Capítulo 2. Algebra y geometría de números complejos: una introducción.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Capítulo 2. Algebra y geometría de números complejos: una introducción."

Transcripción

1 Capítulo 2 Algebra y geometría de números complejos: una introducción. En este capítulo se utilizan comandos de Mathematica para calcular números complejos y graficarlos como puntos en el plano. Buscamos comprender el comportamiento de una sucesión de números complejos con la gráfica de sus primeros términos. En particular, se estudian las sucesiones que contienen a las potencias sucesivas de un número complejo. Números complejos Operaciones con números complejos Se llama número complejo a toda expresión del tipo z=a+bi, donde a y b son números reales y el símbolo I denota la raíz cuadrada del número real 1. Es decir, I es una solución de la ecuación I 2 = 1. Al número real a se le llama parte real de z y lo denotaremos mediante el símbolo Re[z], y al número real b se le llama parte imaginaria de z y lo denotaremos por Im[z]. Entonces se puede escribir z=re[z]+im[z] I. Un número complejo z es real si y sólo si Im[z]=0, y se dice que z es un número puramente imaginario si Re[z]=0. Si denotamos por al conjunto de los números complejos, podemos escribir = {z=a+ b I: a,b Ε }. Las operaciones aritméticas con números complejos se definen de la siguiente manera: Suma: si z=a+ b I y w=c+ d I, entonces z+w = (a+c)+(b+d)i. Producto: si z=a+ b I y w=c+ d I, entonces zw=z w=(ac bd)+(ad+cb)i. Obsérvese que se puede deducir la regla de la multiplicación si se supone que los números complejos son polino mios (o más bien, binomios) en la variable I y se les aplican las reglas para la multiplicación de polinomios utilizando la relación I 2 = 1, cada vez que aparezca el término I 2. Así: z w = (a+bi)(c+di) = ac + adi + bci + bdi 2 = (ac bd) + (ad+bc)i. Cada número complejo z=a+bi se puede representar geométricamente en el plano por el punto con coordenadas rectangulares (a,b) o, equivalentemente, por el vector desde el origen con componentes

2 11 num_complejos.nb rectangulares (a,b). De acuerdo con esta representación geométrica, al eje de las abscisas también se le llama eje real, al eje de las ordenadas eje imaginario y el plano recibe el nombre de plano complejo. El siguiente grupo de comandos de Mathematica define algunas funciones que usaremos más adelante. Si Mathematica responde a este grupo con advertencias en color azul, y estás seguro que no hay ningún error, puedes probar a ejecutarlo otra vez. Si estás iniciando la sesión con Mathematica, puedes omitir la instrucción Clear. Puede resultarte conveniente que introduzcas primero sólo desde el inicio hasta aazul inclusive, además de la última instrucción, la que define a v[z], y después de haber comprobado su funcionamiento correcto, emplea copiar y pegar, haciendo las modificaciones nece sarias, para introducir las otras instrucciones. Recuerda que lo importante es que interpretes correcta mente los resultados asociados con cada instrucción. In[1]:= Clear z, w rrojo lista_ : ListPlot lista, PlotJoined True, PlotStyle RGBColor 1, 0, 0 ; vverde lista_ : ListPlot lista, PlotJoined True, PlotStyle RGBColor 0, 1, 0 ; aazul lista_ : ListPlot lista, PlotJoined True, PlotStyle RGBColor 0, 0, 1 ; rojo lista_ : ListPlot lista, PlotJoined True, PlotStyle RGBColor 1, 0, 0, DisplayFunction Identity ; verde lista_ : ListPlot lista, PlotJoined True, PlotStyle RGBColor 0, 1, 0, DisplayFunction Identity ; azul lista_ : ListPlot lista, PlotJoined True, PlotStyle RGBColor 0, 0, 1, DisplayFunction Identity ; vverdepunto lista_ : ListPlot lista, PlotStyle RGBColor 0, 1, 0 ; rrojopunto lista_ : ListPlot lista, PlotStyle RGBColor 1, 0, 0 ; aazulpunto lista_ : ListPlot lista, PlotStyle RGBColor 0, 0, 1 ; v z_ : Table Re 0, Im 0, Re z, Im z ; Distingue las maneras en que podemos graficar un número complejo en el plano complejo. El comando vverde[v[z]] presenta en la pantalla al vector que corresponde al número complejo z, mientras que los comandos rrojo[], aazul[] aplicados a v[z] presentan al vector z en el correspondiente color. Por otra parte, los comandos verde[v[z]], rojo[] y azul[] generan la gráfica en la memoria de la máquina sin presentarla en la pantalla, lo cual se hace después, posiblemente combinada con otra gráfica. En cambio, el comando vverdepunto[v[z]] realiza la misma operación que vverde[v[z]] pero grafica sólo el origen y el punto z, lo cual se aplica también a sus similares para los otros colores. Observa y confirma en las gráficas lo que acabamos de decir: In[12]:= z 5 7 I vverde v z In[14]:= verde v z Aunque con la última instrucción no se ve la gráfica, está almacenada en la memoria. Cómo podrías confirmarlo? Una posible respuesta es al mostrar lo que está en la memoria, en la forma que encontrarás más adelante o que el profesor te puede indicar. En todo lo que sigue, relaciona las instrucciones y las gráficas; Identifica los puntos o los vectores de los números complejos, así como sus componentes; Prueba a hacer lo mismo con los otros colores. In[15]:= vverdepunto v z

3 num_complejos.nb 12 El valor absoluto o módulo de un número complejo z, se denota por el símbolo z y se define como la distancia entre el punto en el plano que representa al complejo z y el origen del sistema coordenado. Entonces z = Re z 2 Im z 2. El comando de Mathematica que calcula el módulo de un com plejo z es Abs[z]. Por ejemplo, In[16]:= Abs z Este es el valor del módulo del número complejo z que definimos arriba. El argumento de un número complejo z se denota por Arg[z] y se define como el ángulo entre la direc ción positiva del eje real y el vector que representa a este complejo, definido como positivo al moverse en la dirección contraria a las manecillas del reloj. El argumento del número complejo z es proporcio nado por el comando de Mathematica Arg[z]. Por ejemplo: In[17]:= Arg z N es el argumento del número complejo que definimos arriba, expresado en radianes. Recomendaciones: Compara el resultado que se obtiene si escribes sólo Arg[z]. Verifica si el argu mento es correcto para números complejos en el 2º, el 3 er y el 4º cuadrantes. Se llama conjugado de un número complejo z al número complejo z = Re[z] Im[z] I. Otra notación común del conjugado es z. Este número está representado en el plano complejo por el punto que se obtiene al reflejar el punto que representa a z con respecto al eje real. El comando de Mathematica que calcula al conjugado de un número complejo z es Conjugate[z]. El siguiente grupo de comandos grafica a un número complejo z y a su conjugado z. Ejecútalos y observa la simetría. In[18]:= z : I a verde v z ; b rojo v Conjugate z ; Show a, b, DisplayFunction $DisplayFunction Nota que, en lugar de ser usadas solas como antes, las instrucciones verde y rojo están ahora a la derecha de un igual y que se ha empleado además el comando Show. Trata de comprender y explicar, basándote en tu experiencia previa, el funcionamiento del grupo anterior. Formas de la representación polar Esta sección es sólo informativa y no requiere el uso de Mathematica, excepto en los ejercicios donde se indique. Utilizando el módulo y el argumento de un número complejo, se puede escribir en su forma polar de la siguiente manera: z = z (CosΘ + SenΘ I), donde Θ=Arg[z]. Si se utiliza a la función Exp[Θ I], que se define mediante la fórmula de Euler como Exp[Θ I]=CosΘ + SenΘ I, se obtiene una fórmula más compacta para la representación polar de z: z = z Exp[Θ I]. Obsérvese que si

4 13 num_complejos.nb entonces Por otra parte, z = z Exp[Θ I] y w = w Exp[Ζ I], donde Ζ = Arg[w], zw = zw Exp[Arg[zw] I]= z w Exp[Arg[zw] I]. zw = z w (CosΘ + SenΘ I) (CosΖ + SenΖ I) = z w {(CosΘ CosΖ SenΘ SenΖ) + (SenΘ CosΖ + CosΘ SenΖ)I} = z w {Cos(Θ+Ζ) + Sen(Θ+Ζ)I} = z w Exp[(Θ+Ζ)I], donde se aplicaron las fórmulas para el coseno y el seno de la suma de dos ángulos. Entonces, se tiene que: Arg[zw] = Θ + Ζ = Arg[z] + Arg[w], y Exp[Arg[zw]I] = Exp[(Θ+Ζ) I] = Exp [(Arg[z]+Arg[w]) I]. y se puede escribir zw = z w Exp[(Arg[z]+Arg[w]) I]. En particular, cuando z = w se tiene que z 2 = z 2 Exp[ 2 Arg[z] I]. Raíces n ésimas de un número complejo. Se estudiarán ahora las raíces de la ecuación x n = a, donde a es cualquier número complejo y n es un número entero. En otras palabras, se estudiará al conjunto de raíces n ésimas, que podemos identificar como x k con k = 1, 2, 3, 4,..., de un número complejo a dado, que resultan al extraer la raíz n ésima a esa ecuación, lo que se expresa como x = a 1 n y que satisfacen las x k. Consideramos como un caso especial cuando a tiene parte imaginaria nula, es decir, cuando a es un número real. Nota que cuando hablamos aquí de raíces, no se trata exclusivamente de la raíz cuadrada, lo cual sería el caso particular para el que n=2. El siguiente programa calcula y grafica las raíces n ésimas de cualquier número complejo a. Para iniciar, calcúlense las raíces cúbicas (n=3), del número a=1. Ejecútese el programa y obsérvense los resultados. Identifica en la gráfica de los resultados el número de raíces cúbicas de 1, y para cada una, las partes real e imaginaria, su módulo y argumento. Nota que las escalas de los ejes real e imaginario pueden ser distintas. In[42]:= n : 3 l Solve x^n 1 ; z x. l N l10 Table Transpose Re z, Im z f1 ListPlot l10, PlotStyle PointSize 0.015, RGBColor 0, 1, 0 ;

5 num_complejos.nb 14 Estas son las raíces cúbicas de 1, es decir, las raíces cúbicas de la unidad. Tómense otros valores de n, por ejemplo, n=10 (raíces décimas), también con a=1, de modo que ahora tendremos las raíces décimas de la unidad. In[47]:= n : 10 l Solve x^n 1 ; z : x. l N f2 ListPlot Transpose Re z, Im z, PlotStyle PointSize 0.015, RGBColor 0, 1,.1 ; Recomendaciones: Identifica aquí y también en los ejemplos y ejercicios siguientes, con la gráfica, el número de raíces enésimas de la unidad, sus partes real e imaginaria y su módulo y argumento aproximados. In[51]:= a : I n : 3 l Solve x^n a ; z x. l N h1 ListPlot Transpose Re z, Im z, PlotStyle PointSize 0.015, RGBColor 1,.1,.1 ; Aunque la gráfica parece similar a la de las raíces cúbicas de 1, presenta diferencias importantes que debes tratar de identificar. Ahora auméntese el valor de n, y obsérvense los resultados. In[56]:= a : I n : 15 l Solve x^n a ; z : x. l N h2 ListPlot Transpose Re z, Im z, PlotStyle PointSize 0.015, RGBColor 1,.1,.1 ; In[61]:= a : I n : 50 l Solve x^n a ; z : x. l N h3 ListPlot Transpose Re z, Im z, PlotStyle PointSize 0.015, RGBColor 1,.1,.1 ; Compara los módulos de las raíces cúbicas, las raíces décimoquintas y las raíces quincuagésimas de este número complejo a. Se pueden ver las tres figuras juntas, para compararlas, usando el comando: In[66]:= Show h1, h2, h3 Identifica en esta gráfica las raíces correspondientes a los distintos valores de n. Confirman lo que respondiste acerca de los módulos de las raíces en la pregunta anterior? Referencias

6 15 num_complejos.nb [1] Louis L. Scharf and Richard T. Behrens, A First Course in Electrical and Computer Engineering, Addison Wesley Publishing Company, [2] J. V. Uspenski, Theory of Equations, McGraw Hill, [3] Lars V. Ahlfors, Complex Analysis, McGraw Hill, [4] Ruelle V. Churchill, James W. Brown and Roger F. Verhey, Complex Variables and Applications. 3rd edition. McGraw Hill, Comandos utilizados Table[ f(i), {i, imax} ]; ListPlot[ Table, PlotJoined >True, PlotStyle >{PointSize[ ], RGBColor[,, ]}]; Solve[Polinomio en la variable x==0, x]; NSolve[Polinomio en la variable x==0, x]; Show[figura1, figura2,...].

Laboratorio de Simulación. Trimestre 08P Grupo CC03A Pablo Lonngi. Lección 4

Laboratorio de Simulación. Trimestre 08P Grupo CC03A Pablo Lonngi. Lección 4 Laboratorio de Simulación Trimestre 08P Grupo CC03A Pablo Lonngi Lección 4 Números Complejos. IIª parte. Representación polar de un complejo En la forma polar, llamada también forma trigonométrica, un

Más detalles

1. DEFINICIÓN. ax = b, x 2 = b, 2 + 5i, 0 + ( 2)i, 2 + 3i, 5 + 0i, 1 + 1i. 0 + ( 2)i = 2i, 5 + 0i = 5, 1 + 1i = 1 + i.

1. DEFINICIÓN. ax = b, x 2 = b, 2 + 5i, 0 + ( 2)i, 2 + 3i, 5 + 0i, 1 + 1i. 0 + ( 2)i = 2i, 5 + 0i = 5, 1 + 1i = 1 + i. NÚMEROS COMPLEJOS PATRICIA KISBYE 1. DEFINICIÓN En los números reales es posible resolver cualquier ecuación lineal en una variable: ax = b, siempre que a sea distinto de 0. Pero las ecuaciones cuadráticas,

Más detalles

El primer asomo de la raíz cuadrada de un número negativo se presentó en la stereometría de Herón de Alejandría (año 50), y más tarde en la

El primer asomo de la raíz cuadrada de un número negativo se presentó en la stereometría de Herón de Alejandría (año 50), y más tarde en la El primer asomo de la raíz cuadrada de un número negativo se presentó en la stereometría de Herón de Alejandría (año 50), y más tarde en la aritmética de Diofanto (año 275). 56 8i 14 + 10i 1. Trata la

Más detalles

Números Complejos. Contenido. Definición

Números Complejos. Contenido. Definición U Contenido Facultad de Ingeniería Escuela de Ingeniería Eléctrica Departamento de Electrónica, Computación y Control Variable Compleja y Cálculo Operacional Números Complejos William La Cruz Números Complejos...3

Más detalles

Tema 1. Números Complejos

Tema 1. Números Complejos Tema 1. Números Complejos Prof. William La Cruz Bastidas 27 de septiembre de 2002 Capítulo 1 Números Complejos Definición 1.1 Un número complejo, z, es un número que se expresa como z = x + iy o, de manera

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Potencias y Raíces de Números Complejos. Departamento de Matemáticas. Introducción.

MA3002. Matemáticas Avanzadas para Ingeniería: Potencias y Raíces de Números Complejos. Departamento de Matemáticas. Introducción. Raíces Raíces MA3002 Raíces Raíces Las potencias y las enteras números complejos son muy fáciles calcular cuando el número complejo está en la forma polar. Primeramente, veremos la forma polar un número

Más detalles

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6 LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE Capítulo 7 Sec. 7.5 y 7.6 El Plano Complejo Se puede utilizar un plano de coordenadas para representar números complejos. Si cada

Más detalles

NÚMEROS COMPLEJOS (C) Si calculamos los valores de las potencias de i, encontramos que: con n N + y 0 p < 4

NÚMEROS COMPLEJOS (C) Si calculamos los valores de las potencias de i, encontramos que: con n N + y 0 p < 4 NÚMEROS COMPLEJOS (C) DEFINICIÓN DE LA UNIDAD IMAGINARIA El cuadrado de un número real siempre es no negativo. Por ejemplo, no existe ningún número real x para el cual x 2 = -1. Para remediar esta situación,

Más detalles

1.- Álgebra de números complejos.

1.- Álgebra de números complejos. .- Álgebra de números complejos. a) Definición y representación geométrica. b) Sumas y productos de números complejos. c) Vectores y módulos en el plano complejo. d) Representación en forma exponencial.

Más detalles

Ma3002. Matemáticas Avanzadas para Ingeniería: Potencias y Raíces de Números Complejos. Departamento de Matemáticas. Introducción.

Ma3002. Matemáticas Avanzadas para Ingeniería: Potencias y Raíces de Números Complejos. Departamento de Matemáticas. Introducción. Raíces Raíces Ma3002 Raíces Raíces Las potencias y las enteras números complejos son muy fáciles calcular cuando el número complejo está en la forma polar. Primeramente, veremos la forma polar un número

Más detalles

4.1. Qué es un número complejo. Representación geométrica.

4.1. Qué es un número complejo. Representación geométrica. Tema Números complejos.. Qué es un número complejo. Representación geométrica. Un número complejo z C C es el conjunto de los números complejos es una expresión de la forma z a + b i en la que a, b R a

Más detalles

1. Álgebra de Números Complejos.

1. Álgebra de Números Complejos. 1. Álgebra de Números Complejos. Los números complejos se pueden introducir en el proceso de búsqueda de soluciones para ecuaciones polinomiales como x 2 + 1 = 0 ó x 2 + 4x + 13 = 0. En general un valor

Más detalles

1. CONJUNTOS DE NÚMEROS

1. CONJUNTOS DE NÚMEROS Águeda Mata Miguel Rees, Dpto. de Matemática Aplicada, FI-UPM. 1 1.2.1. Definición 1. CONJUNTOS DE NÚMEROS 1.2. NÚMEROS COMPLEJOS Se llama número complejo a cualquier epresión de la forma z = + i donde

Más detalles

UNIDAD 1 NUMEROS COMPLEJOS

UNIDAD 1 NUMEROS COMPLEJOS UNIDAD 1 NUMEROS COMPLEJOS El conjunto de los números complejos fue creado para poder resolver algunos problemas matemáticos que no tienen solución dentro del conjunto de los números reales. Por ejemplo

Más detalles

Un ángulo es una porción de plano limitada por dos semirrectas, los lados, que parten de un mismo punto llamado vértice.

Un ángulo es una porción de plano limitada por dos semirrectas, los lados, que parten de un mismo punto llamado vértice. Índice general II. UNIDAD 2 3 1. Trigonometría.................................. 3 1.1. Razones trigonométricas de un ángulo................. 3 2. Números complejos................................ 5 2.1.

Más detalles

Números complejos. Sesión teórica 2 (págs ) 21 de septiembre de Potencias de complejos

Números complejos. Sesión teórica 2 (págs ) 21 de septiembre de Potencias de complejos Números complejos Sesión teórica 2 (págs. 10-15) 21 de septiembre de 2010 Llamaremos números complejos a los elementos del conjunto: C = {a + bi a, b R}. La expresión a + bi se denomina forma binómica

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 5

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 5 ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO 5 DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Números Complejos Se define el conjunto de los

Más detalles

Laboratorio de Simulación

Laboratorio de Simulación Trimestre 05-I Grupo CC-0A Andrés Cedillo (AT-50) Objetivos Plantear y resolver algunos problemas de ciencia e ingeniería utilizando capacidades numéricas, gráficas, simbólicas y de programación Integrar

Más detalles

El cuerpo de los números complejos

El cuerpo de los números complejos Capítulo 1 El cuerpo de los números complejos En este primer capítulo se revisan los conceptos elementales relativos a los números complejos. El capítulo comienza con una breve nota histórica y después

Más detalles

EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos.

EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos. EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos. 1. Introducción Los números complejos o imaginarios nacen de la necesidad de resolver

Más detalles

Números Complejos. Prof. Johnny Rengifo

Números Complejos. Prof. Johnny Rengifo Números Complejos Prof. Johnny Rengifo 22 de octubre de 2010 Capítulo 1 Números Complejos Existen muchas ecuaciones cuadráticas que no tienen solución en los números reales (R). Por ejemplo x 2 + 1 = 0

Más detalles

MATEMÁTICA D y D 1 Módulo I: Análisis de Variable Compleja

MATEMÁTICA D y D 1 Módulo I: Análisis de Variable Compleja Matemática D y D MATEMÁTICA D y D Módulo I: Análisis de Variable Compleja Unidad 0 Números Complejos Mag. María Inés Baragatti Números complejos. Generalidades Un número complejo es un par ordenado de

Más detalles

Módulo 4-Diapositiva 25 Trigonometría en Complejos. Universidad de Antioquia

Módulo 4-Diapositiva 25 Trigonometría en Complejos. Universidad de Antioquia Módulo 4-Diapositiva 25 Trigonometría en Complejos Facultad de Ciencias Exactas y Naturales Temas Números complejos Módulo de un número complejo Forma polar de un número complejo Producto y cociente de

Más detalles

Los números complejos

Los números complejos Los números complejos Algo de historia La fórmula para resolver ecuaciones de segundo grado ax 2 +bx+c = 0 es conocida desde tiempos de los griegos. Se sabía que algunas de estas ecuaciones tienen 2 soluciones,

Más detalles

TEMA 3: NÚMEROS COMPLEJOS

TEMA 3: NÚMEROS COMPLEJOS APUNTES DE MATEMÁTICAS TEMA 3: NÚMEROS COMPLEJOS 1º BACHILLERATO _ ÍNDICE Tema 3 Introducción... 3 1. Cómo se maneja 1?... 3. Un nuevo campo numérico C... 4 3. CONJUGADO DE UN NÚMERO COMPLEJO.... 5 4.

Más detalles

Tarea 3 de Álgebra Superior II Araceli Guzmán Tristán

Tarea 3 de Álgebra Superior II Araceli Guzmán Tristán Tarea 3 de Álgebra Superior II Araceli Guzmán Tristán 1. Comprobar que: a) ( i) i(1 i) = i b) 1+i 3 4i + i 5i = 5 c) 5 (1 i)( i)(3 i) = i d) (1 i) 4 = 4. Resuelve las siguientes ecuaciones: a) (1 + i)z

Más detalles

Álgebra Lineal. Departamento de Matemáticas Universidad de Los Andes. Primer Semestre de 2007

Álgebra Lineal. Departamento de Matemáticas Universidad de Los Andes. Primer Semestre de 2007 Álgebra Lineal Departamento de Matemáticas Universidad de Los Andes Primer Semestre de 2007 Universidad de Los Andes () Álgebra Lineal Primer Semestre de 2007 1 / 50 Texto guía: Universidad de Los Andes

Más detalles

Números complejos. por. Ramón Espinosa Armenta

Números complejos. por. Ramón Espinosa Armenta Números complejos por Ramón Espinosa Armenta En el siglo XVI, el matemático italiano Gerolamo Cardano se preguntó si tenía sentido considerar raíces cuadradas de números negativos. Tal raíz cuadrada debería

Más detalles

NÚMEROS COMPLEJOS 1.1. INTRODUCCIÓN 1.2. OPERACIONES CON COMPLEJOS

NÚMEROS COMPLEJOS 1.1. INTRODUCCIÓN 1.2. OPERACIONES CON COMPLEJOS NÚMEROS COMPLEJOS 1.1. INTRODUCCIÓN La ecuación x + 1 0 no tiene solución en el cuerpo de los números reales R ya que no existe un número real x tal que x 1. Necesitamos un conjunto que contenga a R, que

Más detalles

Sistemas Aleatorios: Números Complejos

Sistemas Aleatorios: Números Complejos MA2006 Números Complejos Los números complejos simbolizados por C son una generalización de los números reales. Una generalización algebraica muy interesante: Toda ecuación polinomial c n z n + c n 1 z

Más detalles

Este conjunto posee elementos que se obtienen a partir de raíces cuadradas con cantidad subradical negativa.

Este conjunto posee elementos que se obtienen a partir de raíces cuadradas con cantidad subradical negativa. DEFINICIÓN:Los Números Imaginarios surgen de la necesidad de resolver ecuaciones cuadráticas sin solución en el campo real. Este conjunto se representa por I Este conjunto posee elementos que se obtienen

Más detalles

TEMA 7 NÚMEROS COMPLEJOS

TEMA 7 NÚMEROS COMPLEJOS TEMA 7 NÚMEROS COMPLEJOS La unidad imaginaria i. Hay ecuaciones que no se pueden resolver en. Por ejemplo: x + 1 = 0 x = - 1 x = ± -1 En el siglo XVI se inventaron un número para resolver esta i = -1 ecuación.

Más detalles

Tema 1: El cuerpo de los números complejos. Nota histórica. El cuerpo de los números complejos. Marisa Serrano José Ángel Huidobro

Tema 1: El cuerpo de los números complejos. Nota histórica. El cuerpo de los números complejos. Marisa Serrano José Ángel Huidobro Índice Tema 1: El cuerpo de los números complejos Marisa Serrano José Ángel Huidobro Universidad de Oviedo 6 de octubre de 2008 email: mlserrano@uniovi.es jahuidobro@uniovi.es Nota histórica El cuerpo

Más detalles

Matemáticas Avanzadas para Ingeniería Números Complejos: Problemas Resueltos

Matemáticas Avanzadas para Ingeniería Números Complejos: Problemas Resueltos Matemáticas Avanzadas para Ingeniería Números Complejos: Problemas Resueltos. Si z 3 + i y z 4 + 7 i, calcule: a) z + z b) z z c) z z d) z /z e indique la opción con su resultado dentro de la siguiente

Más detalles

1. Conjuntos de números

1. Conjuntos de números 1.2. Números complejos 1.2.1. FORMA BINÓMICA Números complejos en forma binómica Se llama número complejo a cualquier expresión de la forma z = x + yi donde x e y son números reales cualesquiera e i =

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta.

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta. MA300 Propiedas Propiedas Los números complejos simbolizados por C son una generalización los números reales. Una generalización algebraica muy interesante: Toda ecuación polinomial c n z n + c n 1 z n

Más detalles

Señales y Sistemas. Grado en Ingeniería de Computadores. Revisión matemáticas

Señales y Sistemas. Grado en Ingeniería de Computadores. Revisión matemáticas Señales y Sistemas Grado en Ingeniería de Computadores Revisión matemáticas José Sáez Landete Departamento de Teoría de la Señal y Comunicaciones Universidad de Alcalá Curso 2015-16 Contenidos 1 Numeros

Más detalles

ESCUELA MILITAR DE INGENIERIA VARIABLE COMPLEJA Misceláneas de problemas 2014

ESCUELA MILITAR DE INGENIERIA VARIABLE COMPLEJA Misceláneas de problemas 2014 ESCUELA MILITAR DE INGENIERIA VARIABLE COMPLEJA Misceláneas de problemas 2014 Tema: Números Complejos (C). 1. Clasifica los siguientes números complejos en reales e imaginarios. Mencionar, para cada uno,

Más detalles

Números complejos en la forma polar (lista de problemas para examen)

Números complejos en la forma polar (lista de problemas para examen) Números complejos en la forma polar lista de problemas para examen) En esta lista de problemas trabajamos con números complejos en la forma polar llamada también la forma trigonométrica) El sentido geométrico

Más detalles

Variable Compleja I. Maite Fernández Unzieta Universidad de Guanajuato Enero Junio Eugenio Daniel Flores Alatorre

Variable Compleja I. Maite Fernández Unzieta Universidad de Guanajuato Enero Junio Eugenio Daniel Flores Alatorre Variable Compleja I Maite Fernández Unzieta Universidad de Guanajuato Enero Junio 2012 Eugenio Daniel Flores Alatorre Bibliografía Complex Analysis 3rd ed. Ahlfors Basic Complex Analysis Functions of one

Más detalles

NUMEROS COMPLEJOS. Se llama unidad imaginaria a un ente abstracto i, al que se le atribuye la propiedad de que su cuadrado es -1: i ² = -1.

NUMEROS COMPLEJOS. Se llama unidad imaginaria a un ente abstracto i, al que se le atribuye la propiedad de que su cuadrado es -1: i ² = -1. Contenido Apunte de Números complejos o imaginarios: Suma y producto de números complejos. División. Raíz cuadrada. Conjugado. Módulo y argumento. Fórmula De Moivre. Raíces. Primera parte NUMEROS COMPLEJOS

Más detalles

NÚMEROS COMPLEJOS, C

NÚMEROS COMPLEJOS, C NÚMEROS COMPLEJOS, C CPR. JORGE JUAN Xuvia-Narón En determinadas ocasiones pueden aparecer en el desarrollo de una expresión algebraica ó en la solución de una ecuación, raíces cuadradas ó de índice par

Más detalles

El número real y complejo

El número real y complejo El número real y complejo Dpto. Matemática Aplicada Universidad de Málaga Sistema de números reales Números naturales N = {0,1,2,3,...} Números enteros Z = {..., 3, 2, 1,0,1,2,3,...} { } p Números racionales

Más detalles

Números complejos Matemáticas I. Números complejos. Necesidad de ampliar el conjunto de los números reales.

Números complejos Matemáticas I. Números complejos. Necesidad de ampliar el conjunto de los números reales. Números complejos. Necesidad de ampliar el conjunto de los números reales. En ocasiones cuando resolvemos ecuaciones como la siguiente x 1=0 Nos encontramos, si despejamos la incógnita x, con que x=± 1

Más detalles

N Ú M E R O S C O M P L E J O S

N Ú M E R O S C O M P L E J O S N Ú M E R O S C O M P L E J O S. N Ú M E R O S C O M P L E J O S E N F O R M A B I N Ó M I C A Al intentar resolver la ecuación x 6x 0, obtenemos como soluciones + y que carecen de sentido porque no es

Más detalles

Forma polar de números complejos (repaso breve)

Forma polar de números complejos (repaso breve) Forma polar de números complejos (repaso breve) Objetivos. pasar la forma polar de números complejos. quisitos. Números complejos, funciones trigonométricas, valor absoluto de números complejos, circunferencia

Más detalles

Definición 1 Se definen los siguientes conceptos: (3) El conjunto de los números complejos. (a) la parte real de z es Re(z) = a.

Definición 1 Se definen los siguientes conceptos: (3) El conjunto de los números complejos. (a) la parte real de z es Re(z) = a. UNIVERSIDAD ARTURO PRAT FACULTAD DE INGENIERIA Y ARQUITECTURA 1 Conceptos Básicos Sabemos que las soluciones de la ecuación x 2 1 = 0 son x 1 = 1 y x 2 = 1. Una forma de determinar dichas soluciones es

Más detalles

NÚMEROS COMPLEJOS: C

NÚMEROS COMPLEJOS: C NÚMEROS COMPLEJOS: C Alejandro Lugon 21 de mayo de 2010 Resumen Este es un pequeño estudio de los números complejos con el objetivo de poder usar las técnicas de solución de ecuaciones y sistemas diferenciales

Más detalles

Módulo 1 - Diapositiva 7 Números Complejos. Universidad de Antioquia. Facultad de Ciencias Exactas y Naturales

Módulo 1 - Diapositiva 7 Números Complejos. Universidad de Antioquia. Facultad de Ciencias Exactas y Naturales Módulo 1 - Diapositiva 7 Números Complejos Facultad de Ciencias Exactas y Naturales Temas Números complejos C Axiomas de campo para C Plano complejo y módulo Solución de ecuaciones lineales y cuadráticas

Más detalles

Matemáticas I Ejercicios resueltos. Tema 6: Números Complejos

Matemáticas I Ejercicios resueltos. Tema 6: Números Complejos Matemáticas I Ejercicios resueltos. Tema : Números Complejos 1. Calcula: ( + i)( i) (1 i)( i) c) i ( i)5i + i( 1 + i) (5 i) d) ( i)( + i) ( i) (+i)( i) (1 i)( i) i+i ( i i ) +i ( 1 5i) +1+i+5i 5 + i +

Más detalles

Números complejos (lista de problemas para examen)

Números complejos (lista de problemas para examen) Números complejos (lista de problemas para examen) En esta lista de problemas trabajamos con la construcción de números complejos (como pares ordenados de los reales) y con su representación en la forma

Más detalles

Semana 12 [1/8] Números complejos. 15 de mayo de Números complejos

Semana 12 [1/8] Números complejos. 15 de mayo de Números complejos Semana 12 [1/8] 15 de mayo de 2007 Aviso Semana 12 [2/8] Importante Los contenidos asociados a números complejos en la tutoría de la semana 11, se consideran como parte de esta semana. Esto se reflejará

Más detalles

Unidad 4. Números complejos. Objetivos. Al finalizar la unidad, el alumno:

Unidad 4. Números complejos. Objetivos. Al finalizar la unidad, el alumno: Unidad 4 Números complejos Objetivos Al finalizar la unidad, el alumno: Comprenderá el concepto y las propiedades de los números complejos. Manejará las distintas notaciones para los números complejos.

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta.

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta. MA3002 Los números complejos, simbolizados por C, son una generalización los números reales. Una generalización algebraica muy interesante: Toda ecuación polinomial c n z n + c n 1 z n 1 + + c 1 z + c

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS Para una mirada sobre el origen y desarrollo histórico de los números complejos leer el siguiente documento páginas 8-13 CANTIDADES IMAGINARIAS Definición: Las cantidades imaginarias

Más detalles

2. El conjunto de los números complejos

2. El conjunto de los números complejos Números complejos 1 Introducción El nacimiento de los números complejos se debió a la necesidad de dar solución a un problema: no todas las ecuaciones polinómicas poseen una solución real El ejemplo más

Más detalles

Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos:

Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: 1 CONOCIMIENTOS PREVIOS. 1 Números complejos. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Trigonometría. Sería conveniente realizar un ejercicio

Más detalles

+ + = f) + + = l) x + = ( ) =. = ( 1). i = i

+ + = f) + + = l) x + = ( ) =. = ( 1). i = i República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Escuela Técnica Robinsoniana P.S. S. S. Venezuela Barinas Edo Barinas Guía didáctica Nro 0- Objetivo -009-00 ) Dadas las

Más detalles

Repartido Números Complejos 5 H2 Liceo 7-Rivera Prof Fernando Díaz. Ecuación Resolución N Z Q I R x 3 = 1

Repartido Números Complejos 5 H2 Liceo 7-Rivera Prof Fernando Díaz. Ecuación Resolución N Z Q I R x 3 = 1 Ejercicio 1: Marquen con una cru todos los conjuntos numéricos a los cuales pertenecen las soluciones de las ecuaciones: Ecuación Resolución N Z Q I R x 3 1 x + 1 x. 1 x² 0 x² + 1 0 Como sabemos, en R

Más detalles

I. E. S. Fray Luis de León Jesús Escudero Martín Pág. 1

I. E. S. Fray Luis de León Jesús Escudero Martín Pág. 1 I E S Fray Luis de León Jesús Escudero Martín Pág 1 II2 NÚMEROS COMPLEJOS 1 Introducción 2 Definición 3 Representación gráfica de los números complejos 4 Igualdad de números complejos 5 Operaciones con

Más detalles

.En nuestro aprendizaje de aritmética tratamos con números reales, tales como 3, -5, 7

.En nuestro aprendizaje de aritmética tratamos con números reales, tales como 3, -5, 7 .En nuestro aprendizaje de aritmética tratamos con números reales, tales como 3, -5, 7 4,Π, etc., los cuales pueden usarse para medir distancias en una u otra dirección desde un punto fijo. Un número tal

Más detalles

TRABAJO PRÁCTICO N 1: ALGUNOS ELEMENTOS DE LA GEOMETRÍA ANALÍTICA. 1.2 a. Marcar en un sistema de coordenadas cartesianas los siguientes puntos: 3 2

TRABAJO PRÁCTICO N 1: ALGUNOS ELEMENTOS DE LA GEOMETRÍA ANALÍTICA. 1.2 a. Marcar en un sistema de coordenadas cartesianas los siguientes puntos: 3 2 FACULTAD DE CIENCIAS EXACTAS, INGENIERIA Y AGRIMENSURA ESCUELA DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE MATEMATICA CATEDRA DE ALGEBRA Y GEOMETRÍA ANALITICA I CARRERA: Licenciatura en Física TRABAJO

Más detalles

Números Complejos y Polinomios

Números Complejos y Polinomios Números Complejos y Polinomios Javier Alfaro Pastor Marcela González Peláez Otoño de 005 Contenido Prólogo 4 COMPLEJOS 5. LOS NÚMEROS COMPLEJOS COMO CAMPO 5. INTERPRETACIÓN GEOMÉTRICA DE LOS NÚMEROS COMPLEJOS

Más detalles

Módulo 1 NÚMEROS COMPLEJOS

Módulo 1 NÚMEROS COMPLEJOS 2015 Módulo 1 NÚMEROS COMPLEJOS Concepto de números complejos Representación gráfica Formas de expresar un complejo Operaciones - Ejercicios Ing. Rodríguez, Diego 01/01/2015 HISTORIA Y DEFINICIONES Los

Más detalles

Mi nombre: Sergio Abraham. Mi correo: Tutorías bajo demanda.

Mi nombre: Sergio Abraham. Mi correo: Tutorías bajo demanda. Mi nombre: Sergio Abraham. Mi correo: sabraham@mat.upv.es. Tutorías bajo demanda. 1er. año 1er Cuatrimestre: Matemáticas I (Calculo). º Cuatrimestre: Matemáticas II (Algebra). Cuatrimestre de 1 semanas

Más detalles

1.1. El cuerpo de los números complejos

1.1. El cuerpo de los números complejos Lección 1 Números complejos Como primer paso para el estudio de las funciones de variable compleja, debemos presentar el cuerpo de los números complejos. De entre los muchos métodos que permiten introducirlo,

Más detalles

. De R (Reales) a C (Complejos)

. De R (Reales) a C (Complejos) INTRODUCCIÓN Los números complejos se introducen para dar sentido a la raíz cuadrada de números negativos. Así se abre la puerta a un curioso y sorprendente mundo en el que todas las operaciones (salvo

Más detalles

ESCUELA MILITAR DE INGENIERÍA ÁLGEBRA I

ESCUELA MILITAR DE INGENIERÍA ÁLGEBRA I ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS ÁLGEBRA I NUMEROS COMPLEJOS. Imaginario: guardia que no efectúa rondas, pero se encuentra en un lugar fijo dispuesto a intervenir si fuera necesario.

Más detalles

Colegio Beato Carlos Manuel Rodríguez Departamento de Matemáticas. Mapa curricular Pre-Cálculo 12 mo grado

Colegio Beato Carlos Manuel Rodríguez Departamento de Matemáticas. Mapa curricular Pre-Cálculo 12 mo grado Colegio Beato Carlos Manuel Rodríguez Departamento de Matemáticas Mapa curricular Pre-Cálculo 12 mo grado Colegio Beato Carlos Manuel Rodríguez Mapa curricular Pre-Cálculo 12 mo grado periodo contenido

Más detalles

PRÁCTICA No. 2 FORMA POLAR Y EXPONENCIAL DE UN NÚMERO COMPLEJO. Otra forma de expresar un número complejo es la forma polar o forma módulo-argumento,

PRÁCTICA No. 2 FORMA POLAR Y EXPONENCIAL DE UN NÚMERO COMPLEJO. Otra forma de expresar un número complejo es la forma polar o forma módulo-argumento, PRÁCTICA No. 2 FORMA POLAR Y EXPONENCIAL DE UN NÚMERO COMPLEJO OBJETIVO EDUCACIONAL El alumno obtendrá, a través de Octave (o MatLab), la magnitud y al argumento de un número complejo a fin de establecer,

Más detalles

Laboratorio #1 Ecuaciones Cuadráticas I. II.- Resolver las ecuaciones siguientes usando el método Completando Cuadrados.

Laboratorio #1 Ecuaciones Cuadráticas I. II.- Resolver las ecuaciones siguientes usando el método Completando Cuadrados. Laboratorio #1 Ecuaciones Cuadráticas I I.- Resolver las ecuaciones siguientes utilizando el método de Factorización. 1) 121 25x = 0 2) 27az 2 75a 3 = 0 3) 15y 2 = 21y II.- Resolver las ecuaciones siguientes

Más detalles

Laboratorio 1 Ecuaciones Cuadráticas I. II.- Resolver las ecuaciones siguientes usando el MÉTODO COMPLETANDO CUADRADOS.

Laboratorio 1 Ecuaciones Cuadráticas I. II.- Resolver las ecuaciones siguientes usando el MÉTODO COMPLETANDO CUADRADOS. Laboratorio 1 Ecuaciones Cuadráticas I I.- Resolver las ecuaciones siguientes utilizando el MÉTODO DE FACTORIZACIÓN. 1) 121 25x = 0 2) 27az 2 75a 3 = 0 3) 15y 2 = 21y II.- Resolver las ecuaciones siguientes

Más detalles

Familiarizar al alumno con las distintas maneras de expresar números complejos.

Familiarizar al alumno con las distintas maneras de expresar números complejos. Capítulo 2 Aritmética compleja Objetivos Familiarizar al alumno con las distintas maneras de expresar números complejos. Manejar con soltura las operaciones aritméticas con números complejos. 2.1. Representaciones

Más detalles

VECTORES 1.2 CONCEPTOS Y DEFINICIONES FUNDAMENTALES. En este capítulo estudiaremos los vectores y su álgebra.

VECTORES 1.2 CONCEPTOS Y DEFINICIONES FUNDAMENTALES. En este capítulo estudiaremos los vectores y su álgebra. CAPITULO I CALCULO II VECTORES 1.1 INTRODUCCIÓN Los vectores son un auxiliar utilísimo para la geometría del espacio. En esta unidad partiendo de lo que ya se sabe de vectores en el plano, se contemplan

Más detalles

AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS

AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS Potencias de la unidad imaginaria i 0 = 1 i 1 = i i 2 = 1 i 3 = i i 4 = 1 Los valores se repiten de cuatro en cuatro, por eso, para saber cuánto

Más detalles

NOTACIÓN Y REPRESENTACIÓN

NOTACIÓN Y REPRESENTACIÓN TEORÍA NÚMEROS COMPLEJOS DEFINICIÓN: Los números complejos son el conjunto de todos los números reales e imaginarios. Surgen de la necesidad de expresar la raíz par de un número negativo. APLICACIÓN: Los

Más detalles

NÚMEROS COMPLEJOS. Página 147 REFLEXIONA Y RESUELVE. Extraer fuera de la raíz. Potencias de. Cómo se maneja k 1? Saca fuera de la raíz:

NÚMEROS COMPLEJOS. Página 147 REFLEXIONA Y RESUELVE. Extraer fuera de la raíz. Potencias de. Cómo se maneja k 1? Saca fuera de la raíz: NÚMEROS COMPLEJOS Página 7 REFLEXIONA Y RESUELVE Extraer fuera de la raíz Saca fuera de la raíz: a) b) 00 a) b) 00 0 Potencias de Calcula las sucesivas potencias de : a) ( ) ( ) ( ) b) ( ) c) ( ) 5 a)

Más detalles

Problemas resueltos. 1. Expresa en forma binómica los siguientes números complejos: b) w = 1+i3 (1 i) 3 c) u = 1. = 5 5i. 1 3i 3i 2 i 3 = 1 i

Problemas resueltos. 1. Expresa en forma binómica los siguientes números complejos: b) w = 1+i3 (1 i) 3 c) u = 1. = 5 5i. 1 3i 3i 2 i 3 = 1 i Problemas resueltos 1. Expresa en forma binómica los siguientes números complejos: a) z = ( + i)(1 i) +i b) w = 1+i (1 i) c) u = 1 1+i + 1 1 i a) z = ( + i)(1 i) +i = 5 5i +i (5 5i)( i) = ( + i)( i) =

Más detalles

Ecuaciones y Gráficas en dos variables. 1. Plano Cartesiano, cuadrantes, signos 2. Localizar puntos en plano

Ecuaciones y Gráficas en dos variables. 1. Plano Cartesiano, cuadrantes, signos 2. Localizar puntos en plano Ecuaciones y Gráficas en dos variables Discusión 1. Plano Cartesiano, cuadrantes, signos 2. Localizar puntos en plano Fórmulas de Distancia Theorem 1. La distancia de dos puntos A y B en recta real es:

Más detalles

Práctico Expresar los siguientes números complejos de la forma x + iy, con x, y R: i 1 + i

Práctico Expresar los siguientes números complejos de la forma x + iy, con x, y R: i 1 + i Centro de Matemática Facultad de Ciencias Universidad de la República Práctico Análisis complejo - Curso 009. Expresar los siguientes números complejos de la forma x + iy, con x, y R: a)( + 3i) b)( + i)(i

Más detalles

S3: Números complejos, números reales

S3: Números complejos, números reales S3: Números complejos, números reales Cada número complejo se corresponde con un punto en el plano. Este punto puede estar definido en coordenadas cartesianas (figura 1) o en coordenadas polares (figura

Más detalles

Universidad de Antioquia

Universidad de Antioquia Números Complejos (C) Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas Grupo de Semilleros de Matemáticas (Semática) Matemáticas Operativas Taller 4 2012 1 Aunque las operaciones algebraicas

Más detalles

3.- CONTINUIDAD DE UNA FUNCION REAL DE VARIABLE REAL PROCEDIMIENTOS 1.- ESTUDIO DE LA CONTINUIDAD DE UNA FUNCIÓN EN UN PUNTO

3.- CONTINUIDAD DE UNA FUNCION REAL DE VARIABLE REAL PROCEDIMIENTOS 1.- ESTUDIO DE LA CONTINUIDAD DE UNA FUNCIÓN EN UN PUNTO 3. Laboratorio de Continuidad de una Funcion Real de variable real- Procedimientos 150 3.- CONTINUIDAD DE UNA FUNCION REAL DE VARIABLE REAL PROCEDIMIENTOS 1.- ESTUDIO DE LA CONTINUIDAD DE UNA FUNCIÓN EN

Más detalles

Álgebra I Práctica 5 - Polinomios

Álgebra I Práctica 5 - Polinomios Números complejos Álgebra I Práctica 5 - Polinomios 1. Para los siguientes z C, hallar Re(z), Im(z), z, Re(z 1 ), Im(z 1 ), Re( i z) e Im(i z). i) z = (2 + i)(1 + 3 i). ii) z = 5 i(1 + i) 4. iii) z = (

Más detalles

3.5 NÚMEROS COMPLEJOS

3.5 NÚMEROS COMPLEJOS 64 CAPÍTULO Funciones polinomiales y racionales.5 NÚMEROS COMPLEJOS Operaciones aritméticas con números complejos Raíces cuadradas de números negativos Soluciones complejas de ecuaciones cuadráticas Vea

Más detalles

ETS Minas: Métodos matemáticos Tema 1 Preliminares

ETS Minas: Métodos matemáticos Tema 1 Preliminares ETS Minas: Métodos matemáticos Tema 1 Preliminares Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Septiembre 2008, versión 1.7 Contenido 1.

Más detalles

LA CLASE VIRTUAL LOS NUMEROS COMPLEJOS

LA CLASE VIRTUAL LOS NUMEROS COMPLEJOS LA CLASE VIRTUAL LOS NUMEROS COMPLEJOS La ecuación x 2 +1=0 carece de soluciones en el campo de los números reales. log e (-2) no es un número real. Tampoco es un número real (-2) π Un número complejo

Más detalles

MATEMÁTICAS I EJERCICIOS NÚMEROS COMPLEJOS

MATEMÁTICAS I EJERCICIOS NÚMEROS COMPLEJOS . De los siguientes números complejos, indica: a) z 5 i Su opuesto: z b) z + i Su conjugado: z c) z i Su parte real: Su parte imaginaria: d) z 5i Su afijo: (, ). Expresa como números complejos: a) 4 b)

Más detalles

CAPÍTULO 1: NÚMEROS REALES Y COMPLEJOS 1. NÚMEROS REALES

CAPÍTULO 1: NÚMEROS REALES Y COMPLEJOS 1. NÚMEROS REALES CAPÍTULO 1: NÚMEROS REALES Y COMPLEJOS 1. NÚMEROS REALES 1.1. Números racionales e irracionales Recuerda que: Ya conoces los distintos tipos de conjuntos numéricos: Naturales N = {0, 1,, 3, } Enteros Z

Más detalles

Preliminares. 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros.

Preliminares. 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros. CAPíTULO 1 Preliminares 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros. El método matemático es axiomático y deductivo: a partir de unos principios aceptados inicialmente

Más detalles

Números complejos. Números complejos 28/02/2016 CURSO

Números complejos. Números complejos 28/02/2016 CURSO Números complejos CURSO 2015-2016 Números complejos 1) Definición números complejos 2) Representación gráfica de un número complejo ( Afijo, módulo, argumento). Conjugado 3) Operaciones con números complejos.

Más detalles

Los números complejos

Los números complejos Los números complejos 1. Necesidad de los números complejos Resolución de la ecuación x -6x+1=0 Cuando resolvemos esta ecuación queda:.x = 6± 6 5 = 6± 16 = 6± 16 1 = 6±4 1 = ± 1. Es evidente que no hay

Más detalles

OPERACIONES GEOMÉTRICAS CON VECTORES

OPERACIONES GEOMÉTRICAS CON VECTORES GUÍA DE APRENDIZAJE Introducción al álgebra vectorial www.fisic.ch Profesor: David Valenzuela Z Magnitudes escalares y vectoriales La gran variedad de cosas medibles (magnitudes) se pueden clasificar en

Más detalles

Los números complejos

Los números complejos 7 Los números complejos 1. Forma binómica del número complejo Piensa y calcula Halla mentalmente cuántas soluciones tienen las siguientes ecuaciones en el conjunto de los números reales. a) x 2 25 = 0

Más detalles

GUÍA DE APRENDIZAJE Introducción al álgebra vectorial

GUÍA DE APRENDIZAJE Introducción al álgebra vectorial Liceo Juan XXIII V.A Departamento de ciencias Física Prof. David Valenzuela GUÍA DE APRENDIZAJE Introducción al álgebra vectorial www.fisic.jimdo.com Tercero medio diferenciado Magnitudes escalares y vectoriales

Más detalles

PRÁCTICA No. 2 FORMA POLAR DE UN NUMERO COMPLEJO. Otra forma de expresar un número complejo es la forma polar o forma módulo-argumento,

PRÁCTICA No. 2 FORMA POLAR DE UN NUMERO COMPLEJO. Otra forma de expresar un número complejo es la forma polar o forma módulo-argumento, OBJETIVO EDUCACIONAL PRÁCTICA No. 2 FORMA POLAR DE UN NUMERO COMPLEJO Resolver problemas de aplicación e interpretar las soluciones utilizando matrices y sistemas de ecuaciones lineales para las diferentes

Más detalles

Gobierno de La Rioja MATEMÁTICAS CONTENIDOS

Gobierno de La Rioja MATEMÁTICAS CONTENIDOS CONTENIDOS MATEMÁTICAS 1.- Números reales Distintas ampliaciones de los conjuntos numéricos: números enteros, números racionales y números reales. Representaciones de los números racionales. Forma fraccionaria.

Más detalles

(MAT021) 1 er Semestre de z + e = (x + iy) + (e 1 + ie 2 ) = (x + e 1 ) + i(y + e 2 ) = x + iy

(MAT021) 1 er Semestre de z + e = (x + iy) + (e 1 + ie 2 ) = (x + e 1 ) + i(y + e 2 ) = x + iy (MAT01) 1 er Semestre de 010 1 Números Complejos Se define el conjunto de los números complejos como: C = {a + bi / a, b R, i = 1} Definición 1.1. Sea z, w C tal que z = x + iy en donde x, y R. Se define:

Más detalles

CIMAT, Guanajuato, 2016

CIMAT, Guanajuato, 2016 Taller CIMAT, Guanajuato, 2016 Que tipo de en plantas? 1 Contar en plantas Magnolia piña de pino Que tipo de en plantas? 1 Contar en plantas Magnolia piñon 2 Desde los números observados, completar la

Más detalles