Estudio Gráfico de Funciones. Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Estudio Gráfico de Funciones. Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009"

Transcripción

1 Estudio Gráfico de Funciones Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009

2 Índice 1. Función Definición Clasificación Dominio e Imagen 5 3. Puntos de corte con los ejes 6 4. Crecimiento decrecimiento 7 5. Máimos mínimos 8 6. Tasa de variación media (T.V.M.) 9 7. Continuidad Periodicidad Simetrías Asíntotas 14 1

3 Resumen El tema trata del estudio elemental de las funciones. Partiendo de la definición de función de su clasificación se estudian las características básicas de las mismas (dominio recorrido, imagen antiimagen de un elemento, puntos de corte con los ejes, intervalos de crecimiento-decrecimiento, máimos-mínimos, simetría, periodicidad asíntotas). Se hace énfasis en el componente gráfico cualitativo de las funciones.

4 1. Función 1.1. Definición Función es una correspondencia entre dos conjuntos A B tal que a cada elemento del conjunto A le corresponde un único valor solo uno del conjunto B. Los elementos del conjunto A se denotan por es la llamada variable independiente, los elementos del conjunto B se denotan por es la variable dependiente (depende del valor de ). Se escribe Y se lee = f() función de La gráfica de la función f es el lugar geométrico de los puntos del plano cuas coordenadas satisfacen la ecuación = f() Gráfica de una Función No es Función 2

5 1.2. Clasificación Podemos clasificar a las funciones según el siguiente cuadro: Funciones M atemáticas Empíricas Eplícitas Implícitas Algebraicas T rascendentes Racionales Irracionales { Enteras F raccionarias Función Matemática: Es aquella cua epresión se ha obtenido mediante un estudio basado en lees matemáticas. Función Empírica: Es aquella cua epresión se ha deducido de la observación de un fenómeno. Función Eplícita: Es aquella en la que la variable dependiente aparece despejada en un miembro de la igualdad. = f() = Función Implícita: Es aquella en la que la variable dependiente no aparece despejada = 0 Función Algebraica: Es aquella en la que la variable independiente se encuentra sometida a alguna/as de las cuatro operaciones básicas (+,,, /) o es la base de una potenciación o el radicando de una radicación. Función Trascendente: Es toda función matemática no algebraica, la aparece como eponente, razón trigonométrica... Función Algebraica Racional: Es aquella en la que la variable independiente no figura bajo el signo radical. Función Algebraica Irracional: Es aquella en la que la variable independiente figura bajo el signo radical. 3

6 Función Algebraica Racional Entera: Es aquella que la variable independiente no figura en los denominadores. Función Algebraica Racional Fraccionaria:Es aquella que la variable independiente figura formando parte de algún denominador. Gárficas de algunas funciones 2 2 Función escalonada Función = sen Función Eponencial = k 4 Función lineal = a + b

7 2. Dominio e Imagen Dominio de una función es el conjunto de todos los valores que puede tomar la, la variable independiente. Se representa por D(f) o Dom(f). (Los valores de para los que eiste f()) Recorrido o imagen de una función es el conjunto de todos los valores que puede tomar la, la variable dependiente. 2 Función f() Función g() = sen La función f() está definida para todos los valores de, tiene como dominio cualquier número real, D(f) = R. La función g() también está definida para todos los valores de, tiene como dominio cualquier número real, D(g) = R. La función f() puede tomar cualquier valor, luego tiene como conjunto imagen o recorrido el conjunto de los números reales R. La función g() toma valores entre 1 1, el conjunto imagen es el intervalo [ 1, 1]. 5

8 3. Puntos de corte con los ejes Al representar gráficamente una función es importante conocer los puntos donde corta a los ejes de coordenadas. Puntos de corte eje OX: Los puntos situados sobre el eje de abscisas tienen por coordenadas ( i, 0) luego los puntos de corte con el eje OX tienen como ordenada cero. Calculamos los valores de que tienen como imagen el cero, f() = 0. Puntos de corte eje OY: Los puntos situados sobre el eje de ordenadas tienen por coordenadas (0, i ) luego los puntos de corte con el eje Y tienen como abscisa cero. Calculamos el valor de para igual a cero, el valor de f(0) =. Las funciones pueden cortar al eje OX en uno o varios puntos, o pueden no cortarlo. Las funciones pueden cortar al eje OY en uno o no cortarlo. No pueden cortarlo en más de un punto a que de ocurrir esto no sería una función, (para un valor de ( = 0) tendríamos dos o más valores de ). 3,0 3 1, ,0 1,5 1,5 3,0 1,5 1 Puntos de corte eje OX.- ( 1 5,0) (1,0) (2 5,0) Puntos de corte eje OY.- (0,1 5) Puntos de corte eje OX.- ( 1 5,0) Puntos de corte eje OY.- (0,1) 6

9 4. Crecimiento decrecimiento Al observar una gráfica vemos que la gráfica en ocasiones sube (Creciente), en otras baja (Decrece) en otras ocasiones ni sube ni baja, (Constante). Estas subidas o bajadas de la función es la idea intuitiva del concepto de crecimiento o decrecimiento, es lo que denominamos variación de la función. Función Creciente.- Una función es creciente en un intervalo si para dos valores cualesquiera del mismo se cumple que: si 1 < 2 entonces f( 1 ) < f( 2 ) Función Decreciente.- Una función es decreciente en un intervalo si para dos valores cualesquiera del mismo se cumple que si 1 < 2 entonces f( 1 ) > f( 2 ) f( 2 ) f( 2 ) f( 1 ) f( 1 ) Función Creciente Función Decreciente Las funciones anteriores son creciente o decreciente pero en otros casos 1, la maoría, las funciones tienen tramos de crecimiento otros decrecientes o tramos constantes. 1 Ver gráficas pág. 6 7

10 5. Máimos mínimos Los puntos en los que una gráfica pasa de crecer a decrecer o de decrecer a crecer se llaman etremos de la función. Los puntos donde la función pasa de decrecer a crecer se llaman mínimos relativos en los que la función pasa de crecer a decrecer máimos relativos. Al máimo de la gráfica cuo valor de la función es maor que todos los valores de la función se le llama máimo absoluto. Al mínimo de la gráfica cuo valor de la función es menor que todos los valores de la función se le llama mínimo absoluto. máimo f() 1 2 mínimo Sea una función f: Si en 1 la función pasa de creciente a decreciente, f tiene en 1 un máimo relativo. Máimo relativo en ( 1,f( 1 )). Si en 2 la función pasa de decreciente a creciente, f tiene en 2 un mínimo relativo. Mínimo relativo en ( 2,f( 2 )). 8

11 6. Tasa de variación media (T.V.M.) Para medir la variación (aumento o disminución)de una función en un intervalo, utilizamos la tasa de variación media. Se llama tasa de variación media de la función f en el intervalo [a,b] al cociente entre la variación de la función la amplitud del intervalo. f(b) f(a) b a f(b) f(a) a b T.V.M. de f en [a,b] = f(b) f(a) b a = 9

12 7. Continuidad La idea de función continua es aquella que se puede representar con un solo trazo, es decir, que no ha que levantar el lápiz para recorrerla en toda su etensión. En los casos en los que no se pueda representar así, será discontinua. f() Función Continua Las discontinuidades podrán ser de varios tipos: Funciones discontinuas En la gráfica de la izquierda la función tiene saltos. En la gráfica de la derecha la función no está definida para = 1. Decimos que la Discontinuidad es no evitable. 10

13 Función discontinua En la gráfica de la izquierda la función para = 1 toma el valor f(1) = 1, lo que hace que sea discontinua. Cambiando la definición de la función diciendo que para = 1 toma el valor f(1) = 2, (gráfica de la derecha) la función es continua. Decimos en este caso que la Discontinuidad es evitable. 11

14 8. Periodicidad Decimos que una función es Periódica si de forma regular repite los valores que toma, es decir son funciones que se repiten en intervalos de la variable dependiente iguales, a este intervalo se le llama periodo. Dicho de otra forma, una función f es Periódica cuando eiste un número p, llamado periodo, tal que f() = f( + p). Periodo. Función Periódica f() = sen 12

15 9. Simetrías Decimos que una función es Simétrica respecto del eje OY cuando se verifica que f() = f( ). Cuando para valores de positivos o negativos pero de igual valor absoluto, la función toma el mismo valor. Decimos entonces que es una función par. Decimos que una función es Simétrica respecto del origen de coordenadas cuando se verifica que f() = f( ). Cuando para positivos o negativos pero de igual valor absoluto, la función toma el mismo valor pero de signo contrario. Decimos entonces que es una función impar. Función Par Simétrica respecto del eje OY Función Impar Simétrica respecto del origen 13

16 10. Asíntotas TENDENCIAS DE UNA FUNCIÓN.- En ocasiones nos interesa saber como se comporta la función cuando la variable independiente aumenta mucho (o disminue mucho) o cuando se acerca a una valor concreto. A los valores a los que se aproima es lo que llamamos tendencia de la función. Cuando crece mucho se acerca a cero. Decimos que: cuando tiende a tiende a 0 Y escribimos ; 0 14

17 Una función tiende a más o menos infinito en un punto a cuando al aproimarnos al valor a de la variable independiente, la variable dependiente se va haciendo cada vez más grande o más pequeña. a En este caso la función tiende a más o menos infinito en un punto a, cuando se aproima al valor a entonces la variable dependiente se va haciendo cada vez más grande o más pequeña. Se dice que una recta es asíntota de una función si la gráfica de la función se aproima a la recta cada vez más, sin llegar a tocarla nunca. Si la recta es horizontal-vertical-oblicua tendremos una asíntota horizontal-verticaloblicua. Una función puede tener como máimo dos asíntotas horizontales la gráfica puede cortar a la asíntota ( tiende a ± ). Una función puede tener infinitas asíntotas verticales la gráfica nunca corta a la asíntota. Las funciones racionales tienen asíntotas verticales en los valores de que anulan el denominador. 15

18 = m + n = a La recta = a asíntota vertical La recta = m + n asíntota oblicua La recta = 0 (el eje OX) asíntota horizontal 16

19 Índice alfabético Asíntota, 14 Dominio, 5 Función, 2 Clasificación, 3 Continua, 10 Creciente, 7 Decreciente, 7 Periódica, 12 Simétrica, 13 Imagen, 5 Máimo, 8 Mínimo, 8 Puntos de Corte, 6 Tasa de Variación Media, 9 17

Estudio Gráfico de Funciones

Estudio Gráfico de Funciones Esquema 1 2 Esquema 1 2 Definición es una correspondencia entre dos conjuntos A B tal que a cada elemento del conjunto A le corresponde un único valor solo uno del conjunto B. La gráfica de la función

Más detalles

1. Funciones y sus gráficas

1. Funciones y sus gráficas FUNCIONES 1. Funciones sus gráficas Función es una relación entre dos variables a las que, en general se les llama e. es la variable independiente. es la variable dependiente. La función asocia a cada

Más detalles

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 1 CONCEPTOS BÁSICOS 1.1 DEFINICIONES Una función liga dos variables numéricas a las que, habitualmente, se les llama x e y. x es la

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONOCIDAS. FUNCIONES LINEALES. Se llaman funciones lineales a aquellas que se representan mediante rectas. Su epresión en forma eplícita es y f ( ) a b. En sentido más estricto, se llaman funciones

Más detalles

4.2 CÓMO SE NOS PRESENTAN LAS FUNCIONES

4.2 CÓMO SE NOS PRESENTAN LAS FUNCIONES Tema 4 Funciones. Características - Matemáticas B 4º E.S.O. 1 TEMA 4 FUNCIONES. CARACTERÍSTICAS 4.1 CONCEPTOS BÁSICOS 3º 4.1.1 DEFINICIONES 3º Una función liga dos variables numéricas a las que, habitualmente,

Más detalles

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f)

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f) MATEMÁTICAS EJERCICIOS RESUELTOS DE FUNCIONES FUNCIONES A. Introducción teórica A.1. Definición de función A.. Dominio y recorrido de una función, f() A.. Crecimiento y decrecimiento de una función en

Más detalles

Unidad 6 Estudio gráfico de funciones

Unidad 6 Estudio gráfico de funciones Unidad 6 Estudio gráfico de funciones PÁGINA 96 SOLUCIONES Representar puntos en un eje de coordenadas. 178 Evaluar un polinomio. a) b) c) d) e) Escribir intervalos. a) b) c) 179 PÁGINA 98 SOLUCIONES 1.a)

Más detalles

ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS

ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS INTRODUCCIÓN La noción actual de función comienza a gestarse en el siglo XIV, cuando empiezan a preocuparse de medir y representar las variaciones de ciertas

Más detalles

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(

Más detalles

GUÍA DE APRENDIZAJE DE CÁLCULO DIFERENCIAL

GUÍA DE APRENDIZAJE DE CÁLCULO DIFERENCIAL I N S T I T U T O P O L I T É C N I C O N A C I O N A L C E N T R O D E E S T U D I O S C I E N T Í F I C O S Y T E C N O L Ó G I C O S N o.11 W I L F R I D O M A S S I E U A C A D E M I A D E M A T E

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Tema 4: Representación de funciones Índice:. Información obtenida de la función... Dominio de la función.. Simetrías..3. Periodicidad.4. Puntos de corte con los ejes..5. Ramas

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONTINUAS. La mayor parte de las funciones que manejamos, a nivel elemental, presentan en sus gráficas una propiedad característica que es la continuidad. La continuidad de una función definida

Más detalles

1. Definición 2. Operaciones con funciones

1. Definición 2. Operaciones con funciones 1. Definición 2. Operaciones con funciones 3. Estudio de una función: Suma y diferencia Producto Cociente Composición de funciones Función reciproca (inversa) Dominio Recorrido Puntos de corte Signo de

Más detalles

Análisis de funciones y representación de curvas

Análisis de funciones y representación de curvas 12 Análisis de funciones y representación de curvas 1. Análisis gráfico de una función Aplica la teoría 1. Dada la siguiente gráfica, analiza todas sus características, es decir, completa el formulario

Más detalles

, o más abreviadamente: f ( x)

, o más abreviadamente: f ( x) TEMA 5: 1. CONCEPTO DE FUNCIÓN Observa los siguientes ejemplos: El precio de una llamada telefónica depende de su duración. El consumo de gasolina de un coche depende de la velocidad del mismo. La factura

Más detalles

FUNCIONES CUADRÁTICAS Y RACIONALES

FUNCIONES CUADRÁTICAS Y RACIONALES www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro

Más detalles

TEMA 8: LÍMITES DE FUNCIONES. CONTINUIDAD

TEMA 8: LÍMITES DE FUNCIONES. CONTINUIDAD TEMA 8: DE FUNCIONES. CONTINUIDAD 1. EN EL INFINITO En ocasiones interesa estudiar el comportamiento de una función (la tendencia) cuando los valores de se hacen enormemente grandes ( ) o enormemente pequeños

Más detalles

Representación gráfica de funciones

Representación gráfica de funciones Gráfica de una fución Representación gráfica de funciones La gráfica de una función está formada por el conjunto de puntos (x, y) para todos los valores de x pertenecientes al Dominio de la función gráfica

Más detalles

MATEMÁTICAS. TEMA 5 Límites y Continuidad

MATEMÁTICAS. TEMA 5 Límites y Continuidad MATEMÁTICAS TEMA 5 Límites y Continuidad MATEMÁTICAS º BACHILLERATO CCSS. TEMA 5: LÍMITES Y CONTINUIDAD ÍNDICE. Introducción. Concepto de función. 3. Dominio e imagen de una función. 4. Gráfica de algunas

Más detalles

TEMA 5. REPRESENTACIÓN DE FUNCIONES

TEMA 5. REPRESENTACIÓN DE FUNCIONES 94 TEMA 5. REPRESENTACIÓN DE FUNCIONES 1. Representación de funciones 1.1. Dominio 1.. Puntos de corte con los ejes 1..1. Con el eje 1... Con el eje y 1.. Signo de la función 1.4. Periodicidad y simetría

Más detalles

1. Dominio, simetría, puntos de corte y periodicidad

1. Dominio, simetría, puntos de corte y periodicidad Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele

Más detalles

Concepto de función y funciones elementales

Concepto de función y funciones elementales Concepto de unción unciones elementales Matemáticas I - º Bachillerato Las unciones describen enómenos cotidianos, económicos, psicológicos, cientíicos Tales unciones se obtienen eperimentalmente, mediante

Más detalles

Funciones definidas a trozos

Funciones definidas a trozos Concepto de función Dominio de una función Características de las funciones Intersecciones con los ejes Crecimiento y decrecimiento Máximos y mínimos Continuidad y discontinuidad Simetrías Periodicidad

Más detalles

Tema 7. Límites y continuidad de funciones

Tema 7. Límites y continuidad de funciones Matemáticas II (Bachillerato de Ciencias) Análisis: Límites y continuidad de funciones 55 Límite de una función en un punto Tema 7 Límites y continuidad de funciones Idea inicial Si una función f está

Más detalles

Unidad 5 Estudio gráfico de funciones

Unidad 5 Estudio gráfico de funciones Unidad 5 Estudio gráfico de funciones PÁGINA 84 SOLUCIONES Representar puntos en un eje de coordenadas. 43 Evaluar un polinomio. a) P(-1) = 1 + + 1 1 = 3 b) P(0) = -1 c) P(-) = 8 + 8 + 1 = 17 d) P(1) =

Más detalles

9 Funciones elementales

9 Funciones elementales Solucionario 9 Funciones elementales ACTIVIDADES INICIALES 9.I. Halla las raíces y factoriza los siguientes polinomios. a) P() 4 b) Q() 3 6 a) Se resuelve la ecuación 4 0. Las raíces son 6 y, y P() ( 6)(

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

FUNCIONES. Funciones. Qué es una función? Indicadores. Contenido

FUNCIONES. Funciones. Qué es una función? Indicadores. Contenido Indicadores FUNCIONES Calcula el valor de incógnitas usando la definición de función. Determina valores de la variable dependiente a partir de valores dados a la variable independiente. Determina los puntos

Más detalles

DERIVADAS. * Definición de derivada. Se llama derivada de la función f en el punto x=a al siguiente límite, si es que existe: lim

DERIVADAS. * Definición de derivada. Se llama derivada de la función f en el punto x=a al siguiente límite, si es que existe: lim DERIVADAS. CONTENIDOS. Recta tangente a una curva en un punto. Idea intuitiva del concepto de derivada de una función en un punto. Función derivada. sucesivas. Reglas de derivación Aplicación de la derivada

Más detalles

TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1

TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 - FUNCIONES ELEMENTALES 10.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder

Más detalles

LA FUNCIÓN EXPONENCIAL Y LA FUNCIÓN LOGARÍTMICA. FUNCIONES DEFINIDAS A TROZOS. Función exponencial

LA FUNCIÓN EXPONENCIAL Y LA FUNCIÓN LOGARÍTMICA. FUNCIONES DEFINIDAS A TROZOS. Función exponencial LA FUNCIÓN EXPONENCIAL Y LA FUNCIÓN LOGARÍTMICA. FUNCIONES DEFINIDAS A TROZOS. Función eponencial La función eponencial es de la forma f () = a, tal que a > 0, a El valor a se llama base de la función

Más detalles

Ejercicios de representación de funciones

Ejercicios de representación de funciones Ejercicios de representación de funciones 1.- Representar las siguientes funciones, estudiando su: Dominio. Simetría. Puntos de corte con los ejes. Asíntotas y ramas parabólicas. Crecimiento y decrecimiento.

Más detalles

Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1

Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 TEMA 4 - FUNCIONES ELEMENTALES 4.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : Una función real de variable real es una aplicación de un subconjunto

Más detalles

representación gráfica de funciones

representación gráfica de funciones representación gráfica de funciones Esta Unidad pretende ser una aplicación práctica de todo lo aprendido hasta ahora en el bloque de Análisis. En ella nos centraremos en las funciones polinómicas y racionales.

Más detalles

Concepto de función. El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.

Concepto de función. El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D. Concepto de función Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B en la cual todos los elementos de A tienen a lo sumo una imagen en B, es decir una imagen o ninguna. Función

Más detalles

LÍMITES Y CONTINUIDAD DE FUNCIONES

LÍMITES Y CONTINUIDAD DE FUNCIONES Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos

Más detalles

ANÁLISIS DE FUNCIONES, LÍMITES Y CONTINUIDAD. RESUMEN

ANÁLISIS DE FUNCIONES, LÍMITES Y CONTINUIDAD. RESUMEN ANÁLISIS DE FUNCIONES, LÍMITES Y CONTINUIDAD. RESUMEN Problema Datos Procedimiento Ejemplo Dominio de una La ecuación de Casos en los que en dominio no es IR: función la función Irracionales (ecluir valores

Más detalles

Selectividad Septiembre 2006 SEPTIEMBRE 2006

Selectividad Septiembre 2006 SEPTIEMBRE 2006 Bloque A SEPTIEMBRE 2006 1.- En una fábrica trabajan 22 personas entre electricistas, administrativos y directivos. El doble del número de administrativos más el triple del número de directivos, es igual

Más detalles

Tipos de funciones. Clasificación de funciones

Tipos de funciones. Clasificación de funciones Tipos de funciones Clasificación de funciones Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación,

Más detalles

FUNCIONES Y GRÁFICAS.

FUNCIONES Y GRÁFICAS. FUNCIONES Y GRÁFICAS. CONTENIDOS: Concepto de función. Gráfica de una función. Estudio cualitativo de funciones dadas por sus gráficas Idea intuitiva de continuidad de una función. Repaso de funciones

Más detalles

Cálculo diferencial: Concepto y propiedades de una función. Representación gráfica.

Cálculo diferencial: Concepto y propiedades de una función. Representación gráfica. Tema 1 Cálculo diferencial: Concepto y propiedades de una función. Representación gráfica. 1.1. Un esbozo de qué es el Cálculo: paradojas y principales problemas planteados. Los orígenes del Cálculo se

Más detalles

EJEMPLO 2: Ing. Mario René De León García. 1. FUNCIÓN EXPONENCIAL EJEMPLO 1:

EJEMPLO 2: Ing. Mario René De León García. 1. FUNCIÓN EXPONENCIAL EJEMPLO 1: FUNCIONES EXPONENCIAL Y LOGARÍTMICA Por: Ing. Mario René De León García.. FUNCIÓN EXPONENCIAL Una función eponencial tiene la forma, donde a es la base de la potencia la variable es el eponente. Esta función

Más detalles

Toda regla de correspondencia como los ejemplos anteriores es llamada relación.

Toda regla de correspondencia como los ejemplos anteriores es llamada relación. . Funciones.1. Definición de función Toda regla de correspondencia como los ejemplos anteriores es llamada relación. Ciertos tipos especiales de reglas de correspondencia se llaman funciones. La definición

Más detalles

10 PROPIEDADES DE LAS FUNCIONES

10 PROPIEDADES DE LAS FUNCIONES 0 PRPIEDADES DE LAS FUNCINES PARA EMPEZAR Copia y completa la tabla, y representa la gráfica de la función. Se trata de una función continua? Figura 3 4 5 N.º de puntos f() hace corresponder a cada natural

Más detalles

BLOQUE III Funciones

BLOQUE III Funciones BLOQUE III Funciones 8. Funciones 9. Continuidad, límites y asíntotas 0. Cálculo de derivadas. Aplicaciones de las derivadas. Integrales 8 Funciones. Estudio gráfico de una función Piensa y calcula Indica

Más detalles

1.5.- FUNCIONES Y SUS GRAFICAS. OBJETIVO.- Que el alumno conozca el concepto de función, su representación gráfica así como su uso en el Cálculo.

1.5.- FUNCIONES Y SUS GRAFICAS. OBJETIVO.- Que el alumno conozca el concepto de función, su representación gráfica así como su uso en el Cálculo. 1.5.- FUNCIONES Y SUS GRAFICAS OBJETIVO.- Que el alumno conozca el concepto de función, su representación gráfica así como su uso en el Cálculo. 1.5.1.- Introducción. Como ya mencionamos al inicio de estas

Más detalles

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11 1. y = x + 11 x + 5 a) ESTUDIO DE f: 1) Dominio: Como es un cociente del dominio habrá que excluir los valores que anulen el denominador. Por tanto: x + 5 = 0 x = 5 ) Simetría: A simple vista, como el

Más detalles

Funciones y gráficas. Objetivos. Antes de empezar. 1.Funciones pág. 162 Concepto Tablas y gráficas Dominio y recorrido

Funciones y gráficas. Objetivos. Antes de empezar. 1.Funciones pág. 162 Concepto Tablas y gráficas Dominio y recorrido 9 Funciones y gráficas Objetivos En esta quincena aprenderás a: Conocer e interpretar las funciones y las distintas formas de presentarlas. Reconocer el dominio y el recorrido de una función. Determinar

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado

Más detalles

UNIDAD 2: DERIVADAS Y APLICACIONES

UNIDAD 2: DERIVADAS Y APLICACIONES UNIDAD : DERIVADAS Y APLICACIONES UNIDAD : DERIVADAS Y APLICACIONES ÍNDICE DE LA UNIDAD - INTRODUCCIÓN 6 - DERIVADA DE UNA FUNCIÓN EN UN PUNTO 7 - INTERPRETACIÓN GEOMÉTRICA DE LA DERIVADA 8 4- CONTINUIDAD

Más detalles

Halla dominio e imagen de las funciones

Halla dominio e imagen de las funciones Tema 1 Las Funciones y sus Gráficas Ejercicios Resueltos Ejercicio 1 Halla dominio e imagen de las funciones y Como no está definido si, es decir, si El recorrido o imagen será el conjunto de todos los

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES. INTRODUCCIÓN A LOS LÍMITES. Definición intuitiva de límite.. DEFINICIÓN RIGUROSA DE LÍMITE. Límites reales.. Propiedades de los límites.. Estrategias para calcular límites. - Límites

Más detalles

Prof. Susana López 1. UniversidadAutónomadeMadrid. 1 Definición y clasificación de funciones reales de una variable real. f B

Prof. Susana López 1. UniversidadAutónomadeMadrid. 1 Definición y clasificación de funciones reales de una variable real. f B Prof. Susana López 1 UniversidadAutónomadeMadrid Tema 1: Introducción a las funciones de varias variables 1 Definición clasificación de funciones reales de una variable real Definición 1 UnafunciónfesunareglaqueasignaacadaelementodeunconjuntoA

Más detalles

3. Operaciones con funciones.

3. Operaciones con funciones. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lección. Funciones derivada. 3. Operaciones con funciones. En esta sección veremos cómo podemos combinar funciones para construir otras nuevas. Especialmente

Más detalles

Aplicaciones de las derivadas

Aplicaciones de las derivadas I. E. S. Siete Colinas (Ceuta) Departamento de Matemáticas Matemáticas de º de Bachillerato Aplicaciones de las derivadas (estudio de funciones) Por Javier Carroquino CaZas Catedrático de matemáticas del

Más detalles

Guía para el examen de clasificación de matemáticas para las carreras de: actuaría, economía, ingenierías y matemáticas aplicadas.

Guía para el examen de clasificación de matemáticas para las carreras de: actuaría, economía, ingenierías y matemáticas aplicadas. Guía para el eamen de clasificación de matemáticas para las carreras de: actuaría, economía, ingenierías matemáticas aplicadas. Septiembre 23 Índice. Instrucciones.. Objetivo....2. Requisitos....3. Característicasdeleamen...

Más detalles

EJERCICIOS DE FUNCIONES REALES

EJERCICIOS DE FUNCIONES REALES EJERCICIOS DE FUNCIONES REALES.- La ley que relaciona el valor del área de un cuadrado con la longitud de su lado es una función. Sabemos que la epresión que nos relacionas ambas variables es. Observa

Más detalles

49 http://iedonboscohunter.hol.es

49 http://iedonboscohunter.hol.es 49 http://iedonboscohunter.hol.es MODULO PRECALCULO SEGUNDA UNIDAD Funciones Algebraicas Había un hombre en Roma que se parecía mucho a César Augusto; Augusto se enteró de ello, mandó buscarlo y le preguntó.

Más detalles

Cuadernillo de Apuntes de Matemáticas I. Luis Ignacio Sandoval Paéz

Cuadernillo de Apuntes de Matemáticas I. Luis Ignacio Sandoval Paéz Cuadernillo de Apuntes de Matemáticas I Luis Ignacio Sandoval Paéz 1 Índice Números reales 1.1 Clasificación de los números reales. 5 1.2 Propiedades. 7 1.3Interpretación geométrica de los números reales.

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 3: Lunes 25 - Jueves 28 de Marzo. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 3: Lunes 25 - Jueves 28 de Marzo. Contenidos Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 3: Lunes 25 - Jueves 28 de Marzo Cálculo Contenidos Clase 1: Funciones: Dominio, recorrido, gráfico. Ejemplos. Clase 2: Igualdad de funciones.

Más detalles

Funciones. 63 Ejercicios para practicar con soluciones

Funciones. 63 Ejercicios para practicar con soluciones Funciones. 63 Ejercicios para practicar con soluciones Dadas las siguientes funciones gráficas, asocia cada función con su gráfica: a) f() = b) g() = - c) h() = 3 a) La 3; b) La ; c) La De las siguientes

Más detalles

Ejercicios de Análisis propuestos en Selectividad

Ejercicios de Análisis propuestos en Selectividad Ejercicios de Análisis propuestos en Selectividad.- Dada la parábola y 4, se considera el triángulo rectángulo T( r ) formado por los ejes coordenados y la tangente a la parábola en el punto de abscisa

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES UNIDAD 6 DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES Página 5 Problema y f () 5 5 9 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(). f'() 0; f'(9) ; f'() Di otros tres puntos en

Más detalles

CALCULO CAPITULO 1 1.6 ASINTOTAS VERTICALES Y HORIZONTALES

CALCULO CAPITULO 1 1.6 ASINTOTAS VERTICALES Y HORIZONTALES 1.6 ASINTOTAS VERTICALES Y HORIZONTALES 1.6.1.- Definición. Una asíntota es una recta que se encuentra asociada a la gráfica de algunas curvas y que se comporta como un límite gráfico hacia la cual la

Más detalles

Funciones y gráficas. Objetivos

Funciones y gráficas. Objetivos 8 Funciones y gráficas Objetivos En esta quincena aprenderás a: Conocer e interpretar las funciones y las distintas formas de presentarlas. Reconocer el dominio y el recorrido de una función. Determinar

Más detalles

x - Verticales. No tiene asíntotas verticales porque f(x) está definida en R y no cambia de criterio en ningún punto. - Oblicuas.

x - Verticales. No tiene asíntotas verticales porque f(x) está definida en R y no cambia de criterio en ningún punto. - Oblicuas. f ( ) + +. Dominio D (f ) R 4. Recorrido Im( f ) [, ). Puntos de corte - Con el eje y, donde 0 y + + y P (0,) - Con el eje, donde y 0 No hay punto de corte con el eje 4. Asíntotas - Horizontales lim +

Más detalles

FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS.

FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS. FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS. FUNCIÓN. Es toda aplicación entre dos conjuntos A y B formados ambos por números. f A --------> B Al conjunto A se le llama campo de existencia de la función

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN AUTOR: M. F. ALBERTO DE LA ROSA ELIZALDE MATEMÁTICAS II (CÁLCULO DIFERENCIAL) Clave: 66 Plan: 005 Créditos: 8 Licenciatura:

Más detalles

3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función

3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función TEMA 3 FUNCIONES 3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función Una función es una relación establecida entre dos variables que asocia a cada valor de la primera variable

Más detalles

4. FUNCION LINEAL Y ECUACIÓN DE LA RECTA

4. FUNCION LINEAL Y ECUACIÓN DE LA RECTA Función Lineal Ecuación de la Recta 4. FUNCION LINEAL Y ECUACIÓN DE LA RECTA El concepto de función es el mejor objeto que los matemáticos han podido inventar para epresar el cambio que se produce en las

Más detalles

ACTIVIDADES UNIDAD 6: Funciones

ACTIVIDADES UNIDAD 6: Funciones ACTIVIDADES UNIDAD 6: Funciones 1. Indica las características de la siguiente función: Dominio:, 1 1,1 1, 1,1 Imagen o recorrido:,0 1, Monotonía: - Creciente:, 1 1,0 - Decreciente: 0,11, - Máimos relativos:

Más detalles

f(x)=a n x n +a n-1 x n-1 +a n-2 x n-2 +...a 2 x 2 +a 1 x 1 +a 0

f(x)=a n x n +a n-1 x n-1 +a n-2 x n-2 +...a 2 x 2 +a 1 x 1 +a 0 FUNCIÓN POLINOMIAL. DEFINICIÓN. Las funciones polinomiales su representación gráfica, tienen gran importancia en la matemática. Estas funciones son modelos que describen relaciones entre dos variables

Más detalles

Precálculo 2130034 Prof.: Gerardo Varela

Precálculo 2130034 Prof.: Gerardo Varela Definición de función Una función con dominio D es un conjunto W de pares ordenados tales que, para cada en D, ha eactamente un par ordenado (, ) en W que tiene a en la primera posición. Terminología Definición

Más detalles

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO Colegio Las Tablas Tarea de verano Matemáticas º ESO Nombre: C o l e g i o L a s T a b l a s Tarea de verano Matemáticas º ESO Resolver la siguiente ecuación: 5 5 6 Multiplicando por el mcm(,,6) = 6 y

Más detalles

Límite de una función

Límite de una función Límite de una función Idea intuitiva de límite El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es

Más detalles

UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas.

UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas. UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas. PROBLEMAS DE CÁLCULO INFORMÁTICA DE SISTEMAS . Cálculo diferencial. Probar que a si y sólo si a a, siendo a >. Utilizar estas desigualdades

Más detalles

(Apuntes en revisión para orientar el aprendizaje)

(Apuntes en revisión para orientar el aprendizaje) (Apuntes en revisión para orientar el aprendizaje) LÍMITES DE FUNCIONES TRIGONOMÉTRICAS Para resolver límites que involucran funciones circulares directas, resulta conveniente conocer los límites de las

Más detalles

TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1

TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1 TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1 TEMA 11 LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN 11.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función en un

Más detalles

+ 7 es una ecuación de segundo grado. es una ecuación de tercer grado.

+ 7 es una ecuación de segundo grado. es una ecuación de tercer grado. ECUACIONES Y DESIGUALDADES UNIDAD VII VII. CONCEPTO DE ECUACIÓN Una igualdad es una relación de equivalencia entre dos epresiones, numéricas o literales, que se cumple para algún, algunos o todos los valores

Más detalles

Límites y Continuidad

Límites y Continuidad Universidad de Sonora División de Ciencias Eactas y Naturales Departamento de Matemáticas. Límites y Continuidad Problemas Resueltos Dr. José Luis Díaz Gómez Versión. Abril de 005 Dr. José Luis Díaz Gómez.

Más detalles

Continuidad y ramas infinitas. El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A = 2. lm í

Continuidad y ramas infinitas. El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A = 2. lm í Unidad. Límites de funciones. Continuidad y ramas infinitas Resuelve Página 7 A través de una lupa AUMENTO DISTANCIA (dm) El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A

Más detalles

TEMA 4. FUNCIONES DE VARIABLE REAL

TEMA 4. FUNCIONES DE VARIABLE REAL TEMA 4. FUNCIONES DE VARIABLE REAL 4.1 Definición de función real Definición: Una función real de variable real es una aplicación de un subconjunto A en. f : A El dominio de una función es el conjunto

Más detalles

APUNTES DE CÁLCULO DIFERENCIAL

APUNTES DE CÁLCULO DIFERENCIAL PROGRAMA DE CALCULO DIFERENCIAL OBJETIVO(S) GENERAL(ES) DEL CURSO: Plantear y resolver problemas que requieren del concepto de función de una variable para modelar y de la derivada para resolver. UNIDAD

Más detalles

1-Comportamiento de una función alrededor de un punto:

1-Comportamiento de una función alrededor de un punto: Matemática II 7 Modulo Límites continuidad En esta sección desarrollaremos el concepto de límite, una de las nociones fundamentales del cálculo. A partir de este concepto se desarrollan también los conceptos

Más detalles

12 ESTUDIO DE FUNCIONES

12 ESTUDIO DE FUNCIONES ESTUDI DE FUNCINES EJERCICIS PRPUESTS. Representa las siguientes funciones lineales e indica el valor de sus pendientes. a) y b) y 5 y = + y = 5 c) y a) m 0 b) m 5 c) m y =. Representa estas funciones

Más detalles

n la presente Unidad estudiamos los fundamentos de las funciones. Veremos las dos

n la presente Unidad estudiamos los fundamentos de las funciones. Veremos las dos UNIDAD Funciones n la presente Unidad estudiamos los fundamentos de las funciones. Veremos las dos E notaciones eistentes para familiarizarnos con los términos usados en Matemáticas, y así poder introducir

Más detalles

8 Representación de funciones

8 Representación de funciones 8 Representación de unciones ACTIVIDADES INICIALES 8I Escribe los siguientes cocientes menor que el grado de Q(): a) + + a) + + P() ( + ) P( ) Por tanto: + Q( ) + P ( ) Q ( ) como R ( ) C ( ) + con C()

Más detalles

b) Cuántas asíntotas oblicuas y cuántas asíntotas verticales puede tener una función racional cualquiera?. Razónalo. dx x 2 1 x 1 si x >1 x 1 x < 0

b) Cuántas asíntotas oblicuas y cuántas asíntotas verticales puede tener una función racional cualquiera?. Razónalo. dx x 2 1 x 1 si x >1 x 1 x < 0 ANÁLISIS. (Junio 994) a) Encontrar las asíntotas de la curva f () = 2 3 2 4 b) Cuántas asíntotas oblicuas y cuántas asíntotas verticales puede tener una función racional cualquiera?. Razónalo. 2. (Junio

Más detalles

Horno solar en el desierto de Mojave, California

Horno solar en el desierto de Mojave, California Horno solar en el desierto de Mojave, California Parte Ecuaciones diferenciales ordinarias. Introducción a las ecuaciones diferenciales 2. Ecuaciones diferenciales de primer orden 3. Ecuaciones diferenciales

Más detalles

Matemática I Extremos de una Función. Definiciones-Teoremas

Matemática I Extremos de una Función. Definiciones-Teoremas Universidad Centroccidental Lisandro Alvarado Decanato de Agronomía Programa Ingeniería Agroindustrial Departamento de Gerencia Estudios Generales Matemática I Etremos de una Función. Definiciones-Teoremas

Más detalles

EJERCITARIO GENERAL DE CÁLCULO DIFERENCIAL

EJERCITARIO GENERAL DE CÁLCULO DIFERENCIAL UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA CPI EJERCITARIO GENERAL DE CÁLCULO DIFERENCIAL AÑO 014 CURSO PREPARATORIO DE INGENIERÍA CPI-014 CAPÍTULO 1: FUNCIONES

Más detalles

Capítulo 3: APLICACIONES DE LAS DERIVADAS

Capítulo 3: APLICACIONES DE LAS DERIVADAS Capítulo : Aplicaciones de la derivada 1 Capítulo : APLICACIONES DE LAS DERIVADAS Dentro de las aplicaciones de las derivadas quizás una de las más importantes es la de conseguir los valores máimos y mínimos

Más detalles

Gráficas de funciones

Gráficas de funciones Apuntes Tema 1 Gráficas de funciones 1.1 Gráficas de funciones a) Función constante: f(x) = k b) Recta vertical: x = k c) Función lineal: f(x) = mx Todas pasan por el origen O(0, 0). 2 d) Función afín:

Más detalles

Gráficas. Funciones Reales. Variable Real

Gráficas. Funciones Reales. Variable Real I. E. S. Siete Colinas (Ceuta) Departamento de Matemáticas Matemáticas de º de Bachillerato Gráficas de Funciones Reales de Variable Real Por Javier Carroquino CaZas Catedrático de matemáticas del I.E.S.

Más detalles

Posteriormente el matemático suizo Leonard Euler (1707-1783) fue el primero que utilizó el símbolo y = f(x) en la forma que ahora lo utilizamos.

Posteriormente el matemático suizo Leonard Euler (1707-1783) fue el primero que utilizó el símbolo y = f(x) en la forma que ahora lo utilizamos. Una función en matemáticas, es un término que se usa para indicar la relación entre dos o más magnitudes. El matemático alemán Gottfried Wilhelm Leibniz (1646-1716) fue el primero que utilizó el término

Más detalles

Funciones racionales, irracionales, exponenciales y logarítmicas

Funciones racionales, irracionales, exponenciales y logarítmicas Funciones racionales, irracionales, eponenciales y logarítmicas. Funciones racionales Despeja y de la epresión y = 6. Qué tipo de función es? P I E N S A C A L C U L A 6 y = Es una función racional que

Más detalles

Lección 7 - Coordenadas rectangulares y gráficas

Lección 7 - Coordenadas rectangulares y gráficas Lección 7 - Coordenadas rectangulares gráficas Coordenadas rectangulares gráficas Objetivos: Al terminar esta lección podrás usar un sistema de coordenadas rectangulares para identificar puntos en un plano

Más detalles

Bachillerato. Matemáticas. Ciencias y tecnología

Bachillerato. Matemáticas. Ciencias y tecnología Bachillerato º Matemáticas Ciencias y tecnología Índice Unidad 0 Números reales........................................... 7. Evolución histórica................................... 8. Números reales......................................

Más detalles

MODULO PRECALCULO TERCERA UNIDAD

MODULO PRECALCULO TERCERA UNIDAD MODULO PRECALCULO TERCERA UNIDAD Función Eponencial y Función Logarítmica 9 Alicia rió. "No sirve de nada intentarlo - dijo -; uno no puede creer cosas imposibles." - "Me atrevería a decir que no tienes

Más detalles