Transmisión de Movimiento de Rotación Uniforme.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Transmisión de Movimiento de Rotación Uniforme."

Transcripción

1 Transmisión de Movimiento de Rotación Uniforme. José María Rico Martínez Departamento de Ingeniería Mecánica. División de Ingenierás, Campus Irapuato-Salamanca Universidad de Guanajuato 1 Introducción y Motivación. Existen dos métodos fundamentales para la transmisión de movimiento de rotación uniforme. El primero es mediante rodadura pura y el segundo es mediante deslizamiento. Cada uno de esos métodos tiene sus ventajas y características particulares. Las presentes notas tienen como objeto discutir las características de cada uno de esos métodos. Principios Fundamentales. Considere dos cuerpos rígidos 1 y que rotan alrededor de ejes fijos perpendiculares al plano del papel, que intersectan el plano del papel en los puntos M = O 10 y N = O 0 respectivamente, vea la Figura 1, el eslabón fijo se denota por 0. Suponga además que los cuerpos están permanentemente en contacto y que, en el instante considerado, el contacto ocurre en el punto P. De manera mas específica, existen dos puntos coincidentes, P 1 que pertenece al cuerpo 1 y P que pertenece al cuerpo. En ese punto P los límites geométricos de los dos cuerpos determinan una línea tangente común, que pasa por el punto P y determinada por el vector unitario ˆt y una línea normal común, que también pasa por el punto P y que está determinada por el vector unitario ˆn. Obviamente, la tangente común y la normal común son perpendiculares. El objetivo del dispositivo es transmitir movimiento de rotación de un cuerpo al otro; en principio no es necesario que la transmisión del movimiento de rotación sea uniforme. Sin embargo, en la parte final del análisis, nuestro interés se centrará en las condiciones necesarias para que la transmisión del movimiento de rotación sea uniforme. Figure 1: Dos Cuerpos Rígidos en Contacto Transmitiendo Movimiento de Rotación. La transmisión del movimiento de rotación puede realizarse de dos diferentes maneras. 1

2 1. Mediante rodadura; es decir, sin deslizamiento o velocidad relativa entre los puntos de contacto.. Mediante deslizamiento; es decir con velocidad relativa entre los puntos de contacto. Para determinar de manera más formal cuales son las condiciones bajo las cuales se transmite movimiento de rotación mediante rodadura o mediante deslizamiento, es necesario realizar un sencillo análisis. Las velocidades de los puntos P 1 y P están dadas por v P1 = r P1/M y v P = r P/N (1) donde and son las velocidades angulares, absolutas, de los cuerpos 1 y respectivamente. Puesto que los puntos P 1 y P están en contacto y los cuerpos 1 y son rigídos y permanecen en contacto, las componentes de las velocidades v P1 y v P a lo largo de la normal común ˆn deben ser iguales tanto en magnitud como en sentido; 1 es decir v n P1 = v P1 ˆn = v P ˆn = v n P. () Los vectores velocidad se pueden descomponer en sus componentes normales y tangenciales v P1 = v n P1ˆn+v t P1ˆt y v P = v n Pˆn+v t Pˆt (3), la velocidad relativa entre los puntos está dada por v P1/P = v P1 v P = (v n P1ˆn+v t P1ˆt) (v n Pˆn+v t Pˆt) = ( v t P1 v t P)ˆt (4) De esa manera, se ha probado el siguiente resultado. Proposición 1. Considere dos cuerpos rígidos 1 y que rotan alrededor de ejes fijos perpendiculares ocurre en el par de puntos coincidentes P 1 y P. Entonces, la velocidad relativa entre los puntos P 1 y P tiene la dirección de la tangente común. Con la proposición 1, es posible determinar un sencillo resultado que proporciona las condiciones bajo las cuales la transmisión de movimiento de rotación se lleva a cabo mediante rodadura pura o mediante deslizamiento. Proposición. Considere dos cuerpos rígidos 1 y que rotan alrededor de ejes fijos perpendiculares ocurre en el par de puntos coincidentes P 1 y P. Entonces, la transmisión de movimiento de rotación se realiza mediante rodadura pura cuando v t P1 = v t P. (5) En caso contrario; es decir cuando v t P1 v t P, por lo tanto v P1 v P (6) la transmisión de movimiento de rotación se realiza mediante deslizamiento. Prueba: Si la transmisión de movimiento de rotación se realiza mediante rodadura pura, entonces por definición v P1 = v P (7) Entonces, sustituyendo la ecuación (7) en la ecuación (4), se tiene que ( v t P1 vp t )ˆt = 0 por lo tanto vp1 t vp t = 0 1 Si la componente v P1 > v P un instante después los cuerpos ya no estarán en contacto y el par de leva ha desaparecido, contradiciendo la definición de un par cinemático. Si la componente v P1 < v P el eslabón deformaría al eslabón 1, contradiciendo las condiciones de rigidez de los eslabones.

3 o En caso contrario, es decir si Entonces, es evidente que v t P1 = v t P v t P1 v t P. v P1 v P y la transmisión de movimiento de rotación se realiza mediante deslizamiento. 3 Transmisión de Movimiento de Rotación Mediante Rodadura. En esta sección se analizan las carcaterísticas de la transmisión de movimiento de rotación mediante rodadura. En la seción anterior se indicó que por definición la transmisión del movimiento de rotación es mediante rodadura cuando v P1 = v P (8) La condición dada por la ecuación (8) es equivalente a requerir que el punto P es el centro instantaneo de velocidad del movimiento relativo del eslabón 1 respecto del eslabón. Sin embargo, el teorema de Aronhold-Kennedy asegura que los tres centros instantaneos de velocidad, asociados a los eslabones 0, 1 y, O 10, O 0, O 1 están localizados en una línea recta. De esa manera, se obtiene el siguiente resultado, vea la Figura. Figure : Dos Cuerpos Rígidos en Contacto Transmitiendo Movimiento de Rotación Mediante Rodadura. Proposición 3. Considere dos cuerpos rígidos 1 y que rotan alrededor de ejes fijos perpendiculares ocurre en el punto coincidente P. Entonces, si la transmisión del movimiento de rotación se lleva a cabo mediante rodadura, entonces el punto P es el centro instantaneo O 1 y una condición necesaria para que la transmisión del movimiento de rotación sea mediante rodadura es que el punto P = O 1 esté localizado a lo largo de la línea M N = O 10 O 0. Finalmente se realizará un análisis más detallado de la transmisión de movimiento de rotación uniforme mediante rodadura. 3.1 Transmisión de Movimiento de Rotación Uniforme Mediante Rodadura. En esta sección se encontrarán condiciones para transmitir movimiento de rotación uniforme mediante rodadura. La suposición fundamental es que la distancia entre centros M N = O 10 O 0 es constante. 3

4 Igualando la velocidad del centro instantáneo de velocidad O 1 como parte de los eslabones 1 y, se tiene que, definiendo el vector unitario î horizontal y a la derecha, se tiene que denotando O 10 O 1 = r 1 O 0 O 1 = r O 10 O 0 = C = r 1 +r r O1/O 10 = ˆk r1 î = v O1 = v O1 = ˆk ( r )î = r O1/O 0 r 1 ĵ = r ĵ o r 1 = r El signo negativo en la ecuación unicamente indica que los sentidos de las velocidades angulares son opuestos. La relación de velocidad está dado por = r 1 r Si se supone que se conoce la relación de velocidad / y la distancia entre centros es constante, se tiene que y O 10 O 0 = C = r 1 +r r 1 = r C = ω [ r +r = r 1 ω ] r 1 = C 1 ω r = C 1 ω [ ω ] = C ω ω 1 1 Puesto que hemos supuesto que la relación de velocidad, ω, y la distancia entre centros, C, entonces, r 1 y r son constantes. La conclusión de estos resultados, es que si se desea transmitir movimiento de rotación uniforme mediante rodadura, los cuerpos en contacto deben ser cílindros, de manera que su sección transversal sea círculos, como se muestra en la figura 3 Figure 3: Dos Cilindros Rígidos en Contacto Transmitiendo Movimiento de Rotación Uniforme Mediante Rodadura, Sentidos Opuestos. 4

5 Figure 4: Dos Cilindros Rígidos en Contacto Transmitiendo Movimiento de Rotación Uniforme Mediante Rodadura, Mismos Sentidos. Es importante hacer notar que es posible transmitir movimiento de rotación uniforme mediante rodadura donde las velocidades angulares tienen el mismo sentido. Considere la situación mostrada en la figura 4 Nuevamente, igualando la velocidad del centro instantáneo de velocidad O 1 como parte de los eslabones 1 y, se tiene que, definiendo el vector unitario î horizontal y a la derecha, se tiene que denotando O 10 O 1 = r 1 O 0 O 1 = r O 10 O 0 = C = r r 1 r O1/O 10 = ˆk r1 î = v O1 = v O1 = ˆk r î = r O1/O 0 r 1 ĵ = r ĵ o r 1 = r El signo positivo en la ecuación unicamente indica que los sentidos de las velocidades angulares son iguales. La relación de velocidad está dado por = r 1 r Si se supone que se conoce la relación de velocidad / y la distancia entre centros es constante, se tiene que y O 10 O 0 = C = r r 1 r 1 = r C = r ω [ r = r 1 ω ] r 1 = C 1 ω r = C 1 ω [ ω ] = C ω 1 ω Puesto que hemos supuesto que la relación de velocidad, ω, y la distancia entre centros, C, entonces, r 1 y r son constantes. La conclusión de estos resultados, es que si se desea transmitir movimiento de rotación uniforme mediante rodadura con los mismos sentidos, los cuerpos en contacto también deben ser cílindros, de manera que su sección transversal sea círculos, como se muestra en la figura 4 5

6 4 Transmisión de Movimiento de Rotación Mediante Deslizamiento. En esta sección se analizan las características de la transmisión de movimiento de rotación mediante deslizamiento. En la seción 1 se indicó que por definición la transmisión del movimiento de rotación es mediante deslizamiento cuando v P1 v P (9) Mas aún, la ecuación 4 indica que la velocidad relativa del punto P con respecto al punto P 1 tiene la dirección de la tangente común, por lo tanto el centro instantaneo de velocidad O 1 debe estar en una línea que pasa por el punto P y perpendicular a la dirección de la velocidad relativa v P/P1 ; es decir a lo largo de la normal común. Por otro lado, el teorema de Aronhold-Kennedy asegura que los tres centros instantaneos de velocidad, asociados a los eslabones 0, 1 y, O 10, O 0, O 1 están localizados en una línea recta., el centro instantaneo O 1 está localizado en la intersección de la normal común y la línea M N = O 10 O 0, también conocida como la línea de centros, vea la Figura 3. Figure 5: Dos Cuerpos Rígidos en Contacto Transmitiendo Movimiento de Rotación Mediante Deslizamiento. La relación de las velocidades angulares ω puede calcularse fácilmente. Por definición v 1 O 1 = v O 1 (10) r O1/O 10 = v 1 O 1 = v O 1 = r O1/O 0 (11) En términos del vector unitario û mostrado en la figura 3, se tiene que r O1/O 10 = MSû y r O1/O 0 = NSû o ˆk MSû = ωˆk NSû (1) MSˆk û = NS ˆk û De aquí que MS = NS o = MS (13) NS En general, la transmisión de movimiento de traslación mediante deslizamiento no es uniforme; es decir, la relación de las velocidades angulares ω no es constante. Sin embargo puesto que MS = MN +NS 6

7 se prueba el siguiente resultado. Proposición 4. Considere dos cuerpos rígidos 1 y que rotan alrededor de ejes fijos perpendiculares ocurre en el par de puntos coincidentes P 1 y P. Entonces, la transmisión de movimiento de rotación mediante deslizamiento es uniforme; es decir la relación ω es constante si y sólo si la localización del centro instantaneo de velocidad O 1, a lo largo de la línea de centros, permanece fija. Esta proposición se conoce como la ley fundamental del engranaje. Prueba. Suponga que la relación de velocidad debe ser uniforme; es decir = Cte. La distancia entre centros MN también es constante., se tiene que Sustituyendo se tiene que de manera que De manera que, finalmente = MS NS MS = MN +NS MN +NS = NS [ ] ω NS = MN +NS o NS 1 = MN NS = [ MN ] (14) 1 Este resultado implica que la localización del punto S, la intersección de la línea de centros con la normal común debe permanecer fija. Es importante señalar que esta proposición no requiere que el ángulo, φ, entre la línea de centros y la normal común sea constante. Lo único que requiere es que la intersección de ambas líneas sea siempre la misma. Sin embargo, si los cuerpos transmiten fuerza considerable, cambios en el valor del ángulo φ, aún cuando la magnitud de la fuerza entre ambos cuerpos sea constante, producen variaciones en la magnitud de las componentes de la fuerza que provocan vibraciones indeseables. En esas situaciones es conveniente que el ángulo φ sea constante, en la teoría de los engranes, este ángulo se denomina el ángulo de presión del engranaje. Finalmente dos perfiles de diente de engrane que satisfacen la ley fundamental del engranaje se denominan perfiles conjugados. Existe una gran variedad de perfiles conjugados entre los más importantes son los perfiles de involuta y los hipocicloidales. 7

Engranes No Estándar: Distancia Entre Centros Extendida

Engranes No Estándar: Distancia Entre Centros Extendida Engranes No Estándar: Distancia Entre Centros Extendida José María Rico Martínez y Fernando Tomás Pérez Zamudio Departamento de Ingeniería Mecánica. Campus Irapuato-Salamanca Universidad de Guanajuato

Más detalles

El Método de Diferenciación de Vectores en la Cinemática.

El Método de Diferenciación de Vectores en la Cinemática. El Método de Diferenciación de Vectores en la Cinemática. José María Rico Martínez Departamento de Ingeniería Mecánica. Universidad de Guanajuato, F. I. M. E. E. Carretera Salamanca-Valle de Santiago Km.

Más detalles

El Método de Coordenadas de Pares en la Dinámica de Maquinaria.

El Método de Coordenadas de Pares en la Dinámica de Maquinaria. El Método de Coordenadas de Pares en la Dinámica de Maquinaria. José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato

Más detalles

Métodos Gráficos de Análisis Cinemático de Mecanismos: Polígonos de Velocidad y Aceleración y Centros Instantaneos de Velocidad.

Métodos Gráficos de Análisis Cinemático de Mecanismos: Polígonos de Velocidad y Aceleración y Centros Instantaneos de Velocidad. Métodos Gráficos de Análisis Cinemático de Mecanismos: Polígonos de Velocidad y Aceleración y Centros Instantaneos de Velocidad. José María Rico Martínez Departamento de Ingeniería Mecánica. División de

Más detalles

Departamento de Ingeniería Mecánica. División de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato

Departamento de Ingeniería Mecánica. División de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato Ángulo de Transmisión en Mecanismos Planos de Cuatro Barras y de Biela Manivela Corredera: Síntesis de Mecanismos Sujetos a Condiciones del Ángulo de Transmisión. José María Rico Martínez Departamento

Más detalles

Fundamentos de Cinemática.

Fundamentos de Cinemática. Fundamentos de Cinemática. José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato email: jrico@salamanca.ugto.mx Estas

Más detalles

CINEMÁTICA. Cinemática del punto

CINEMÁTICA. Cinemática del punto CINEMÁTICA La Cinemática es la parte de la Mecánica que estudia el movimiento de los cuerpos, prescindiendo de las causas que lo producen El objetivo de la cinemática es averiguar en cualquier instante

Más detalles

Introducción. Cuerpo Rígido. Mecánica Racional 20 TEMA 4: Cinemática de los Cuerpos Rígidos.

Introducción. Cuerpo Rígido. Mecánica Racional 20 TEMA 4: Cinemática de los Cuerpos Rígidos. Introducción. La cinemática de cuerpos rígidos estudia las relaciones existentes entre el tiempo, las posiciones, las velocidades y las aceleraciones de las diferentes partículas que forman un cuerpo rígido.

Más detalles

Cinemática del sólido rígido

Cinemática del sólido rígido Cinemática del sólido rígido Teoría básica para el curso Cinemática del sólido rígido, ejercicios comentados α δ ω B B A A P r B AB A ω α O Ramírez López-Para, Pilar Loizaga Garmendia, Maider López Soto,

Más detalles

Métodos Gráficos de Análisis Cinemático de Mecanismos Planos.

Métodos Gráficos de Análisis Cinemático de Mecanismos Planos. Métodos Gráficos de Análisis Cinemático de Mecanismos Planos. José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Salamanca, Gto. 36885, México

Más detalles

Álgebra Lineal III: Planos y Líneas. Problemas Resueltos.

Álgebra Lineal III: Planos y Líneas. Problemas Resueltos. Álgebra Lineal III: Planos y Líneas. Problemas Resueltos. José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato

Más detalles

INTRODUCCIÓN AL MOVIMIENTO PLANO

INTRODUCCIÓN AL MOVIMIENTO PLANO NTRODUCCÓN AL MOVMENTO PLANO Índice. ntroducción al movimiento plano.. Definición cinemática de movimiento plano..................... Caso de Traslación pura........................... Caso de Rotación

Más detalles

Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca. Universidad de Guanajuato.

Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca. Universidad de Guanajuato. Primer Sumario de Análisis y Síntesis de Mecanismos: Definiciones básicas. Clasificación de eslabones y pares cinemáticos. Cadena, eslabonamiento y mecanismo. Criterios de movilidad: Criterio de Grübler,

Más detalles

5 CINEMATICA DEL CUERPO RIGIDO EN MOVIMIENTO PLANO. Dr A A C. y(o ) x(o ) 5.1 INTRODUCCION

5 CINEMATICA DEL CUERPO RIGIDO EN MOVIMIENTO PLANO. Dr A A C. y(o ) x(o ) 5.1 INTRODUCCION 5 CINEMTIC DEL CUERPO RIGIDO EN MOVIMIENTO PLNO 5.1 INTRODUCCION Cuerpo Rígido Sistema dinámico que no presenta deformaciones entre sus partes ante la acción de fuerzas. Matemáticamente, se define como

Más detalles

CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS Un volante cuyo diámetro es de 3 m está girando a 120 r.p.m. Calcular: a) su frecuencia, b) el periodo, c) la velocidad angular, d) la velocidad

Más detalles

Análisis Dinámico de un Mecanismo de Manivela Biela Corredera.

Análisis Dinámico de un Mecanismo de Manivela Biela Corredera. Análisis Dinámico de un Mecanismo de Manivela Biela Corredera. José María Rico Martínez Departamento de Ingeniería Mecánica. Campus Irapuato-Salamanca, Universidad de Guanajuato. Comunidad de Palo Blanco.

Más detalles

Física: Rotación de un Cuerpo Rígido

Física: Rotación de un Cuerpo Rígido Física: Rotación de un Cuerpo Rígido Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Objetivo En esta sección dejaremos de considerar a los objetos como partículas puntuales. En vez, hablaremos

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

Algebra Lineal -I: Álgebra Vectorial en R3, Aplicaciones

Algebra Lineal -I: Álgebra Vectorial en R3, Aplicaciones Algebra Lineal -I: Álgebra Vectorial en R, Aplicaciones José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato email:

Más detalles

VII. Engranes en general

VII. Engranes en general Objetivos: 1. Definir que es un engrane. 2. Mencionar los tipos de engrane. 3. Ver la nomenclatura de los engranes rectos. 4. Discutir algunos fundamentos teóricos relacionados a los engranes rectos. 5.

Más detalles

ds dt = r dθ dv dt = r dω dt a O

ds dt = r dθ dv dt = r dω dt a O aletos 23.1 23.1 Rodadura sin deslizamiento Un sólido rígido con un eje de simetría axial, como un disco circular, un cilindro o una esfera, rueda sin deslizar sobre una superficie cualquiera, cuando en

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

Movilidad Mediante las Ecuaciones de Clausura de Lazos.

Movilidad Mediante las Ecuaciones de Clausura de Lazos. Movilidad Mediante las Ecuaciones de Clausura de Lazos. José María Rico Martínez Departamento de Ingeniería Mecánica. Universidad de Guanajuato, F. I. M. E. E. Calle Tampico No. 912, Col. Bellavista. CP

Más detalles

Cinemática del sólido rígido

Cinemática del sólido rígido Cinemática del sólido rígido Teoría básica para el curso Cinemática del sólido rígido, ejercicios comentados α δ ω P r ω α O Ramírez López-Para, Pilar Loizaga Garmendia, Maider López Soto, Jaime Teoría

Más detalles

EL MOVIMIENTO CIENCIAS: FÍSICA PLAN GENERAL SISTEMA DE REFERENCIA DESPLAZAMIENTO PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES

EL MOVIMIENTO CIENCIAS: FÍSICA PLAN GENERAL SISTEMA DE REFERENCIA DESPLAZAMIENTO PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES EL MOVIMIENTO El movimiento siempre nos ha interesado. Por ejemplo, en el mundo de hoy consideramos el movimiento cuando describimos la rapidez de un auto nuevo o el poder de aceleración que tiene. La

Más detalles

Relación de Contacto y los Ángulos de Aproximación y Receso.

Relación de Contacto y los Ángulos de Aproximación y Receso. Relación de Contacto y los Ángulos de Aproximación y Receso. José María Rico Martínez Departamento de Ingeniería Mecánica. División de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato Carretera

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil.

DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil. DINMIC DEL PUNTO Leyes de Newton Primera ley o ley de inercia: si sobre un sistema material no actúa fuerza alguna sigue en reposo o movimiento rectilíneo uniforme si inicialmente lo estaba. Segunda ley

Más detalles

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación CONTENIDO Definición de sólido rígido Cálculo de la posición del centro de masas Movimiento de rotación y de traslación Movimiento del sólido rígido en el plano Momento de inercia Teorema de Steiner Tema

Más detalles

Algebra Lineal Xa: Álgebra Vectorial en R3

Algebra Lineal Xa: Álgebra Vectorial en R3 Algebra Lineal Xa: Álgebra Vectorial en R3 José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamanca.ugto.mx

Más detalles

Ramírez López-Para, P; Loizaga Garmendia, M; López Soto, J

Ramírez López-Para, P; Loizaga Garmendia, M; López Soto, J Ejercicio 2, pag.1 lanteamiento El disco de la figura está soldado a la barra acodada y ésta lo está a su vez a la barra B. El conjunto gira con una velocidad angular ω rad/s y una aceleración angular

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago Guía de vectores. Vectores En matemática, un vector es una herramienta geométrica utilizada para representar una magnitud física definida en un sistema de referencia que se caracteriza por tener módulo

Más detalles

CINEMÁTICA: se encarga del estudio de los movimientos de los cuerpos sin atender a las causas que lo originan.

CINEMÁTICA: se encarga del estudio de los movimientos de los cuerpos sin atender a las causas que lo originan. 1. CINEMÁTICA. CONCEPTO. CINEMÁTICA: se encarga del estudio de los movimientos de los cuerpos sin atender a las causas que lo originan. 2. MOVIMIENTO. 2.1. CONCEPTO Es el cambio de lugar o de posición

Más detalles

Cinemática del sólido rígido, ejercicios comentados

Cinemática del sólido rígido, ejercicios comentados Ejercicio 4, pag.1 Planteamiento Se sueldan tres varillas a una rótula para formar la pieza de la Figura 1. El extremo de la varilla OA se mueve sobre el plano inclinado perpendicular al plano xy mientras

Más detalles

Capítulo 10. Rotación de un Cuerpo Rígido

Capítulo 10. Rotación de un Cuerpo Rígido Capítulo 10 Rotación de un Cuerpo Rígido Contenido Velocidad angular y aceleración angular Cinemática rotacional Relaciones angulares y lineales Energía rotacional Cálculo de los momentos de inercia Teorema

Más detalles

Cinemática del sólido rígido

Cinemática del sólido rígido Cinemática del sólido rígido Teoría básica para el curso Cinemática del sólido rígido, ejercicios comentados α δ B B A A P r B AB A α O Ramírez López-Para, Pilar Loizaga Garmendia, Maider López Soto, Jaime

Más detalles

Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales

Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales 3. Cinemática Cinemática Describe el movimiento sin atender a las causas que lo producen Utilizaremos partículas puntuales Una partícula puntual es un objeto con masa, pero con dimensiones infinitesimales

Más detalles

El movimiento Circular

El movimiento Circular El movimiento Circular Definición de movimiento circular: Se define movimiento circular como aquél cuya trayectoria es una circunferencia. Recordar: Una circunferencia es el lugar geométrico de los puntos

Más detalles

1. Características del movimiento

1. Características del movimiento CINEMÁTICA TEMA 1 1. Características del movimiento En el universo todo está en continuo movimiento. Movimiento es el cambio de posición de un cuerpo a lo largo del tiempo respecto a un sistema de referencia

Más detalles

3. Cinemática de la partícula: Sistemas de referencia

3. Cinemática de la partícula: Sistemas de referencia 3. Cinemática de la partícula: Sistemas de referencia 3.1.- Cinemática de la partícula 3.2.- Coordenadas intrínsecas y polares 3.3.- Algunos casos particulares de especial interés 3.1.- Cinemática de la

Más detalles

Movimiento curvilíneo. Magnitudes cinemáticas

Movimiento curvilíneo. Magnitudes cinemáticas Movimiento curvilíneo. Magnitudes cinemáticas Movimiento curvilíneo Supongamos que el movimiento tiene lugar en el plano XY, Situamos un origen, y unos ejes, y representamos la trayectoria del móvil, es

Más detalles

Rectas y Planos en el Espacio

Rectas y Planos en el Espacio Rectas y Planos en el Espacio Rectas y Planos en el Espacio Verónica Briceño V. octubre 2013 En esta Presentación... En esta Presentación veremos: Rectas En esta Presentación... En esta Presentación veremos:

Más detalles

1RA PRÁCTICA CALIFICADA (CINEMÁTICA DE UNA PARTÍCULA Y CUERPO RÍGIDO)

1RA PRÁCTICA CALIFICADA (CINEMÁTICA DE UNA PARTÍCULA Y CUERPO RÍGIDO) 1RA PRÁCTICA CALIFICADA (CINEMÁTICA DE UNA PARTÍCULA Y CUERPO RÍGIDO) DINÁMICA (IC 244) ALUMNOS : CARITAS BARRIENTOS, Ronald ROBLES ROCHA, Hamilton TORRES PÉREZ, Walter A. TORO VELARDE, William DOCENTE

Más detalles

Rectas y Planos en el Espacio

Rectas y Planos en el Espacio Rectas y Planos en el Espacio Rectas y Planos en el Espacio Verónica Briceño V. septiembre 2012 Verónica Briceño V. () Rectas y Planos en el Espacio septiembre 2012 1 / 20 En esta Presentación... En esta

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Estudio del movimiento armónico simple. Desde el punto de vista dinámico, es el movimiento de una partícula que se mueve sobre una recta, sometida a la acción de una fuerza atractiva

Más detalles

Operadores diferenciales

Operadores diferenciales Apéndice A Operadores diferenciales A.1. Los conceptos de gradiente, divergencia y rotor Sobre el concepto de gradiente. Si f r) es una función escalar, entonces su gradiente, en coordenadas cartesianas

Más detalles

ENERGÍA Y CANTIDAD DE MOVIMIENTO

ENERGÍA Y CANTIDAD DE MOVIMIENTO Cátedra: MECANICA APLICADA MECANICA Y MECANISMOS 10:47 CUERPOS RIGIDOS ENERGÍA Y CANTIDAD DE MOVIMIENTO 2016 Hoja 1 OBJETIVOS Estudiar el método del Trabajo y la Energía Aplicar y analizar el movimiento

Más detalles

Repaso de Vectores. Autor: Dra. Estela González

Repaso de Vectores. Autor: Dra. Estela González Autor: Dra. Estela González Algunas cantidades físicas como tiempo, temperatura, masa, densidad y carga eléctrica se pueden describir plenamente con un número y una unidad, pero otras cantidades (también

Más detalles

CORRIENTE ALTERNA. Onda senoidal:

CORRIENTE ALTERNA. Onda senoidal: CORRIENTE ALTERNA Onda senoidal: En corriente alterna, la tensión varía continuamente en el tiempo, tomando valores positivos y negativos. La forma más común de corriente alterna es la senoidal. Se debe

Más detalles

El sólido rígido. Física I Grado en Ingeniería de Organización Industrial Primer Curso. Dpto.Física Aplicada III Universidad de Sevilla

El sólido rígido. Física I Grado en Ingeniería de Organización Industrial Primer Curso. Dpto.Física Aplicada III Universidad de Sevilla El sólido rígido Física I Grado en Ingeniería de Organización Industrial Primer Curso Ana Mª Marco Ramírez Curso 2011/2012 Dpto.Física Aplicada III Universidad de Sevilla Índice Campo de velocidades de

Más detalles

MECANISMOS Y ELEMENTOS DE MAQUINAS MECANISMOS Y SISTEMAS DE AERONAVES APUNTE DE CLASE CINEMATICA DE MECANISMOS

MECANISMOS Y ELEMENTOS DE MAQUINAS MECANISMOS Y SISTEMAS DE AERONAVES APUNTE DE CLASE CINEMATICA DE MECANISMOS MECNISMOS Y ELEMENTOS DE MQUINS MECNISMOS Y SISTEMS DE ERONVES PUNTE DE CLSE CINEMTIC DE MECNISMOS Mecanismos Introducción: En todo diseño de ingeniería mecánica es imprescindible conocer la cinemática

Más detalles

Vectores. b) Hallar la magnitud de cada uno de los vectores P Q, QRy P R. c) Encontrar el vector fijo equivalente a QP.

Vectores. b) Hallar la magnitud de cada uno de los vectores P Q, QRy P R. c) Encontrar el vector fijo equivalente a QP. Wilson Herrera 1 Vectores 1. Dados los puntos P (1, 2), Q( 2, 2) y R(1, 6): a) Representarlos en el plano XOY. b) Hallar la magnitud de cada uno de los vectores P Q, QRy P R. c) Encontrar el vector fijo

Más detalles

es el lugar geométrico de los puntos p tales que p 0 p n o p 0 p o. p x ; y ; z perteneciente a y un vector no

es el lugar geométrico de los puntos p tales que p 0 p n o p 0 p o. p x ; y ; z perteneciente a y un vector no El Plano y la Recta en el Espacio Matemática 4º Año Cód. 145-15 P r o f. M a r í a d e l L u j á n M a r t í n e z P r o f. J u a n C a r l o s B u e P r o f. M i r t a R o s i t o P r o f. V e r ó n i

Más detalles

Prof. Jorge Rojo Carrascosa CINEMÁTICA

Prof. Jorge Rojo Carrascosa CINEMÁTICA CINEMÁTICA La cinemática estudia el movimiento de los cuerpos sin tener en cuenta las causas que los producen. Por tanto, tan sólo se ocupa de los aspectos externos como son el desplazamiento, el espacio

Más detalles

MECÁNICA II CURSO 2004/05

MECÁNICA II CURSO 2004/05 1.1.- Movimientos de un sólido rígido. (rotación alrededor de ejes fijos) 1.1.1 El conjunto representado se compone de dos varillas y una placa rectangular BCDE soldadas entre sí. El conjunto gira alrededor

Más detalles

Área: EDUCACION TECNOLOGICA Asignatura: TECNOLOGIA II. Título TRANSMISIONES MECANICAS. Curso 2 AÑO Año: Pag.1/15

Área: EDUCACION TECNOLOGICA Asignatura: TECNOLOGIA II. Título TRANSMISIONES MECANICAS. Curso 2 AÑO Año: Pag.1/15 Área: EDUCACION TECNOLOGICA Asignatura: TECNOLOGIA II Título TRANSMISIONES MECANICAS Curso 2 AÑO Año: 2006 Pag.1/15 INTRODUCCION Desde tiempos inmemorables el hombre realizó grandes esfuerzos para las

Más detalles

UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL DINAMICA. CARÁCTER: Obligatoria DENSIDAD HORARIA HT HP HS THS/SEM

UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL DINAMICA. CARÁCTER: Obligatoria DENSIDAD HORARIA HT HP HS THS/SEM UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL DINAMICA CARÁCTER: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ingeniería Estructural CODIGO SEMESTRE DENSIDAD HORARIA

Más detalles

Análisis Topológico de Máquinas y Mecanismos. MAQUINAS Y MECANISMOS. Análisis Topológico.

Análisis Topológico de Máquinas y Mecanismos. MAQUINAS Y MECANISMOS. Análisis Topológico. Análisis Topológico de Máquinas y Mecanismos 1 Índice Teoría a de Máquinas M y Mecanismos. Definiciones. Pares cinemáticos ticos. Clasificación n de miembros. Esquemas y modelos de mecanismos. Mecanismos

Más detalles

Departamento de Ingenierías Eléctrica y Electrónica Universidad del Norte

Departamento de Ingenierías Eléctrica y Electrónica Universidad del Norte christianq@uninorte.edu.co Departamento de Ingenierías Eléctrica y Electrónica Universidad del Norte Ejemplo: Considere el sistema de la figura: G(s) tiene un par de polos complejos conjugados en s = 1

Más detalles

V. Engranes en general

V. Engranes en general Objetivos: 1. Definir que es un engrane. 2. Mencionar los tipos de engrane. 3. Ver la nomenclatura de los engranes rectos. 4. Discutir algunos fundamentos teóricos relacionados a los engranes rectos. 5.

Más detalles

Tema 7: Movimiento relativo

Tema 7: Movimiento relativo Tema 7: Movimiento relativo FISICA I, º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingenieros Universidad de Sevilla Física I, GIA, Dpto. Física Aplicada III, ETSI, Universidad de Sevilla,

Más detalles

3.1. Distancia entre dos puntos. Definición 3.1. Sean a, b e, se llama distancia entre los números a y b que se denota por d (a, b), a la cantidad:

3.1. Distancia entre dos puntos. Definición 3.1. Sean a, b e, se llama distancia entre los números a y b que se denota por d (a, b), a la cantidad: III. UNIDAD: GEOMETRIA ANALITICA LANA. La Geometría Analítica permite usar los métodos algebraicos en la solución de problemas geométricos, recíprocamente, los métodos de la geometría analítica pueden

Más detalles

1. Estudiar el comportamiento del péndulo físico. 2. Determinar la aceleración de la gravedad. 1. Exprese y explique el teorema de ejes paralelos.

1. Estudiar el comportamiento del péndulo físico. 2. Determinar la aceleración de la gravedad. 1. Exprese y explique el teorema de ejes paralelos. Laboratorio 1 Péndulo físico 1.1 Objetivos 1. Estudiar el comportamiento del péndulo físico. 2. Determinar la aceleración de la gravedad. 1.2 Preinforme 1. Exprese y explique el teorema de ejes paralelos.

Más detalles

Repaso de Vectores. Autor: Dra. Estela González. flecha. La longitud de la línea indica la magnitud del vector, y su

Repaso de Vectores. Autor: Dra. Estela González. flecha. La longitud de la línea indica la magnitud del vector, y su Autor: Dra. Estela González Algunas cantidades físicas como tiempo, temperatura, masa, densidad y carga eléctrica se pueden describir plenamente con un número y una unidad, pero otras cantidades (también

Más detalles

Algebra Lineal XV: Transformación Lineal Inversa.

Algebra Lineal XV: Transformación Lineal Inversa. Algebra Lineal XV: Transformación Lineal Inversa. José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Universidad de Guanajuato email: jrico@ugto.mx Transformación

Más detalles

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante Resumen de Física Cinemática, Antonio Hernandez D.F.I.S.T.S. La Mecánica se ocupa de las relaciones entre los movimientos de los sistemas materiales y las causas que los producen. Se divide en tres partes:

Más detalles

Instituto Nacional Dpto. De Física Prof.: Aldo Scapini G.

Instituto Nacional Dpto. De Física Prof.: Aldo Scapini G. Nombre: Curso: Movimiento Circunferencial Uniforme. (MCU) Caracteristicas 1) La trayectoria es una circunferencia 2) La partícula recorre distancia iguales en tiempos iguales Consecuencias 1) El vector

Más detalles

Capitulo VI. VI.1 Introducción a los engranajes. Universidad de Cantabria Departamento de Ing. Estructural y Mecánica

Capitulo VI. VI.1 Introducción a los engranajes. Universidad de Cantabria Departamento de Ing. Estructural y Mecánica Capitulo VI VI.1 Introducción a los engranajes 1 Capítulo VI Engranajes VI.1 Introducción n a los engranajes. Introducción. n. Axoides. Clasificación de los engranajes. Ruedas de fricción. Nomenclatura

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL Vectores y escalares. REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL Las magnitudes escalares son aquellas magnitudes físicas que

Más detalles

Momento angular o cinético

Momento angular o cinético Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x

Más detalles

Sistema de coordenadas cartesianas. Ecuación de la recta y de la circunferencia.

Sistema de coordenadas cartesianas. Ecuación de la recta y de la circunferencia. Clase 4 Sistema de coordenadas cartesianas. Ecuación de la recta y de la circunferencia. Clase 4... 1 1. Sistema de Coordenadas Cartesianas... 2 1.a. Punto medio... 3 1.b. Distancia entre dos puntos...

Más detalles

Tema 1: CINEMÁTICA 1.1. MECÁNICA Y CINEMÁTICA

Tema 1: CINEMÁTICA 1.1. MECÁNICA Y CINEMÁTICA 1 Tema 1: CINEMÁTICA 1.1. MECÁNICA Y CINEMÁTICA La parte de la Física que estudia el movimiento se denomina Mecánica, y está constituida por dos disciplinas: - Cinemática: estudia el movimiento sin atender

Más detalles

Mecánica Racional 20 TEMA 2: Cinética de Partículas. Leyes de Newton.

Mecánica Racional 20 TEMA 2: Cinética de Partículas. Leyes de Newton. 1. Introducción. 2. Leyes de Newton: 2.1 Primera Ley de Newton o Ley de Inercia. 2.2 Segunda Ley de Newton o Principio Fundamental de la Dinámica. 2.3 Tercera Ley de Newton o Principio de Acción o Reacción.

Más detalles

1. Cinemática: Elementos del movimiento

1. Cinemática: Elementos del movimiento 1. Cinemática: Elementos del movimiento 1. Una partícula con velocidad cero, puede tener aceleración distinta de cero? Y si su aceleración es cero, puede cambiar el módulo de la velocidad? 2. La ecuación

Más detalles

Mecanismos. Fundamentos para programación y robótica. Módulo 3: Fundamentos de mecánica. Capítulo 3: Mecanismos.

Mecanismos. Fundamentos para programación y robótica. Módulo 3: Fundamentos de mecánica. Capítulo 3: Mecanismos. Módulo 3: Fundamentos de mecánica Capítulo 3:. Objetivos: o Usar mecanismos para resolver problemas. Exposición de máquinas simples y engranajes. Vamos a buscar y analizar mecanismos en cosas cotidianas

Más detalles

7. Práctica. 7.1.Estudio de Levas Introducción

7. Práctica. 7.1.Estudio de Levas Introducción 7. Práctica 7.1.Estudio de Levas 7.1.1. Introducción El principal objetivo de la práctica es observar cual es el funcionamiento de las levas y cual es la función que realizan dentro de los mecanismos en

Más detalles

Algebra Lineal XVI: La matriz de una transformación lineal.

Algebra Lineal XVI: La matriz de una transformación lineal. Algebra Lineal XVI: La matriz de una transformación lineal José María Rico Martínez Departamento de Ingeniería Mecánica Divisi on de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato email:

Más detalles

ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de Circunferencia.

ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de Circunferencia. ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de 2012. Circunferencia. Elementos de la circunferencia. El segmento de recta es una cuerda. El segmento de recta es una cuerda que pasa por el centro, por lo tanto

Más detalles

Cinética. 1. Introducción Cantidad de movimiento Teorema del centro de masas... 2

Cinética. 1. Introducción Cantidad de movimiento Teorema del centro de masas... 2 Índice Cinética 1. Introducción. Cantidad de movimiento.1. Teorema del centro de masas................................ 3. Momento cinético 3 3.1. Teorema de König relativo al momento cinético.....................

Más detalles

Física: Movimiento circular uniforme y velocidad relativa

Física: Movimiento circular uniforme y velocidad relativa Física: Movimiento circular uniforme y velocidad relativa Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Movimiento circular uniforme Propiedades: Este objeto tiene una trayectoria circular. El

Más detalles

Javier Junquera. Movimiento de rotación

Javier Junquera. Movimiento de rotación Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.

Más detalles

FACULTAD DE INGENIERIA. ESTABILIDAD I A Sistemas de fuerzas concentradas. Principios de la estática

FACULTAD DE INGENIERIA. ESTABILIDAD I A Sistemas de fuerzas concentradas. Principios de la estática FACULTAD DE INGENIERIA ESTABILIDAD I A Sistemas de fuerzas concentradas. Principios de la estática 1 Mecánica: Rama de la física que se ocupa del estado de reposo o movimiento de cuerpos sometidos a la

Más detalles

R 1 CN 3 CN 4. B.1.- Construir el cinema de aceleraciones del

R 1 CN 3 CN 4. B.1.- Construir el cinema de aceleraciones del N 1 En el mecanismo de la figura: w 1 = 2 rad/s Longitud de todas las barras = 30 mm, O 1 y O 2 inclinadas a 45º. alcular: 1.- La posición de los centros instantáneos de rotación de los elementos y. 2.-

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 4.- ESTATICA. 3.1.- Centro de gravedad de un cuerpo. Un cuerpo de masa M, se puede considerar compuesto por multitud de partículas

Más detalles

DESCRIPCION DEL MOVIMIENTO CIRCUNFERENCIAL UNIFORME (MCU)

DESCRIPCION DEL MOVIMIENTO CIRCUNFERENCIAL UNIFORME (MCU) DESCRIPCION DEL MOVIMIENTO CIRCUNFERENCIAL UNIFORME (MCU) OBJETIVO Aplicar las nociones físicas fundamentales para explicar y describir el Movimiento Circunferencial Uniforme MOVIMIENTO CIRCUNFERENCIAL

Más detalles

MECANICA II 2007 I. ZABALZA VILLAVA

MECANICA II 2007 I. ZABALZA VILLAVA MECANICA II 007 I. ZABALZA VILLAVA Mecánica II INDICE CAPÍTULO 1 INTRODUCCIÓN... 1 1.1 INTRODUCCIÓN... 1 1. CIENCIA DE LA MECÁNICA... 1 1.3 SÍNTESIS Y ANÁLISIS... 1.4 TERMINOLOGÍA, DEFINICIONES E HIPÓTESIS...

Más detalles

TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL

TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL Capítulo 4 TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL 4.1 Introducción En el tema anterior hemos estudiado los principios fundamentales de la dinámica. La segunda ley de Newton, que relaciona

Más detalles

UNIDAD 1: FUERZA Y MOVIMIENTO MOVIMIENTO CIRCUNFERENCIAL UNIFORME

UNIDAD 1: FUERZA Y MOVIMIENTO MOVIMIENTO CIRCUNFERENCIAL UNIFORME FUNDACION CATALINA DE MARÍA LICEO SAGRADO CORAZÓN- COPIAPÓ 67 AÑOS, 1949 2016 Vivamos la Misericordia, educando con Calidad desde el Amor y la Reparación UNIDAD 1: FUERZA Y MOVIMIENTO MOVIMIENTO CIRCUNFERENCIAL

Más detalles

Interfase dieléctrica

Interfase dieléctrica Interfase dieléctrica manuel fernández guasti 7 de febrero de 2007 1. interfase plana Sean dos medios homogéneos 1 y 2 con permitividad y permeabilidad ε 1 y ε 2 respectivamente. Considere soluciones de

Más detalles

MOMENTO DE INERCIA RUEDA DE MAXWELL

MOMENTO DE INERCIA RUEDA DE MAXWELL MOMENTO DE INERCIA RUEDA DE MAXWELL 1. OBJETIVO Determinar el momento de inercia de una rueda, que gira y se traslada, a partir del estudio de la conservación de la energía mecánica..- FUNDAMENTO TEÓRICO

Más detalles

CINEMÁTICA DEL PUNTO P O' 2.1 Sistemas de referencia

CINEMÁTICA DEL PUNTO P O' 2.1 Sistemas de referencia Capítulo 2 CINEMÁTICA DEL PUNT 2.1 Sistemas de referencia Se dice que un cuerpo en el espacio está enmovimiento relativo respecto a otro cuerpo u objeto cuando su posición relativa a éste varía con el

Más detalles

Cinemática. Marco A. Merma Jara Versión:

Cinemática. Marco A. Merma Jara  Versión: Cinemática Marco A. Merma Jara http://mjfisica.net Versión: 08.2013 Contenido Cinemática Movimiento Unidimensional Movimiento Unidimensional con aceleración constante Movimiento Bidimensional Movimiento

Más detalles

Mediante este programa se persigue desarrollar las siguientes habilidades:

Mediante este programa se persigue desarrollar las siguientes habilidades: PROPÓSITO: El programa de esta asignatura está dirigido a los estudiantes del primer semestre de la Facultad de Ingeniería, con la finalidad de ofrecerles una capacitación teórica práctica en los principios

Más detalles

Estudia las propiedades geométricas de las trayectorias que describen los cuerpos en movimiento mecánico, independientemente de la masa del cuerpo y

Estudia las propiedades geométricas de las trayectorias que describen los cuerpos en movimiento mecánico, independientemente de la masa del cuerpo y CINEMÁTICA CINEMÁTICA (MRU) CONCEPTO DE CINEMÁTICA Estudia las propiedades geométricas de las trayectorias que describen los cuerpos en movimiento mecánico, independientemente de la masa del cuerpo y de

Más detalles

Capítulo I PRINCIPIOS GENERALES Y VECTORES FUERZA 1.1 INTRODUCCIÓN

Capítulo I PRINCIPIOS GENERALES Y VECTORES FUERZA 1.1 INTRODUCCIÓN PRINIPIOS GENERLES Y VETORES FUERZ apítulo I 1.1 INTRODUIÓN La mecánica trata de la respuesta de los cuerpos a la acción de las fuerzas. Las leyes de la mecánica encuentran aplicación en el estudio de

Más detalles

CIRCUNFERENCIA INTRODUCCION

CIRCUNFERENCIA INTRODUCCION CIRCUNFERENCIA INTRODUCCION Definición Sea O punto del plano ( P ) y r un real positivo, entonces se denomina circunferencia de centro O y radio r ( C ( O, r ) ), al conjunto formado por y sólo por los

Más detalles

Unidad 4C: Torque y momento angular Preparada por Rodrigo Soto

Unidad 4C: Torque y momento angular Preparada por Rodrigo Soto FI1A2 - SISTEMAS NEWTONIANOS Semestre 2008-1 Profesores: Hugo Arellano, Diego Mardones y Nicolás Mujica Departamento de Física Facultad de Ciencias Físicas y Matemáticas Universidad de Chile Unidad 4C:

Más detalles

sin 2w r 5014 Mecánica Segunda Parte (90 minutos) - Hoja 1 de 2 Ejercicio 2.1 ( ) =

sin 2w r 5014 Mecánica Segunda Parte (90 minutos) - Hoja 1 de 2 Ejercicio 2.1 ( ) = Publicación de Notas: -7- Fecha de Examen: -7- Mecánica Primer pellido: Matrícula: Segundo pellido: Nombre: NOT: en el enunciado las magnitudes vectoriales se escriben en negrita (V), aunque en la solución

Más detalles

Álgebra Lineal III: Sistemas de ecuaciones lineales: Definición y

Álgebra Lineal III: Sistemas de ecuaciones lineales: Definición y Álgebra Lineal III: Sistemas de ecuaciones lineales: Definición y solución. José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Universidad de

Más detalles

Dinámica de Rotación del Sólido Rígido

Dinámica de Rotación del Sólido Rígido Dinámica de Rotación del Sólido Rígido 1. Movimientos del sólido rígido.. Momento angular de un sólido rígido. Momento de Inercia. a) Cálculo del momento de inercia de un sólido rígido. b) Momentos de

Más detalles