La conexión entre la mecánica clásica y cuántica

Tamaño: px
Comenzar la demostración a partir de la página:

Download "La conexión entre la mecánica clásica y cuántica"

Transcripción

1 in La conexión entre la mecánica clásica y cuántica 2015

2 in Outline 1 2 in

3 in semiclásico Consideremos una partícula de masa m, moviéndose en el espacio bajo un potencial V( q), q = (q 1, q 2, q 3 ). Hamiltoniano clásico: H = 1 2m 3 p 2 i + V( q) i=1 Ecuación de Schrödinger dependiente del : donde p i ˆp i = i q i q i ˆq i = q i, i = 1, 2, 3 i ψ( q, t) = Ĥψ( q, t) (1) t Ĥ = V( q), = 2m q q q 2 3

4 Ansatz: semiclásico ψ( q, t) = e i S( q,t) in La ecuación (1) se transforma en: S t = 1 S S + V( q) i S (2) 2m 2m Límite 0 de la ecuación (2): S 0 t = 1 2m S 0 S 0 + V( q) (3) que es la ecuación de Hamilton-Jacobi dependiente del y S 0 ( q, t) = t t 0 L( q, q, t )dt es la acción clásica.

5 in Estados estacionarios: Ansatz: semiclásico ψ( q, t) = ψ( q)e i Et ψ( q, t) = e i S( q) i Et, S( q, t) = S( q) Et y la ecuación (2) se transforma en Límite 0: 1 i S S + V( q) E 2m 2m S = 0 1 2m ( S 0) 2 + V( q) = E, S 0 ( q) = q q 0 pd q Que son la ecuación de Hamilton-Jacobi independiente del y la variable de acción, respectivamente.

6 in 0 es equivalente a: semiclásico ( S 0 ) 2 >> S 0, p 2 >> p En uni-dimensionales equivale a: 1 dλ 2π dq << 1 donde λ(q) = 2π /p(q) es la longitud de onda de Broglie. En mecánica cuántica esto se conoce como la aproximación semiclásica (o quasi-clásica) o aproximación WKB (Wentzel-Kramers-Brillouin)

7 in La expansión WKB Consideremos la ecuación de Schrödinger, independiente del, en una dimensión: Ansatz: donde S(x) es la serie: 2 2 ψ + (E V(x))ψ = 0 (4) 2m x2 S(x) = S 0 + i S 1 + ψ(x) = e i S(x) (5) ( ) 2 S 2 + i

8 in Sustituyendo (5) en (4): O( 0 ): ( ) 2 S0 2m(E V(x)) = 0 x O( ): O( 2 ): ( S1 x ( ) 2 S1 + 2 x ) ( ) S S 0 x 2 x 2 = 0 ( S0 x ) ( ) S2 + 2 S 1 x x 2 = 0

9 in Dado que p = S0 x : S 0 (x) = x x 0 p(x )dx = ± x x 0 2m(E v(x ))dx (6) S 1 (x) = ln p(x) + ln C (7) La función de onda aproximada a primer orden en es: ψ(x) = A ( exp + i x ) p(x )dx + B ( exp i x ) p(x )dx p x 0 p x 0 Podemos distinguir tres regiones: E > V(x), p(x) > 0: Región clásicamente permitida. E < V(x), p(x) imaginario: Región clásicamente prohibida. En mecánica cuántica: efecto tunel. E = V(x), p(x) = 0: Puntos de retroceso clásicos: la función de onda (8) no está definida. (8)

10 in En la región clásicamente permitida podemos considerar la solución real: ψ(x) = A ( 1 x ) sin p(x )dx + α p donde a es un punto de retroceso tal que: para x < a, E < V(x) y para x > a, E > V(x). a De las fórmulas de conexión se deduce que: α = π/4, ψ(x) = A ( 1 x sin p(x )dx + π ) p 4 a (9)

11 Consideremos que el movimiento está acotado entre dos puntos de retroceso clásicos a y b: a x b. in La función de onda (9) puede re-escribirse: ( ψ(x) = A 1 b sin p(x )dx + π p x b a p(x )dx π 2 ) (10) Por otro lado, (9) puede expresarse respecto del punto de retroceso b tal que: x < b, E > V(x) y x > b, E < V(x), ( ψ(x) = B ) 1 b sin p(x )dx + π (11) p 4 x

12 Para que la función de onda sea univaluada en a x b, (9) y (11) deben ser la misma, y de (10) se deduce que: in 1 b a con A = ( 1) n B. p(x )dx π 2 = nπ, n = 0, 1, 2, (12) Regla de ( p(x )dx = 2π n + 1 ) 2 (13)

13 in La regla de cuantización de apareció en la "old quantum theory": las variables de acción clásicas se igualan a un múltiplo entero de. En esos s el factor 1 2 se introduce de forma empírica. Posteriormente dicho factor, la energía del punto cero, aparece como consecuencia del principio de incertidumbre. En la representación semiclásica hemos visto que aparece como consecuencia de la pérdida de fase en las "cáusticas".

14 in N grados de Generalización de la regla de cuantización de a sistemas con N grados de : Sistema separable. Por cada grado de, la variable de acción cumple: I k = p k dq k = n k C k donde C k es un contorno cerrado asociado con el movimiento del grado de k-ésimo, y n k es el correspondiente número cuántico. Los niveles de energía son: E n1,n 2,,n N = H(I 1 = n 1, I 2 = n 2,, I N = n N ) Problema: Este procedimiento de cuantización no es único.

15 in Condición de cuantización de Einstein Esta dificultad fue resuelta en un importante artículo de Einstein de Einstein demostró que las variables de acción, para un sistema con N grados de, debían definirse: I k = 1 2π C k N p l dq l es decir, en términos de los toros invariantes, antes de cuantizar à la. l=1 1 Einstein, A.,Quantensatz von Sommerfeld und Epstein, Verh. Deutsch. Phys. Ges.,19, 82 (1917)

16 in Outline 1 2 in

17 in EBK Consideremos un sistema con N grados de, completamente integrable, cuya función de onda es: donde S( q, I) = ψ = A e i S q q 0 p( q, I)d q (14) De (14) se obtiene la relación entre variables conjugadas: θ = I S( q, I), p = q S( q, I) Sobre los toros clásicos con acciones I, las órbitas clásicas se distribuyen uniformenent en θ.

18 in EBK Así la densidad de puntos asociada en el espacio de configuración q es la proyección de la densidad sobre el toro en el espacio q: dθ d q = det 2 S q j I k, j, k = 1,, N Por tanto, la amplitud de la función de onda será: A = det 2 S q j I k Que en el caso uni-dimensional reduce a: A 1 p 1/2 es decir, la expresión obtenida en la aproximación WKB.

19 in EBK Es importante analizar que S es una función multivaluada de q, ya que p también lo es. En particular, para un movimiento uni-dimensional acotado: p(q, I) = ± 2m(H(I) V(q)) En esta figura se representa la curva de energía constante C, en el espacio de fases, para un movimiento unidimensional acotado. El momento p es una función bi-valuada de q; las dos ramas p 1(q) y p 2(q) colapsan en los puntos de retoceso clásicos q 0, en ellos las tangentes a C son paralelas al eje-p.

20 in EBK En la siguiente figura se representa la proyección de C (dada por dθ dq ) sobre el eje-q, dando la envolvente de ψ(q) 2 ; esta proyección es singular en los puntos de retoceso clásicos.

21 in EBK La función de onda debe definirse de la forma: ψ( q) = r det 2 S r q j I k 1/2 e i Sr( q, I) donde r es cada una de las posibles ramas de S. Para que la función de onda (15) sea univaluada: El cambio total de fase asociado con completar un circuito clásico debe ser un múltiplo entero de 2π. (15) Para un toro N-dimensional hay N circuitos topológicamente distintos C k (k = 1, 2,, N) que al recorrerlos conducen al mismo punto. Además, al recorrer C k se pueden atravesar "cáusticas" que dan lugar a una pérdida de fase de π/2 cada una.

22 in EBK Para un sistema integrable con N grados de resulta, pues, 1 p( q, I)d q π α k C k 2 = 2πn k donde α k es el número de "cáusticas" atravesadas. α k son los índices de Maslov. La condición de cuantización para el problema multidimensional es, por tanto, ( I k = pd q = 2π n k + α ) k C k 4 Regla de cuantización de : EBK

23 in Notas basadas en el Capítulo 6, Chaos and Integrability in Semeclassical Mechanics", Michael Tabor, Chaos and Integrability in Nonlinear Dynamics. An Introduction, John Wiley and Sons, 1989.

LOS POSTULADOS DE LA MECÁNICA CUÁNTICA

LOS POSTULADOS DE LA MECÁNICA CUÁNTICA LOS POSTULADOS DE LA MECÁNICA CUÁNTICA POSTULADO I Cualquier estado de un sistema dinámico de N partículas puede ser descrito por una función de las 3N coordenadas y del tiempo: La cantidad Ψ(q 1, q 2,...,

Más detalles

2 Aproximación semiclásica

2 Aproximación semiclásica 2 Aproximación semiclásica Estudiaremos en este capítulo el límite clásico de la mecánica cuántica y lo aplicaremos en la llamada aproximación WKB (por Wentzel, Kramers y Brillouin), también conocido como

Más detalles

Estructura de la Materia. Séptima Sesión Postulados de la Mecánica Cuántica (2)

Estructura de la Materia. Séptima Sesión Postulados de la Mecánica Cuántica (2) Estructura de la Materia Séptima Sesión Postulados de la Mecánica Cuántica () Postulado 1 Para cada estado de un sistema dinámico de N partículas existe una función de onda Ψ que depende de las coordenadas

Más detalles

1 EL OSCILADOR ARMONICO

1 EL OSCILADOR ARMONICO 1 EL OSCILADOR ARMONICO 1.1 Autofunciones y Autovalores El potencial del oscilador armónico en una dimensión corresponde a la siguiente expresión matemática: V = 1 kx (1) donde k es la constante de la

Más detalles

Guía: Distribuciones de Probabilidad Clásicas y Cuánticas para la Posición

Guía: Distribuciones de Probabilidad Clásicas y Cuánticas para la Posición Guía: Distribuciones de Probabilidad Clásicas y Cuánticas para la Posición Teoría de la Dinámica de Reacciones Químicas José G. López, Gloria E. Moyano Instituto de Química Universidad de Antioquia Medellín,

Más detalles

Contenido. 1 / Omar De la Peña-Seaman IFUAP Mecánica Clásica M.C. Física 1/25 25

Contenido. 1 / Omar De la Peña-Seaman IFUAP Mecánica Clásica M.C. Física 1/25 25 Contenido 1. Teoría de Hamilton-Jacobi 1.1 Función Principal de Hamilton 1.2 Función característica de Hamilton 1.3 Separación de variables en la ecuación de Hamilton-Jacobi 1.4 Variables angulares y de

Más detalles

Química Cuántica I Potenciales y efecto túnel

Química Cuántica I Potenciales y efecto túnel Química Cuántica I Potenciales y efecto túnel Prof. Jesús Hernández Trujillo Facultad de Química, UNAM Efecto túnel/jesús Hernández Trujillo p. 1/29 Potenciales Dos tipos de potenciales: Confinante Diverge

Más detalles

Cuestiones de Autoevaluación

Cuestiones de Autoevaluación Cuestiones de Autoevaluación Temas 1-5 Razone cuál de las respuestas es correcta en cada caso 1. En un experimento fotoeléctrico que se realiza con fotones de energías superiores a la función trabajo del

Más detalles

Apuntes de la asignatura Química Física II (Licenciatura en Química) Tema 4: Postulados de la Mecánica Cuántica

Apuntes de la asignatura Química Física II (Licenciatura en Química) Tema 4: Postulados de la Mecánica Cuántica Apuntes de la asignatura Química Física II (Licenciatura en Química) Tema 4: Postulados de la Mecánica Cuántica Ángel José Pérez Jiménez Dept. de Química Física (Univ. Alicante) Índice 1. Descripción de

Más detalles

Tema III: Sistemas Hamiltonianos: Variables acción

Tema III: Sistemas Hamiltonianos: Variables acción Tema III: Sistemas Hamiltonianos: Variables acción ángulo 1. Transformaciones canónicas Sea Hq, p, t) un hamiltoniano tal que ṗ = H q q = H p Una transformación en el espacio de fases Q = Qq, p) es canónica,

Más detalles

Estructura de la Materia. Séptima Sesión Postulados de la Mecánica Cuántica (2)

Estructura de la Materia. Séptima Sesión Postulados de la Mecánica Cuántica (2) Estructura de la Materia Séptima Sesión Postulados de la Mecánica Cuántica () Postulado 1 Para cada estado de un sistema dinámico de N partículas existe una función de onda Ψ que depende de las coordenadas

Más detalles

Interpretación del documento "A HEURISTIC DERIVATION OF THE LINEAR HARMONIC OSCILLATOR ENERGY LEVELS"

Interpretación del documento A HEURISTIC DERIVATION OF THE LINEAR HARMONIC OSCILLATOR ENERGY LEVELS Celeste Pelayes Bryant Barrientos Fisicoquímica III Interpretación del documento "A HEURISTIC DERIVATION OF THE LINEAR HARMONIC OSCILLATOR ENERGY LEVELS" Primero abordaremos el tema con un poco de mecánica

Más detalles

Aplicación de la mecánica cuántica a sistemas sencillos

Aplicación de la mecánica cuántica a sistemas sencillos Aplicación de la mecánica cuántica a sistemas sencillos Antonio M. Márquez Departamento de Química Física Universidad de Sevilla Curso 07/08 Índice. La partícula libre. Partícula en una caja 3. Barreras

Más detalles

La Ecuación de Schrödinger

La Ecuación de Schrödinger La Ecuación de Schrödinger Dr. Héctor René VEGA CARRILLO Notas del curso de Física Moderna Unidad Académica de Ingeniería Eléctrica Universidad Autónoma de Zacatecas Buzón electrónico: fermineutron@yahoo.com

Más detalles

HOJA DE PROBLEMAS 1: ENUNCIADOS

HOJA DE PROBLEMAS 1: ENUNCIADOS Tema: ESTRUCTURA ELECTRÓNICA DE LOS ÁTOMOS HOJA DE PROBLEMAS 1: ENUNCIADOS 1. ( ) Para describir el estado fundamental de una partícula que se encuentra en una caja de potencial unidimensional definida

Más detalles

Fundamentos de Mecánica Cuántica

Fundamentos de Mecánica Cuántica Fundamentos de Mecánica Cuántica Antonio M. Márquez Departamento de Química Física Universidad de Sevilla Curso 207/208 Índice. Orígenes de la Mecánica Cuántica 2. La ecuación de Schrödinger independiente

Más detalles

Niveles Electrónicos en un Potencial Periódico

Niveles Electrónicos en un Potencial Periódico Niveles Electrónicos en un Potencial Periódico Dr. Andres Ozols aozols@fi.uba.ar Facultad de Ingeniería de la Universidad de Buenos Aires 2009 Dr. A. Ozols 1 TEMARIO Niveles Electrónicos en un Potencial

Más detalles

Aplicación de la mecánica cuántica a sistemas sencillos

Aplicación de la mecánica cuántica a sistemas sencillos Aplicación de la mecánica cuántica a sistemas sencillos Antonio M. Márquez Departamento de Química Física Universidad de Sevilla Ultima actualización 5 de noviembre de 06 Índice. La partícula libre. Partícula

Más detalles

Universidad Central de Venezuela Facultad de Ciencias Escuela de Física Postgrado en Física

Universidad Central de Venezuela Facultad de Ciencias Escuela de Física Postgrado en Física Universidad Central de Venezuela Facultad de Ciencias Escuela de Física Postgrado en Física Introducción a la Mecánica Cuántica Relativista http://fisica.ciens.ucv.ve/~svincenz/imcr_p.html Tarea 4 Preliminares

Más detalles

Teoría de átomos en moléculas

Teoría de átomos en moléculas Teoría de átomos en moléculas Operador densidad Prof. Jesús Hernández Trujillo Facultad de Química, UNAM QTAIM Operador densidad/jesús Hdez T p. 1 Contenido Funciones singulares QTAIM Operador densidad/jesús

Más detalles

Problemas de Mecánica Cuántica (para el Exámen Predoctoral)

Problemas de Mecánica Cuántica (para el Exámen Predoctoral) Problemas de Mecánica Cuántica (para el Exámen Predoctoral) 1 Formalismo general 1. Problema: Consideremos un sistema cuántico que contiene sólo dos estados linealmente independientes 1 y 2, 1 = 2 = (

Más detalles

Solución autosemejante de la ecuación de Schrödinger unidimensional para una partícula libre

Solución autosemejante de la ecuación de Schrödinger unidimensional para una partícula libre Solución autosemejante de la ecuación de Schrödinger unidimensional para una partícula libre de Junio de 9 Sergio García-Cuevas González Resumen Se presenta una solución autosemejante de la ecuación de

Más detalles

13. Partícula cargada en B =constante. Niveles de Landau.

13. Partícula cargada en B =constante. Niveles de Landau. Mecánica Cuántica Avanzada Carlos Pena 13-1 13. Partícula cargada en B =constante. Niveles de Landau. [Sak.6, Ynd 18., Lan 11] Partícula clásica en B=cte. B Supongamos una partícula con masa m y carga

Más detalles

Examen de Física Cuántica I

Examen de Física Cuántica I UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS FISICAS 9 de Junio de 2017 Examen de Física Cuántica I Nombre y Apellidos: Firma y DNI: Los alumnos que se presentan a toda la asignatura tienen que

Más detalles

Universidad Central de Venezuela Facultad de Ciencias Escuela de Física

Universidad Central de Venezuela Facultad de Ciencias Escuela de Física Universidad Central de Venezuela Facultad de Ciencias Escuela de Física MECÁNICA CUÁNTICA (43) http://fisica.ciens.ucv.ve/~svincenz/mecanicacuantica.html Tarea Preliminares http://fisica.ciens.ucv.ve/~svincenz/mc_t.pdf

Más detalles

La densidad electrónica es el valor esperado de un operador de la mecánica cuántica

La densidad electrónica es el valor esperado de un operador de la mecánica cuántica La densidad electrónica es el valor esperado de un operador de la mecánica cuántica Prof. Jesús Hernández Trujillo Fac. Química, UNAM A continuación se analiza el problema de expresar a la densidad electrónica,

Más detalles

Mecánica Clásica - 2do. cuatrimestre de 2011 Guía 7: Ecuaciones de Hamilton, transformaciones canónicas. Hamilton Jacobi.

Mecánica Clásica - 2do. cuatrimestre de 2011 Guía 7: Ecuaciones de Hamilton, transformaciones canónicas. Hamilton Jacobi. Mecánica Clásica - 2do. cuatrimestre de 20 Guía 7: Ecuaciones de Hamilton, transformaciones canónicas. Hamilton Jacobi.. Escriba el hamiltoniano, las ecuaciones de Hamilton y construya los diagramas de

Más detalles

PROBLEMAS FISICA III- Hoja 5

PROBLEMAS FISICA III- Hoja 5 PROBLEMAS FISICA III- Hoja 5 Problema 1 Una onda es de la forma y = Acos(2πx/λ + π/3) para x < 0. Sabemos que para x > 0 su longitud de onda se reduce a la mitad.aplicando requisitos de continuidad en

Más detalles

CAPITULO 1. Introducción a la Mecánica Cuántica. 1) Naturaleza de la luz. Dualidad onda-corpúsculo

CAPITULO 1. Introducción a la Mecánica Cuántica. 1) Naturaleza de la luz. Dualidad onda-corpúsculo CAPITULO. Introducción a la Mecánica Cuántica ) Naturaleza de la luz. Dualidad onda-corpúsculo Naturaleza ondulatoria: Eistencia de difracción e interferencias. La luz puede ser polarizada. La luz no tiene

Más detalles

Postulados de la mecánica cuántica. Ponentes: Rodrigo Aguayo Ortiz Paulina Flores Carrillo Tania Hernández Ríos

Postulados de la mecánica cuántica. Ponentes: Rodrigo Aguayo Ortiz Paulina Flores Carrillo Tania Hernández Ríos Postulados de la mecánica cuántica Ponentes: Rodrigo Aguayo Ortiz Paulina Flores Carrillo Tania Hernández Ríos CONTENIDO Mecánica cuántica Postulados de la mecánica cuántica Postulado I. Estado del sistema

Más detalles

DISPOSITIVOS OPTOELECTRÓNICOS Tema 2: Fundamentos de mecánica cuántica

DISPOSITIVOS OPTOELECTRÓNICOS Tema 2: Fundamentos de mecánica cuántica Tema : Fundamentos de mecánica cuántica DISPOSITIVOS OPTOELECTRÓNICOS Tema : Fundamentos de mecánica cuántica Lluís Prat Viñas Escola Tècnica Superior d Enginyers de Telecomunicació de Barcelona (ETSETB)

Más detalles

Teoría Espectral. Stephen B. Sontz. Centro de Investigación en Matemáticas, A.C. (CIMAT) Guanajuato, Mexico

Teoría Espectral. Stephen B. Sontz. Centro de Investigación en Matemáticas, A.C. (CIMAT) Guanajuato, Mexico Teoría Espectral Stephen B. Sontz Centro de Investigación en Matemáticas, A.C. (CIMAT) Guanajuato, Mexico Mini-curso impartido en Colima 28 septiembre 2016 - Segundo día SEPARACION DE VARIABLES Buscamos

Más detalles

Simetría de funciones de onda y Principio de Pauli. Rueda Carlos Alberto Tinajero Verónica Tavera Hernández Rosario

Simetría de funciones de onda y Principio de Pauli. Rueda Carlos Alberto Tinajero Verónica Tavera Hernández Rosario Simetría de funciones de onda y Principio de Pauli Rueda Carlos Alberto Tinajero Verónica Tavera Hernández Rosario Introducción. En el espectro de emisión del sodio la línea amarilla es la más intensa

Más detalles

Estructura electrónica de los átomos

Estructura electrónica de los átomos Estructura electrónica de los átomos Partículas subatómicas Protón (p) 1,673 10-27 Kg + 1,602 10-19 C Goldstein (1886) Electrón (e) 9,109 10-31 Kg - 1,602 10-19 C Thomson (1897) Neutrón (n) 1,673 10-27

Más detalles

La Teoría de Schrödinger de la Mecánica

La Teoría de Schrödinger de la Mecánica Preprint typeset in JHEP style - PAPER VERSION 3 ra Unidad La Teoría de Schrödinger de la Mecánica Cuántica Alfredo Vega Departamento de Física y Centro Científico Tecnológico de Valparaíso (CCTVal), Universidad

Más detalles

Introducción a la Computación Cuántica

Introducción a la Computación Cuántica P. Universidad Católica de Chile Facultad de Ingeniería Tópicos en Ciencia de la Computación Introducción a la Computación Cuántica Gonzalo Díaz 09 de agosto de 011 1 Introducción Este documento presenta

Más detalles

Paquetes de ondas (Ondas de materia) Page 1

Paquetes de ondas (Ondas de materia) Page 1 Paquetes de ondas (Ondas de materia) Page 1 Ondas de materia: Tal como lo laneado or De Broglie existe una onda de materia asociada al movimiento de una artícula, sin embargo no es osible hablar de la

Más detalles

Ondas de Materia Estados ligados. Física Facultad de Ingeniería UNMDP

Ondas de Materia Estados ligados. Física Facultad de Ingeniería UNMDP Ondas de Materia Estados ligados Física 3 2012 Facultad de Ingeniería UNMDP Pozo de potencial de paredes infinitas Consideremos una partícula confinada en una región de tamaño finito a

Más detalles

Vibración y rotación en mecánica cuántica

Vibración y rotación en mecánica cuántica Vibración y rotación en mecánica cuántica Antonio M. Márquez Departamento de Química Física Universidad de Sevilla Ultima actualización de marzo de 017 Índice 1. Oscilador armónico monodimensional 1. Cuantización

Más detalles

Estructura de la Materia. Sexta Sesión Principio de incertidumbre Mecánica cuántica

Estructura de la Materia. Sexta Sesión Principio de incertidumbre Mecánica cuántica Estructura de la Materia Sexta Sesión Principio de incertidumbre Mecánica cuántica De Broglie Principio de Incertidumbre Werner Heisenberg (1901-1976). Premio Nóbel en 1932. Principio de Incertidumbre

Más detalles

+V(x,y,z).ψ(x,y,z,t) = i.h

+V(x,y,z).ψ(x,y,z,t) = i.h Ecuación n de Schrödinger -h ( Ψ Ψ Ψ ) m Ψ +V(x,y,z).ψ(x,y,z,t) = i.h x y z t h = h / π i = (-1) 1/ ψ(x,y,z,t)... función (compleja) de onda V(x,y,z)... función de energía potencial ψ (x,y,z,t)... puede

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO CENTRO DE FÍSICA APLICADA Y TECNOLOGÍA AVANZADA Y FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO CENTRO DE FÍSICA APLICADA Y TECNOLOGÍA AVANZADA Y FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN 5 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO CENTRO DE FÍSICA APLICADA Y TECNOLOGÍA AVANZADA Y FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN Carrera: Licenciatura en Tecnología Programa de la Asignatura: Mecánica

Más detalles

FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN

FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN 1. Considere el siguiente potencial (pozo infinito): { 0 x a; y b y z c V(x)= sino Escribiendo

Más detalles

ESTRUCTURA DE LA MATERIA

ESTRUCTURA DE LA MATERIA ESTRUCTURA DE LA MATERIA 1. Naturaleza de la materia (el átomo). 2. Modelos atómicos clásicos. 3. Modelo mecánico cuántico. 4. Mecánica ondulatoria de Schrödinger. 5. Números cuánticos. 6. Orbitales atómicos.

Más detalles

Rotación de moléculas diatómicas

Rotación de moléculas diatómicas Rotación de moléculas diatómicas Química Física Aplicada, UAM 23 de enero de 2011 (Química Física Aplicada, UAM) Rotación de moléculas diatómicas 23 de enero de 2011 1 / 29 Movimiento nuclear en moléculas

Más detalles

Termodinámica estadística: Diferenciales, transformada de Legendre

Termodinámica estadística: Diferenciales, transformada de Legendre Termodinámica estadística: Diferenciales, transformada de Legendre Prof Jesús Hernández Trujillo 1. Diferenciales 1.1. Diferencial total La diferencial total de z = φ(, y) se define por dφ = ( ) φ d +

Más detalles

EL ÁTOMO MECANO CUÁNTICO Ecuación de Schrödinger y Orbitales atómicos

EL ÁTOMO MECANO CUÁNTICO Ecuación de Schrödinger y Orbitales atómicos Obtención de la ecuación de Schrödinger Se parte de la ecuación de una onda ψ= Asen( ωt kx) en la cual Ψ es la elongación, A la amplitud, ω frecuencia angular, k el número de onda, y x la posición respecto

Más detalles

Ayudantía 5: Cuantificación de la energía en sistemas simples

Ayudantía 5: Cuantificación de la energía en sistemas simples Pontificia Universidad Católica de Chile Facultad de Física FIZ03 Física Cuántica I Ayudantía 5: Cuantificación de la energía en sistemas simples Fabián Cádiz 0.1. Estados ligados y estados de difusión

Más detalles

LA ECUACIÓN DE HAMILTON JACOBI:

LA ECUACIÓN DE HAMILTON JACOBI: LA ECUACIÓN DE HAMILTON JACOBI: UNA PERSPECTIVA DESDE LA MECÁNICA GEOMÉTRICA XAVIER GRÀCIA Dep. Matemàtica Aplicada IV Universitat Politècnica de Catalunya Barcelona Jornada Interdisciplinar Hamilton Jacobi

Más detalles

Lección: Introducción a la Química Cuántica

Lección: Introducción a la Química Cuántica Lección: Introducción a la Química Cuántica TEMA: Introducción 1....................... 2 I.A. Espectro discreto............... 2 I.B. Espectro continuo...............8 II. Mecánica Cuántica...............

Más detalles

ρdq 1 dq f dp 1 dp f = 1. (11.1)

ρdq 1 dq f dp 1 dp f = 1. (11.1) Clase 11 Física Estadística Cuántica En mecánica estadística clásica es conveniente representar el estado de un sistema de f grados de libertad por la posición de un punto en el espacio fase qp de 2f dimensiones

Más detalles

ELEMENTOS DE MECÁNICA CUÁNTICA (No relativista)

ELEMENTOS DE MECÁNICA CUÁNTICA (No relativista) Página 1 de 16 Ir a página inicial-->matematica, FISICA, ASTRONOMIA ELEMENTOS DE MECÁNICA CUÁNTICA (No relativista) 1.INTRODUCCION: 2.FUNCION DE ONDA Y SUPERPOSICION 3.MEDICION E INDETERMINISMO 4.OPERADORES

Más detalles

ESTRUCTURA DE LA MATERIA

ESTRUCTURA DE LA MATERIA ESTRUCTURA DE LA MATERIA ESTRUCTURA DE LA MATERIA ESTRUCTURA DE LA MATERIA 0/03/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 0 0/03/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 1 0/03/18 FUNDAMENTOS DE LA MECÁNICA

Más detalles

Física Cuántica. D.Sc. Ing. Benjamín Barán Prof. Titular de de FÍSICA II II Facultad de de Ingeniería Universidad Nacional de de Asunción

Física Cuántica. D.Sc. Ing. Benjamín Barán Prof. Titular de de FÍSICA II II Facultad de de Ingeniería Universidad Nacional de de Asunción Física Cuántica D.Sc. Ing. Benjamín Barán Prof. Titular de de FÍSICA II II Facultad de de Ingeniería Universidad Nacional de de Asunción E.mail: bbaran@cnc.una.py Introducción n Histórica 1900 Max Planck

Más detalles

ESTRUCTURA DE LA MATERIA

ESTRUCTURA DE LA MATERIA ESTRUCTURA DE LA MATERIA ESTRUCTURA DE LA MATERIA ESTRUCTURA DE LA MATERIA 06/03/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 0 06/03/18 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 1 06/03/18 FUNDAMENTOS DE LA MECÁNICA

Más detalles

Introducción a la mecánica cuántica

Introducción a la mecánica cuántica Introducción a la mecánica cuántica Jesús Hernández Trujillo Facultad de Química, UNAM Enero de 2017 Contenido: Introducción Álgebra de operadores Postulados y teoremas de la mecánica cuántica Intro cuántica/jht

Más detalles

Operadores y Mecánica Cuántica

Operadores y Mecánica Cuántica Operadores y Mecánica Cuántica Antonio M. Márquez Departamento de Química Física Universidad de Sevilla Curso 2016-2017 Problema 1 Demuestre: a Que la función Ψx e x2 /2 es función propia del operador

Más detalles

Datos: a = 3, m = 1, J s c = 2, m s

Datos: a = 3, m = 1, J s c = 2, m s El deuterón Mediante experimentos de dispersión se sabe que el deuterón tiene un diámetro aproximado de 3,04 Fermi. Calcular usando la mecánica cuántica del pozo de potencial cuadrado las velocidades del

Más detalles

CAOS CUÁNTICO Y PRINCIPIO DE CORRESPONDENCIA: UNA PROBLEMÁTICA EN EVOLUCIÓN

CAOS CUÁNTICO Y PRINCIPIO DE CORRESPONDENCIA: UNA PROBLEMÁTICA EN EVOLUCIÓN CAOS CUÁNTICO Y PRINCIPIO DE CORRESPONDENCIA: UNA PROBLEMÁTICA EN EVOLUCIÓN Diógenes Campos Departamento de Física, Universidad Nacional de Colombia, Bogotá En el libro "El Maestro de Ciencias", Facultad

Más detalles

Química Física II. Curso Serie L02. Problemas de una partícula

Química Física II. Curso Serie L02. Problemas de una partícula Química Física II. Curso 009-00. Serie L0. Problemas de una partícula. La función de onda de una partícula libre que se mueve en una dimensión con energía constante es Ψ k (x, t) = ψ k (x)e iωt = Ae ikx

Más detalles

FISICA IV. Física Cuántica Marco A. Merma Jara Versión

FISICA IV. Física Cuántica Marco A. Merma Jara   Versión FISICA IV Física Cuántica Marco A. Merma Jara http://mjfisica.net Versión 8.015 Contenido Inicios de la física moderna Constante de Planck El efecto fotoeléctrico Energía relativista Teoría cuántica de

Más detalles

Ondas de Materia Ecuación de Schrödinger. Física Facultad de Ingeniería UNMDP

Ondas de Materia Ecuación de Schrödinger. Física Facultad de Ingeniería UNMDP Ondas de Materia Ecuación de Schrödinger Física 3 2012 Facultad de Ingeniería UNMDP Problemas abiertos de la física clásica a fines del siglo XIX Antecedentes de la mecánica cuántica Radiación de cuerpo

Más detalles

Solución de la ecuación de Schrödinger para el oscilador armónico

Solución de la ecuación de Schrödinger para el oscilador armónico Solución de la ecuación de Schrödinger para el oscilador armónico Erika Armenta Jaime Francisco Barrera Raul Camiña Blando Geraldyne L. Castro Herrera Antecedentes Max Plank (1900) propone que la emisión

Más detalles

Lección: Modelos cuánticos útiles en Química

Lección: Modelos cuánticos útiles en Química Lección: Modelos cuánticos útiles en Química TEMA: Introducción 1 Adolfo Bastida Pascual Universidad de Murcia. España. I. La partícula en una caja de potencial.. 2 I.A. Ecuación de Schrödinger...........

Más detalles

MECÁNICA CUÁNTICA AVANZADA 2013 Selección de problemas n.2

MECÁNICA CUÁNTICA AVANZADA 2013 Selección de problemas n.2 MECÁNICA CUÁNTICA AVANZADA 2013 Selección de problemas n.2 I. Consolidación de conceptos y aplicaciones 1. Considérese una interacción de corto alcance entre dos partículas controlada por un parámetro

Más detalles

Formulaciones lagrangiana y hamiltoniana de la mecánica

Formulaciones lagrangiana y hamiltoniana de la mecánica Formulaciones lagrangiana y hamiltoniana de la mecánica Gloria E. Moyano Fisicoquímica Avanzada Instituto de Química Universidad de Antioquia 8 de agosto de 2012 GEM UdeA 1 / 6 Formulaciones de la mecánica

Más detalles

Ecuación de Schrödinger

Ecuación de Schrödinger cuación de Schrödinger Potenciales unidimensionales Física 3 2012 Facultad de Ingeniería UNMDP cuación de Schödinger dependiente del tiempo De Broglie nergía de una partícula en 1D ω = 2 k 2 + Planck Solución

Más detalles

Tema 2. Los átomos: estructura electrónica.

Tema 2. Los átomos: estructura electrónica. Tema 2. Los átomos: estructura electrónica. 1. Introducción. 2. Antecedentes de la mecánica ondulatoria. 3. Mecánica ondulatoria. 4. Orbitales atómicos. 5. Configuraciones electrónicas. 1. Introducción

Más detalles

166 / Lecciones de Mecánica Cuántica

166 / Lecciones de Mecánica Cuántica 166 / Lecciones de Mecánica Cuántica 9 Recapitulación Con este capítulo daremos por terminadas estas sesenta lecciones introductorias de un curso de mecánica cuántica a nivel de pregrado. Miraremos a manera

Más detalles

Capítulo 4. Introducción a la Formulación Lagrangiana y Hamiltoniana para Sistemas Continuos. 4.1 Transición de un sistema discreto a uno continúo

Capítulo 4. Introducción a la Formulación Lagrangiana y Hamiltoniana para Sistemas Continuos. 4.1 Transición de un sistema discreto a uno continúo Capítulo 4 Introducción a la Formulación Lagrangiana y Hamiltoniana para Sistemas Continuos Hay algunos problemas de la mecánica que implican sistemas continuos, como, el problema de un sólido elástico

Más detalles

La teoría cuántica moderna;

La teoría cuántica moderna; V. La teoría cuántica moderna; Schröedinger el átomo de hidrógeno Alejandro Solano Peralta La teoría cuántica moderna; MECÁNICA ONDULATORIA DE SCHRÖEDINGER 1 de Broglie la dualidad onda partícula En 194

Más detalles

Estructura electrónica molecular

Estructura electrónica molecular Estructura electrónica molecular Antonio M. Márquez Departamento de Química Física Universidad de Sevilla Ultima actualización 4 de noviembre de 2016 Índice 1. Aproximación de Born-Oppenheimer 1 2. Ion

Más detalles

Cuantización de la materia

Cuantización de la materia C A P Í T U L O 1 Cuantización de la materia 1.1. ENUNCIADOS Y SOLUCIONES DE LOS PROBLEMAS 1. Obtenga la energía variacional para la partícula en la caja de potencial utilizando la función de prueba Φ(x)

Más detalles

1.2 Átomos y electrones. Importancia de modelos físicos f de dispositivos Estructura de los átomos Interacción n de átomos con electrones

1.2 Átomos y electrones. Importancia de modelos físicos f de dispositivos Estructura de los átomos Interacción n de átomos con electrones 1. Introducción n a la Física F Electrónica 1.2 Átomos y electrones Importancia de modelos físicos f en el desempeño de dispositivos Estructura de los átomos Interacción n de átomos con electrones Modelos

Más detalles

1. Dispersión elástica a dos cuerpos: generalidades.

1. Dispersión elástica a dos cuerpos: generalidades. Mecánica Cuántica Avanzada Carlos Pena -. Dispersión elástica a dos cuerpos: generalidades. [Ros XVI.-3, Ynd 2.-4] Dispersión elástica a dos cuerpos: caso clásico Cinemática A nivel intuitivo, un proceso

Más detalles

Física Estadística. Tercer curso del Grado en Física. J. Largo & J.R. Solana. Departamento de Física Aplicada Universidad de Cantabria

Física Estadística. Tercer curso del Grado en Física. J. Largo & J.R. Solana. Departamento de Física Aplicada Universidad de Cantabria Tercer curso del Grado en Física largoju at unican.es J. Largo & J.R. Solana solanajr at unican.es Departamento de Física Aplicada Universidad de Cantabria Indice I Formas de energía en un sólido cristalino

Más detalles

La Ecuación de Hamilton - Jacobi

La Ecuación de Hamilton - Jacobi Capítulo 30 La Ecuación de Hamilton - Jacobi 30.1 Introducción La teoría de las transformaciones canónicas nos conduce directamente al resultado más importante de la teoría de sistemas dinámicos, la ecuación

Más detalles

Respuestas de la Serie 2

Respuestas de la Serie 2 Respuestas de la Serie 2 1. N h 2 Ĥ = 2 2M I I=1 }{{} A n h 2 2 + 2m i }{{} B N N I=1 J>I kz 2 e 2 R I R J } {{ } C N n kze 2 I } i R I r i {{} D + n n ke 2 r j>i i r j }{{} E a) En el orden en el que

Más detalles

Modelo Mecano Cuántico. Taller PSU Química 2018.

Modelo Mecano Cuántico. Taller PSU Química 2018. Modelo Mecano Cuántico. Taller PSU Química 2018. Contenidos Mínimos Obligatorios Descripción básica de la Cuantización de la energía, organización y comportamiento de los electrones del átomo, utilizando

Más detalles

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA NOMBRE... APELLIDOS... CALLE... POBLACIÓN... PROVINCIA...C.P... QUÍMICA CUÁNTICA PRUEBA DE EVALUACIÓN A DISTANCIA Número de expediente 09534 09534 Química

Más detalles

1. Mecánica Lagrangiana

1. Mecánica Lagrangiana Mecánica Clásica 1. Mecánica Lagrangiana (a) Ecuaciones de Lagrange y cálculo de variaciones (b) Principio de Hamilton de mínima acción (c) Leyes de conservación (d) Transformaciones de Legendre (e) Ecuaciones

Más detalles

Mecánica cuántica avanzada - Curso 2011/2012 Problemas - Hoja 2: Teoría de colisiones

Mecánica cuántica avanzada - Curso 2011/2012 Problemas - Hoja 2: Teoría de colisiones UNIVERSIDAD COMPLUTENSE DE MADRID DEPARTAMENTO DE FÍSICA TEÓRICA I Mecánica cuántica avanzada - Curso 11/1 Problemas - Hoja : Teoría de colisiones 1. Se considera el potencial V (r) = V e αr, donde V y

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-07-2-M-2-00-202 CURSO: Matemática Intermedia I SEMESTRE: Segundo CÓDIGO DEL CURSO: 07 TIPO DE EXAMEN: Segundo

Más detalles

Estructura electrónica

Estructura electrónica ESTRUCTURA ELECTRÓNICA Naturaleza dual del electrón Principio de Incertidumbre Modelo cuántico del átomo Átomos hidrogenoides electrónica Los físicos quedaron fascinados con la teoría de Bohr. Pero Por

Más detalles

Ecuaciones diferenciales ordinarias

Ecuaciones diferenciales ordinarias Ecuaciones diferenciales ordinarias 1 Ecuaciones diferenciales ordinarias de primer orden Resumimos aquí la información necesaria sobre ecuaciones diferenciales ordinarias que se emplean en el texto, enumerando

Más detalles

1 Dinámica newtoniana y ecuaciones de Lagrange. 2 Simetrías y teoremas de conservación.

1 Dinámica newtoniana y ecuaciones de Lagrange. 2 Simetrías y teoremas de conservación. Mecánica Teórica 1 Dinámica newtoniana y ecuaciones de Lagrange. Mecánica de una partícula. Mecánica de un sistema de partículas. Ligaduras. Clasificación y coordenadas generalizadas. El principio de D

Más detalles

Física Cuántica Partículas idénticas.

Física Cuántica Partículas idénticas. Física Cuántica Partículas idénticas. José Manuel López y Luis Enrique González Universidad de Valladolid Curso 2004-2005 p. 1/18 Partículas idénticas Qué son varias partículas idénticas? Las que tienen

Más detalles

Ecuación de Schrödinger

Ecuación de Schrödinger cuación de Schrödinger Potenciales unidimensionales Física 3 2011 / Daniel Mirabella Facultad de Ingeniería UNMDP cuación de Schödinger dependiente del tiempo nergía de una partícula en 1D De Broglie Planck

Más detalles

20. Absorción y emisión estimulada de fotones por electrones ligados. Coeficientes de Einstein.

20. Absorción y emisión estimulada de fotones por electrones ligados. Coeficientes de Einstein. Mecánica Cuántica Avanzada Carlos Pena 20-1 20. Absorción y emisión estimulada de fotones por electrones ligados. Coeficientes de Einstein. [Gre 2.1,2.3; passim] Absorción de fotones en un átomo El proceso

Más detalles

Orígenes y mecánica ondulatoria

Orígenes y mecánica ondulatoria Capítulo 1 Orígenes y mecánica ondulatoria Siempre que me pidieron agua yo les conté la historia del rio. Pueblo Amarillo, D. Giraudo 1.1. Fuentes de la Mecánica Cuántica 1900 Ley de radiación de Planck.

Más detalles

Estructura de los átomos: Estructura electrónica

Estructura de los átomos: Estructura electrónica Estructura de los átomos: Modelos atómicos Después de los modelos iniciales de Thomson y Rutherford, en los que los electrones podían tener cualquier energía, una serie de hechos experimentales llevaron

Más detalles

Modelización Molecular

Modelización Molecular Modelización Molecular Modelización Molecular Antonio M. Márquez Departamento de Química Física Universidad de Sevilla marquez@us.es (Química Física) Modelización Molecular 1 / 27 Programa 1 Programa 2

Más detalles

Solución a la Ecuación de Schrödinger para el Oscilador Armónico Cuántico.

Solución a la Ecuación de Schrödinger para el Oscilador Armónico Cuántico. Hurtado Balcazar Diego Alejandro. Martínez Díaz José Rodrigo Alejandro. Méndez Díaz Francisco Antonio. Solución a la Ecuación de Schrödinger para el Oscilador Armónico Cuántico. Introducción. El movimiento

Más detalles

Gas de electrones libres: Modelo de Sommerfeld

Gas de electrones libres: Modelo de Sommerfeld Capítulo 1 Gas de electrones libres: Modelo de Sommerfeld 1.1. Introducción El modelo de Drude de la conductividad eléctrica fué propuesto en 1900 por Paul Drude para explicar las propiedades de transporte

Más detalles

FÍSICA CUÁNTICA 1. Antecedentes y crisis. 2. Modelo atómico de Bohr. 3. Principios de la mecánica cuántica.

FÍSICA CUÁNTICA 1. Antecedentes y crisis. 2. Modelo atómico de Bohr. 3. Principios de la mecánica cuántica. FÍSICA CUÁNTICA 1. Antecedentes y crisis. 2. Modelo atómico de Bohr. 3. Principios de la mecánica cuántica. Física 2º bachillerato Física cuántica 1 0. CONOCIMIENTOS PREVIOS Los conocimientos previos que

Más detalles

Emili Besalú Departamento de Química y Instituto de Química Computacional Universitat de Girona Girona

Emili Besalú Departamento de Química y Instituto de Química Computacional Universitat de Girona Girona FORMULACIÓN MATRICIAL DE LA TEORÍA DE PERTURBACIONES DE RAYLEIGH-SCHRÖDINGER: APLICACIÓN A LA CAJA CUÁNTICA MONODIMENSIONAL Emili Besalú Departamento de Química y Instituto de Química Computacional Universitat

Más detalles

Física moderna. José Mariano Lucena Cruz Física 2 o Bachillerato

Física moderna. José Mariano Lucena Cruz Física 2 o Bachillerato José Mariano Lucena Cruz chenalc@gmail.com Física 2 o Bachillerato Radiación térmica Todo cuerpo, no importa a la temperatura que se encuentre, es fuente de radiación térmica. (Emite energía en forma de

Más detalles

TAREA 1. Primero, obtendremos la ecuación de onda para el campo eléctrico. Para ello, utilizamos las ecuaciones de Maxwell. La ecuación de onda es

TAREA 1. Primero, obtendremos la ecuación de onda para el campo eléctrico. Para ello, utilizamos las ecuaciones de Maxwell. La ecuación de onda es TAREA 1 1. Muestre que, considerando la solución a la correspondiente ecuación de onda, la superposición de campos eléctricos implica la presencia de un patrón de difracción. Primero, obtendremos la ecuación

Más detalles