACIÓN 205 2S TERCERA EVALUACIÓN DE MATEMÁTICAS PARA INGENIERÍAS Y EDUCACIÓN
3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p
ilindro y tronco de cilindro 1. En el gráfico se muestra un cilindro recto de base circular, además, T es punto de contacto de la recta PT en la superficie cilíndrica. Si PT=15 y P=8, calcule la distancia
( ) { } < θ < 2π, entonces el valor de tan( 2θ ) es igual a: ! " ! x + π 2 " && dos funciones de! "!,
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS CURSO DE NIVELACIÓN 014 S SEGUNDA EVALUACIÓN DE MATEMÁTICAS PARA INGENIERÍAS Y EDUCACIÓN
Módulo 17. Capítulo 4: Cuadriláteros. 1. En las siguientes figuras (1 al 9) determine el valor de cada variable. Figura 1 Figura 2.
Módulo 17 1. En las siguientes figuras (1 al 9) determine el valor de cada variable. Figura 1 Figura 2 Figura 3 Figura 4 Figura 5 Figura 6 210 Capítulo 4: Cuadriláteros Figura 7 Figura 8 Figura 9 2. En
EVALUACION: 1ª CURSO: 1º B.C.T. FECHA: 8/11/13 EXAMEN: 1º. 1) Simplifica todo lo posible racionalizando los denominadores:
EVALUACION: 1ª CURSO: 1º B.C.T. FECHA: 8/11/13 EXAMEN: 1º 1) Simplifica todo lo posible racionalizando los denominadores: + 2) Simplifica todo lo posible la siguiente operación con fracciones algebraicas:
EXAMEN DE ADMISION 2008 GEOMETRÍA
EJÉRCITO DE CHILE COMANDO DE INSTITUTOS Y DOCTRINA Academia Politécnica Militar EXAMEN DE ADMISION 008 GEOMETRÍA 1. La distancia entre los puntos P1 (, -8) y P (3, 5) es: a) 13 b) 3 c) 3 d) 170 e) 170
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A xcos(x)+b sen(x) Ejercicio 1.- [2 5 puntos] Sabiendo que lím x 0 x 3 es finito, calcula b y el valor del límite. Ejercicio 2.- Sean f : R R y g : R R las funciones definidas mediante f(x) = x(x
1) El producto de dos naturales consecutivos equivale a la suma de esos números aumentada en 19. De ellos, cuál es el número mayor?
Escuela Conciente de Matemática GAUSS 550 1) El producto de dos naturales consecutivos equivale a la suma de esos números aumentada en 19. De ellos, cuál es el número mayor? A) 4 6 10 0 ) Considere el
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A Ejercicio 1.- [2 5 puntos] Halla las dimensiones del rectángulo de área máxima inscrito en un triángulo isósceles de 6 metros de base (el lado desigual) y 4 metros de alto. Ejercicio 2.- Sean
Esta prueba contiene 70 preguntas, divididas en las siguientes secciones:
MATEMÁTICA FACSÍMIL Esta prueba contiene 70 preguntas, divididas en las siguientes secciones: Números y proporcionalidad. Álgebra y funciones. Geometría. Estadística y probabilidades. Ejercicios de selección
Ejercicios 17/18 Lección 5. Geometría. 1. como combinación lineal de u = (2,5), expresa uno de ellos como combinación lineal de los otros dos.
Ejercicios 17/18 Lección 5. Geometría. 1 1. Expresa el vector u = ( 3, 1) como combinación lineal de los vectores v = ( 3, ) w = ( 4, 1). y. Expresa w = (4, 6) como combinación lineal de u = (,5) y v =
GEOMETRÍA ANALÍTICA PARA LA CLASE. A (x 2 ;y 2 ) y 2. d(a,b) y 2 y 1. x 1 x 2. y 1. B (x 1 ;y 1 ) x 2. Geometría Analítica DISTANCIA ENTRE DOS PUNTOS
GEOMETRÍA ANALÍTICA La Geometría Analítica hace uso del Álgebra y la Geometría plana. Con ella expresamos y resolvemos fácilmente problemas geométricos de forma algebraica, siendo los sistemas de coordenadas
Geometría. 5. Seas ABCD un cuadrilátero convexo, donde. 6. El triángulo ABC es rectángulo en A. Sea M el
Cuadrilátero inscrito e inscriptible 1. En un cuadrilátero inscriptible CD, =C=a y CD=b. Si D=a+b, calcule la m CD. ) 5º ) 60º C) 90º D) 10º E) 105º. Dado un triángulo equilátero C de centroide G, se ubica
Primer Nivel. Solución: Por los valores de los lados del triángulo, éste debe ser un triángulo rectángulo, y en consecuencia su área es (3 4 ) 6
Primer Nivel Problema 1- Los lados de un cuadrado de área 4cm se han dividido en cuatro partes iguales. Halla el área del cuadrado sombreado. Solución: Trazando los segmentos adicionales indicados en la
PROYECTO MATEM MA-0125 MATEMÁTICA ELEMENTAL UNDÉCIMO AÑO PLANEAMIENTO ANUAL
Universidad de Costa Rica Escuela de Matemática Proyecto MATEM http://matem.emate.ucr.ac.cr/ tel. (506) 2511-4528 PROYECTO MATEM MA-0125 MATEMÁTICA ELEMENTAL UNDÉCIMO AÑO PLANEAMIENTO ANUAL 2014 ÁLGEBRA
SOLUCIONES PRIMER NIVEL
SOLUCIONES PRIMER NIVEL 1. Los cuatro polígonos de la figura son regulares. Halla los valores de los tres ángulos, de vértice A limitados por dos lados de los polígonos dados, indicados en la figura. Solución:
Ejercicios 16/17 Lección 5. Geometría. 1. como combinación lineal de u = (2,5), expresa uno de ellos como combinación lineal de los otros dos.
Ejercicios 16/17 Lección 5. Geometría. 1 1. Expresa el vector u = ( 3, 1) como combinación lineal de los vectores v = ( 3, ) w = ( 4, 1). y. Expresa w = (4, 6) como combinación lineal de u = (,5) y v =
1 Si los puntos ( 6, 2), ( 2, 6) y (2, 2) son vértices de un cuadrado, cuál es el cuarto vértice?
Pág. 1 Puntos 1 Si los puntos ( 6, 2), ( 2, 6) y (2, 2) son vértices de un cuadrado, cuál es el cuarto vértice? 2 Los puntos ( 2, 3), (1, 2) y ( 2, 1) son vértices de un rombo. Cuáles son las coordenadas
TEOREMAS, POSTULADOS Y COROLARIOS DE GEOMETRIA
UNIVERSIDAD PEDAGÓGICA NACIONAL FRANCISCO MORAZÁN CENTRO UNIVERSITARIO REGIONAL DE LA CEIBA COMITÉ NACIONAL DE OLIMPIADAS MATEMÁTICAS DE HONDURAS ACADEMIA TALENTOS MATEMÁTICOS DE ATLÁNTIDA TEOREMAS, POSTULADOS
Vectores equipolentes. Dos vectores son equipolentes cuando tienen igual módulo, dirección y sentido.
TEMA 9: GEOMETRIA ANALÍTICA VECTORES EN EL PLANO Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). Si las coordenadas de A son (x1, y1) y las de B, (X, y), las
( ) + cos 2 ( 2x) = 2, x! ( ( )) = 8 ( ) { } P( D) ( ) = 9. a) # b) # c) # d) # { }. Identifique la proposición FALSA: logπ $ ' = 2 r : sen 2 2x
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS CURSO DE NIVELACIÓN 04 S TERCERA EVALUACIÓN DE MATEMÁTICAS PARA INGENIERÍAS Y EDUCACIÓN
TORNEOS GEOMÉTRICOS 2016 Segunda Ronda. Soluciones 1º Nivel
TORNEOS GEOMÉTRICOS 2016 Segunda Ronda Soluciones 1º Nivel 1. Halla la suma de los ángulos marcados en el cuadrilátero inscripto en la circunferencia, como indica la figura. Solución: Por la propiedad
Segunda Tarea de Geometría Moderna I. Repaso de Geometría
Segunda Tarea de Geometría Moderna I Repaso de Geometría 1. La siguiente construcción data de la época de los Griegos y es un procedimiento para encontrar geométricamente lo que en términos modernos son
FICHA DE TRABAJO Nº 18
FICHA DE TRABAJO Nº 18 Nombre Nº orden Bimestre IV 3ºgrado - sección A B C D Ciclo III Fecha: - 11-12 Área Matemática Tema TRIÁNGULOS II: Líneas y Puntos Notables LINEAS y PUNTOS NOTABLES EN EL TRIANGULO
IDEAS PREVIAS. 1. Planos paralelos. 2.Planos perpendiculares
IDEAS PREVIAS 1. Planos paralelos..planos perpendiculares .Planos oblicuos. CUERPO GEOMÉTRICO Un Sólido o Cuerpo Geométrico es una figura geométrica de tres dimensiones (largo, ancho y alto), que ocupa
*SIMETRAL DE UN TRAZO.: perpendicular en el punto medio.
*DISTANCIA ENTRE DOS PUNTOS EN EL PLANO: P(x a, y b ). Q(x a, y b ) 2 b + ya yb d= ( ) ( ) 2 x a x *SIMETRAL DE UN TRAZO.: perpendicular en el punto medio. *ALTURA: perpendicular bajada del vértice al
= λ + 1 y el punto A(0, 7, 5)
94 GEOMETRÍA ANALÍTICA DEL ESPACIO en las PAU de Asturias Dados los puntos A(1, 0, 1), B(l, 1, 1) y C(l, 6, a), se pide: a) hallar para qué valores del parámetro a están alineados b) hallar si existen
Lados. Posee 4 lados que son representados por los segmentos: AB, Vértice. Posee 4 vértices, a saber: A, Lados opuestos. Son los lados no adyacentes:
Identificación de las propiedades de los cuadriláteros Cuadrilátero. Es un polígono de cuatro lados. Se le representa con sus cuatro vértices. Características Dado este cuadrilátero ABCD, se tiene: Clasificación.
GEOMETRÍA CUADRILÁTEROS. DEFINICIÓN: Es un polígono de cuatro lados. Considerando su interior puede ser convexo o no convexo.
MISIÓN 011-II URILÁTEROS GEOMETRÍ URILÁTEROS EFINIIÓN: Es un polígono de cuatro lados. onsiderando su interior puede ser convexo o no convexo. uadrilátero convexo uadrilátero no convexo EFINIIONES: En
Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid
Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos
Geometría. Ángulos. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid
Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos
P RACTICA. 1 Si los puntos ( 6, 2), ( 2, 6) y (2, 2) son vértices de un cuadrado, cuál es el cuarto vértice?
P RACTICA Puntos Si los puntos 6 ) 6) y ) son vértices de un cuadrado cuál es el cuarto vértice? 6) 6 ) ) P ) P Los puntos ) ) y ) son vértices de un rombo. Cuáles son las coordenadas del cuarto vértice?
MATEMÁTICA N O 4. Santillana FASCÍCULO PSU N O 4 MATEMÁTICA. Santillana
FASCÍCULO PSU N O 4 MATEMÁTICA 1 1. En la figura, AD BC ; AB = 8cm y la medida del ángulo DCB es ε entonces BC mide: D A) 8 cos ε B) 8 sen ε C C) 8 tg ε D) 4 sen ε E) 4 tg ε ε 2. El término que sigue en
Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6
página 1/13 Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 Hoja 1 1. Dado el segmento de extremos A( 7,3) y B(5,11), halla la ecuación de su mediatriz. 2. Halla la distancia del punto
Matemática 3 Colegio N 11 B. Juárez
Unidad 4: RAZONES Y PROPORCIONES Definición de RAZÓN: Se denomina razón entre dos números racionales a y b, al cociente (división) entre ambos, siendo b distinto de 0. a se denomina antecedente Ejemplo
5to Parcial de Geometría Euclidiana. 2) Sea p un polígono tal que se puede descomponer en n polígonos simples
5to Parcial de Geometría Euclidiana AREAS y VOLUMENES Definición 55 (Área) Se define el área como una función A definida del conjunto de todos los polígonos P en R + (A : P R + ), con las siguientes propiedades:
donde n es el numero de lados. n APOTEMA: Es la altura de un triangulo formado por el centro del polígono regular y dos vértices consecutivos.
Polígonos regulares 1 POLIGONOS REGULARES DEFINICION: Un polígono regular es el que tiene todos sus lados y sus ángulos congruentes. DEFINICION: Un polígono esta inscrito en una circunferencia si sus vértices
Semejanza. Razones. Teorema de Thales. Proporciones. a = b. c d
Semejanza Razones Razones y proporciones Teorema de Thales Triángulos semejantes Teoremas de semejanza Teoremas de Euclides Perímetro y Área a) Razón. Es el cuociente entre dos números (positivos). b)
( ). ( ) 2,!!! 1< x 0. ( ) = ex 2 1,!!!x 2. ln x +1. &%!!!!!!!!x 2,!!!!!!!!x > 2. &%!!!!!!!!x 2,!!!!!!!!!!!!!!!!x > 0 ln( x 1) + 2,!!!x 2.
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS CURSO DE NIVELACIÓN 2014 1S SEGUNDA EVALUACIÓN DE MATEMÁTICAS PARA CIENCIAS, INGENIERÍAS
PRIMERA ELIMINATORIA NACIONAL
XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA MEP ITCR UCR UNA UNED - MICIT PRIMERA ELIMINATORIA NACIONAL NIVEL C 01 Estimado ( estudiante: La Comisión de las Olimpiadas Costarricenses de Matemática 01 le
Elementos del cilindro
Definición de cilindro Un cilindro es un cuerpo geométrico engendrado por un rectángulo que gira alrededor de uno de sus lados. Desarrollo del cilindro Elementos del cilindro Eje Es el lado fijo alrededor
MATEMÁTICAS 1º BACHILLERATO INTERNACIONAL NIVEL MEDIO Serie: Trigonometría
MATEMÁTICAS 1º BACHILLERATO INTERNACIONAL NIVEL MEDIO Serie: Trigonometría Salvo indicación contraria, las soluciones se redondearán con tres cifras significativas 1. El diagrama muestra un círculo de
Soluciones Primer Nivel
Soluciones Primer Nivel Torneos Geométricos 2017 2º Ronda 1. En un papel cuadriculado con cuadrados de un centímetro de lado, se ha dibujado un cuadrilátero con vértices en los nodos del mismo (vértices
Un punto divide a una recta en dos semirrectas. Ese punto es el origen de ambas semirrectas.
Una línea recta es una línea que no tiene principio ni fin. Una semirrecta es una línea que tiene principio pero no tiene final. o Un punto divide a una recta en dos semirrectas. Ese punto es el origen
( ) = ( 2 1) + ( 6 2 ) ( ) RESOLUCIÓN RERESOLUCIÓN RESOLUCIÓN SEMANA 5 GEOMETRÍA ANALÍTICA. d AC d = 5 2L = 25 L = RPTA.:C RPTA.
SEMANA 5 GEOMETRÍA ANALÍTICA. Sean: A (-;5; B (;- y C (0;b; puntos del plano. Si d (A, B d (B,C, Halle el valor de b, si es negativo. A - B -5 C -7 D -8 E -9 RE ( ( 5 ( 0 ( + + + b + b ± 5 donde: b b 7
{ } ( ) : x y 2 = 8. ( ) es igual a: { } y Re y = 0,1,2,3,4,5. = { 3, 2, 1,0,1,2,3 } ; y, el
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS CURSO DE NIVELACIÓN 015 1S TERCERA EVALUACIÓN DE MATEMÁTICAS PARA INGENIERÍAS Y EDUCACIÓN
