Puntos Administrativos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Puntos Administrativos"

Transcripción

1 Puntos Administrativos a lección 3 (Teoría de errores) Terminada os informes (6%!) se pueden mejorar mucho a lección 4 (Método) está en su UR Queda la ección 5 (Magnitudes Físicas) Es lo más difícil de esta asignatura Pero tenemos tiempo

2 ección 5: Magnitudes Físicas

3 Esquema Magnitudes Unidades y Dimensiones Análisis Dimensional Introducción Dos postulados Ejemplos (Pendulo; Deformación de materiales) a Teoría de Buckingham Con los ejemplos Otro ejemplo (similar a la Práctica 9)

4 Bella? Más bella? Aún más bella? Belleza: Una Cantidad Cuantificable?

5 Magnitudes Cuál es la magnitud de la belleza de Penélope Cruz? Para cuantificar (medir o estimar) las propiedades de algo, hace falta un sistema de unidades a belleza no tiene unidades, por lo cual no es una cantidad que tenga magnitud Un sistema de unidades siempre empieza con unas decisiones arbitrarios

6 Sistemas de Unidades El Sistema Internacional (MKS) Unidades fundamentales longitud (m ~ ) masa (kg ~ M) Tiempo (s ~ T) Unidades derivadas (fuerza, aceleración, ) Un sistema del clase MT (longitud, masa, tiempo) Existen otras posibilidades (infinitas)

7 Otra posibilidad Habríamos podido definir, en vez de masa, por ejemplo la fuerza (peso) como una unidad fundamental (e.g., un sistema del clase FT) En este caso, masa sería una unidad derivada (M ~ F T - ) Si no se elige con cuidado, la definición del sistema puede llegar a unas constantes superfluas (a evitar)

8 El Convenio Arbitrario Aquí, nos quedamos con el Sistema Internacional (MKS) Está definido para evitar las constantes superfluas

9 Importancia de las dimensiones 3 de septiembre de 999 Mars Climate Orbiter se estrelló contra Marte Causa principal ockheed Martin Astronautics (Denver) dió los valores de unos parámetros de fuerza en libras ( libra ~. N) la NASA interpretó el impulso en Newtons: una sobreestimación de 454%. Coste: $5,,

10 os alumnos y las unidades Un litro de plomo tiene una masa de,kg? Aceleración de gravedad, g 84 m s -? a velocidad del carrito, v 643 m s -?

11 Conclusión preeliminaría Hay que prestar mucha atención en las unidades Además: las unidades son la primera etapa para un entendimiento del concepto de dimensión a coherencia de las dimensiones se aplica a toda la física nos puede ayudar a resolver problemas facilitar el entendimiento de la física.

12 Análisis Dimensional: Introducción Herramienta poderosa para el análisis y entendimiento de la física Aplicaciones en: Detección de errores de cálculo. Resolución de problemas cuya solución directa conlleva dificultades matemáticas insalvables. Creación y estudio de modelos reducidos. Consideraciones sobre la influencia de posibles cambios en los modelos.

13 Ejemplo de un problema Práctica 9 Fuerza de arrastre en una esfera con velocidad relativa a una líquida (nota : la solución de Stokes es un caso especial ) Digamos que afrontamos esta situación por la primera vez Es intuitivo que la fuerza depende de Diámetro (D) de la esfera a velocidad (V) del movimiento (la caída) a densidad (ρ) del líquido a viscosidad (µ) del líquido F Pero que forma tiene? ( D,V, ρ µ ) f, µ ρ V F D ( D,V, ρµ ) F f,

14 Determinación Experimental (Bruta) Se podría determinar con muchos experimentos, por ejemplo variando cada parámetro con valores Necesitaríamos (D) (V) (ρ) (µ) 8 condiciones experimentales y mediciones de la fuerza (y repeticiones) En lugar de eso, el análisis dimensional nos permite ahorrar mucha esfuerza (a ver más tarde; volveremos a este ejemplo)

15 Análisis Dimensional: Teoría a teoría es bastante abstracta In mi opinión, parece más a la matemática que a la física, por lo cual: Se presenta la teoría de forma breve Un tratamiento más bien práctica Hincapié en ejemplos Se refiere a la bibliografía (por quien le interesa la teoría abstracta): Palacios, J., 964, Análisis Dimensional. Espasa-Calpe, Madrid. os apuntes (PDF) del Dr. Juan Antonio Morente (capítulo V)

16 Análisis Dimensional: Esquema de Teoría El concepto de dimensión El º postulado: Proporcionalidad y Homogeneidad El º postulado : los constantes ineludibles Ejemplos sencillos del análisis dimensional os grupos no-dimensionales (Π) a Teorema de Buckingham (Π) Ejemplos de aplicación de la Teorema Π

17 los f i El concepto de dimensión (ejemplo en sistemas familiares) Medimos las cantidades en ciertas unidades a longitud se mide en m a masa se mide en kg Para estas cantidades fundamentales, por definición hay una dimensión Siguiendo el convenio, podemos distinguir entre los p i Cantidades fundamentales [masa M (kg), longitud (m), tiempo T (s)] los q i Cantidades fundamentales [masa M (g), longitud (cm), tiempo T (ms)] Cantidades derivadas [velocidad V (m s - ), fuerza F (N), energía (J)] Candidad/relación dimensiones N V ~ /T E ~ MV ~ M /T 3 F ~ MA ~ MV/T ~ M/T 3 J N as dimensiones se ven claramente cuando está escrito en función de las cantidades fundamentales Teoría de la próxima diapositiva

18 Una ey Fundamental a razón entre dos medidas de la misma cantidad (fundamental o derivada, independiente) no tiene dimensión Juan pesa dos veces más que Ana (no N, ni kg, no dimensión) El primer postulado Sean (p, p,, p n ) y (q, q,, q n ) de la misma cantidad fundamental pero con dos unidades distintas, y (f, f,, f n ) una cantidad derivada Entonces la razón f(p, p,, p n )/f(q, q,, q n ) no tiene dimensión (hay que reconocer que una cantidad medida en g kg - tiene dimensión nula) Matemáticamente, esto es posible únicamente en el caso que la cantidad derivada es proporcional a un producto de exponentes de las cantidades fundamentales: f(p, p,, p n ) C p a p a p n an

19 Proporcionalidad El primer postulado nos indica la proporcionalidad (no igualdad) y x α ~... α n x n Por lo cual, la relación se queda dependiente de un constante (C) y C x α... α n x n

20 Unas consecuencias importantes as leyes físicas no dependen del sistema de unidades as ecuaciones (leyes físicas) deben ser dimensionalmente homogéneas

21 Dos tipos de constantes ineludibles Factor de proporcionalidad, C, entre entidades C depende de la naturaleza del cuerpo? y F C x α... k l F G m m r α x n n Sí : constante particular (ejm: ey de Hooke, muelle) No: constante universal (ejm: constante de gravitación)

22 El Segundo Postulado as seis constantes universales conocidas: G (Newton - gravedad) k (Boltzmann - termodinámica) ε o (Coulomb permisividad del vacío) N A (Avogadro - moles) c (Maxwell - luz) h (Planck - radiación) Son ineludibles las constantes universales que relacionan dos magnitudes inseparables, y superfluas todas las demás. (J. Palacios) Un sistema coherente de unidades elimina las constantes superfluas de las ecuaciones fundamentales, quedando solamente las particulares y las seis universales enunciadas anteriormente

23 Consecuencias de los dos postulados Se puede entender muchísimo de un problema por un análisis de las dimensiones

24 Un ejemplo de utilidad de la análisis dimensional Se puede usar el análisis dimensional para deducir (o acordarse de) la forma de una ecuación Qué determina el periodo de oscilación de un péndulo? Variables potencialmente relevantes: g --- aceleración de gravedad (/T) m --- masa (M) l --- longitud () A --- amplitud de la oscilación () a dimensión del periodo P es (T) l mg

25 Periodo de Oscilación de un Péndulo Truco: (recordándose de un poco de física): para pequeños valores de A, P no depende de A Combinando las variables relevantes g --- aceleración de gravedad (/T ) m --- masa (M) l --- longitud () a única posibilidad que es dimensionalmente correcta (T) es P ~ (l/g) l. Para amplitudes más grandes P ~ ( (l/g)) f(l/a) (a ver más tarde) mg

26 Otro ejemplo El módulo de elasticidad (módulo de Young) Un hilo metálico de longitud (x) y diámetro está sometido a un esfuerzo de tracción sufre una deformación ( x) Se sabe que la deformación relativa ε x/x depende de la tensión (σ~m - T - ) y del módulo de elasticidad de la material (E~M - T - ) x Qué es la velocidad de la onda de (de)compresión (sonido) que se forma por la deformación? x F

27 Módulo de Elasticidad Pista física: una onda de compresión es un desequilibrio dinámico entre elasticidad y inercia Variables relevantes: módulo de elasticidad, E (M - T - ) densidad de material, ρ (M -3 ) Dimensionalmente, la velocidad debe ser: v ~ (E/ρ). x x F

28 Grupos no-dimensionales En cada caso, se saca de la solución en función de un grupo no-dimensional : Pendulo: P g l Elastico: v ρ E Volveremos a los ejemplos otra vez En general, es útil formar grupos de variables (grupos Π) con dimensión nula

29 Grupos Π no-dimensionales Hay que buscar n-m grupos de variables (grupos Π) con dimensión nula n parámetros físicos (variables relevantes) m dimensiones del problema

30 Teorema de Buckingham (pi) Aprovechamos de los dos postulados previos Para una situación física, combinamos los n variables en n-m grupos Π con dimensión nula. f ( q q ) g( q, q,, ) K q,, 3 K, q n os n parámetros dimensionales se agrupan en n-m parámetros independientes y no-dimensionales F Π, Π, 3 K G ( Π ) Π, ( Π, Π,, ) K Π n m q n n m

31 Teorema de Buckingham (pi) El teorema NO nos indica la forma funcional ni de G ni de F G ( Π, Π, K, Π ) n m ( ) Π F Π, Π3, K, Π n m Pero existe, y la forma funcional entre los parámetros Π se puede buscar experimentalmente. os n-m parámetros no-dimensionales son independientes.

32 Teorema de Buckingham (pi) Ejemplos de grupos con dimensión nula Péndulo: P g/l Cómo se buscan? Definimos un grupo Π como un producto de exponentes de las variables relevantes Ejemplo del pendulo: variables son P, g, l Π P α g β l γ (T) α (/T ) β () γ T α-β β+γ (dimensiones) T Elegimos (α,β,γ) para que Π tenga dimensión nula

33 Ejemplo del Péndulo Π P α g β l γ Para que Π tenga dimensión nula, hace falta α β β+γ Tenemos libertad (hay varias soluciones) Elegimos la más sencilla Con β, Π Π P g/l En general, en este caso Π (Π ) β Aqui, todos los grupos se determinan por Π un solo grupo Π G(Π ) Π f(ø) constante, por lo cual: P ~ (l/g)

34 Seguimos con el péndulo Si incluimos la amplitud A Buscamos grupos sin dimensión con la forma Π P a g b l c A d (T) a (/T ) b () c () d T a-b b+c+d Por lo cual a - b b + c + d Con 4 variables y ecuaciones, hay una solución en dos dimensiones (nos quedamos con más libertad aún); necesitamos dos grupos Π Elegimos dos vectores que forman el base de la solución b, d c -, a. El vector es e (,, -, ) b, d- c, a. El vector es e (,,,-) Todos vectores que satisfacen las ecuaciones son combinaciones lineales de estos dos vectores

35 Seguimos con el péndulo Ahora hay dos grupos independientes sin dimensión e (,, -, ) Π P g/l e (,,,-) Π l /A Todos los grupos sin dimensión se pueden escribir Π Π α Π β Si f(p,g,l,a) no varia con cambios de escala (o unidad), entonces se puede escribir usando Π y Π : G(Π,Π ) En el caso del péndulo, esto significa Π f(π ) : P g/l f(l/a) P ( (l/g)) f(l/a)

36 Truco Si la amplitud se hubiera asignado como un ángulo (θ) en vez de un longitud (A)? Un ángulo no tiene dimensión θ sen - (A/l) f(π ) El resultado es lo mismo!

37 Qué ventaja tiene? Hemos deducido que la forma de la dependencia del periodo es P ( (l/g)) f(l/a) Aunque aún no sabemos la forma exacta, pero hemos avanzado bastante Ahora, un otro ejemplo paso por paso un poco más complicado

38 a fuerza de arrastre µ V F ρ D F ( D,V, ρ µ ) f,

39 Volviendo a la fuerza de arrastre en la esfera F f ( D,V, ρ, µ ) g( F, D, V, ρ, µ ) F, D, V, ρ, µ n 5 parámetros M t t M 3 M t m 3 dimensiones fundamentales (M,, t) Necesitamos n m grupos de Π En este caso, tenemos mucha libertad y empleamos un truco

40 Un pequeño truco Queremos determinar la fuerza (F) en función de, por ejemplo la viscosidad (µ) Como tenemos tanta libertad, elegimos que estos parámetros tengan una potencia de y (para simplicidad) a b c Π ρ V D F µ a verdad: están elegidos para llegar a la solución convencional Π ρ d V e D f F µ

41 as soluciones Π f e d D V ρ Π µ c b a D V ρ Π F ( ) f e d t M 3 t M t M ( ) c b a t M 3 t M t M : 3 : : e t f e d - d M : a + M 3 : c b a : b t b c a e f d ρvd µ Π D V F ρ Π

42 Verificación Comprobar: cada grupo P tiene dimensión nula [ ] ρ µ Π VD [ ] ρ Π D V F 4 t Ft F 4 t Ft Ft VD f D V F ρ µ ρ

43 Qué ventaja tiene? Sin la teoría de Π: determinamos F con (D) (V) (ρ) (µ) 8 experimentos F f ( D,V, ρ, µ ) g( F, D, V, ρ, µ ) G F ρvd, ρv D µ El coeficiente de arrastre CD F ρv D C D f f Re µ ρvd f Re El número de Reynolds experimentos

44 C D frente a Re Régimen de Stokes Re < C D K Re

45 Soluciones con matemática más elegante c b a D V ρ Π F f e d D V ρ Π µ ( ) f e d t M 3 t M t M ( ) c b a t M 3 t M t M : 3 : : e t f e d - d M : a + M 3 : c b a : b t f e d f e d e e d c b a c b a c b a

46 a ey de Cramer: Determinantes a 3a a + b + c + b b + c + c D -3 - D a D b D c a D a / D - b D b / D - c D c / D -

Análisis Dimensional y. Sistemas de Unidades. Adriana Benitez Física I

Análisis Dimensional y. Sistemas de Unidades. Adriana Benitez Física I Análisis Dimensional y Sistemas de Unidades Adriana Benitez Física I FISICA Ciencia experimental Las cualidades medibles de los cuerpos se denominan CANTIDADES FÍSICAS volumen, peso, longitud, temperatura

Más detalles

ECUACIONES DIMENSIONALES

ECUACIONES DIMENSIONALES ECUACIONES DIMENSIONALES 1. En la expresión x = k v n / a, x = distancia, v = velocidad, a = aceleración y k es una constante adimensional. Cuánto vale n para que la expresión sea dimensionalmente homogénea?

Más detalles

Para llamarlo ley, un enunciado de encontrar validez experimental en una amplia variedad de fenómenos observados.

Para llamarlo ley, un enunciado de encontrar validez experimental en una amplia variedad de fenómenos observados. Julio C iravantti C FISICA GENERA I CONCEPOS BÁSICOS MODEO el objeto de un modelo es ofrecernos un cuadro visual o mental, algo que podemos aceptar, cuando no podemos ver, cuando no podemos ver que está

Más detalles

Laboratori de Mecànica de Fluids i Motors Tèrmics. E.U.P.M. Departament de Màquines i Motors Tèrmics. U.P.C. Prof: J.J. de Felipe

Laboratori de Mecànica de Fluids i Motors Tèrmics. E.U.P.M. Departament de Màquines i Motors Tèrmics. U.P.C. Prof: J.J. de Felipe 1 TEMA 4. - ANÁLISIS DIMENSIONAL Y SEMEJANZA. 1. - Introducción. En los temas anteriores hemos analizado el comportamiento de fluidos en el ámbito de estática, en donde cualquier tipo de problema, se puede

Más detalles

Problema. Cuestiones. Laboratorio. Física 2º Bach. Campo gravitatorio 15/12/06 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: [4 PUNTOS]

Problema. Cuestiones. Laboratorio. Física 2º Bach. Campo gravitatorio 15/12/06 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: [4 PUNTOS] Física º Bach. Campo gravitatorio 15/1/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Problema Nombre: [4 PUNTOS] Calcula: a) Cuántos días terrestres dura un año de Venus. b) La rapidez con la que chocaría Venus

Más detalles

Fuerza de roce. Multiplicación de vectores. Impulso Momentum Torque Trabajo Potencia

Fuerza de roce. Multiplicación de vectores. Impulso Momentum Torque Trabajo Potencia Multiplicación de vectores Fuerza de roce Impulso Momentum Torque Trabajo Potencia Disipación de energía y roce. Coeficientes de roce estático y dinámico. Magnitud y dirección de la fuerza de roce en cada

Más detalles

MOVIMIENTO OSCILATORIO O VIBRATORIO

MOVIMIENTO OSCILATORIO O VIBRATORIO MOVIMIENTO OSCILATORIO O VIBRATORIO 1. Movimiento armónico simple (MAS). 2. Ecuaciones del MAS. 3. Dinámica del MAS. 4. Energía del MAS. 5. El oscilador armónico. 6. El péndulo simple. Física 2º bachillerato

Más detalles

PÉNDULO SIMPLE 2 (2) ( ) y el péndulo realizará oscilaciones armónicas simples (MAS) de período

PÉNDULO SIMPLE 2 (2) ( ) y el péndulo realizará oscilaciones armónicas simples (MAS) de período PÉNDULO SIMPLE 1.- OBJETIVOS 1) Estudio experimental de la ecuación de movimiento del péndulo simple. ) Cálculo de la aceleración de la gravedad terrestre..- FUNDAMENTO TEÓRICO Una masa m cuelga verticalmente

Más detalles

Formulario PSU Parte común y optativa de Física

Formulario PSU Parte común y optativa de Física Formulario PSU Parte común y optativa de Física I) Ondas: Sonido y Luz Frecuencia ( f ) f = oscilaciones Vector/, Unidad de medida f 1/s = 1 Hz Periodo ( T ) T = oscilaciones f = 1 T T Segundo ( s ) Longitud

Más detalles

a) La distancia que ha recorrido el electrón cuando su velocidad se ha reducido a 0' m/s

a) La distancia que ha recorrido el electrón cuando su velocidad se ha reducido a 0' m/s 1- Un electrón es lanzado con una velocidad de 2.10 6 m/s paralelamente a las líneas de un campo eléctrico uniforme de 5000 V/m. Determinar: a) La distancia que ha recorrido el electrón cuando su velocidad

Más detalles

CAPITULO 6. Análisis Dimensional y Semejanza Dinámica

CAPITULO 6. Análisis Dimensional y Semejanza Dinámica CAPITULO 6. Análisis Dimensional y Semejanza Dinámica Debido a que son pocos los flujos reales que pueden ser resueltos con exactitud sólo mediante métodos analíticos, el desarrollo de la mecánica de fluidos

Más detalles

Índice. Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento. Ejemplos. Leyes de la Dinámica en SRNI.

Índice. Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento. Ejemplos. Leyes de la Dinámica en SRNI. Índice Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento Ejemplos Leyes de la Dinámica en SRNI Ejemplos Teorema de la Cantidad de Movimiento. Conservación. Teorema del Momento

Más detalles

DINÁMICA. Física 1º bachillerato Dinámica 1

DINÁMICA. Física 1º bachillerato Dinámica 1 DINÁMICA 1. Fuerzas. 2. Principios de la dinámica. 3. Momento lineal (o cantidad de movimiento). 4. Impulso mecánico. 5. Interacción gravitatoria. 6. Fuerza centrípeta. 7. Fuerza elástica. 8. Fuerza de

Más detalles

CURSO 2015/2016 FÍSICA

CURSO 2015/2016 FÍSICA INFORMACIÓN SOBRE LA PRUEBA DE ACCESO PARA MAYORES DE 25 AÑOS CURSO 2015/2016 FÍSICA 1. TEMARIO: CONTENIDOS Y BIBLOGRAFÍA RECOMENDADA. 1. Magnitudes escalares y vectoriales. Algebra vectorial. Sistemas

Más detalles

Análisis Dimensional y Modelos a Escala

Análisis Dimensional y Modelos a Escala Análisis Dimensional y Modelos a Escala Santiago López 1. Análisis Dimensional Es interesante saber que las unidades de una cantidad física pueden ser explotadas para estudiar su relación con otras cantidades

Más detalles

Toda cantidad física tiene unidades características. El reconocimiento de tales unidades y de sus combinaciones se conoce como análisis dimensional.

Toda cantidad física tiene unidades características. El reconocimiento de tales unidades y de sus combinaciones se conoce como análisis dimensional. Análisis dimensional Toda cantidad física tiene unidades características. El reconocimiento de tales unidades y de sus combinaciones se conoce como análisis dimensional. Se consideran siete cantidades

Más detalles

Leyes de Newton o Principios de la dinámica

Leyes de Newton o Principios de la dinámica Leyes de Newton o Principios de la dinámica La dinámica se rige por tres principios fundamentales; enunciados por Isaac Newton en 1687 en su obra Philosophiae naturalis principia mathematica ; conocidos

Más detalles

Tema 9: Introducción a la Dinámica

Tema 9: Introducción a la Dinámica Tema 9: Introducción a la Dinámica 1º Ingenieros Aeronáuticos Escuela Técnica Superior de Ingenieros Universidad de Sevilla 1 Situación en la asignatura Primer Parcial Introducción Mecánica Cinemática

Más detalles

DINÁMICA. Son toda acción capaz de modificar el estado de movimiento del cuerpo (efecto dinámico) o producir deformaciones (efecto elástico).

DINÁMICA. Son toda acción capaz de modificar el estado de movimiento del cuerpo (efecto dinámico) o producir deformaciones (efecto elástico). DINÁMICA La Dinámica es la parte de la Física que estudia las fuerzas. 1. FUERZAS Qué son? Son toda acción capaz de modificar el estado de movimiento del cuerpo (efecto dinámico) o producir deformaciones

Más detalles

LABORATORIO DE FENÓMENOS COLECTIVOS

LABORATORIO DE FENÓMENOS COLECTIVOS LABORATORIO DE FENÓMENOS COLECTIVOS LA VISCOSIDAD DE LOS LÍQUIDOS CRUZ DE SAN PEDRO JULIO CÉSAR RESUMEN La finalidad de esta práctica es la determinación de la viscosidad de diferentes sustancias (agua,

Más detalles

Mediante este programa se persigue desarrollar las siguientes habilidades:

Mediante este programa se persigue desarrollar las siguientes habilidades: PROPÓSITO: El programa de esta asignatura está dirigido a los estudiantes del primer semestre de la Facultad de Ingeniería, con la finalidad de ofrecerles una capacitación teórica práctica en los principios

Más detalles

TEMA CONTENIDO OBJETIVO BIBLIOGRAFÍA HORAS TEORÍA Y TALLER(*)

TEMA CONTENIDO OBJETIVO BIBLIOGRAFÍA HORAS TEORÍA Y TALLER(*) FÍSICA I CON LAB. Datos de identificación 6885 Unidad Didáctica: Teoría, Taller y Laboratorio Horas clase: Tres, dos y dos, horas, semana, mes Tipo de materia: Obligatoria Eje de formación: Básica Materia

Más detalles

Introducción. Principios de Mecánica. Licenciatura de Física. Curso

Introducción. Principios de Mecánica. Licenciatura de Física. Curso Introducción. Principios de Mecánica. Licenciatura de Física. Curso 2007-2008. 1 Indice. 1. Los orígenes de la Física: Las leyes del movimiento. 2. Las leyes de Newton. 3. Medidas; unidades. 4. El método

Más detalles

4º E.S.O. FÍSICA Y QUÍMICA 1. MAGNITUDES Y UNIDADES. Dpto. de Física y Química. R. Artacho

4º E.S.O. FÍSICA Y QUÍMICA 1. MAGNITUDES Y UNIDADES. Dpto. de Física y Química. R. Artacho 4º E.S.O. FÍSICA Y QUÍMICA 1. MAGNITUDES Y UNIDADES R. Artacho Dpto. de Física y Química 1. MAGNITUDES Y UNIDADES Índice CONTENIDOS 1. La investigación científica. 2. Las magnitudes. 3. La medida y su

Más detalles

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA I (688) HERMOSILLO, SONORA, SEPTIEMBRE DEL 2004 Clave de la Materia: 688 Carácter: Obligatoria, Eje de formación

Más detalles

Universidad Nacional de Córdoba Facultad de Ciencias Exactas, Físicas y Naturales Escuela de Biología Departamento de Física

Universidad Nacional de Córdoba Facultad de Ciencias Exactas, Físicas y Naturales Escuela de Biología Departamento de Física Universidad Nacional de Córdoba Facultad de Ciencias Exactas, Físicas y Naturales Escuela de Biología Departamento de Física Carrera: Ciencias Biológicas Plan: 1990 Código de la Carrera: 261 Código de

Más detalles

Dinámica de la partícula

Dinámica de la partícula Dinámica de la partícula DINÁMICA Definición de partícula libre: Es aquella que no está sujeta a interacción alguna. Es una aproximación a la realidad * Si están lo suficientemente alejadas * Si las interacciones

Más detalles

Laboratorio de Física para Ingeniería

Laboratorio de Física para Ingeniería Laboratorio de para Ingeniería 1. Al medir la longitud de un cilindro se obtuvieron las siguientes medidas: x [cm] 8,45 8,10 8,40 8,55 8,45 8,30 Al expresar la medida en la forma x = x + x resulta: (a)

Más detalles

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía Física y Química 1º Bachillerato LOMCE Bloque 3: Trabajo y Energía Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre un cuerpo que experimenta un desplazamiento,

Más detalles

Universidad Rey Juan Carlos. Prueba de acceso para mayores de 25 años. Física obligatoria. Año 2010. Opción A. Ejercicio 1. a) Defina el vector velocidad y el vector aceleración de un movimiento y escribe

Más detalles

Protocolo de Experiencias de Oscilaciones y Ondas

Protocolo de Experiencias de Oscilaciones y Ondas Aula Espacio Tocar la Ciencia J Güémez Aula de la Ciencia Universidad de Cantabria Junio 22, 2011 Protocolo de Experiencias de Oscilaciones y Ondas 1 Equilibrios: estable, inestable, indiferente Con la

Más detalles

Medición del módulo de elasticidad de una barra de acero

Medición del módulo de elasticidad de una barra de acero Medición del módulo de elasticidad de una barra de acero Horacio Patera y Camilo Pérez hpatera@fra.utn.edu.ar Escuela de Educación Técnica Nº 3 Florencio Varela, Buenos Aires, Argentina En este trabajo

Más detalles

TEMA 7 Y 8 : LAS FUERZAS

TEMA 7 Y 8 : LAS FUERZAS TEMA 7 Y 8 : LAS FUERZAS (Corresponde a contenidos de los temas 7 y 8 del libro) 1.- LAS FUERZAS Y SUS EQUILIBRIOS Definimos fuerza como toda acción capaz de modificar el estado de reposo o de movimiento

Más detalles

1. Análisis Cuantitativo. Unidades Físicas (SI) Tiempo: Masa: Constantes Fundamentales. Longitud

1. Análisis Cuantitativo. Unidades Físicas (SI) Tiempo: Masa: Constantes Fundamentales. Longitud 1. Análisis Cuantitativo Unidades Físicas (SI) Unidades, estimaciones numéricas, análisis dimensional Matemáticas básicas: Funciones, trigonometría Aproximaciones Funciones de una variable y derivadas

Más detalles

Práctica Módulo de torsión

Práctica Módulo de torsión Práctica Módulo de torsión Objetivo eterminar el módulo de torsión de varillas de distintos materiales por los métodos estático y dinámico. Material Aparato de torsión representado en la figura, varillas

Más detalles

PRÁCTICA 3 ESTUDIO DEL PÉNDULO SIMPLE

PRÁCTICA 3 ESTUDIO DEL PÉNDULO SIMPLE INGENIERÍA QUÍMICA 1 er curso FUNDAMENTOS FÍSICOS DE LA INGENIERÍA PRÁCTICA 3 ESTUDIO DEL PÉNDULO SIMPLE Departamento de Física Aplicada Escuela Politécnica Superior de la Rábida. 1 III. Péndulo simple

Más detalles

PROGRAMA DE FÍSICA I TEORÍA

PROGRAMA DE FÍSICA I TEORÍA Pág. 1/5 UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TÁCHIRA VICE RECTORADO ACADÉMICO DECANATO DE DOCENCIA DEPARTAMENTO DE MATEMÁTICA Y FÍSICA PROGRAMA DE FÍSICA I TEORÍA Código: 0846203T Teoría: 4 horas/semana

Más detalles

K m = 20,0[N m 1 ] =6,32 rad/s 0,500[kg] 0,050 = 0,050 sen (ω 0+ φ 0 ) φ 0 = arc sen 1 = π / 2. x = 0,050 sen (6,32 t + 1,57) [m]

K m = 20,0[N m 1 ] =6,32 rad/s 0,500[kg] 0,050 = 0,050 sen (ω 0+ φ 0 ) φ 0 = arc sen 1 = π / 2. x = 0,050 sen (6,32 t + 1,57) [m] Física º Bach. Examen de Setiembre de 005 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [1½ PUNTOS / UNO] X 1. El cuerpo de la figura tiene masa m = 500 g, está apoyado sobre una superficie horizontal

Más detalles

PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA

PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA Departamento de Física Aplicada Universidad de Castilla-La Mancha Escuela Técnica Superior Ing. Agrónomos PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA Materiales * Varilla delgada con orificios practicados

Más detalles

Fuerzas y sus efectos

Fuerzas y sus efectos Física y Química Qué son las fuerzas? Oxford University Press España, S. A. Física y Química 3º ESO 2 Fuerza es toda causa capaz de producir una deformación en un cuerpo o de modificar su estado de reposo

Más detalles

FÍSICA º de Secundaria CAPÍTULO Nº 2 Análisis Dimensional

FÍSICA º de Secundaria CAPÍTULO Nº 2 Análisis Dimensional FÍSICA º de Secundaria CAPÍTULO Nº 2 Análisis Dimensional MOTIVACIÓN Física : Análisis Dimensional APRENDIZAJE ESPERADO 1 2 Reconoce las Cantidades fundamentales por medio de sus unidades de medida en

Más detalles

Importancia de la elasticidad del hilo en el péndulo simple

Importancia de la elasticidad del hilo en el péndulo simple Importancia de la elasticidad del hilo en el péndulo simple Experiencia de aboratorio, Física Experimental I, 8 Garcia, Daiana arregain, Pedro Machado, Alejandro dana_e7@hotmailcom pedrolarregain@yahoocom

Más detalles

Tema 4: Dinámica del punto I

Tema 4: Dinámica del punto I Tema 4: Dinámica del punto I FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Introducción Leyes de Newton Fuerzas activas y de reacción

Más detalles

Índice. Introducción Capítulo 1: Magnitudes físicas, unidades y análisis dimensional.

Índice. Introducción Capítulo 1: Magnitudes físicas, unidades y análisis dimensional. Índice Introducción Capítulo 1: físicas, unidades y análisis dimensional. Introducción Capítulo 1:. Índice Leyes Físicas y cantidades físicas. Sistemas de unidades Análisis dimensional. La medida física.

Más detalles

Elementos de Física de los Medios Continuos

Elementos de Física de los Medios Continuos Elementos de Física de los Medios Continuos Martín Rivas e-mail:martin.rivas@ehu.es http://tp.lc.ehu.es/martin.htm Departamento de Física Teórica e Historia de la Ciencia UPV/EHU Leioa, Mayo 2014 En la

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

Bases Físicas del Medio Ambiente. Oscilaciones

Bases Físicas del Medio Ambiente. Oscilaciones Bases Físicas del Medio Ambiente Oscilaciones Programa V. OSCILACIONES. (3h) Introducción. Movimiento armónico simple. Energía del oscilador armónico. Aplicaciones del movimiento armónico. Péndulos. Movimiento

Más detalles

Fuerzas de Rozamiento

Fuerzas de Rozamiento Fuerzas de Rozamiento Universidad Nacional General San Martín. Escuela de Ciencia y Tecnología. Baldi, Romina romibaldi@hotmail.com Viale, Tatiana tatianaviale@hotmail.com Objetivos Estudio de las fuerzas

Más detalles

1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES.

1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES. 1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES. a) CONCEPTO DE FUERZA La fuerza es una magnitud asociada a las interacciones entre los sistemas materiales (cuerpos). Para que se

Más detalles

Péndulo físico. m.g. Figura 1: Péndulo físico. cm = centro de masa del sistema; d cm = distancia del punto de suspensión al centro de masa.

Péndulo físico. m.g. Figura 1: Péndulo físico. cm = centro de masa del sistema; d cm = distancia del punto de suspensión al centro de masa. Péndulo físico x Consideraciones generales En la Figura 1 está representado un péndulo físico, que consiste de un cuerpo de masa m suspendido de un punto de suspensión que dista una distancia d de su centro

Más detalles

LAS FUERZAS y sus efectos

LAS FUERZAS y sus efectos LAS FUERZAS y sus efectos Definición de conceptos La Dinámica es una parte de la Física que estudia las acciones que se ejercen sobre los cuerpos y la manera en que estas acciones influyen sobre el movimiento

Más detalles

INDICE Capítulo 1. Mediciones Capítulo 2. Movimiento Unidimensional Capítulo 3. Vectores Capítulo 4. Movimiento Bidimensional y Tridimensional

INDICE Capítulo 1. Mediciones Capítulo 2. Movimiento Unidimensional Capítulo 3. Vectores Capítulo 4. Movimiento Bidimensional y Tridimensional INDICE Capítulo 1. Mediciones 1 1.1. Las cantidades físicas, patrones y unidades 1 1.2. El sistema internacional de unidades 2 1.3. Patrón de tiempo 3 1.4. Patrón de masa 7 1.6. Precisión y cifras significativas

Más detalles

Principios de Mecánica

Principios de Mecánica Principios de Mecánica Salamanca, 2006-2007 Índice 1. Unidades y dimensiones 1 1. Unidades................................. 1 1..1 Sistema Internacional...................... 1 2. Ecuación de dimensiones........................

Más detalles

Tema 1 INTRODUCCIÓN. Cap. 1/1

Tema 1 INTRODUCCIÓN. Cap. 1/1 Tema 1 INTRODUCCIÓN 1.1 Relación de la Física con la Biología 1.2 Patrones de medida y sistemas de unidades 1.3 Análisis dimensional 1.4 Leyes de escala: tamaño, forma y vida Modelo de semejanza geométrica

Más detalles

Movimiento armónico simple.

Movimiento armónico simple. 1 Movimiento armónico simple. 1.1. Concepto de movimiento armónico simple: Su ecuación. Supongamos un muelle que cuelga verticalmente, y de cuyo extremo libre pende una masa m. Si tiramos de la masa y

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

FISICA 2º BACHILLERATO

FISICA 2º BACHILLERATO A) Definiciones Se llama movimiento periódico a aquel en que la posición, la velocidad y la aceleración del móvil se repiten a intervalos regulares de tiempo. Se llama movimiento oscilatorio o vibratorio

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

INTRODUCCIÓN. Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA

INTRODUCCIÓN. Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA INTRODUCCIÓN Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA 1. DEFINICIÓN DE FLUIDO (1) 1. DEFINICIÓN DE FLUIDO (2)

Más detalles

1.1. Análisis Dimensional

1.1. Análisis Dimensional ,.. Análisis Dimensional... Introducción El análisis dimensional es un proceso mediante el cual se examinan las dimensiones de los fenómenos físicos y de las ecuaciones asociadas, para tener una nueva

Más detalles

NÚCLEO DE BOLÍVAR CÓDIGO: Horas Teóricas Horas para Evaluaciones Horas Perdidas Horas Efectivas

NÚCLEO DE BOLÍVAR CÓDIGO: Horas Teóricas Horas para Evaluaciones Horas Perdidas Horas Efectivas UNIVERSIDAD DE ORIENTE ASIGNATURA: Física I NÚCLEO DE BOLÍVAR CÓDIGO: 005-1814 UNIDAD DE ESTUDIOS BÁSICOS PREREQUISITO: Ninguno ÁREA DE FÍSICA HORAS SEMANALES: 6 horas OBJETIVOS GENERALES: Al finalizar

Más detalles

REAL SOCIEDAD ESPAÑOLA DE FÍSICA REAL SOCIEDAD ESPAÑOLA DE FÍSICA. XX Olimpiada FASE LOCAL DE LA RIOJA. 27 de febrero de 2009.

REAL SOCIEDAD ESPAÑOLA DE FÍSICA REAL SOCIEDAD ESPAÑOLA DE FÍSICA. XX Olimpiada FASE LOCAL DE LA RIOJA. 27 de febrero de 2009. XX Olimpiada ESPAÑOLA DE FÍSICA FASE LOCAL DE LA RIOJA 7 de febrero de 009 ª Parte P y P Esta prueba consiste en la resolución de dos problemas. Razona siempre tus planteamientos No olvides poner tus apellidos,

Más detalles

ANÁLISIS DIMENSIONAL Y SEMEJANZAS

ANÁLISIS DIMENSIONAL Y SEMEJANZAS ANÁLISIS DIMENSIONAL Y SEMEJANZAS ANÁLISIS DIMENSIONAL Y SEMEJANZAS Los análisis adimensionles se enfocan de gran manera en conocer los fenómenos del flujo en la forma manual como por ejemplo un gato hidráulico

Más detalles

DINÁMICA DE FLUIDOS 1. Propiedades de los Fluidos. 2. Cinemática de fluidos.

DINÁMICA DE FLUIDOS 1. Propiedades de los Fluidos. 2. Cinemática de fluidos. DINÁMICA DE FLUIDOS 1. Propiedades de los Fluidos. Concepto de fluido. Fluido ideal. Fluidos reales. Viscosidad Tensión superficial. Capilaridad Estática. Presión en un punto. Ecuación general de la estática.

Más detalles

I. Objetivos. II. Introducción.

I. Objetivos. II. Introducción. Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Física Laboratorio de Mecánica II Práctica #: Dinámica rotacional: Cálculo del Momento de Inercia I. Objetivos. Medir el momento

Más detalles

Efectos del Viento y Sismos en Equipos Verticales. Entendiendo las Cargas de Viento y Sismo en Equipos Verticales. Presentado por: Intergraph

Efectos del Viento y Sismos en Equipos Verticales. Entendiendo las Cargas de Viento y Sismo en Equipos Verticales. Presentado por: Intergraph Efectos del Viento y Sismos en Equipos Verticales Entendiendo las Cargas de Viento y Sismo en Equipos Verticales Presentado por: Intergraph Considerando una Torre Típica Efectos del Viento y Sismos en

Más detalles

MAGNITUDES. INTRODUCCIÓN AL ANÁLISIS DIMENSIONAL

MAGNITUDES. INTRODUCCIÓN AL ANÁLISIS DIMENSIONAL MGNITUDES. INTRODUCCIÓN L NÁLISIS DIMENSIONL IES La Magdalena. vilés. sturias Magnitud es todo aquello que puede ser medido. Por eemplo una longitud, la temperatura, la intensidad de corriente, la fuerza

Más detalles

MECANICA DE LOS FLUIDOS

MECANICA DE LOS FLUIDOS MECANICA DE LOS FLUIDOS 6 ANALISIS DIMENSIONAL Y SEMEJANZA HIDRAULICA Ing. Alejandro Mayori 6 ANALISIS DIMENSIONAL Y SEMEJANZA HIDRAULICA 6.1 Introducción - Teoría matemática y resultados experimentales

Más detalles

2 Fuerzas cotidianas. Unidad 4. Fuerzas en la naturaleza. ESO Física y Química 3 Actividades de los epígrafes. Página 114

2 Fuerzas cotidianas. Unidad 4. Fuerzas en la naturaleza. ESO Física y Química 3 Actividades de los epígrafes. Página 114 Actividades de los epígrafes Fuerzas cotidianas ágina 114 13. Identifica las fuerzas que actúan sobre cada cuerpo de la imagen. En la siguiente imagen se representan las fuerzas que actúan sobre cada cuerpo:

Más detalles

ESTUDIO DEL PÉNDULO SIMPLE Página 1

ESTUDIO DEL PÉNDULO SIMPLE Página 1 ESTUDIO DE PÉNDUO SIMPE Página 1 1. OBJETIVOS a. Estudiar la dependencia entre el período de oscilación y * la masa del péndulo. * la amplitud del movimiento. * la longitud del péndulo b. Medir el valor

Más detalles

UNIVERSIDAD DE CHILE AVDA. BLANCO ENCALADA 2008 FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS Casilla FI10A INTRODUCCIÓN A LA FÍSICA

UNIVERSIDAD DE CHILE AVDA. BLANCO ENCALADA 2008 FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS Casilla FI10A INTRODUCCIÓN A LA FÍSICA UNIVERSIDAD DE CHILE AVDA. BLANCO ENCALADA 2008 FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS Casilla 487-3. DEPARTAMENTO DE FÍSICA SANTIAGO - CHILE SECRETARÍA DOCENTE FAX(56-2) 696 73 59 e-mail: sgaray@dfi.uchile.cl

Más detalles

Tema 1. Mecánica de sólidos y fluidos. John Stanley

Tema 1. Mecánica de sólidos y fluidos. John Stanley Tema 1 Mecánica de sólidos y fluidos John Stanley Tema 1: Mecánica de sólidos y fluidos 1. Sólidos, líquidos y gases: densidad 2. Elasticidad en sólidos: tensión y deformación Elasticidad en fluidos: presión

Más detalles

Tema 5: Dinámica del punto II

Tema 5: Dinámica del punto II Tema 5: Dinámica del punto II FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Leyes de Newton Dinámica del punto material Trabajo mecánico

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID OPCIÓN A

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID OPCIÓN A UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Curso 2002-2003 MATERIA: MECÁNICA Junio Septiembre R1 R2 INSTRUCCIONES GENERALES Y VALORACIÓN Se presentan

Más detalles

1. Introducción: Movimiento Circular Uniforme

1. Introducción: Movimiento Circular Uniforme FI1A2 - SISTEMAS NEWTONIANOS GUIA TEORICA Departamento de Física Unidad 5A: Oscilaciones Facultad de Ciencias Físicas y Matemáticas Profs: H. Arellano, D. Mardones, N. Mujica Universidad de Chile Semestre

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS Asignatura: FÍSICA II

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS Asignatura: FÍSICA II UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS Asignatura: FÍSICA II LABORATORIO DE FÍSICA CICLO: AÑO: Laboratorio: 01 Laboratorio 01: OSCILACIONES MECÁNICAS EN UN SISTEMA MASA-RESORTE I. OBJETIVOS

Más detalles

EXAMEN FINAL DE FÍSICA

EXAMEN FINAL DE FÍSICA EXAMEN FINAL DE FÍSICA 1 er parcial Lic. En Química 7 - febrero 00 CUESTIONES PROBLEMAS 1 3 4 5 Suma 1 Suma Total APELLIDOS.NOMBRE.GRUPO. Cuestiones (1 punto cada una) 1. Qué energía hay que proporcionar

Más detalles

Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial

Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial PRIMERA LEY DE NEWTON. Todo cuerpo continuará en su estado de reposo o de velocidad constante en línea recta, a menos que una

Más detalles

SOLO PARA INFORMACION

SOLO PARA INFORMACION INTRODUCCIÓN Al igual que la deformación lineal, la torsión también es una caso de elasticidad, que en el siguiente laboratorio se estudiara unos de los casos de elasticidad, la Torsión. Se mostrara y

Más detalles

INDICE Capitulo 1. Introducción: La Física y la Medición Capitulo 2. Vectores Capitulo 3. Movimiento de una Dimensión

INDICE Capitulo 1. Introducción: La Física y la Medición Capitulo 2. Vectores Capitulo 3. Movimiento de una Dimensión INDICE Capitulo 1. Introducción: La Física y la Medición 1 1.1. Estándares de longitud, masa tiempo 2 1.2. Densidad y masa atómica 5 1.3. Análisis dimensional 6 1.4. Conversión de unidades 8 1.5. Cálculos

Más detalles

Descenso del paracaidista en una atmósfera uniforme

Descenso del paracaidista en una atmósfera uniforme Descenso del paracaidista en una atmósfera uniforme Cuando un paracaidista se lanza desde el avión suponemos que su caída es libre, el peso es la única fuerza que actúa sobre él, la aceleración es constante,

Más detalles

EXAMEN TIPO TEST NÚMERO 1. MODELO 1 RESOLUCIÓN. El ángulo tiene que ser adimensional de modo que: Respuesta correcta: c)

EXAMEN TIPO TEST NÚMERO 1. MODELO 1 RESOLUCIÓN. El ángulo tiene que ser adimensional de modo que: Respuesta correcta: c) EXAMEN TIPO TEST NÚMERO 1. MODELO 1 RESOLUCIÓN 1.-Si en la expresión xcos(cρt) "x" es espacio, "t" es tiempo y ρ densidad, la constante C tiene dimensiones de: a) ML -3 T b) L c) M -1 L 3 T -1 d) L -1

Más detalles

PROGRAMA DE ASIGNATURA. ASIGNATURA: Elementos de Física AÑO: 2015 CARÁCTER: Obligatoria CARRERA/s: Profesorado en Matemática

PROGRAMA DE ASIGNATURA. ASIGNATURA: Elementos de Física AÑO: 2015 CARÁCTER: Obligatoria CARRERA/s: Profesorado en Matemática PROGRAMA DE ASIGNATURA ASIGNATURA: Elementos de Física AÑO: 2015 CARÁCTER: Obligatoria CARRERA/s: Profesorado en Matemática RÉGIMEN: cuatrimestral CARGA HORARIA: 120 hs. UBICACIÓN en la CARRERA: Primer

Más detalles

CÁLCULAS LA ACELERACIÓN DE LA GRAVEDAD. Nombre del alumno: Profesor: Fecha: 2. Espacio sugerido: Laboratorio de usos múltiples o Espacio abierto

CÁLCULAS LA ACELERACIÓN DE LA GRAVEDAD. Nombre del alumno: Profesor: Fecha: 2. Espacio sugerido: Laboratorio de usos múltiples o Espacio abierto CÁLCULAS LA ACELERACIÓN DE LA GRAVEDAD Nombre del alumno: Profesor: Fecha:. Espacio sugerido: Laboratorio de usos múltiples o Espacio abierto 3. Desempeños y habilidades. Al término de la práctica el alumnado:

Más detalles

Tema 1 Fundamentos de la mecánica clásica newtoniana

Tema 1 Fundamentos de la mecánica clásica newtoniana Tema 1 Fundamentos de la mecánica clásica newtoniana Objetivo El alumno conocerá y comprenderá los aspectos básicos de la mecánica clásica newtoniana, así como las partes en que se divide, las leyes que

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID INSTRUCCIONES GENERALES Y VALORACIÓN

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) MATERIA: FÍSICA La prueba consta de dos partes: Curso 2006-2007 INSTRUCCIONES GENERALES Y VALORACIÓN

Más detalles

Análisis Dimensional y Semejanza

Análisis Dimensional y Semejanza 87 Capítulo 8 Análisis Dimensional y Semejanza Dado que el número de problemas que se puede resolver en forma puramente analítica es pequeño, la gran mayoría requiere algún grado de resultados empíricos

Más detalles

Carrera Asignatura Prelación Horas U.C. Ubicación Educación Mención Cs. Físico- Naturales. 4 Teóricas 4 Prácticas. Cálculo Diferencial e Integral

Carrera Asignatura Prelación Horas U.C. Ubicación Educación Mención Cs. Físico- Naturales. 4 Teóricas 4 Prácticas. Cálculo Diferencial e Integral UNIVERSIDAD DE LOS ANDES FACULTAD DE HUMANIDADES Y EDUCACIÓN ESCUELA DE EDUCACIÓN DEPARTAMENTO DE PEDAGOGÍA Y DIDÁCTICA MENCIÓN CIENCIAS FÍSICO-NATURALES MASA, MOVIMIENTO Y ENERGÍA PROGRAMA DE LA ASIGNATURA

Más detalles

UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE TECNOLOGÍAS ESCUELA DE TECNOLOGÍA MECÁNICA FUNDAMENTACIÓN CIENTÍFICA

UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE TECNOLOGÍAS ESCUELA DE TECNOLOGÍA MECÁNICA FUNDAMENTACIÓN CIENTÍFICA UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE TECNOLOGÍAS ESCUELA DE TECNOLOGÍA MECÁNICA ASIGNATURA: CÓDIGO: ÁREA: REQUISITO: FÍSICA I CB234 FUNDAMENTACIÓN CIENTÍFICA Matemática I CB15 con nota 2.0 HORAS

Más detalles

Ondas Mecánicas. Introducción a la Física Ambiental. Tema 6. Tema 6.- Ondas Mecánicas.

Ondas Mecánicas. Introducción a la Física Ambiental. Tema 6. Tema 6.- Ondas Mecánicas. Ondas Mecánicas. Introducción a la Física Ambiental. Tema 6. IFA6. Prof. M. RAMOS Tema 6.- Ondas Mecánicas. Ondas periódicas: Definiciones. Descripción matemática. Ondas armónicas. Ecuación de ondas. Velocidad

Más detalles

Dinámica de Rotaciones

Dinámica de Rotaciones Pontificia Universidad Católica de Chile Instituto de Física FIZ02 Laboratorio de Mecánica Clásica Dinámica de Rotaciones Objetivo Estudiar la dinámica de objetos en movimiento rotacional. Introducción

Más detalles

UD 10. Leyes de la dinámica

UD 10. Leyes de la dinámica UD 10. Leyes de la dinámica 1- Concepto de fuerza. 2- Primer principio de la dinámica. 3- Segundo principio de la dinámica. 4- Tercer principio de la dinámica. 5- Momento lineal. 6- Fuerzas: Peso, Normal,

Más detalles

LAS FUERZAS: ESTÁTICA Y DINÁMICA

LAS FUERZAS: ESTÁTICA Y DINÁMICA LAS FUERZAS: ESTÁTICA Y DINÁMICA DEFINICIONES BÁSICAS FUERZA: es toda causa capaz de provocar una deformación o un cambio en el estado de movimiento de un cuerpo. En el SI se mide en newton (N) aunque

Más detalles

R, esto es, que aumenta su valor al aumentar la velocidad, resulta que un movimiento acelerado termina por convertirse en otro uniforme, cuando (1)

R, esto es, que aumenta su valor al aumentar la velocidad, resulta que un movimiento acelerado termina por convertirse en otro uniforme, cuando (1) VISCOSIDAD DE A ICERINA Fundamento Cuando un sólido se desplaza verticalmente y en sentido descendente en el seno de un fluido sobre él actúan las siguientes fuerzas: El peso del sólido (P) en dirección

Más detalles

Estudio del comportamiento de un muelle ideal

Estudio del comportamiento de un muelle ideal Estudio del comportamiento de un muelle ideal Experiment lesson Created by: Marisa Amieva Rodríguez Introduction Activities Evaluation Conclusion Introduction La ley que explica el comportamiento elástico

Más detalles

Técnicas Experimentales en Hidráulica. análisis dimensional y semejanza

Técnicas Experimentales en Hidráulica. análisis dimensional y semejanza Técnicas Experimentales en Hidráulica análisis dimensional y semejanza INTRODUCCIÓN Modelo es una representación a escala de la realidad (prototipo) INTRODUCCIÓN Utilidad Diseño: optimización Operación

Más detalles

Magnitud: cualidad que se puede medir. Ej. Longitud y temperatura de una varilla

Magnitud: cualidad que se puede medir. Ej. Longitud y temperatura de una varilla Curso nivelación I Presentación Magnitudes y Medidas El método científico que se aplica en la Física requiere la observación de un fenómeno natural y después la experimentación es decir, reproducir ese

Más detalles

RED ANUAL DE CONTENIDOS 2015

RED ANUAL DE CONTENIDOS 2015 RED ANUAL DE 2015 PRIMER AÑO MEDIO Vectores y Cinemática - Definición - Representación gráfica y analítica - Operatoria vectorial gráfica y analítica Movimiento ondulatorio - Oscilación y vibración - Elementos

Más detalles

UNIDAD 6 F U E R Z A Y M O V I M I E N T O

UNIDAD 6 F U E R Z A Y M O V I M I E N T O UNIDAD 6 F U E R Z A Y M O V I M I E N T O 1. EL MOVIMIENTO DE LOS CUERPOS Un cuerpo está en movimiento si su posición cambia a medida que pasa el tiempo. No basta con decir que un cuerpo se mueve, sino

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE. LEY DE HOOKE

MOVIMIENTO ARMÓNICO SIMPLE. LEY DE HOOKE eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles