La dinámica de Ekman (1905)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "La dinámica de Ekman (1905)"

Transcripción

1 La dinámica de Ekman (1905) La mezcla vertical en el océano es causada por la turbulencia. La mezcla turbulenta puede ser modelada como un proceso difusivo pero con un coeficiente de viscosidad varios órdenes de magnitud mayor que el molecular. El equilibrio básico está dado por la mezcla turbulenta vertical inducida por el viento en la superficie y la rotación de la Tierra: 2 Ω sen ϕ u = Α/ρ 2 v / z 2 2 Ω sen ϕ v = Α/ρ 2 u / z 2 Ω es la velocidad angular de rotación de la Tierra, de modo que 2 Ω sen ϕ (el factor de Coriolis) es el doble de la componente local del vector rotación y ϕ la latitud, u y v son las componentes de la velocidad horizontal hacia el este (x) y norte (y), y z es la profundidad, positiva hacia abajo Α, el coeficiente de viscosidad turbulento debe ser determinado a partir de observaciones.

2 La solución es de la forma: [u, v] = V o exp (-z / D) [cos (π/4 - z/d), sen (π/4 -z/d)] El viento ha sido considerado en la dirección N, V o = τ / ρ (A f) 1/2 es la amplitud en superficie y D = (2 A / f) 1/2 es la escala vertical de decaimiento exponencial a la cual la dirección de la velocidad se invierte y τ es la tensión del viento en superficie De la elegante solución de Ekman surge: El vector velocidad horizontal rota en función de la profundidad en sentido horario en el HN y sentido antihorario en el HS y el módulo disminuye formando así la llamada espiral de Ekman La integral vertical de la ecuación anterior, o el transporte de Ekman es: [ u, v ] dz = [ τ / ρ f, 0 ] El transporte de Ekman es a 90 de la dirección del viento. Esta característica tiene profundas consecuencias para la circulación general del océano y el clima. La magnitud y dirección del transporte de Ekman son consecuencia de las ecuaciones de conservación de cantidad de movimiento y son independientes del valor de A y de cualquier otro factor asociado a la turbulencia vertical.

3 Variaciones del coeficiente de viscosidad El valor de A y sus variaciones en el espacio y el tiempo no son bien conocidos. Las variaciones de A pueden deberse a : Dependencia de la velocidad del viento (w): A = x 10-3 w 5/2 indica el aumento de A con el aumento del viento. Dependencia de la distancia al fondo (ζ): A = [ (ζ + 0.1) / 22.1] 3/4 indica la disminución de A al aproximarse al fondo. Sin embargo, experiencias recientes en el océano profundo sugieren que A aumenta rápidamente cerca de fondos rugosos (Polzin et al., Scinece, 276, 93-96, 1997).

4 Espiral de Ekman 2 Transporte por unidad de distancia (m / s) τ = 0.1 Pa ρ 3 = 1026 Kg / m Velocidad N (m/s) T = m / s A = 100 x 10 m / s -4 A = 500 x 10 m / s Velocidad E (m/s) τ Espiral de Ekman para un océano de profundidad "infinita" en el Hemisferio Sur. La tasa de rotación y el módulo de la velocidad son funciones del coeficiente de viscosidad turbulento A. El transporte de masa sólo es función de la tensión del viento, la densidad y la latitud, por lo tanto es idéntica en ambos ejemplos.

5 Velocidad de Ekman (m/s) A = 100 x 10 m / s -4 2 A = 500 x 10 m / s Profundidad (m) u (m/s) v (m/s) Perfiles verticales de velocidad de Ekman para los casos de coeficientes de viscosidad turbulenta indicados. Nótese que las velocidades en ambos casos son virtualmente nulas a unos 120 m de profundidad. La profundidad de Ekman es 97 m y la latitud 45 S.

6 2 Transporte Integrado (m / s) Profundidad (m) A = 500 x10 4 m 2 /s A = 100 x 10 4 m 2 /s Perfil vertical del transporte de Ekman por unidad de área, integrado verticalmente. Las líneas llenas indican los transportes en la dirección E-W y las líneas punteadas en la dirección N-S. Nótese que los trasnportes N-S son virtualmente cero, es decir sólo hay transporte en la dirección normal al viento. Se presentan las soluciones para diferentes valores de A (el coeficiente de viscosidad turbulenta vertical). Nótese que los transportes de Ekman convergen al aumentar la profundidad de integración, indicando la independencia de éstos al valor de A.

7 Corrientes en la capa de Ekman 2 reduciendo las idealizaciones Estructura vertical de la corriente de deriva en un océano de profundidad finita proyectada sobre un plano horizontal. La profundidad del océano d se expresa en función del espesor de la capa de Ekman (D). La curva para d = 2.5 D coincide con la curva d = 1.25D, salvo por la curva punteada cerca del origen de coordenadas (Ekman, 1905). Corrientes generadas por el viento en aguas poco profundas en condiciones de coeficiente de viscosidad turbulenta (A z ) constante (línea de guiones) y en para A z disminuyendo hacia el fondo (línea llena). Las corrientes observadas se muestran con los círculos rojos (adaptado de Sverdrup et al., 1942).

8 Diagrama de los vectores velocidad mostrando la estructura vertical de la corriente en la capa límite de fondo (Ekman 1905). Capa de Ekman Costa Corriente profunda Corriente de fondo Sistema elemental de corrientes de Ekman: (a) Corriente pura de deriva en z = 0, (b) corriente real de superficie, (c) corriente profunda geostrófica y (d) corrientes de fondo.

9 Ejemplos de la estructura vertical del sistema de corrientes de Ekman en regiones costeras, proyectados sobre el plano horizontal (Ekman, 1905) Hodógrafas del desarrollo de la corriente pura de deriva para profundidad infinita en función del tiempo transcurrido y a diferentes profundidades. La profundidad z está dada en función del espesor de la capa de Ekman (D), y el tiempo en horas desde el inicio de un viento constante (Ekman, 1905).

6. Corrientes ageostróficas y transporte de Ekman

6. Corrientes ageostróficas y transporte de Ekman 6. Corrientes ageostróficas y transporte de Ekman La circulación oceánica se encuentra siempre cerca al equilibrio geostrófico. No obstante, existen otras contribuciones al flujo, colectivamente referidas

Más detalles

OSCILACIONES ARMÓNICAS

OSCILACIONES ARMÓNICAS Tema 5 OSCILACIONES ARMÓNICAS 5.1. Introducción. 5.. Movimiento armónico simple (MAS). 5.3. Cinemática y dinámica del MAS. 5.4. Fuerza y energía en el MAS. 5.5. Péndulo simple. MAS y movimiento circular

Más detalles

Programa de Física General I

Programa de Física General I Programa de Física General I Primer semestre - Años 2013 y 2014 I - Introducción: qué es la Física, áreas de la Física y ubicación de la Mecánica Newtoniana en este contexto, métodos de la Física y relación

Más detalles

ECUACION DEL MOVIMIENTO EN LA ATMOSFERA

ECUACION DEL MOVIMIENTO EN LA ATMOSFERA BOLILLA 7 Atmósfera en Movimiento ECUACION DEL MOVIMIENTO EN LA ATMOSFERA Las parcelas de aire se mueven en la horizontal y en la vertical, con rapidez variable. El viento se asocia con la componente horizontal.

Más detalles

2. V F El momento cinético (o angular) de una partícula P respecto de un punto O se expresa mediante L O = OP m v

2. V F El momento cinético (o angular) de una partícula P respecto de un punto O se expresa mediante L O = OP m v FONAMENTS FÍSICS ENGINYERIA AERONÀUTICA SEGONA AVALUACIÓ TEORIA TEST (30 %) 9-juny-2005 COGNOMS: NOM: DNI: PERM: 1 Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo

Más detalles

EXAMEN TIPO TEST NÚMERO 2 MODELO 1 (Física I curso 2008-09)

EXAMEN TIPO TEST NÚMERO 2 MODELO 1 (Física I curso 2008-09) EXAMEN TIPO TEST NÚMERO MODELO 1 (Física I curso 008-09) 1.- Un río de orillas rectas y paralelas tiene una anchura de 0.76 km. La corriente del río baja a 4 km/h y es paralela a los márgenes. El barquero

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Introducción al Movimiento Armónico Simple En esta página se pretende que el alumno observe la representación del Movimiento Armónico Simple (en lo que sigue M.A.S.), identificando

Más detalles

3. Señales sísmicas y Ruido

3. Señales sísmicas y Ruido 3. Señales sísmicas y Ruido Una fuente importante de información de la estructura de la Tierra es obtenida de los datos del movimiento del suelo. La interpretación de estos datos necesita un buen conocimiento

Más detalles

Instrucciones Sólo hay una respuesta correcta por pregunta. Salvo que se indique explícitamente lo contrario, todas las resistencias, bombillas o

Instrucciones Sólo hay una respuesta correcta por pregunta. Salvo que se indique explícitamente lo contrario, todas las resistencias, bombillas o 1. Una partícula de 2 kg, que se mueve en el eje OX, realiza un movimiento armónico simple. Su posición en función del tiempo es x(t) = 5 cos (3t) m y su energía potencial es E pot (t) = 9 x 2 (t) J. (SEL

Más detalles

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a Física P.A.U. ELECTOMAGNETISMO 1 ELECTOMAGNETISMO INTODUCCIÓN MÉTODO 1. En general: Se dibujan las fuerzas que actúan sobre el sistema. Se calcula la resultante por el principio de superposición. Se aplica

Más detalles

8. Circulación general oceánica

8. Circulación general oceánica 8. Circulación general oceánica 8.1 Estructura vertical oceánica En el capítulo anterior estudiamos la dinámica del interior oceánico integrada verticalmente (teoría de Sverdrup). No obstante, a lo largo

Más detalles

Examen de TEORIA DE MAQUINAS Junio 95 Nombre...

Examen de TEORIA DE MAQUINAS Junio 95 Nombre... Examen de TEORIA DE MAQUINAS Junio 95 Nombre... El sistema de la figura es un modelo simplificado de un vehículo y se encuentra sometido a la acción de la gravedad. Sus características son: masa m=10 Kg,

Más detalles

No hay resorte que oscile cien años...

No hay resorte que oscile cien años... No hay resorte que oscile cien años... María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA - 1999 Resumen: En el presente trabajo nos proponemos

Más detalles

EXAMEN FÍSICA PAEG UCLM. SEPTIEMBRE 2013. SOLUCIONARIO OPCIÓN A. PROBLEMA 1

EXAMEN FÍSICA PAEG UCLM. SEPTIEMBRE 2013. SOLUCIONARIO OPCIÓN A. PROBLEMA 1 OPCIÓN A. PROBLEMA 1 Una partícula de masa 10-2 kg vibra con movimiento armónico simple de periodo π s a lo largo de un segmento de 20 cm de longitud. Determinar: a) Su velocidad y su aceleración cuando

Más detalles

Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8

Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8 Esta semana estudiaremos la definición de vectores y su aplicabilidad a muchas situaciones, particularmente a las relacionadas con el movimiento. Por otro lado, se podrán establecer las características

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 1: CAMPO GRAVITATORIO

EXAMEN FÍSICA 2º BACHILLERATO TEMA 1: CAMPO GRAVITATORIO INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

1. Trabajo y energía TRABAJO HECHO POR UNA FUERZA CONSTANTE

1. Trabajo y energía TRABAJO HECHO POR UNA FUERZA CONSTANTE Trabajo y energía 1. Trabajo y energía Hasta ahora hemos estudiado el movimiento traslacional de un objeto en términos de las tres leyes de Newton. En este análisis la fuerza ha jugado un papel central.

Más detalles

EXAMEN FISICA PAEG UCLM. JUNIO 2014. SOLUCIONARIO

EXAMEN FISICA PAEG UCLM. JUNIO 2014. SOLUCIONARIO OPCIÓN A. POBLEMA 1. Un planeta gigante tiene dos satélites, S1 y S2, cuyos periodos orbitales son T 1 = 4.52 días terrestres y T 2 = 15.9 días terrestres respectivamente. a) Si el radio de la órbita del

Más detalles

[c] Qué energía mecánica posee el sistema muelle-masa? Y si la masa fuese 2 y la constante 2K?.

[c] Qué energía mecánica posee el sistema muelle-masa? Y si la masa fuese 2 y la constante 2K?. Actividad 1 La figura representa un péndulo horizontal de resorte. La masa del bloque vale M y la constante elástica del resorte K. No hay rozamientos. Inicialmente el muelle está sin deformar. [a] Si

Más detalles

ESTUDIO DE LA ESTABILIDAD EN EL DOMINIO FRECUENCIAL

ESTUDIO DE LA ESTABILIDAD EN EL DOMINIO FRECUENCIAL ESTUDIO DE LA ESTABILIDAD EN EL DOMINIO FRECUENCIAL 1.-Introducción. 2.-Criterio de estabilidad de Nyquist. 3.-Estabilidad relativa. 3.1.-Margen de ganancia. 3.2.-Margen de fase. 4.-Estabilidad mediante

Más detalles

Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración

Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración Tema 4 Dinámica Fuerza Fuerza es lo que produce cualquier cambio en la velocidad de un objeto Una fuerza es lo que causa una aceleración La fuerza neta es la suma de todas las fuerzas que actúan sobre

Más detalles

PROBLEMAS Física 2º Bachillerato CAMPO GRAVITATORIO

PROBLEMAS Física 2º Bachillerato CAMPO GRAVITATORIO PROBLEMAS Física 2º Bachillerato CAMPO GRAVITATORIO 1) Si la velocidad de una partícula es constante Puede variar su momento angular con el tiempo? S: Si, si varía el valor del vector de posición. 2) Una

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA 1.- El bloque mostrado se encuentra afectado por fuerzas que le permiten desplazarse desde A hasta B.

Más detalles

Funciones más usuales 1

Funciones más usuales 1 Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una

Más detalles

VECTOR DE CARGAS GENERALIZADAS Q

VECTOR DE CARGAS GENERALIZADAS Q CAPITULO VECTO DE CAGAS GENEALIZADAS Q ESUMEN Se presenta el cálculo del vector de cargas generalizadas Q en marcos y armaduras planas cuyos elementos pueden ser: totalmente flexibles transversalmente

Más detalles

Problemas de Campo eléctrico 2º de bachillerato. Física

Problemas de Campo eléctrico 2º de bachillerato. Física Problemas de Campo eléctrico 2º de bachillerato. Física 1. Un electrón, con velocidad inicial 3 10 5 m/s dirigida en el sentido positivo del eje X, penetra en una región donde existe un campo eléctrico

Más detalles

Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Geofísica MODULO 3. Flujos Turbulentos

Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Geofísica MODULO 3. Flujos Turbulentos Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Geofísica MODULO 3 Flujos Turbulentos René Garreaud S. Carolina Meruane N. 2005 Índice 1. Antecedentes teóricos...............................

Más detalles

TRABAJO Y ENERGÍA Página 1 de 13

TRABAJO Y ENERGÍA Página 1 de 13 TRABAJO Y ENERGÍA Página 1 de 13 EJERCICIOS DE TRABAJO Y ENERGÍA RESUELTOS: Ejemplo 1: Calcular el trabajo necesario para estirar un muelle 5 cm, si la constante del muelle es 1000 N/m. La fuerza necesaria

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos Boletín 5 Campo eléctrico Ejercicio 1 La masa de un protón es 1,67 10 7 kg y su carga eléctrica 1,6 10 19 C. Compara la fuerza de repulsión eléctrica entre dos protones situados en

Más detalles

2.3. ASPECTOS ENERGÉTICOS

2.3. ASPECTOS ENERGÉTICOS .3. ASPECTOS ENERGÉTICOS.3.1. Sobre un cuerpo actúa una fuerza representada en la gráfica de la figura. Podemos decir que el trabajo realizado por la fuerza es: a) (8/+16+16/) J b)(4+3+3) J c) (4+16+4)

Más detalles

Mecánica de Fluidos y Máquinas Hidráulicas

Mecánica de Fluidos y Máquinas Hidráulicas Mecánica de Fluidos y Máquinas Hidráulicas Tema 06. Flujo de Fluidos en Tuberías Severiano F. Pérez Remesal Carlos Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica bajo

Más detalles

1. Propiedades de la Presión Hidrostática.

1. Propiedades de la Presión Hidrostática. Tema. Hidrostática. ropiedades de la resión Hidrostática.. Ecuación fundamental de la Hidrostática.. resión Hidrostática en los líquidos. Ecuación de equilibrio de los líquidos pesados. ota pieométrica.

Más detalles

MOMENTO ANGULAR Y TORCAS COMO VECTORES

MOMENTO ANGULAR Y TORCAS COMO VECTORES MOMENTO ANGULAR Y TORCAS COMO VECTORES OBJETIVOS: Identificar la torca y el momento angular como magnitudes vectoriales. Examinar las propiedades matemáticas del producto cruz y algunas aplicaciones. Describir

Más detalles

Capítulo 4 Trabajo y energía

Capítulo 4 Trabajo y energía Capítulo 4 Trabajo y energía 17 Problemas de selección - página 63 (soluciones en la página 116) 10 Problemas de desarrollo - página 69 (soluciones en la página 117) 61 4.A PROBLEMAS DE SELECCIÓN Sección

Más detalles

RELOJES DE SOL. 1. Movimiento diurno del Sol. 2. Variaciones anuales del movimiento del Sol

RELOJES DE SOL. 1. Movimiento diurno del Sol. 2. Variaciones anuales del movimiento del Sol 1. Movimiento diurno del Sol RELOJES DE SOL Sin necesidad de utilizar instrumento alguno, todo el mundo sabe que el Sol, por la mañana sale por algún lugar hacia el Este, que hacia el mediodía está en

Más detalles

Casuística 4.1 INTRODUCCIÓN

Casuística 4.1 INTRODUCCIÓN 4.1 INTRODUCCIÓN La primera impresión que produce el método cuando se exponen sus resultados es de un cierto asombro para todo aquél que conozca el estado actual de desarrollo del cálculo del movimiento

Más detalles

LEYES DE LA DINÁMICA Y APLICACIONES

LEYES DE LA DINÁMICA Y APLICACIONES CONTENIDOS. LEYES DE LA DINÁMICA Y APLICACIONES Unidad 14 1.- Cantidad de movimiento. 2.- Primera ley de Newton (ley de la inercia). 3.- Segunda ley de la Dinámica. 4.- Impulso mecánico. 5.- Conservación

Más detalles

Apuntes de Mecánica Newtoniana Cinemática de la Partícula

Apuntes de Mecánica Newtoniana Cinemática de la Partícula Apuntes de Mecánica Newtoniana Cinemática de la Partícula Ariel Fernández Daniel Marta Introducción. En este capítulo se introducirán los elementos necesarios para la descripción del movimiento de una

Más detalles

Capítulo II. Movimiento plano. Capítulo II Movimiento plano

Capítulo II. Movimiento plano. Capítulo II Movimiento plano inemática y Dinámica de Máquinas. II. spectos generales del movimiento plano apítulo II Movimiento plano inemática y Dinámica de Máquinas. II. spectos generales del movimiento plano apítulo II Movimiento

Más detalles

CAMPO ELÉCTRICO FCA 10 ANDALUCÍA

CAMPO ELÉCTRICO FCA 10 ANDALUCÍA CMO LÉCTRICO FC 0 NDLUCÍ. a) xplique la relación entre campo y potencial electrostáticos. b) Una partícula cargada se mueve espontáneamente hacia puntos en los que el potencial electrostático es mayor.

Más detalles

1.- Comente las propiedades que conozca acerca de la carga eléctrica..(1.1, 1.2).

1.- Comente las propiedades que conozca acerca de la carga eléctrica..(1.1, 1.2). FÍSICA CUESTIONES Y PROBLEMAS BLOQUE III: INTERACCIÓN ELECTROMAGNÉTICA PAU 2003-2004 1.- Comente las propiedades que conozca acerca de la carga eléctrica..(1.1, 1.2). 2.- Una partícula de masa m y carga

Más detalles

Ejercicio de ejemplo - Diagramas de solicitaciones. Se plantea el problema de hallar los diagramas de solicitaciones de la siguiente ménsula:

Ejercicio de ejemplo - Diagramas de solicitaciones. Se plantea el problema de hallar los diagramas de solicitaciones de la siguiente ménsula: Ejercicio de ejemplo - Diagramas de solicitaciones Se plantea el problema de hallar los diagramas de solicitaciones de la siguiente ménsula: 1- Reacciones: En primer lugar determinamos el valor de las

Más detalles

Trabajo y Energía. W = FO. xo. t t =mvo. vo= ( 1 2 m vo2 )= K, y, F z = U E = K +U. E =K + i. U i

Trabajo y Energía. W = FO. xo. t t =mvo. vo= ( 1 2 m vo2 )= K, y, F z = U E = K +U. E =K + i. U i Trabajo y Energía Trabajo vo xo=m vo xo W = FO. xo FO: Fuerza aplicada, XOes el desplazamiento. Usando la Segunda Ley de Newton: W = m t t =mvo. vo= ( 1 2 m vo2 )= K, Teorema del Trabajo y la Energía K

Más detalles

3.1 DEFINICIÓN. Figura Nº 1. Vector

3.1 DEFINICIÓN. Figura Nº 1. Vector 3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado

Más detalles

Capítulo 5 Oscilaciones

Capítulo 5 Oscilaciones Capítulo 5 Oscilaciones 9 Problemas de selección - página 77 (soluciones en la página 120) 6 Problemas de desarrollo - página 82 (soluciones en la página 121) 75 5.A PROBLEMAS DE SELECCIÓN Sección 5.A

Más detalles

TEMA: CAMPO ELÉCTRICO

TEMA: CAMPO ELÉCTRICO TEMA: CAMPO ELÉCTRICO C-J-06 Una carga puntual de valor Q ocupa la posición (0,0) del plano XY en el vacío. En un punto A del eje X el potencial es V = -120 V, y el campo eléctrico es E = -80 i N/C, siendo

Más detalles

ESCULA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER DE ELECTROSTATICA

ESCULA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER DE ELECTROSTATICA ESCULA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER DE ELECTROSTATICA Aceleración de la gravedad 9,8m/s Constante de permitividad 8,85x10-1 Nm /C Masa del protón 1,67x10-7 kg Masa

Más detalles

MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler.

MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler. MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler. Problema 1: Analizar los siguientes puntos. a) Mostrar que la velocidad angular

Más detalles

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica 10 Funciones lineales Objetivos En esta quincena aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos oletín 6 Campo magnético Ejercicio Un electrón se acelera por la acción de una diferencia de potencial de 00 V y, posteriormente, penetra en una región en la que existe un campo magnético

Más detalles

ANÁLISIS DE LAS CONDICIONES DE FRONTERA EN LA INTERFASE AIRE AGUA (SUPERFICIE) PARA LA SIMULACIÓN HIDRODINÁMICA DE LAGUNAS FACULTATIVAS SECUNDARIAS

ANÁLISIS DE LAS CONDICIONES DE FRONTERA EN LA INTERFASE AIRE AGUA (SUPERFICIE) PARA LA SIMULACIÓN HIDRODINÁMICA DE LAGUNAS FACULTATIVAS SECUNDARIAS ANÁLISIS DE LAS CONDICIONES DE FRONTERA EN LA INTERFASE AIRE AGUA (SUPERFICIE) PARA LA SIMULACIÓN HIDRODINÁMICA DE LAGUNAS FACULTATIVAS SECUNDARIAS A. Aponte*, A. Toro*, L. Dueñas**, S. Laín**, M. R. Peña

Más detalles

Dinamica de Fluidos: Principio de Bernoulli. Aplicaciones

Dinamica de Fluidos: Principio de Bernoulli. Aplicaciones Dinamica de Fluidos: Principio de Bernoulli. Aplicaciones Cuando un fluido está en movimiento, el flujo se puede clasificar en dos tipos: a) Flujo estacionario o laminar si cada partícula de fluido sigue

Más detalles

ORIENTACIONES PARA LA MATERIA DE FÍSICA Convocatoria 2010

ORIENTACIONES PARA LA MATERIA DE FÍSICA Convocatoria 2010 ORIENTACIONES PARA LA MATERIA DE FÍSICA Convocatoria 2010 Prueba de Acceso para Mayores de 25 años Para que un adulto mayor de 25 años pueda incorporarse plenamente en los estudios superiores de la Física

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 01 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Suponga que trabaja para una gran compañía de transporte y que

Más detalles

M.A.S. Y MOV ONDULATORIO FCA 07 ANDALUCÍA

M.A.S. Y MOV ONDULATORIO FCA 07 ANDALUCÍA . La ecuación de una onda armónica que se propaga por una cuerda es: y (x, t) = 0,08 cos (6 t - 0 x) (S.I.) a) Determine el sentido de propagación de la onda, su amplitud, periodo, longitud de onda y velocidad

Más detalles

5.3 Teorema de conservación de la cantidad de movimiento

5.3 Teorema de conservación de la cantidad de movimiento 105 UNIDAD V 5 Sistemas de Partículas 5.1 Dinámica de un sistema de partículas 5.2 Movimiento del centro de masa 5.3 Teorema de conservación de la cantidad de movimiento 5.4 Teorema de conservación de

Más detalles

Índice general. Introducción 1

Índice general. Introducción 1 Índice general Introducción 1 1. La atmósfera 3 1.1. Introducción........................ 4 1.2. Composición de la atmósfera............... 4 1.3. La estructura de la atmósfera.............. 8 1.3.1. La

Más detalles

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Universidad Politécnica de Madrid 5 de marzo de 2010 2 4.1. Planificación

Más detalles

Movimiento Armónico Simple. Estudio cinemático, dinámico y energético

Movimiento Armónico Simple. Estudio cinemático, dinámico y energético Movimiento Armónico Simple Estudio cinemático, dinámico y energético Objetivos Identificar el M.A.S. como un movimiento rectilíneo periódico, oscilatorio y vibratorio Saber definir e identificar las principales

Más detalles

Tema 2: Acústica física II

Tema 2: Acústica física II Tema 2: Acústica física II Ecuaciones del movimiento en un medio no absorbente. Ecuación de ondas y soluciones 1D. Velocidad del sonido. Ejemplo: campo progresivo en un tubo semi-infinito P +. Condiciones

Más detalles

ALGEBRA DE VECTORES Y MATRICES VECTORES

ALGEBRA DE VECTORES Y MATRICES VECTORES ALGEBRA DE VECTORES Y MATRICES VECTORES DEFINICIÓN DE ESCALAR: Cantidad física que queda representada mediante un número real acompañado de una unidad. EJEMPLOS: Volumen Área Densidad Tiempo Temperatura

Más detalles

La magnitud vectorial mas simple es el desplazamiento (cambio de posición de un punto a otro de una partícula o de un cuerpo)

La magnitud vectorial mas simple es el desplazamiento (cambio de posición de un punto a otro de una partícula o de un cuerpo) Existen ciertas magnitudes que quedan perfectamente determinadas cuando se conoce el nombre de una unidad y el numero de veces que se ha tomado.estas unidades se llaman escalares (tiempo, volumen, longitud,

Más detalles

Javier Junquera. Vectores

Javier Junquera. Vectores Javier Junquera Vectores Cómo describir la posición de un punto en el espacio: Sistemas de coordenadas Un sistema de coordenadas que permita especificar posiciones consta de: Un punto de referencia fijo,

Más detalles

Movimiento oscilatorio

Movimiento oscilatorio Capítulo 13 Ondas 1 Movimiento oscilatorio El movimiento armónico simple ocurre cuando la fuerza recuperadora es proporcional al desplazamiento con respecto del equilibrio x: F = kx k se denomina constante

Más detalles

Sistema termodinámico

Sistema termodinámico IngTermica_01:Maquetación 1 16/02/2009 17:53 Página 1 Capítulo 1 Sistema termodinámico 1.1 Introducción En sentido amplio, la Termodinámica es la ciencia que estudia las transformaciones energéticas. Si

Más detalles

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o.

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o. ESTÁTICA Sesión 2 2 VECTORES 2.1. Escalares y vectores 2.2. Cómo operar con vectores 2.2.1. Suma vectorial 2.2.2. Producto de un escalar y un vector 2.2.3. Resta vectorial 2.2.4. Vectores unitarios 2.2.5.

Más detalles

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) = T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente

Más detalles

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d.

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d. C U R S O: FÍSICA COMÚN MATERIAL: FC-09 TRABAJO Y ENERGÍA La energía desempeña un papel muy importante en el mundo actual, por lo cual se justifica que la conozcamos mejor. Iniciamos nuestro estudio presentando

Más detalles

2 Olimpiada Asiática de Física

2 Olimpiada Asiática de Física 2 Olimpiada Asiática de Física Taipei, Taiwan 200 Problema : ¾Cuándo se convertirá la Luna en un satélite sincrónico? El periodo de rotación de la Luna en torno a su eje es actualmente el mismo que su

Más detalles

MSFC203_INSTALACIONES DE CLIMATIZACIÓN Y VENTILACIÓN

MSFC203_INSTALACIONES DE CLIMATIZACIÓN Y VENTILACIÓN MSFC203_INSTALACIONES DE CLIMATIZACIÓN Y VENTILACIÓN ÍNDICE Parámetros fundamentales y operaciones básicas en aire acondicionado Condiciones de bienestar o confort Cálculo de la carga térmica de refrigeración

Más detalles

Capítulo 1. Mecánica

Capítulo 1. Mecánica Capítulo 1 Mecánica 1 Velocidad El vector de posición está especificado por tres componentes: r = x î + y ĵ + z k Decimos que x, y y z son las coordenadas de la partícula. La velocidad es la derivada temporal

Más detalles

Funciones elementales

Funciones elementales 10 Funciones elementales Objetivos En esta quincena aprenderás a: Reconocer y distinguir algunas de las funciones más habituales. Utilizar algunas funciones no lineales: cuadráticas, de proporcionalidad

Más detalles

3. Descripción física del rayo. Parámetros

3. Descripción física del rayo. Parámetros 3. Descripción ísica del rayo. Parámetros 3.1. PROCESO DE DESCARGA DE UNA NUBE El rayo es una descarga transitoria de elevada intensidad; la mitad de estos rayos ocurren en el interior de la nube, y la

Más detalles

+- +- 1. En las siguientes figuras: A) B) C) D)

+- +- 1. En las siguientes figuras: A) B) C) D) PROBLEMA IDUCCIÓ ELECTROMAGÉTICA 1. En las siguientes figuras: a) eñala que elemento es el inductor y cual el inducido b) Dibuja las líneas de campo magnético del inductor, e indica (dibuja) el sentido

Más detalles

PRESTACIONES EN VEHÍCULOS

PRESTACIONES EN VEHÍCULOS LABORATORIO DE TECNOLOGÍAS IV 3º ingeniería Técnica Industrial Mecánica PRESTACIONES EN VEHÍCULOS UNIVERSIDAD CARLOS III DE MADRID DEPARTAMENTO DE INGENIERÍA MECÁNICA LEGANÉS 04 1 INDICE DEL CURSO 1.-

Más detalles

1 Yoyó con cuerda despreciable 1

1 Yoyó con cuerda despreciable 1 1 Yoyó con cuerda despreciable 1 En este documento se describe el problema clásico de la Física elemental en el que un yoyó, modelado como un disco, cae bajo la acción de la gravedad, sujeto con una cuerda

Más detalles

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Diseño de Líneas de Transmisión. Tema: Calculo mecánico: Flechas y Tensiones. GUÍA 5 Pág.

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Diseño de Líneas de Transmisión. Tema: Calculo mecánico: Flechas y Tensiones. GUÍA 5 Pág. Tema: Calculo mecánico: Flechas y Tensiones. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Diseño de Líneas de Transmisión. I. OBJETIVOS. Que el estudiante simule la influencia de la variación

Más detalles

Detección de bordes: metodos lineales de cálculo de gradientesk, etc. Detección de bordes. Métodos basados en operadores lineales de gradiente

Detección de bordes: metodos lineales de cálculo de gradientesk, etc. Detección de bordes. Métodos basados en operadores lineales de gradiente Detección de bordes Métodos basados en operadores lineales de gradiente 1 Bordes Variaciones fuertes de la intensidad que corresponden a las fronteras de los objetos visualizados Métodos basados en el

Más detalles

3. CÁLCULO HIDRÁULICO

3. CÁLCULO HIDRÁULICO 3. CÁLCULO HIDRÁULICO Fig. 3.60- Instalación pag. 3.23 CÁLCULO HIDRÁULICO SELECCIÓN DE DIÁMETRO Y CLASE DE LOS TUBOS DE PRESIÓN La selección del diámetro y clase de presión depende de los siguientes factores:

Más detalles

Comportamiento de fluidos acelerados Estudio experimental y modelo teórico

Comportamiento de fluidos acelerados Estudio experimental y modelo teórico Comportamiento de fluidos acelerados Estudio eperimental y modelo teórico Alejandra Barnfather (a), Matías Benitez (b) y Victoria Crawley (c) aboratorio de Física III (Curso ), Facultad de Ingeniería y

Más detalles

ALGUNOS EJERCICIOS RESUELTOS DE TRABAJO Y ENERGÍA (BOLETÍN DEL TEMA 1)

ALGUNOS EJERCICIOS RESUELTOS DE TRABAJO Y ENERGÍA (BOLETÍN DEL TEMA 1) I..S. l-ándalus. Dpto de ísica y Química. ísica º Bachillerato LGUS JRCICIS RSULTS D TRBJ Y RGÍ (BLTÍ DL TM ). Un bloque de 5 kg desliza con velocidad constante por una superficie horizontal mientras se

Más detalles

3. Ecuaciones de conservación

3. Ecuaciones de conservación Introducción a la Dinámica de la Atmósfera 2011 1 3. Ecuaciones de conservación El comportamiento de la atmósfera se estudia considerando la evolución de su masa, su momento y su energía. Para ello es

Más detalles

Examen de Selectividad de Física. Septiembre 2009. Soluciones

Examen de Selectividad de Física. Septiembre 2009. Soluciones Examen de electividad de Física. eptiembre 2009. oluciones Primera parte Cuestión 1.- Razone si son verdaderas o falsas las siguientes afirmaciones: El valor de la velocidad de escape de un objeto lanzado

Más detalles

CONCEPTOS BÁSICOS DE ELECTRICIDAD

CONCEPTOS BÁSICOS DE ELECTRICIDAD CONCEPTOS BÁSICOS DE ELECTRICIDAD Ley de Coulomb La ley de Coulomb nos describe la interacción entre dos cargas eléctricas del mismo o de distinto signo. La fuerza que ejerce la carga Q sobre otra carga

Más detalles

JUSTIFICACION. Los temas mencionados son básicos para el estudio de los fluidos en reposa (estática de los fluidos).

JUSTIFICACION. Los temas mencionados son básicos para el estudio de los fluidos en reposa (estática de los fluidos). Nombre de la asignatura: Mecánica de Fluidos I. Carrera : Ingeniería Mecánica Clave de la asignatura: MCB-9330 Clave local: Horas teoría horas practicas créditos: 4-0-8 2. - UBICACIÓN DE LA ASIGNATURA

Más detalles

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,

Más detalles

4 Localización de terremotos

4 Localización de terremotos 513430 - Sismología 27 4 Localización de terremotos 4.1 Localización de sismos locales Fig 27: Gráfico de la ruptura en la superficie de una falla. La ruptura se propaga desde el punto de la nucleación,

Más detalles

CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE ALTERNA USO DEL OSCILOSCOPIO

CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE ALTERNA USO DEL OSCILOSCOPIO UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERIA ELECTRICA CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE

Más detalles

CURSO TALLER PROMOTORES DE AHORRO Y EFICIENCIA DE ENERGÍA ELÉCTRICA

CURSO TALLER PROMOTORES DE AHORRO Y EFICIENCIA DE ENERGÍA ELÉCTRICA PROGRAMA INTEGRAL DE ASISTENCIA TÉCNICA Y CAPACITACIÓN PARA LA FORMACIÓN DE ESPECIALISTAS EN AHORRO Y USO EFICIENTE DE ENERGÍA ELÉCTRICA DE GUATEMALA CURSO TALLER PROMOTORES DE AHORRO Y EFICIENCIA DE ENERGÍA

Más detalles

UNIVERSIDAD TÉCNICA DE MANABÍ C.A.N.O CENTRO DE ADMISIÓN, NIVELACIÓN Y ORIENTACIÓN

UNIVERSIDAD TÉCNICA DE MANABÍ C.A.N.O CENTRO DE ADMISIÓN, NIVELACIÓN Y ORIENTACIÓN UNIVERSIDAD TÉCNICA DE MANABÍ TEMARIO PARA EL MÓDULO DE NIVELACIÓN Y EXAMEN DE LA EXONERACIÓN DE LA NIVELACIÓN CARRERA: Ingeniería de Sistemas Informáticos Ingeniería Civil Ingeniería Eléctrica Ingeniería

Más detalles

CINEMATICA Y DINAMICA ESTELAR. MASAS DE GALAXIAS

CINEMATICA Y DINAMICA ESTELAR. MASAS DE GALAXIAS CINEMATICA Y DINAMICA ESTELAR. MASAS DE GALAXIAS ESQUEMA CINEMÁTICA GALÁCTICA Dinámica estelar Distribución de velocidades de las estrellas CURVAS DE ROTACIÓN Relación con el campo gravitatorio DISPERSION

Más detalles

ESTATICA: TIPOS DE MAGNITUDES: CARACTERÍSTICAS DE UN VECTOR. Rama de la física que estudia el equilibrio de los cuerpos.

ESTATICA: TIPOS DE MAGNITUDES: CARACTERÍSTICAS DE UN VECTOR. Rama de la física que estudia el equilibrio de los cuerpos. ESTATICA: Rama de la física que estudia el equilibrio de los cuerpos. TIPOS DE MAGNITUDES: MAGNITUD ESCALAR: Es una cantidad física que se especifica por un número y una unidad. Ejemplos: La temperatura

Más detalles

Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA.

Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA. Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA. Actividades Unidad 4. Nos encontramos en el interior de un tren esperando a que comience el viaje. Por la

Más detalles

MOVIMIENTO ABSOLUTO Y MOVIMIENTO RELATIVO

MOVIMIENTO ABSOLUTO Y MOVIMIENTO RELATIVO BOLILLA 5 MOVIMIENTO ABSOLUTO Y MOVIMIENTO RELATIVO Sistemas de referencia Inerciales y No-inerciales En la bolilla anterior vimos que las leyes de Newton se cumplían en marcos de referencia inercial.

Más detalles

1 ESTUDIO SOBRE PERDIDAS DE CARGA

1 ESTUDIO SOBRE PERDIDAS DE CARGA 1 ESTUDIO SOBRE PERDIDAS DE CARGA La realización de este estudio fue motivada por la convicción de los fabricantes de que los datos existentes desde hace décadas sobre rugosidad y pérdidas de carga de

Más detalles

GRUPOS PUNTUALES. 4.- Si un plano de simetría contiene un eje de orden n, existen n planos que contienen el eje. formando entre ellos ángulos de

GRUPOS PUNTUALES. 4.- Si un plano de simetría contiene un eje de orden n, existen n planos que contienen el eje. formando entre ellos ángulos de GRUPOS PUNTUALES Existen algunas relaciones entre elementos de simetría que pueden ser útiles a la hora de deducir cuales son los conjuntos de estos que forman grupo. 1.- Todos los elementos de simetría

Más detalles

MECANICA DE MEDIOS CONTINUOS 2º INGENIERO GEOLOGO

MECANICA DE MEDIOS CONTINUOS 2º INGENIERO GEOLOGO 1.- La chapa rectangular ABCD de la Figura 1 está anclada en el punto A y colgada de la cuerda SC. Determinar la tensión de la cuerda y la fuerza en el punto de anclaje A cuando la chapa soporta una carga

Más detalles

Laboratorio orio de Operaciones Unitarias I

Laboratorio orio de Operaciones Unitarias I Laboratorio orio de Operaciones Unitarias I 1 República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Superior Instituto Universitario de Tecnología Alonso Gamero Laboratorio

Más detalles

4. Aplicaciones de las ecuaciones básicas

4. Aplicaciones de las ecuaciones básicas 1 4. Aplicaciones de las ecuaciones básicas En este capítulo nos detendremos en estudiar aplicaciones de las ecuaciones de momento y continuidad desarrolladas en el capítulo anterior. Para ello utilizaremos

Más detalles

CAPITULO 5. Corriente alterna 1. ANÁLISIS DE IMPEDANCIAS Y ÁNGULOS DE FASE EN CIRCUITOS, RL Y RLC SERIE.

CAPITULO 5. Corriente alterna 1. ANÁLISIS DE IMPEDANCIAS Y ÁNGULOS DE FASE EN CIRCUITOS, RL Y RLC SERIE. CAPITULO 5 Corriente alterna 1. ANÁLISIS DE IMPEDANCIAS Y ÁNGULOS DE FASE EN CIRCUITOS, RL Y RLC SERIE. Inductor o bobina Un inductor o bobina es un elemento que se opone a los cambios de variación de

Más detalles