Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP. Universidad de Santiago de Chile. Funciones I

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP. Universidad de Santiago de Chile. Funciones I"

Transcripción

1 Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Funciones I Una función es una relación que se propone modelar matemáticamente una serie de fenómenos en los que una cantidad depende de otra, como estas cantidades no son fijas, reciben el nombre de variables. Es por esto que los nombres que reciben las componentes de una función son variable independiente y variable dependiente y se anotan como x e y, respectivamente. En términos simples, una función, a través del álgebra y operatoria, caracteriza la relación de dos conjuntos numéricos. De manera más formal, podemos definir función como lo siguiente: Definición : Una función f es un conjunto de pares ordenados que satisface la propiedad : (x,y),(x,y ) f = y = y Esta definición nos garantiza que para cada elemento de la primera componente del par ordenado, existe un único elemento en la segunda componente que le corresponde. Dominio y Recorrido Dominio de una función Se llama dominio de la función f al conjunto: Dom(f) := {x : y,(x,y) f} En palabras más simples, el dominio de una función es el conjunto de los valores para los cuales la función está definida. Ejemplo: Sea f(x) = 5x, determine el dominio de la función f. x 1 Analizando la definición, se tiene que para el único valor en que la función se indefine(donde el denominador se hace cero), es en x = 1, por lo tanto, este valor se descarta del conjunto del dominio. Luego, el dominio de la función f es el siguiente: Dom(f) = R {1} Material creado por word el área de Matemática PAIEP-revisado 10/07 1

2 Recorrido de una función Se llama recorrido de la función f al conjunto: Rec(f) := {y : x,(x,y) f} Podemos decir que el recorrido es el conjunto que contiene a los valores que efectivamente toma la variable dependiente. Ejemplo: Sea f(x) = (x 1) 2, determine el recorrido de la función f. Si se reemplaza x por cualquier número real, se podría llegar a concluir que no existe ninguna restricción en el dominio para f y por tanto, de todos los valores para los que f podría llegar en R, la función sólo toma el cero y todos los reales positivos, por lo que se tiene: Rec(f) = R + {0} Cuando no es evidente la obtención del recorrido de una función, una forma de obtener el recorrido es despejando la variable independiente y observar cuales son las restricciones para la variable dependiente (igualando f(x) = y y despejando x), una vez que se encuentran estas restricciones, se comprueba si existen puntos en el dominio que tengan esa imagen, ya que si no forman parte de las imágenes, se hace innecesario el descarte de este valor. Suma de funciones Operatoria de funciones Sean f y g dos funciones reales de variable real definidas en un mismo intervalo. Se llama suma de ambas funciones, y se representa por f +g, a la función definida por: Ejemplo: Sea f(x) = (f +g)(x) = f(x)+g(x) ( x+ 3 2 ( ) 1 y g(x) = 2) 2 x 5, realice la operación (f +g)(x) (f +g)(x) = f(x)+g(x) ( = x+ 2) 3 2 ( ( )) x 5 ( = x 2 +3x+ 9 ) + ( 12 ) 4 x+5 = x 2 +3x x+5 = x x+ 2 4 Resta de funciones Del mismo modo que se ha definido la suma de funciones, se define la resta de dos funciones reales de variable real f y g, y definidas en los mismos intervalos, como la función: (f g)(x) = f(x) g(x) Material creado por word el área de Matemática PAIEP-revisado 10/07 2

3 Ejemplo: Sea f(x) = 5(8x 3 +1) y g(x) = 6x 2 5, realice la operación (f g)(x) (f g)(x) = f(x) g(x) = (5(8x 3 +1)) (6x 2 5) = (40x 3 +5) (6x 2 5) = 40x x 2 +5 = 40x 3 6x 2 +10; factorizando = 2(20x 3 3x 2 +5) Producto de funciones Sean f y g dos funciones reales de variable real definidas en un mismo intervalo. Se llama producto de ambas funciones, y se representa por f g, a la función definida por: (f g)(g) := f(x) g(x) Ejemplo: Sea f(x) = x 5 y g(x) = 7x 2, realice la operación (f g)(x) 4 (f g)(x) = f(x) g(x) ( x ) = 4 5 (7x 2) = x 4 7x x x+5 2 = 7x2 4 x 2 35x+10 = 7 4 x x+10 Cociente de funciones Dadas dos funciones reales de variable real, f y g, y definidas en un mismo intervalo, se llama función cociente de f y g a la función definida por: (x) = f(x) g g(x) Es importante destacar que la función f g (x) está definida en todos los puntos en los que la función g no se anula, por lo tanto, hay que restringir del dominio estos puntos. Material creado por word el área de Matemática PAIEP-revisado 10/07 3

4 Ejemplo: Sea f(x) = ( 3x 3 +9x 2) y g(x) = x 2 +6x+9, realice la operación (x) = f(x) g g(x) = ( 3x 3 +9x 2) x 2 +6x+9 = 3x2 (x+3) (x+3) 2 = 3x2 (x+3) (x) g Tal como se dijo anteriormente, la función resultante de este cociente está definida para aquellos valores de x en que g no se anula, en este caso, g se anula cuando x = 3, luego, este punto es una restricción en el dominio de la función cociente. Material creado por word el área de Matemática PAIEP-revisado 10/07 4

5 Ejercicios Propuestos Realice las siguientes operaciones con funciones, expresando el resultado de la forma más simple posible. 1. Encuentre el dominio y recorrido de la función f(x) = 2x 3 (6x 5) 2 2. Encuentre el dominio y recorrido de la función f(x) = 3x 9x Sea f(x) = x2 +14x+48 x 2 +4x 21 y g(x) = x2 +4x 32 x 2 +3x 28, calcule de la función resultante (x) y determine el dominio y recorrido g 4. Dadas las funciones f(x) = x 3 +2x 2 1, g(x) = 2x y h(x) = 3x 2 2 Calcule (f g)(x) h(x) 5. Sean f(x) = 7x 4 3x 3 +5 y g(x) = x 4 3x 3 +2, Calcule (f+g)(x) y determine el dominio y recorrido de la función resultante 6. Dadas f(x) = 4x2 5 3 y g(x) = 5 21x2, Calcule (f g)(x) y determine su dominio y recorrido 5 Material creado por word el área de Matemática PAIEP-revisado 10/07 5

6 7. Sea f(x) = 5x x y g(x) = 42x2,Calcule (f g(x)) 3 Material creado por word el área de Matemática PAIEP-revisado 10/07 6

Dominio, Recorrido y Álgebra de Funciones Semana del Lunes 05 al Jueves 08 de Mayo

Dominio, Recorrido y Álgebra de Funciones Semana del Lunes 05 al Jueves 08 de Mayo UNIVERSIDAD DE CHILE Facultad de Ciencias Departamento de Matemáticas MC-140 Matemáticas I Ayudantías 07 A y 07 B Dominio, Recorrido y Álgebra de Funciones Semana del Lunes 05 al Jueves 08 de Mayo 1. Para

Más detalles

3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función

3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función TEMA 3 FUNCIONES 3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función Una función es una relación establecida entre dos variables que asocia a cada valor de la primera variable

Más detalles

Introducción a las Funciones

Introducción a las Funciones PreUnAB Clase # 12 Agosto 2014 Concepto general de función En matemática el concepto de función se refiere a una regla f que asigna a cada elemento de un primer conjunto de partida A, un único elemento

Más detalles

Tutorial MT-b15. Matemática 2006. Tutorial Nivel Básico. Relaciones y Funciones

Tutorial MT-b15. Matemática 2006. Tutorial Nivel Básico. Relaciones y Funciones 134567890134567890 M ate m ática Tutorial MT-b15 Matemática 006 Tutorial Nivel Básico Relaciones y Funciones Matemática 006 Tutorial Relaciones y Funciones Marco teórico: 1. Producto cartesiano: El producto

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 7 Funciones reales de una variable real Elaborado por la Profesora Doctora

Más detalles

Un Apunte de Funciones "Introducción al Cálculo Dif. e Int."

Un Apunte de Funciones Introducción al Cálculo Dif. e Int. Un Apunte de Funciones "Introducción al Cálculo Dif. e Int." Las funciones son relaciones, las cuales, lo que hacen es tomar un elemento de un conjunto de partida (dominio) y transformarlo en otra cosa,

Más detalles

Mó duló 09: Funciónes

Mó duló 09: Funciónes INTERNADO MATEMÁTICA 2016 Guía del estudiante Mó duló 09: Funciónes Objetivo: Conocer el concepto de función, sus diversas representaciones y aplicaciones. Qué es una función? Es una regla f que asigna

Más detalles

Ejercicio 3: -Realiza las siguientes operaciones, y después, calcula el dominio resultante. Grupo F7

Ejercicio 3: -Realiza las siguientes operaciones, y después, calcula el dominio resultante. Grupo F7 Ejercicio 3: -Realiza las siguientes operaciones, y después, calcula el dominio resultante. Grupo F7 Apartado A Sabiendo que f(x)= 3x+3 y g(x)= x^2-7 la operación f(x)+g(x) consiste en sumar los miembros

Más detalles

Unidad 5 Estudio gráfico de funciones

Unidad 5 Estudio gráfico de funciones Unidad 5 Estudio gráfico de funciones PÁGINA 84 SOLUCIONES Representar puntos en un eje de coordenadas. 43 Evaluar un polinomio. a) P(-1) = 1 + + 1 1 = 3 b) P(0) = -1 c) P(-) = 8 + 8 + 1 = 17 d) P(1) =

Más detalles

Operaciones con Funciones

Operaciones con Funciones Carlos A. Rivera-Morales Precálculo I Tabla de Contenido Contenido : Contenido Discutiremos: suma, resta, multiplicación y división de funciones : Contenido Discutiremos: suma, resta, multiplicación y

Más detalles

Funciones y sus gráficas

Funciones y sus gráficas Funciones y sus gráficas El concepto de función es de suma importancia en la matemática moderna, debido a esto vamos a estudiar este tema de una manera un poco detallada. Dos conjuntos de números, por

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP. Universidad de Santiago de Chile. Polinomios

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP. Universidad de Santiago de Chile. Polinomios Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Polinomios Definición: P es un polinomio en el conjunto de los números reales si y sólo si P es una función de

Más detalles

3. OPERACIONES CON FUNCIONES.

3. OPERACIONES CON FUNCIONES. 3. OPERACIONES CON FUNCIONES. Las operaciones de suma, resta, multiplicación y división entre funciones son posibles y semejantes a las correspondientes efectuadas con los números. En esta sección definiremos

Más detalles

JOSE VICENTE CONTRERAS JULIO CALCULO INTEGRAL LA ANTIDERIVADA

JOSE VICENTE CONTRERAS JULIO CALCULO INTEGRAL LA ANTIDERIVADA CALCULO INTEGRAL LA ANTIDERIVADA Así como las operaciones matemáticas de la adición, la multiplicación y la potenciación tienen sus inversas en la sustracción, la división y la radicación, la diferenciación

Más detalles

1. Definición 2. Operaciones con funciones

1. Definición 2. Operaciones con funciones 1. Definición 2. Operaciones con funciones 3. Estudio de una función: Suma y diferencia Producto Cociente Composición de funciones Función reciproca (inversa) Dominio Recorrido Puntos de corte Signo de

Más detalles

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado

Más detalles

3FUNCIONES LOGARÍTMICAS

3FUNCIONES LOGARÍTMICAS 3FUNCIONES LOGARÍTMICAS Problema 1 Si un cierto día, la temperatura es de 28, y hay mucha humedad, es frecuente escuchar que la sensación térmica es de, por ejemplo, 32. La sensación térmica depende de

Más detalles

5 Ecuaciones lineales y conceptos elementales de funciones

5 Ecuaciones lineales y conceptos elementales de funciones Programa Inmersión, Verano 206 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 300 y MATE 3023 Clase #6: martes, 7 de junio de 206. 5 Ecuaciones lineales y conceptos elementales

Más detalles

FUNCIÓN CUADRÁTICA. Los gráficos de as funciones cuadráticas tienen siempre un eje de simetría vertical. En este caso coincide con el eje y.

FUNCIÓN CUADRÁTICA. Los gráficos de as funciones cuadráticas tienen siempre un eje de simetría vertical. En este caso coincide con el eje y. FUNCIÓN CUADRÁTICA 5º AÑO 013 PROF. RUHL, CLAUDIA FUNCIÓN CUADRÁTICA BATÁN, ROMINA FORMA CANÓNICA FORMA POLINÓMICA FORMA FACTORIZADA Y = a. ( x h ) + k Y = a. x + b. x + c y = a. ( x x1 ). ( x x FORMA

Más detalles

8LÍMITES Y DERIVADAS. Problema 1. Problema 2. Problema 3

8LÍMITES Y DERIVADAS. Problema 1. Problema 2. Problema 3 CONTENIDOS Límite y asíntotas Cálculo de límites Continuidad Derivadas Estudio de funciones Problemas de optimización Varias de las características de diferentes tipos de funciones ya han sido estudiadas

Más detalles

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA Funciones José R. Jiménez F. Temas de pre-cálculo I ciclo 007 Funciones 1 Índice 1. Funciones 3 1.1. Introducción...................................

Más detalles

EL MÉTODO DE LA BISECCIÓN

EL MÉTODO DE LA BISECCIÓN EL MÉTODO DE LA BISECCIÓN Teorema de Bolzano Sea f : [a, b] IR IR una función continua en [a, b] tal que f(a) f(b) < 0, es decir, que tiene distinto signo en a y en b. Entonces, existe c (a, b) tal que

Más detalles

Tema 5: Funciones. Tema 5: Funciones. Funciones reales de variable real. Dominio y recorrido. Crecimiento. Concavidad. Extremos.

Tema 5: Funciones. Tema 5: Funciones. Funciones reales de variable real. Dominio y recorrido. Crecimiento. Concavidad. Extremos. Tema 5: Funciones Gráfica Enunciado Fórmula Tabla Composición de funciones Función inversa Traslaciones Simetrías se expresan mediante operaciones Funciones reales se clasifican en características Algebraicas

Más detalles

Límites y Continuidad de funciones

Límites y Continuidad de funciones CAPITULO Límites y Continuidad de funciones Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr)

Más detalles

ANÁLISIS DE FUNCIONES RACIONALES

ANÁLISIS DE FUNCIONES RACIONALES ANÁLISIS DE FUNCIONES RACIONALES ( x 9) Dada la función f( x) = x 4 DETERMINE: Dominio, asíntotas, intervalos de crecimiento, intervalos de concavidad, extremos relativos y puntos de inflexión, representar

Más detalles

3. RELACIONES Y FUNCIONES 41 3.1. DEFINICIÓN Y EJEMPLOS... 41 3.2. DOMINIO, RECORRIDO Y RELACIÓN INVERSA... 42 3.3. COMPOSICIÓN DE RELACIONES...

3. RELACIONES Y FUNCIONES 41 3.1. DEFINICIÓN Y EJEMPLOS... 41 3.2. DOMINIO, RECORRIDO Y RELACIÓN INVERSA... 42 3.3. COMPOSICIÓN DE RELACIONES... ÍNDICE 3. RELACIONES Y FUNCIONES 41 3.1. DEFINICIÓN Y EJEMPLOS......................... 41 3.2. DOMINIO, RECORRIDO Y RELACIÓN INVERSA............ 42 3.3. COMPOSICIÓN DE RELACIONES.....................

Más detalles

RELACIONES Y FUNCIONES

RELACIONES Y FUNCIONES RELACIONES Y FUNCIONES 1.1. DEFINICIÓN Y EJEMPLOS Definición 1.1.1. Sean A, B conjuntos, definimos el par ordenado A coma B, denotado (A, B) como el conjunto (A, B) = {{A}, {A, B}}. Observación 1.1.1.

Más detalles

FUNCIÓN REAL DE VARIABLE REAL

FUNCIÓN REAL DE VARIABLE REAL Ejercicios de Repaso 2 de mayo de 2011 Ejercicio Halla el dominio de las siguientes funciones. (a) 7 x 2 5 (b) 1 x 3 +1 (c) x 1 x 4 3x 2 4 (d) x3 6x 2 +4x+8 x 3 x 2 9x+9 (g) 1 3 x (j) ln(x) 1 (e) x2 4

Más detalles

Halla dominio e imagen de las funciones

Halla dominio e imagen de las funciones Tema 1 Las Funciones y sus Gráficas Ejercicios Resueltos Ejercicio 1 Halla dominio e imagen de las funciones y Como no está definido si, es decir, si El recorrido o imagen será el conjunto de todos los

Más detalles

Apuntes de cálculo diferencial en una y varias variables reales. Eduardo Liz Marzán

Apuntes de cálculo diferencial en una y varias variables reales. Eduardo Liz Marzán Apuntes de cálculo diferencial en una y varias variables reales Eduardo Liz Marzán Diciembre de 2013 Índice general 1 Preliminares 1 11 Introducción 1 12 La relación de orden en el conjunto de los números

Más detalles

1. Encontrar el dominio de la función racional. 2. Encontrar los interceptos con x y y de la función racional.

1. Encontrar el dominio de la función racional. 2. Encontrar los interceptos con x y y de la función racional. 1. Encontrar el dominio de la función racional. h(x) x 2 3x 1 (x 2 4)(x 2 + 11x + 24) Para encontrar el dominio de una función racional debemos encontrar los valores de la variable que hacen cero el denominador.

Más detalles

1. Funciones de varias variables

1. Funciones de varias variables Análisis Matemático II. Curso 2008/2009. Diplomatura en Estadística/Ing. Téc. en Inf. de Gestión. Universidad de Jaén TEMA 2: CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES 1. Funciones de varias variables

Más detalles

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula: 1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el

Más detalles

FUNCIONES. Funciones. Qué es una función? Indicadores. Contenido

FUNCIONES. Funciones. Qué es una función? Indicadores. Contenido Indicadores FUNCIONES Calcula el valor de incógnitas usando la definición de función. Determina valores de la variable dependiente a partir de valores dados a la variable independiente. Determina los puntos

Más detalles

TEMA 3: CONTINUIDAD DE FUNCIONES

TEMA 3: CONTINUIDAD DE FUNCIONES TEMA 3: CONTINUIDAD DE FUNCIONES. Valor Absoluto Trabajaremos en el campo de los números reales, R. Para el estudio de las propiedades de las funciones necesitamos el concepto de valor absoluto de un número

Más detalles

LÍMITES DE FUNCIONES Y DE SUCESIONES

LÍMITES DE FUNCIONES Y DE SUCESIONES LÍMITES DE FUNCIONES Y DE SUCESIONES Índice: 1.Funciones reales de variable real-------------------------------------------------------------- 1 2. Límite finito de una función en un punto.---------------------------------------------------

Más detalles

Una función es una relación entre dos conjuntos de tal manera que para cada elemento del primer conjunto corresponde un solo elemento del segundo

Una función es una relación entre dos conjuntos de tal manera que para cada elemento del primer conjunto corresponde un solo elemento del segundo Una función es una relación entre dos conjuntos de tal manera que para cada elemento del primer conjunto corresponde un solo elemento del segundo conjunto. Ejemplos reales de relaciones que envuelven funciones:

Más detalles

Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1

Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 TEMA 4 - FUNCIONES ELEMENTALES 4.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : Una función real de variable real es una aplicación de un subconjunto

Más detalles

Teoría Tema 1 Inecuaciones

Teoría Tema 1 Inecuaciones página 1/7 Teoría Tema 1 Inecuaciones Índice de contenido Qué es una inecuación?...2 Inecuaciones de primer grado...3 Sistemas de inecuaciones con una incógnita...4 Inecuaciones de segundo grado...5 Inecuaciones

Más detalles

1 Sucesiones de números reales

1 Sucesiones de números reales 1 Sucesiones de números reales 1.1 Números reales En el conjunto de los números reales tenemos definidas dos operaciones binarias, suma y producto, y una relación de orden (a, b) a + b (a, b) ab a b. Ellos

Más detalles

FUNCIONES EN R. Agosto 2007

FUNCIONES EN R. Agosto 2007 FUNCIONES EN R Alexis Vera Pérez Instituto de Estadística & Sistemas Computarizados de Información Universidad de Puerto Rico, Recinto de Río Piedras Agosto 2007 1 Definición y notación Definición 1 Una

Más detalles

FUNCIONES DE VARIABLE REAL

FUNCIONES DE VARIABLE REAL CAPÍTULO II. FUNCIONES DE VARIABLE REAL SECCIONES A. Dominio e imagen de una función. B. Representación gráfica de funciones. C. Operaciones con funciones. D. Ejercicios propuestos. 47 A. DOMINIO E IMAGEN

Más detalles

Propiedades de la adición de vectores y la multiplicación de un vector por un escalar

Propiedades de la adición de vectores y la multiplicación de un vector por un escalar ÁLGEBRA MATRICIAL PROF. MARIELA SARMIENTO SESIÓN : ESPACIO VECTORIAL Propiedades de la adición de vectores y la multiplicación de un vector por un escalar Teorema.1: Si A, B y C son vectores cualesquiera

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 13 y #14

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 13 y #14 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 3 y #4 Desigualdades Al inicio del Capítulo 3, estudiamos las relaciones de orden en los número reales y el signi cado de expresiones

Más detalles

Lección 3: Funciones de varias variables. Introducción al Cálculo Infinitesimal I.T.I. Gestión

Lección 3: Funciones de varias variables. Introducción al Cálculo Infinitesimal I.T.I. Gestión Lección 3: Funciones de varias variables Introducción al Cálculo Infinitesimal I.T.I. Gestión Esquema: - Concepto de función de dos variables - Dominio y conjunto imagen - Representación gráfica - Funciones

Más detalles

Propiedades de les desigualdades.

Propiedades de les desigualdades. Desigualdades Inecuaciones Diremos que a < b a es menor que b si b a es un número positivo. Gráficamente, a queda a l esquerra de b. Diremos que a > b a mayor que b si a b es un número positivo. Gráficamente,

Más detalles

1.4.- D E S I G U A L D A D E S

1.4.- D E S I G U A L D A D E S 1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y

Más detalles

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) = T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente

Más detalles

Funciones. f(x) = 2 2 x 2. 2x + 5 si 9 < x. x 4 si x < 9. 3. Si Dom(f) = [0, 1]. Determine el dominio de las siguientes funciones

Funciones. f(x) = 2 2 x 2. 2x + 5 si 9 < x. x 4 si x < 9. 3. Si Dom(f) = [0, 1]. Determine el dominio de las siguientes funciones Universidad Técnica Federico Santa María Departamento de Matemática Campus Santiago Funciones 1. Hallar Dominio y Recorrido de la función: x. Sea f : R R definida por: x + 5 si 9 < x x x si 9 x 9 x 4 si

Más detalles

Guía de Reforzamiento Función Cuadrática

Guía de Reforzamiento Función Cuadrática Guía de Reforzamiento Función Cuadrática Nombre Alumno o Alumna: Curso: 4º Medio Realizar este trabajo con el programa graphmatica, la guía está basada en la versión 1.60d. Si el programa no está disponible

Más detalles

MATEMÁTICAS I FUNCIONES (LINEALES Y CUADRÁTICAS)

MATEMÁTICAS I FUNCIONES (LINEALES Y CUADRÁTICAS) UNIVERSIDAD AUTONOMA DEL ESTADO DE MÉXICO FACULTAD DE PLANEACIÓN URBANA Y REGIONAL MATEMÁTICAS I FUNCIONES (LINEALES Y CUADRÁTICAS) POR: LUIS CONRADO TOLEDO VEGA FECHA DE ELABORACIÓN: 1ra quincena de Septiembrede

Más detalles

2.1.5 Teoremas sobre derivadas

2.1.5 Teoremas sobre derivadas si x < 0. f(x) = x si x 0 x o = 0 Teoremas sobre derivadas 9 2. f(x) = x 3, x o = 3 a. Determine si f es continua en x o. b. Halle f +(x o ) y f (x o ). c. Determine si f es derivable en x o. d. Haga la

Más detalles

FUNCIONES 1. DEFINICION DOMINIO Y RANGO

FUNCIONES 1. DEFINICION DOMINIO Y RANGO 1. DEFINICION DOMINIO Y RANGO FUNCIONES Antes de definir función, uno de los conceptos fundamentales y de mayor importancia de todas las matemáticas, plantearemos algunos ejercicios que nos eran de utilidad

Más detalles

Diferenciabilidad de funciones de R n en R m

Diferenciabilidad de funciones de R n en R m Diferenciabilidad de funciones de R n en R m Cálculo II (2003) En este capítulo generalizamos la noción de diferenciabilidad para funciones vectoriales de variable vectorial, que también llamamos aplicaciones.

Más detalles

Funciones de varias variables

Funciones de varias variables Tema 5 Funciones de varias variables Supongamos que tenemos una placa rectangular R y determinamos la temperatura T en cada uno de sus puntos. Fijado un sistema de referencia, T es una función que depende

Más detalles

4. Se considera la función f(x) =. Se pide:

4. Se considera la función f(x) =. Se pide: Propuesta A 1. Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo invertido en las acciones de tipo A no puede superar los 10000 euros. Lo invertido en las acciones

Más detalles

Recuerdas qué es? Constante de proporcionalidad Es el cociente de cualquiera de las razones que intervienen en una proporción.

Recuerdas qué es? Constante de proporcionalidad Es el cociente de cualquiera de las razones que intervienen en una proporción. Recuerdas qué es? Coordenadas de un punto Un punto del plano viene definido por un par ordenado de números. La primera coordenada es la abscisa del punto, la segunda coordenada es la ordenada del punto.

Más detalles

forma explícita forma implícita Por ejemplo cuando: a) representa la forma implícita a una. representa implícitamente a

forma explícita forma implícita Por ejemplo cuando: a) representa la forma implícita a una. representa implícitamente a FUNCIONES IMPLÍCITAS Profesora Claudia Durnbeck Una curva C contenida en ó puede estar definida por una ecuación: forma explícita forma implícita En muchos casos se puede pasar de una forma a otra, pero

Más detalles

Capitulo 4. Polinomios

Capitulo 4. Polinomios Capitulo 4. Polinomios Objetivo. El alumno usará y analizará los conceptos del álgebra de los polinomios y sus propiedades para obtener raíces. Contenido. 4.1 Definición de polinomio. Grado de un polinomio.

Más detalles

ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS

ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS INTRODUCCIÓN La noción actual de función comienza a gestarse en el siglo XIV, cuando empiezan a preocuparse de medir y representar las variaciones de ciertas

Más detalles

, o más abreviadamente: f ( x)

, o más abreviadamente: f ( x) TEMA 5: 1. CONCEPTO DE FUNCIÓN Observa los siguientes ejemplos: El precio de una llamada telefónica depende de su duración. El consumo de gasolina de un coche depende de la velocidad del mismo. La factura

Más detalles

Funciones a trozos. Imágenes de funciones definidas a trozos.

Funciones a trozos. Imágenes de funciones definidas a trozos. Funciones a trozos. Imágenes de funciones definidas a trozos. En matemáticas, una función definida a trozos (también conocida como función por partes) es una función cuya definición (la regla que define

Más detalles

Tema 10: Límites y continuidad de funciones de varias variables

Tema 10: Límites y continuidad de funciones de varias variables Tema 10: Límites y continuidad de funciones de varias variables 1 Funciones de varias variables Definición 1.1 Llamaremos función real de varias variables atodafunciónf : R n R. Y llamaremos función vectorial

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

Concepto de función. El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.

Concepto de función. El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D. Concepto de función Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B en la cual todos los elementos de A tienen a lo sumo una imagen en B, es decir una imagen o ninguna. Función

Más detalles

Texto de Cálculo I Intervalos de la recta real R Versión preliminar. L. F. Reséndis O.

Texto de Cálculo I Intervalos de la recta real R Versión preliminar. L. F. Reséndis O. Texto de Cálculo I Intervalos de la recta real R Versión preliminar L. F. Reséndis O. 2 Contents 1 Números reales L.F. Reséndis O. 5 1.1 Números racionales e irracionales.l.f. Reséndis O............ 5

Más detalles

Características de funciones que son inversas de otras

Características de funciones que son inversas de otras Características de funciones que son inversas de otras Si f es una función inyectiva, llamamos función inversa de f y se representa por f 1 al conjunto. f 1 = a, b b, a f} Es decir, f 1 (x, y) = { x =

Más detalles

Límites, álgebra y continuidad 11.2 MATE 3013

Límites, álgebra y continuidad 11.2 MATE 3013 Límites, álgebra y continuidad 11. MATE 3013 PROPIEDADES DE LIMITES : Si f (x) L y g(x) M entonces tenemos que: L.1 a) c c b) x a x = a El límite de una constante es la constante. El límite de la función

Más detalles

TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1

TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 - FUNCIONES ELEMENTALES 10.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder

Más detalles

3. Funciones reales de una variable real. Límites. Continuidad 1

3. Funciones reales de una variable real. Límites. Continuidad 1 3. Funciones reales de una variable real. Límites. Continuidad 1 Una función real de variable real es una aplicación f : D R, donde D es un subconjunto de R denominado dominio de f. La función f hace corresponder

Más detalles

1. Ejercicios propuestos

1. Ejercicios propuestos Coordinación de Matemática I (MAT0) Semestre de 05 er Semana 3: Guía de Ejercicios de Cálculo, lunes 3 viernes 7 de Marzo Contenidos Clase : Funciones: Dominio, recorrido, gráco. Ejemplos. Clase : Igualdad

Más detalles

2FUNCIONES CUADRÁTICAS

2FUNCIONES CUADRÁTICAS CONTENIDOS El modelo cuadrático La función cuadrática Desplazamientos de la gráfica Máximos, mínimos, ceros, crecimiento y decrecimiento Ecuaciones cuadráticas Sistemas mixtos En este capítulo se analizan

Más detalles

ANÁLISIS MATEMÁTICO I

ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I Trabajo Práctico Nº 2: Funciones Equipo Docente: Claudio Molina - P. Mariano Nowakowski LAS FUNCIONES DESCRIBEN FENÓMENOS Año: 2015 1º Cuatrimestre 1) Haga un gráfico que refleje

Más detalles

Límites y continuidad de funciones reales de variable real

Límites y continuidad de funciones reales de variable real Límites y continuidad de funciones reales de variable real Álvarez S., Caballero M.V. y Sánchez M. a M. salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Definiciones 3 2. Herramientas 10 2.1. Funciones

Más detalles

Carlos A. Rivera-Morales. Precálculo I

Carlos A. Rivera-Morales. Precálculo I Carlos A. Rivera-Morales Precálculo I Tabla de Contenido Contenido : Contenido Discutiremos: función inversa : Contenido Discutiremos: función inversa construcción de la función inversa : Contenido Discutiremos:

Más detalles

10. Definición rigurosa de límite.

10. Definición rigurosa de límite. Métodos para evaluación de ites. Yoel Monsalve. 98 10. Definición rigurosa de ite. 10.1. El limite de f(x) cuando x a. El concepto de ite es una idea fundamental en el cálculo infinitesimal. En la sección

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA DEPARTAMENTO DE MATEMATICA CLAVE DE EXAMEN. CURSO: Matemática básica 1

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA DEPARTAMENTO DE MATEMATICA CLAVE DE EXAMEN. CURSO: Matemática básica 1 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA DEPARTAMENTO DE MATEMATICA CLAVE DE EXAMEN CURSO: Matemática básica 1 SEMESTRE: Primero CODIGO DE CURSO: 101 TIPO DE EXAMEN: Segundo parcial

Más detalles

(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial

(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E700 1) x 5 > 1. A) Primer parcial ) Sean las funciones ft) t +,gy) y 4&hw) w. Encontrar f/h, g f, f g y sus dominios. ) Graficar la función x + six

Más detalles

Límite de una función

Límite de una función Límite de una función Idea intuitiva de límite El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es

Más detalles

CAPÍTULO III. FUNCIONES

CAPÍTULO III. FUNCIONES CAPÍTULO III LÍMITES DE FUNCIONES SECCIONES A Definición de límite y propiedades básicas B Infinitésimos Infinitésimos equivalentes C Límites infinitos Asíntotas D Ejercicios propuestos 85 A DEFINICIÓN

Más detalles

Unidad 6 Estudio gráfico de funciones

Unidad 6 Estudio gráfico de funciones Unidad 6 Estudio gráfico de funciones PÁGINA 96 SOLUCIONES Representar puntos en un eje de coordenadas. 178 Evaluar un polinomio. a) b) c) d) e) Escribir intervalos. a) b) c) 179 PÁGINA 98 SOLUCIONES 1.a)

Más detalles

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos MATEMÁTICAS BÁSICAS DESIGUALDADES DESIGUALDADES DE PRIMER GRADO EN UNA VARIABLE La epresión a b significa que "a" no es igual a "b ". Según los valores particulares de a de b, puede tenerse a > b, que

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES INECUACIONES NOTA IMPORTANTE: El signo de desigualdad de una inecuación puede ser,, < o >. Para las cuestiones teóricas que se desarrollan en esta unidad únicamente se utilizará la desigualdad >, siendo

Más detalles

Una función f es derivable en un punto a de su dominio si existe el límite. f(x) f(a) Si f y g son derivables en a, entonces fg es derivable en a y

Una función f es derivable en un punto a de su dominio si existe el límite. f(x) f(a) Si f y g son derivables en a, entonces fg es derivable en a y 4. Derivabilidad 1 Una función f es derivable en un punto a de su dominio si existe el límite f (a) = lím x a f(x) f(a) x a f(a + h) f(a) = lím, h 0 h y es un número real. El número f (a) se denomina derivada

Más detalles

Repasando lo aprendido...con una propuesta autoinstruccional

Repasando lo aprendido...con una propuesta autoinstruccional Repasando lo aprendido......con una propuesta autoinstruccional Te propongo un rápido repaso en matemática básica, que te será de suma utilidad para fijar los conocimientos dados. Sólo te brindo una guía

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II ANDALUCÍA CNVCATRIA JUNI 009 SLUCIÓN DE LA PRUEBA DE ACCES AUTR: José Luis Pérez Sanz pción A Ejercicio En este límite nos encontramos ante la indeterminación. Agrupemos la

Más detalles

Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.2. Límites. Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.2. Límites

Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.2. Límites. Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.2. Límites Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.2. Límites 1. Definición de límite DEF. Sea f : A R R y a A Se dice que l R es el límite de f cuando x tiende a a, si para todo entorno de l, existe un entorno

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES HOJA 5: Optimización 5-1. Hallar los puntos críticos de las siguiente funciones y clasificarlos: a fx, y = x y + xy.

Más detalles

FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS.

FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS. FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS. FUNCIÓN. Es toda aplicación entre dos conjuntos A y B formados ambos por números. f A --------> B Al conjunto A se le llama campo de existencia de la función

Más detalles

La Función Exponencial y la Función Logarítmica

La Función Exponencial y la Función Logarítmica 1 Capítulo 7 La Función Exponencial y la Función Logarítmica M.Sc. Alcides Astorga M., Lic. Julio Rodríguez S. Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación

Más detalles

Para hallar el límite de una sucesión podemos utilizar algunas técnicas como: El concepto de límite de una función:

Para hallar el límite de una sucesión podemos utilizar algunas técnicas como: El concepto de límite de una función: Tema 3 Sucesiones y Series 3.1. Sucesiones de números reales Definición 3.1.1 Una sucesión de números reales { } es una aplicación que asigna a cad N un número real: : N R a 1, a 2, a 3... son los términos

Más detalles

4.2 CÓMO SE NOS PRESENTAN LAS FUNCIONES

4.2 CÓMO SE NOS PRESENTAN LAS FUNCIONES Tema 4 Funciones. Características - Matemáticas B 4º E.S.O. 1 TEMA 4 FUNCIONES. CARACTERÍSTICAS 4.1 CONCEPTOS BÁSICOS 3º 4.1.1 DEFINICIONES 3º Una función liga dos variables numéricas a las que, habitualmente,

Más detalles

AXIOMAS DE CUERPO (CAMPO) DE LOS NÚMEROS REALES

AXIOMAS DE CUERPO (CAMPO) DE LOS NÚMEROS REALES AXIOMASDECUERPO(CAMPO) DELOSNÚMEROSREALES Ejemplo: 6 INECUACIONES 15 VA11) x y x y. VA12) x y x y. Las demostraciones de muchas de estas propiedades son evidentes de la definición. Otras se demostrarán

Más detalles

Límite y continuidad de funciones de varias variables

Límite y continuidad de funciones de varias variables Límite y continuidad de funciones de varias variables 20 de marzo de 2009 1 Subconjuntos de R n y sus propiedades De nición 1. Dado x 2 R n y r > 0; la bola de centro x y radio r es B(x; r) = fy 2 R n

Más detalles

Estudio Gráfico de Funciones. Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009

Estudio Gráfico de Funciones. Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009 Estudio Gráfico de Funciones Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009 Índice 1. Función 2 1.1. Definición............................. 2 1.2. Clasificación............................

Más detalles

Funciones de Crecimiento

Funciones de Crecimiento PreUnAB Clase # 13 Septiembre 2014 Concepto de Función de Crecimiento Concepto de Crecimiento Una función es creciente cuando, al aumentar los valores de la variable independiente (x) también aumentan

Más detalles

FUNCIONES REALES DE VARIABLE REAL

FUNCIONES REALES DE VARIABLE REAL .- Halla el dominio de las siguientes funciones: a) f(x)= x b) x 4 x 3 3x f(x)= + 8x 4 x + 3x 4 x 3 x + 4x c) f(x)= x 3 x x d) 8x 3 + 3x f(x)= 7x x 9 x e) f(x)= x x f) f(x)= x + 5 x g) f(x)= x x + h) f(x)=

Más detalles

Funciones Reales de Variable Real

Funciones Reales de Variable Real 1 Capítulo 6 Funciones Reales de Variable Real M.Sc. Alcides Astorga M., Lic. Julio Rodríguez S. Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet

Más detalles

13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL... 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL... 275 13.3.

13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL... 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL... 275 13.3. ÍNDICE 13.TRANSFORMACIONES LINEALES 273 13.1. DEFINICIÓN DE TRANSFORMACIÓN LINEAL............. 273 13.2. DETERMINACIÓN DE UNA TRANSFORMACIÓN LINEAL...... 275 13.3. REPRESENTACIÓN MATRICIAL DE UNA TRANSFORMACIÓN

Más detalles

Números algebraicos. Cuerpos de números. Grado.

Números algebraicos. Cuerpos de números. Grado. < Tema 5.- Números algebraicos. Cuerpos de números. Grado. 5.1 Cuerpo de fracciones de un dominio. Tratamos de generalizar la construcción de Q, a partir de Z. Sea A un dominio de integridad. En A (A \

Más detalles