Inteligencia de Negocios. Por José Luis Martí USM

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Inteligencia de Negocios. Por José Luis Martí USM"

Transcripción

1 Inteligencia de Negocios Por José Luis Martí USM

2 Problema Inicial Cuáles fueron los volúmenes de venta, por región y por categoría de producto, en el último año?. Qué tipos de órdenes se debieran favorecer para maximizar las ganancias?. Un 10% de descuento, incrementará el volumen de ventas de forma satisfactoria?.

3 Solución

4 Solución Dashboard

5 Inteligencia de Negocios Alternativa tecnológica para manejar la información requerida por una organización para apoyar la toma de decisiones estratégica. Comprende desde la extracción de los datos de los sistemas existentes hasta la explotación de la información por herramientas de análisis de datos.

6 Inteligencia de Negocios Archivos Planos BDs Operacional Respaldos BD de ERP Fuentes Internas Herramientas de consultas e informes Herramientas EIS y DSS ETL DW Interfaz y Operadores Fuente de Datos 1 Herramientas OLAP texto Fuente de Datos Fuente de Datos 3 HTML Fuentes Externas Herramientas de Minería de Datos Inteligencia de Negocios

7 Primera Parte: Proceso ETL Archivos Planos BDs Operacional Respaldos BD de ERP Fuentes Internas Herramientas de consultas e informes Herramientas EIS y DSS ETL DW Interfaz y Operadores Fuente de Datos 1 Herramientas OLAP texto Fuente de Datos Fuente de Datos 3 HTML Fuentes Externas Herramientas de Minería de Datos

8 Primera Parte: Proceso ETL El encargado del mantenimiento del almacén de datos es el sistema ETL (Extracción Transformación Carga): La construcción del sistema ETL es responsabilidad del equipo de desarrollo del DW. El sistema ETL es construido específicamente para cada DW, aproximadamente, 50% del esfuerzo. En la construcción del ETL se pueden utilizar herramientas del mercado o programas diseñados específicamente.

9 Primera Parte: Proceso ETL Extracción: antes de llevarla a cabo, hay que identificar los cambios, al determinar los datos operacionales (relevantes) que han sufrido una modificación desde el último refresh. C a ra c te rís tic a N iv e l N iv e l T á c tic o N iv e l s E s tra té g ic o O p e ra c io n a l D e c is ió n q u e a p o y a P la n ific a c ió n L a rg o P la z o C o n tro l G e re n c ia l C o n tro l O p e ra c io n a l T ip o d e D e c is ió n N o E s tru c tu ra d a S e m i E s tru c tu ra d a E s tru c tu ra d a M o d e lo m á s u s a d o P re d ic tiv o D e s c rip tiv o N o rm a tiv o C a ra c te rís tic a s d e la In fo rm a c ió n : F u e n te E x a c titu d A m p litu d F re c u e n c ia R a n g o d e T ie m p o U s o M e d io A m b ie n te R a z o n a b le R e s u m id a A S o lic itu d A ñ o s P re d ic c ió n R e g is tro s In te rn o s B u e n a D e ta lla d a P e rió d ic a A ñ o s C o n tro l O p e ra c ió n In te rn a E x a c ta M u y D e ta lla d a T ie m p o R e a l M e s e s A c c ió n D ia ria

10 Primera Parte: Proceso ETL Transformación: Unificar estándares: unidades de medida, unidades de tiempo, moneda,... cm inches DD/MM/YY MM/DD/YY 1,000 GBP FF 9,990 cm DD-Mon-YY USD 600

11 Primera Parte: Proceso ETL Carga (transporte): Consiste en mover los datos desde las fuentes operacionales o el almacenamiento intermedio hasta el DW y cargar los datos en las correspondientes estructuras de datos. La carga puede consumir mucho tiempo. Base de datos operacional T1 T2 T3

12 Segunda Parte: Data Warehouse (Almacén de Datos) Archivos Planos BDs Operacional Respaldos BD de ERP Fuentes Internas Herramientas de consultas e informes Herramientas EIS y DSS ETL DW Interfaz y Operadores Fuente de Datos 1 Herramientas OLAP texto Fuente de Datos Fuente de Datos 3 HTML Fuentes Externas Herramientas de Minería de Datos

13 Segunda Parte: Data Warehouse (Almacén de Datos) Data Warehouse: colección de datos orientada a temas específicos, integrada, no volátil y variante en el tiempo, organizada para apoyar las necesidades de la gestión Data Mart: corresponde a un pequeño data warehouse, específico a un área de negocio o departamento de la empresa.

14 Segunda Parte: Data Warehouse (Almacén de Datos) Su estructura se puede visualizar como un cubo...

15 Tercera Parte: Análisis de Datos Archivos Planos BDs Operacional Respaldos BD de ERP Fuentes Internas Herramientas de consultas e informes Herramientas EIS y DSS ETL DW Interfaz y Operadores Fuente de Datos 1 Herramientas OLAP texto Fuente de Datos Fuente de Datos 3 HTML Fuentes Externas Herramientas de Minería de Datos

16 Tercera Parte: Análisis de Datos Consultas y Reportes Corresponde a un análisis dirigido por el analista, y requiere tanto un conocimiento acabado de los datos como un trabajo excesivo sobre éstos por parte de dicho analista. Este análisis considera la definición de las consultas, el acceso y recuperación de datos, la manipulación de cálculos, y la preparación y entrega de los reportes.

17 Tercera Parte: Análisis de Datos Análisis Multidimensional (OLAP) Análisis asistido por el analista, consiste en un estudio basado en las tablas presentes en un data warehouse. Se definen operaciones especiales para el manejo de los datos de un cubo: Drill-down: obtención de mayor detalle de los datos, bajando por alguna dimensión. Roll-up: operación inversa a la anterior, para tener datos más agregados.

18 Tercera Parte: Análisis de Datos Análisis Multidimensional (OLAP)

19 Tercera Parte: Análisis de Datos Minería de Datos Análisis dirigido por lo datos, permite moverse a través de los almacenes de datos para encontrar las tendencias, patrones y correlaciones que pueden guiar la toma de decisiones estratégicas. OLAP (Agregación) Cuál es la tasa promedio de accidentes entre fumadores y no fumadores? Cuál es la cuenta telefónica promedio de mis clientes v/s la de quienes que han cancelado el servicio? Cuál es el monto de la compra diaria promedio entre tarjetas de crédito robadas y aquéllas usadas por sus dueños? Data Mining (Influencias) Cuáles son los mejores predictores de accidentes? Qué atributos están asociados con los clientes que están cerca de cerrar sus servicios? Qué patrones de compra están asociados con fraudes de crédito?

20 Tercera Parte: Análisis de Datos Minería de Datos: un Breve Ejemplo Ejemplo Práctico con Clementine (SPSS): Ensayo de Medicamentos (http://www.pcc.qub.ac.uk/tec/courses/datamining/ohp/dm-ohp-final_3.html) Un número de pacientes hospitalarios que sufren todos la misma enfermedad se tratan con un abanico de medicamentos. Cinco medicamentos diferentes están disponibles y los pacientes han respondido de manera distinta a los diferentes medicamentos. Problema: qué medicamento es apropiado para un nuevo paciente.

21 Tercera Parte: Análisis de Datos Minería de Datos: un Breve Ejemplo Primer Paso: ACCEDIENDO LOS DATOS Se leen los datos, por ejemplo de un archivo con delimitadores. Se nombran los campos age sex BP Cholesterol Na K drug edad sexo presión sanguínea (High, Normal, Low) colesterol (Normal, High) concentración de sodio en la sangre. concentración de potasio en la sangre. medicamento al cual el paciente respondió satisfactoriamente. Se pueden combinar los datos; por ejemplo añadiendo un nuevo atributo llamado Na/K.

22

23 Tercera Parte: Análisis de Datos Minería de Datos: Técnica de Patrones Secuenciales Se trata de establecer asociaciones del estilo: si compra X en T comprará Y en T+P? Ejemplo:

24 Tercera Parte: Análisis de Datos Minería de Datos: Técnica de Patrones Secuenciales

25 Tercera Parte: Análisis de Datos Minería de Datos: Técnica de Clasificación a) Árboles de Clasificación: estructura similar a un diagrama de flujo, donde cada nodo interno denota una condición sobre un atributo, cada enlace representa una salida de la misma, y cada nodo hoja representa las clases. b) Extracción de Reglas.

26 Tercera Parte: Análisis de Datos Minería de Datos: Técnica de Regresión Lineal Predicción: mediante regresión lineal, los datos son modelados usando una recta. que considera conceptos como variable de respuesta, variable predictora, coeficientes de regresión, método de mínimos cuadrados.

27 Aplicaciones Área: Gobierno y Seguridad Nacional. A principios del mes de julio de 2002, el director del Federal Bureau of Investigation (FBI), John Aschcroft, anunció que el Departamento de Justicia comenzó a introducirse en la vasta cantidad de datos comerciales referentes a los hábitos y preferencias de compra de los consumidores, con el fin de descubrir potenciales terroristas antes de que ejecuten una acción. Algunos expertos aseguran que, con esta información, el FBI unirá todas las bases de datos probablemente mediante el número de la Seguridad Social y permitirá saber si una persona fuma, qué talla y tipo de ropa usa, su registro de arrestos, su salario, las revistas a las que está suscrito, su altura y peso, sus contribuciones a la Iglesia, grupos políticos u organizaciones no gubernamentales, sus enfermedades crónicas (como diabetes o asma), los libros que lee, los productos de supermercado que compra, si tomó clases de vuelo o si tiene cuentas de banco abiertas, entre otros. La inversión inicial ronda los setenta millones de dólares estadounidenses para consolidar los almacenes de datos, desarrollar redes de seguridad para compartir información e implementar nuevo software analítico y de visualización.

28 Aplicaciones Área: Investigación Espacial. Durante seis años, el Second Palomar Observatory Sky Survey (POSS-II) coleccionó tres terabytes de imágenes que contenían aproximadamente dos millones de objetos en el cielo. Tres mil fotografías fueron digitalizadas a una resolución de 16 bits por píxel con x píxeles por imagen. El objetivo era formar un catálogo de todos esos objetos. El sistema Sky Image Cataloguing and Analysis Tool (SKYCAT) se basa en técnicas de agrupación (clustering) y árboles de decisión para poder clasificar los objetos en estrellas, planetas, sistemas, galaxias, etc. con una alta confiabilidad (Fayyad y otros, 1996). Los resultados han ayudado a los astrónomos a descubrir dieciséis nuevos quásars. Estos quásars son difíciles de encontrar y permiten saber más acerca de los orígenes del universo.

29 Aplicaciones Área: Club Deportivo. En el 2003, el AC de Milán comenzó a usar redes neuronales (otra técnica de clasificación) para prevenir lesiones y optimizar el acondicionamiento de cada atleta. Esto ayudará a seleccionar el fichaje de un posible jugador o a alertar al médico del equipo de una posible lesión. El sistema, creado por Computer Associates International, es alimentado por datos de cada jugador, relacionados con su rendimiento, alimentación y respuesta a estímulos externos, que se obtienen y analizan cada quince días. El jugador lleva a cabo determinadas actividades que son monitoreadas por veinticuatro sensores conectados al cuerpo y que transmiten señales de radio que posteriormente son almacenadas en una base de datos. Actualmente el sistema dispone de casos registrados que permiten predecir alguna posible lesión. Con ello, el club intenta ahorrar dinero evitando comprar jugadores que presenten una alta probabilidad de lesión, lo que haría incluso renegociar su contrato. Por otra parte, el sistema pretende encontrar las diferencias entre las lesiones de atletas de ambos sexos, así como saber si una determinada lesión se relaciona con el estilo de juego de un país concreto donde se practica el fútbol.

30 Fuente: Fuente: Análisis del Mercado

31 Fuente: Fuente: Análisis del Mercado

INTELIGENCIA EN REDES DE COMUNICACIONES

INTELIGENCIA EN REDES DE COMUNICACIONES INTELIGENCIA EN REDES DE COMUNICACIONES MINERÍA DE DATOS EN EL DEPORTE PROFESIONAL Jorge Carrasco Troitiño NIA 100029724 Grupo 91-5 Ingeniería Superior de Telecomunicación INTRODUCCIÓN: Las técnicas de

Más detalles

MINERÍA DE DATOS. Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE. Octubre - 2003

MINERÍA DE DATOS. Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE. Octubre - 2003 MINERÍA DE DATOS Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE Octubre - 2003 CONTENIDO Qué es Data Warehousing Data Warehouse Objetivos del Data Warehouse

Más detalles

SISTEMAS DE INFORMACION GERENCIAL LIC.PATRICIA PALACIOS ZULETA

SISTEMAS DE INFORMACION GERENCIAL LIC.PATRICIA PALACIOS ZULETA SISTEMAS DE INFORMACION GERENCIAL LIC.PATRICIA PALACIOS ZULETA Qué es inteligencia de negocios? (BI) Business Intelligence es la habilidad para transformar los datos en información, y la información en

Más detalles

MINERIA DE DATOS Y Descubrimiento del Conocimiento

MINERIA DE DATOS Y Descubrimiento del Conocimiento MINERIA DE DATOS Y Descubrimiento del Conocimiento UNA APLICACIÓN EN DATOS AGROPECUARIOS INTA EEA Corrientes Maximiliano Silva La información Herramienta estratégica para el desarrollo de: Sociedad de

Más detalles

Boletín Impositvo Mayo 2011

Boletín Impositvo Mayo 2011 J u ris d ic ció n N a c io n a l-a F IP - R e s o lu c ió n G e n e ra l N º 3 0 9 4 -Im p u e s to a la s g a n a n c ia s. A n tic ip o s im p u ta b le s a l p e río d o fis c a l 2 0 1 1.M o d ific

Más detalles

Informática II Ing. Industrial. Data Warehouse. Data Mining

Informática II Ing. Industrial. Data Warehouse. Data Mining Data Warehouse Data Mining Definición de un Data Warehouses (DW) Fueron creados para dar apoyo a los niveles medios y altos de una empresa en la toma de decisiones a nivel estratégico en un corto o mediano

Más detalles

Apoyo a la toma de Decisiones. Carlos A. Olarte Bases de Datos II

Apoyo a la toma de Decisiones. Carlos A. Olarte Bases de Datos II Carlos A. Olarte Bases de Datos II Contenido 1 Introducción 2 OLAP 3 Data Ware Housing 4 Data Mining Introducción y Motivación Cómo puede analizarse de forma eficiente volúmenes masivos de datos? La consulta,

Más detalles

Minería de Datos JESÚS ANTONIO GONZÁLEZ BERNAL. Universidad UPP

Minería de Datos JESÚS ANTONIO GONZÁLEZ BERNAL. Universidad UPP Universidad Politécnica de Puebla UPP JESÚS ANTONIO GONZÁLEZ BERNAL 1 2 Evolución de la Tecnología BD 1960 s y antes Creación de las BD en archivos primitivos 1970 s hasta principios de los 1980 s BD Jerárquicas

Más detalles

Por qué DW y DM? Data Warehouse and Data Mining. Información en las empresas. Data Warehouse

Por qué DW y DM? Data Warehouse and Data Mining. Información en las empresas. Data Warehouse Data Warehouse and Data Mining José A. Royo http://www.cps.unizar.es/~jaroyo email: joalroyo@unizar.es Departamento de Informática e Ingeniería de Sistemas Por qué DW y DM? Mayor poder de procesamiento

Más detalles

Inteligencia en Redes de Comunicaciones. Tema 7 Minería de Datos. Julio Villena Román, Raquel M. Crespo García, José Jesús García Rueda

Inteligencia en Redes de Comunicaciones. Tema 7 Minería de Datos. Julio Villena Román, Raquel M. Crespo García, José Jesús García Rueda Inteligencia en Redes de Comunicaciones Tema 7 Minería de Datos Julio Villena Román, Raquel M. Crespo García, José Jesús García Rueda {jvillena, rcrespo, rueda}@it.uc3m.es Índice Definición y conceptos

Más detalles

Aplicaciones prácticas de Minería de Datos con IBM SPSS Modeler

Aplicaciones prácticas de Minería de Datos con IBM SPSS Modeler Álvaro J. Méndez Services Engagement Manager IBM SPSS / Profesor Econometría UAM Jecas, 22 Oct 2010 Aplicaciones prácticas de Minería de Datos con IBM SPSS Modeler Business Analytics software Agenda Minería

Más detalles

Proyecto técnico MINERÍA DE DATOS. Febrero 2014. www.osona-respon.net info@osona-respon.net

Proyecto técnico MINERÍA DE DATOS. Febrero 2014. www.osona-respon.net info@osona-respon.net Proyecto técnico MINERÍA DE DATOS Febrero 2014 www.osona-respon.net info@osona-respon.net 0. Índice 0. ÍNDICE 1. INTRODUCCIÓN... 2 2. LOS DATOS OCULTOS... 3 2.1. Origen de la información... 3 2.2. Data

Más detalles

Capítulo 2 Tecnología data warehouse

Capítulo 2 Tecnología data warehouse Capítulo 2 Tecnología data warehouse El objetivo de éste capítulo es mostrar la tecnología data warehouse (DW) como una herramienta para analizar la información. Este capítulo se encuentra organizado de

Más detalles

2. CLASIFICACIÓN DE LA ACTIVIDAD CURRICULAR, FORMACIÓN PRÁCTICA Y CARGA HORARIA

2. CLASIFICACIÓN DE LA ACTIVIDAD CURRICULAR, FORMACIÓN PRÁCTICA Y CARGA HORARIA CÓDIGO ASIGNATURA 1131-3 DEPARTAMENTO: Ingeniería e Investigaciones Tecnológicas ASIGNATURA: DATA MINING y DATA WAREHOUSE Plan 2009 Ingeniería en Informática Año: 5 (Electiva - Ingeniería de Software)

Más detalles

APOYO PARA LA TOMA DE DECISIONES

APOYO PARA LA TOMA DE DECISIONES APOYO PARA LA TOMA DE DECISIONES Cátedra: Gestión de Datos Profesor: Santiago Pérez Año: 2006 Bibliografía: Introducción a las Bases de Datos. DATE - 1 - 1. INTRODUCCION APOYO PARA LA TOMA DE DECISIONES

Más detalles

Botón menú Objetivo de la Minería de datos.

Botón menú Objetivo de la Minería de datos. Titulo de Tutorial: Minería de Datos N2 Botón menú: Introducción. Las instituciones y empresas privadas coleccionan bastante información (ventas, clientes, cobros, pacientes, tratamientos, estudiantes,

Más detalles

Minería de datos (Introducción a la minería de datos)

Minería de datos (Introducción a la minería de datos) Minería de datos (Introducción a la minería de datos) M. en C. Sergio Luis Pérez Pérez UAM CUAJIMALPA, MÉXICO, D. F. Trimestre 14-I. Sergio Luis Pérez (UAM CUAJIMALPA) Curso de minería de datos 1 / 24

Más detalles

ARQUEOS 3. APROBACIÓN, IMPLANTACIÓN, DIVULGACIÓN Y ACTUALIZACIÓN

ARQUEOS 3. APROBACIÓN, IMPLANTACIÓN, DIVULGACIÓN Y ACTUALIZACIÓN PROCEDIMIENTO EGASA N o 001 REVISIÓN 1 ARQUEOS 1. OBJETIVO La presente normatividad tiene por objetivo establecer el procedimiento que permita la realización de arqueos a los fondos, valores y documentos

Más detalles

Business Intelligence

Business Intelligence 2012 Business Intelligence Agenda Programas Diferencias de OLTP vs OLAP Arquitectura de una solución de BI Tecnologías Microsoft para BI Diferencias entre OLTP v/s OLAP Alineación de Datos OLTP Datos organizados

Más detalles

E-data. Transformando datos en información con Data Warehousing

E-data. Transformando datos en información con Data Warehousing Federico Plancarte Sánchez E-data. Transformando datos en información con Data Warehousing Tema 2 El soporte a la Decisión 2-1 Evolución del soporte a la decisión Diversas categorías del análisis del DS

Más detalles

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 2 -

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 2 - Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos - Sesión 2 - Juan Alfonso Lara Torralbo 1 Índice de contenidos (I) Introducción a Data Mining Actividad. Tipos

Más detalles

Sistemas de Data Warehousing

Sistemas de Data Warehousing Federación Médica del Interior (FEMI) Sociedad Uruguaya de Informática en la Salud (SUIS) Información en Salud Edición 2009 Sistemas de Data Warehousing Dr. Ing. Adriana Marotta (In.Co - F.Ing - UDELAR)

Más detalles

CAPÍTULO 2 DATA WAREHOUSES

CAPÍTULO 2 DATA WAREHOUSES CAPÍTULO 2 DATA WAREHOUSES Un Data Warehouse (DW) es un gran repositorio lógico de datos que permite el acceso y la manipulación flexible de grandes volúmenes de información provenientes tanto de transacciones

Más detalles

Cátedra: BI Business Intelligence. Asignatura BI Business Intelligence Ciclo Lectivo 2012 Vigencia del Ciclo lectivo 2012.

Cátedra: BI Business Intelligence. Asignatura BI Business Intelligence Ciclo Lectivo 2012 Vigencia del Ciclo lectivo 2012. Asignatura BI Business Intelligence Ciclo Lectivo 2012 Vigencia del Ciclo lectivo 2012 programa Plan 2008 Área Complementaria Carga horaria semanal Anual/ cuatrimestral Coordinador de Cátedra Objetivos

Más detalles

Introducción a Sistemas de Información Geográfica (Resumen)

Introducción a Sistemas de Información Geográfica (Resumen) Introducción a Sistemas de Información Geográfica (Resumen) Existen términos que creemos exclusivos de los sistemas GIS, pero que anteriormente han sido acuñados por grandes personajes, como es el caso

Más detalles

Artículos de Minería de Datos de Dataprix Introducción a la minería de datos

Artículos de Minería de Datos de Dataprix Introducción a la minería de datos Published on Dataprix (http://www.dataprix.com) Principal > Artículos de Minería de Datos de Dataprix By Dataprix Created 26/12/2009-17:13 Artículos de Minería de Datos de Dataprix Introducción a la minería

Más detalles

Visión global del KDD

Visión global del KDD Visión global del KDD Series Temporales Máster en Computación Universitat Politècnica de Catalunya Dra. Alicia Troncoso Lora 1 Introducción Desarrollo tecnológico Almacenamiento masivo de información Aprovechamiento

Más detalles

Sistemas de Información para la Gestión. Unidad 3 Aplicaciones de Sistemas

Sistemas de Información para la Gestión. Unidad 3 Aplicaciones de Sistemas para la Gestión Unidad 3 Aplicaciones de Sistemas U.N.Sa. Facultad de Cs.Económicas SIG 2010 UNIDAD 3: APLICACIONES DE SISTEMAS Aplicaciones empresariales: Sistemas empresariales. Sistemas de administración

Más detalles

Aprendizaje Automático y Data Mining. Bloque IV DATA MINING

Aprendizaje Automático y Data Mining. Bloque IV DATA MINING Aprendizaje Automático y Data Mining Bloque IV DATA MINING 1 Índice Definición y aplicaciones. Grupos de técnicas: Visualización. Verificación. Descubrimiento. Eficiencia computacional. Búsqueda de patrones

Más detalles

Diseño de almacén de datos para el análisis eficiente de la información de incidentes informáticos y mantenimientos.

Diseño de almacén de datos para el análisis eficiente de la información de incidentes informáticos y mantenimientos. Diseño de almacén de datos para el análisis eficiente de la información de incidentes informáticos y mantenimientos. Ing. Corso Cynthia, Ing. Luque Claudio, Ing. Ciceri Leonardo, Sr Donnet Matías Grupo

Más detalles

ALMACENES PARA GESTIÓN MASIVOS.... ALMACENES PARA GESTIÓN MASIVOS 1 ALMACENES PARA GESTIÓN MASIVOS 2 EL OBJETIVO ES EL ANÁLISIS PARA EL SOPORTE EN LA TOMA DE DECISIONES. GENERALMENTE, LA INFORMACIÓN QUE

Más detalles

ÍNDICE. Introducción... Capítulo 1. Inteligencia de negocios y sistemas de información. Informes... 1

ÍNDICE. Introducción... Capítulo 1. Inteligencia de negocios y sistemas de información. Informes... 1 Introducción... XI Capítulo 1. Inteligencia de negocios y sistemas de información. Informes... 1 Finalidad de los sistemas de información y origen del Business Intelligence... 1 Herramientas para la toma

Más detalles

Conjunto de informes y gráficos consolidados en un solo objeto que facilita la visualización y análisis de la información. 2

Conjunto de informes y gráficos consolidados en un solo objeto que facilita la visualización y análisis de la información. 2 1. BLOQUE DESCRIPTIVO 1. Título de la Buena Práctica Uso de una base de datos robusta que ayuda en la toma de decisiones (Data Warehouse), como fuente principal del Sistema de apoyo a la gestión (SAG)

Más detalles

LA GESTIÓN DOCUMENTAL DIGITAL, LA NUEVA ERA Como Definir un Proyecto de Gestión Documental Digital con los Elementos de la Archivística?

LA GESTIÓN DOCUMENTAL DIGITAL, LA NUEVA ERA Como Definir un Proyecto de Gestión Documental Digital con los Elementos de la Archivística? LA GESTIÓN DOCUMENTAL DIGITAL, LA NUEVA ERA Como Definir un Proyecto de Gestión Documental Digital con los Elementos de la Archivística? Ing. Carlos J. Landa (carlos.landa@apointmexico.com) INDICE. 1)

Más detalles

CURSO MINERÍA DE DATOS AVANZADO

CURSO MINERÍA DE DATOS AVANZADO CURSO MINERÍA DE DATOS AVANZADO La minería de datos (en inglés, Data Mining) se define como la extracción de información implícita, previamente desconocida y potencialmente útil, a partir de datos. En

Más detalles

www.itconsulting.com.bo B. Las palmas C./ San Miguel#420 Telf. Of.: 591-3-3210356 Cel.76364838 Santa Cruz - Bolivia

www.itconsulting.com.bo B. Las palmas C./ San Miguel#420 Telf. Of.: 591-3-3210356 Cel.76364838 Santa Cruz - Bolivia Señor(a): CLIENTE Presente.- Santa Cruz, 14 Noviembre del 2012 REF.: COTIZACION ESPECIALISTA EN ANALISIS DE DATOS & INTELIGENCIA DE NEGOCIOS EN EXCEL 2007-2010 Distinguido Señores: Consultores en Tecnologías

Más detalles

Minería de datos y aplicaciones

Minería de datos y aplicaciones Minería de datos y aplicaciones Fernando Virseda Benito Universidad Carlos III NIA 100032962 100032962@alumnos.uc3m.es Javier Román Carrillo Universidad Carlos III NIA 100035306 100035306@alumnos.uc3m.es

Más detalles

Minería de Datos. Vallejos, Sofia

Minería de Datos. Vallejos, Sofia Minería de Datos Contenido Introducción: Inteligencia de negocios (Business Intelligence). Componentes Descubrimiento de conocimiento en bases de datos (KDD). Minería de Datos: Perspectiva histórica. Fases

Más detalles

04/11/2008. Las preguntas que nunca pensó que podría responder! Ahora es posible con Business Intelligence y Data Mining

04/11/2008. Las preguntas que nunca pensó que podría responder! Ahora es posible con Business Intelligence y Data Mining 04/11/2008 Las preguntas que nunca pensó que podría responder! Ahora es posible con Business Intelligence y Data Mining Business Intelligence Qué es Business Intelligence? Business Intelligence Qué es

Más detalles

Inteligencia de Negocios Introducción. Por Elizabeth León Guzmán, Ph.D. Profesora Ingeniería de Sistemas Grupo de Investigación MIDAS

Inteligencia de Negocios Introducción. Por Elizabeth León Guzmán, Ph.D. Profesora Ingeniería de Sistemas Grupo de Investigación MIDAS Inteligencia de Negocios Introducción Por Elizabeth León Guzmán, Ph.D. Profesora Ingeniería de Sistemas Grupo de Investigación MIDAS Agenda 1.Introducción 2.Definición 3.ETL 4.Bodega de Datos 5.Data Mart

Más detalles

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 9 -

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 9 - Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos - Sesión 9 - Juan Alfonso Lara Torralbo 1 Índice de contenidos Actividad. Qué es un modelo de Data Mining Qué es

Más detalles

LOS RECURSOS NATURALES EN EL DESARROLLO ECONOMICO

LOS RECURSOS NATURALES EN EL DESARROLLO ECONOMICO LOS RECURSOS NATURALES EN EL DESARROLLO ECONOMICO E d i t o r i a l U n i v e r s i t a r i a, S. A., 1 9 7 0 In s c r i p c i ó n N 3 8. 5 3 5 D e r e c h o s e x c lu s iv o s r e s e r v a d o s p a

Más detalles

Introducción a la Minería de Datos

Introducción a la Minería de Datos Introducción a la Minería de Datos Abdelmalik Moujahid, Iñaki Inza y Pedro Larrañaga Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad del País Vasco Índice 1 Minería de

Más detalles

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS COORDINACIÓN DE EXTENSIÓN

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS COORDINACIÓN DE EXTENSIÓN UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS COORDINACIÓN DE EXTENSIÓN PROPUESTA PARA INTRODUCIR CURSOS DE EXTENSIÓN, DIPLOMADOS, SERVICIOS Y ACTUALIZACIONES TÉCNICAS Y PROFESIONALES Nombre (s)

Más detalles

Carlos Daniel Quattrocchi

Carlos Daniel Quattrocchi PRESENTA Lic. Héctor Iglesias Licenciado en Informática. Profesional independiente, ha desempeñado la actividad en informática desarrollando e implementando sistemas, capacitando y asesorando a numerosas

Más detalles

Minería de Datos. Vallejos, Sofia

Minería de Datos. Vallejos, Sofia Minería de Datos Vallejos, Sofia Contenido Introducción: Inteligencia de negocios (Business Intelligence). Descubrimiento de conocimiento en bases de datos (KDD). Minería de Datos: Perspectiva histórica.

Más detalles

BUSINESS INTELLIGENCE. www.sbi-technology.com

BUSINESS INTELLIGENCE. www.sbi-technology.com BUSINESS INTELLIGENCE www.sbi-technology.com SBI Technology SRL Maipú 1492 Piso 2 S2000CGT - Rosario Rep. Argentina Tel: (54 341) 530 0815 www.sbi-technology.com Copyright - SBI Technology SRL - Todos

Más detalles

LOS CINCO GRADOS DE MADUREZ DE UN PROYECTO BI

LOS CINCO GRADOS DE MADUREZ DE UN PROYECTO BI LOS CINCO GRADOS DE MADUREZ DE UN PROYECTO BI INTRODUCCIÓN Se habla en multitud de ocasiones de Business Intelligence, pero qué es realmente? Estoy implementando en mi organización procesos de Business

Más detalles

Un presente y futuro de RR.HH. basado en datos: Aplicaciones de Data Mining en la Gestión de Personas. Prof. Lic. Juan M. Bodenheimer jb@instare.

Un presente y futuro de RR.HH. basado en datos: Aplicaciones de Data Mining en la Gestión de Personas. Prof. Lic. Juan M. Bodenheimer jb@instare. Un presente y futuro de RR.HH. basado en datos: Aplicaciones de Data Mining en la Gestión de Personas Congreso de RR.HH. De Costa Rica 30/10/2012 Prof. Lic. Juan M. Bodenheimer jb@instare.com Nuestra Agenda

Más detalles

Data mining: torturando a los datos hasta

Data mining: torturando a los datos hasta Data mining: torturando a los datos hasta que confiesen [*] Luis Carlos Molina Félix Coordinador del programa de Data mining (UOC) lmolinaf@uoc.edu Resumen: El título de este artículo es una explicación

Más detalles

PLAN DE TRABAJO DOCENTE 2013

PLAN DE TRABAJO DOCENTE 2013 PLAN DE TRABAJO DOCENTE 2013 1. DATOS DE LA ASIGNATURA Nombre: Procesamiento Analítico de Datos Código: Nivel: Grado Carácter: Optativo Área curricular a la que pertenece: Administración Carrera: Contador

Más detalles

Business Intelligence

Business Intelligence Business Intelligence Curso 2012-2013 Departamento de Lenguajes y Sistemas Informáticos II http://www.kybele.es ISI/SI - 1 Introducción Nuestra misión: Hacer inteligente el negocio Buenos días. Soy Negocio.

Más detalles

Comunicación para Tecnimap 2010. Contenido: 1. Itourbask como elemento de un Sistema de Gestión de Destino Turístico 2. El Data Mart de Itourbask

Comunicación para Tecnimap 2010. Contenido: 1. Itourbask como elemento de un Sistema de Gestión de Destino Turístico 2. El Data Mart de Itourbask Comunicación para Tecnimap 2010. EL BI APLICADO AL ANÁLISIS DE LAS VISITAS TURÍSTICAS Contenido: 1. Itourbask como elemento de un Sistema de Gestión de Destino Turístico 2. El Data Mart de Itourbask Autor:

Más detalles

Globus Toolkit 4 8 4

Globus Toolkit 4 8 4 GlobusToolkit 4 84 OGSA Open Grid Services Architecture (OGSA) D e s a rro lla d a p o r T h e G lo b a l G rid F o ru m. D e fin e u n a a rq u ite c tu ra a b ie rta y e s tá n d a r p a ra e l d e s

Más detalles

SÍLABO. : Electivo : Ingeniería de Sistemas : IS0806. : VIII Ciclo : 2 de Teoría y 2 de Práctica : 03 : Ninguno

SÍLABO. : Electivo : Ingeniería de Sistemas : IS0806. : VIII Ciclo : 2 de Teoría y 2 de Práctica : 03 : Ninguno SÍLABO I. DATOS GENERALES 1.1. Nombre de la Asignatura 1.2. Carácter 1.3. Carrera Profesional 1.4. Código 1.5. Semestre Académico : 2014-I 1.6. Ciclo Académico 1.7. Horas de Clase 1.8. Créditos 1.9. Pre

Más detalles

Business Intelligence: Competir con Información

Business Intelligence: Competir con Información Business Intelligence: Competir con Información Reus, 16 de Noviembre de 2011 Página 1 Página 2 Sumario Sistemas de Información - Introducción Introducción Business Intelligence Datawarehouse OLAP Data

Más detalles

Licencia GNU FDL. Detalle del cambio. Ing. Bernabeu Ricardo Dario, Ing. García Mattío Mariano Alberto. Versión incial. 05/11/2009

Licencia GNU FDL. Detalle del cambio. Ing. Bernabeu Ricardo Dario, Ing. García Mattío Mariano Alberto. Versión incial. 05/11/2009 Licencia GNU FDL Copyright 2009 Ing. Bernabeu Ricardo Dario, Ing. García Mattío Mariano Alberto. Se otorga permiso para copiar, distribuir y/o modificar este documento bajo los términos de la Licencia

Más detalles

Aplicaciones Informáticas en la Gestión Comercial

Aplicaciones Informáticas en la Gestión Comercial Tema 6: Aplicaciones Informáticas en la Gestión Comercial Departamento de Organización de Empresas Universidad Complutense de Madrid ÍNDICE Sistemas EDI ERP CRM y PRM SCM DataWarehouse y Data Mining 2

Más detalles

Business Intelligence

Business Intelligence Business Intelligence Metodología > 1 Implantación tecnológica de un balanced scorecard Precio 1.000 Este curso introduce al alumno en la metodología de BSC y su implantación tecnológica para el seguimiento

Más detalles

Arquitectura Empresarial. Ministerio de Salud

Arquitectura Empresarial. Ministerio de Salud Arquitectura Empresarial Ministerio de Salud Arquitectura de TI - Arquitectura de Aplicaciones Versión 1.1 Versión 1.1 Página: 1 of 34 Tabla de Contenido 1. INTRODUCCIÓN... 3 2. ARQUITECTURA DE APLICACIONES...

Más detalles

Sistemas de Información 12/13 La organización de datos e información

Sistemas de Información 12/13 La organización de datos e información 12/13 La organización de datos e información Departamento Informática e Ingeniería de Sistemas Universidad de Zaragoza (raqueltl@unizar.es) " Guión Introducción: Data Warehouses Características: entornos

Más detalles

Análisis Predictivo con Pentaho Data Mining en el sector bancario

Análisis Predictivo con Pentaho Data Mining en el sector bancario Análisis Predictivo con Pentaho Data Mining en el sector bancario CONTENIDO INTRODUCCIÓN REQUERIMIENTOS DE LA PROPUESTA CONCEPTUALIZACIÓN DE LA PROPUESTA DISEÑO DE LA PROPUESTA BENEFICIOS PROPUESTA ECONÓMICA

Más detalles

www.itconsulting.com.bo

www.itconsulting.com.bo Señor(a): Cliente Presente.- Santa Cruz, 23 de octubre del 2012 Distinguido Señores: REF.: COTIZACION CURSO BUSINESS INTELLIGENCE & DATAWAREHOUSE & CUBOS OLAP EN EXCEL 2010 Consultores en Tecnologías de

Más detalles

Data Warehousing - Marco Conceptual

Data Warehousing - Marco Conceptual Data Warehousing - Marco Conceptual Carlos Espinoza C.* Introducción Los data warehouses se presentan como herramientas de alta tecnología que permiten a los usuarios de negocios entender las relaciones

Más detalles

Por: Fabiola del Toro Osorio

Por: Fabiola del Toro Osorio BODEGA DE DATOS Por: Fabiola del Toro Osorio La toma de decisiones se facilita cuando se cuenta con información En un mercado que cambia, las decisiones se deben tomar con base al conocimiento. Las bodegas

Más detalles

Tecnología aplicada a la toma de decisiones o malas decisiones en tecnología?

Tecnología aplicada a la toma de decisiones o malas decisiones en tecnología? Tecnología aplicada a la toma de decisiones o malas decisiones en tecnología? DUTI 2007 LA PLATA AGOSTO 2007 Ernesto Chinkes Facultad de Ciencias Económicas Universidad de Buenos Aires Esquema del trabajo

Más detalles

Cuadro de mando para el análisis de la información de Extranjería del Ministerio de Administraciones Públicas

Cuadro de mando para el análisis de la información de Extranjería del Ministerio de Administraciones Públicas Cuadro de mando para el análisis de la información de Extranjería del Ministerio de Administraciones Públicas José Antonio Peláez Ruiz Ministerio de Administraciones Públicas Alfonso Martín Murillo BG&S

Más detalles

KDD y MD. Dr. Juan Pedro Febles Rodríguez BIOINFO CITMA 2005. Juan Pedro Febles KDD y MD

KDD y MD. Dr. Juan Pedro Febles Rodríguez BIOINFO CITMA 2005. Juan Pedro Febles KDD y MD KDD y MD Dr. Juan Pedro Febles Rodríguez BIOINFO febles@bioinfo.cu http://www.bioinfo.cu CITMA 2005 Temas a tratar Algunos antecedentes académicos. El proceso de descubrimiento de conocimientos en Datos

Más detalles

ENCUESTA BUENAS PRACTICAS EN TIC'S

ENCUESTA BUENAS PRACTICAS EN TIC'S 239 16. ANEXO 1: ENCUESTA BUENAS PRÁCTICAS EN TIC S Facultad de Ciencias Económicas y Administrativas Escuela de Economía y Administración ENCUESTA BUENAS PRACTICAS EN TIC'S El objetivo de la siguiente

Más detalles

MINERÍA DE DATOS: ÁREA DE OPORTUNIDADES

MINERÍA DE DATOS: ÁREA DE OPORTUNIDADES MINERÍA DE DATOS: ÁREA DE OPORTUNIDADES Actualmente se vive una época donde se tiene una enorme cantidad de datos que se generan diariamente (del orden de Terabytes, Petabytes 1 (Han, Kamber, & Pei, 2012))

Más detalles

BUSINESS INTELLIGENCE

BUSINESS INTELLIGENCE BUSINESS INTELLIGENCE Técnicas, herramientas y aplicaciones María Pérez Marqués Business Intelligence. Técnicas, herramientas y aplicaciones María Pérez Marqués ISBN: 978-84-943055-2-8 EAN: 9788494305528

Más detalles

Web Warehousing. Robert Cercós Brownell Ingeniería Industrial - U. de Chile

Web Warehousing. Robert Cercós Brownell Ingeniería Industrial - U. de Chile Web Warehousing Robert Cercós Brownell Ingeniería Industrial - U. de Chile Agenda Motivación Conceptos Aplicaciones motivación si no lo puedes medir, n o l o puedes gestionar Peter Drucker (1909-2005)

Más detalles

Beneficios de Big Data con analítica

Beneficios de Big Data con analítica Beneficios de Big Data con analítica Edward Roske, CEO Oracle ACE Director info@interrel.com BLOG: LookSmarter.blogspot.com WEBSITE: www.interrel.com TWITTER: Eroske Sobre interrel Ganador del Premio Oracle

Más detalles

BUSINESS INTELLIGENCE

BUSINESS INTELLIGENCE BUSINESS INTELLIGENCE Técnicas, herramientas y aplicaciones María Pérez Marqués Business Intelligence. Técnicas, herramientas y aplicaciones María Pérez Marqués ISBN: 978-84-943055-2-8 EAN: 9788494305528

Más detalles

Minería de Datos. Universidad Politécnica de Victoria

Minería de Datos. Universidad Politécnica de Victoria Minería de Datos Universidad Politécnica de Victoria 1 Motivación Nuevas Necesidades del Análisis de Grandes Volúmenes de Datos El aumento del volumen y variedad de información que se encuentra informatizada

Más detalles

DATA WAREHOUSE DATA WAREHOUSE

DATA WAREHOUSE DATA WAREHOUSE DATA WAREHOUSE DATA WAREHOUSE Autor: Roberto Abajo Alonso Asignatura: Sistemas Inteligentes, 5º Curso Profesor: José Carlos González Dep. Ing. Sistemas Telemáticos, E.T.S.I. Telecomunicación Universidad

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACTULTAD DE ESTUDIOS SUPERIORES ACATLÁN MINERIA DE DATOS CON APLICACIONES TESIS QUE PARA OBTENER EL TITULO DE LICENCIADA EN MATEMÁTICAS APLICADAS Y COMPUTACIÓN

Más detalles

Clase 1 Módulo: Data Warehouse & Datamart Docente: Gustavo Valencia Zapata

Clase 1 Módulo: Data Warehouse & Datamart  Docente: Gustavo Valencia Zapata v.1.0 Clase 1 Docente: Gustavo Valencia Zapata Temas Clase 1: El Rol de TI en BI BI Retos de TI en BI Evolución de la Información Arquitectura de BI Referencias www.gustavovalencia.com Evolución de la

Más detalles

Master de Ingeniería Biomédica Sistemas de ayuda al diagnóstico clínico

Master de Ingeniería Biomédica Sistemas de ayuda al diagnóstico clínico Master de Ingeniería Biomédica Sistemas de ayuda al diagnóstico clínico Emilio Soria Olivas! Antonio José Serrano López! Departamento de Ingeniería Electrónica! Escuela Técnica Superior de Ingeniería!

Más detalles

Ingeniería del conocimiento. Sesión 1 Por qué estudiar aprendizaje automático?

Ingeniería del conocimiento. Sesión 1 Por qué estudiar aprendizaje automático? Ingeniería del conocimiento Sesión 1 Por qué estudiar aprendizaje automático? 1 Agenda Qué vamos a ver en la asignatura? Para qué sirve todo esto? Cómo aprobar la asignatura? 2 Extracción del conocimiento

Más detalles

Arquitectura para análisis de información. Zombi es una arquitectura que proporciona de manera integrada los componentes

Arquitectura para análisis de información. Zombi es una arquitectura que proporciona de manera integrada los componentes Capítulo 4 Arquitectura para análisis de información propuesta 4.1 Arquitectura Zombi es una arquitectura que proporciona de manera integrada los componentes necesarios para el análisis de información

Más detalles

BUS 325 Marketing Internacional en español

BUS 325 Marketing Internacional en español Centro Universitario Internacional BUS 325 Marketing Internacional en español Rosario Vázquez Carrasco Información de la asignatura: Oficina: Despacho 7.3.8. Otoño de 2015 Email: rvazcar@upo.es Lunes y

Más detalles

I N F O R M E S O B R E V E R I F I C A C I O N D E L V A L O R D E C L A R A D O N 1 1 8-3 D 1 3 1 0-2014- 000122- S U N A T

I N F O R M E S O B R E V E R I F I C A C I O N D E L V A L O R D E C L A R A D O N 1 1 8-3 D 1 3 1 0-2014- 000122- S U N A T S U P E R I N T E N D E N C I A N A C I O N A L D E A D M I N I S T R A C I Ó N T R I B U T A R I A I N T E N D E N C I A D E L A A D U A N A M A R Í T I M A D E L C A L L A O A v e n i d a G u a r d i

Más detalles

Mejores Prácticas de Control y Auditoría SOCIO BDO ARGENTINA PRESIDENTE DE LA ASOCIACIÓN ARGENTINA DE ÉTICA Y COMPLIANCE

Mejores Prácticas de Control y Auditoría SOCIO BDO ARGENTINA PRESIDENTE DE LA ASOCIACIÓN ARGENTINA DE ÉTICA Y COMPLIANCE Mejores Prácticas de Control y Auditoría Introducción a la Auditoría Online Primeros pasos para su Implementación Carlos Fernando Rozen Carlos Fernando Rozen SOCIO BDO ARGENTINA PRESIDENTE DE LA ASOCIACIÓN

Más detalles

MANUAL DE PROCEDIMIENTOS PARA EL PAGO DE HORAS EXTRAORDINARIAS

MANUAL DE PROCEDIMIENTOS PARA EL PAGO DE HORAS EXTRAORDINARIAS PARA EL PAGO DE HORAS EXTRAORDINARIAS O C T U B R E 2009 1 Í N D I C E Página I.- Introducción 3 II.- Marco Jurídico 4 III.- Políticas y Lineamientos 6 IV.- Descripción del Procedimiento 10 V.- Diagrama

Más detalles

Cuáles son algunos de los padecimientos que enfrentan las empresas hoy día?

Cuáles son algunos de los padecimientos que enfrentan las empresas hoy día? Qué es Inteligencia de Negocios? Una interesante definición para inteligencia de negocios o BI, por sus siglas en inglés, según el Data Warehouse Institute, lo define como la combinación de tecnología,

Más detalles

MOLAP REALIZADO POR: JOSE E. TABOADA RENNA

MOLAP REALIZADO POR: JOSE E. TABOADA RENNA MOLAP REALIZADO POR: JOSE E. TABOADA RENNA BASE DE DATOS Conjunto de datos estructurados, fiables y homogéneos organizados independientemente en máquina, m accesibles en tiempo real, compatible por usuarios

Más detalles

Instructivo del Llenado de Formularios de Registro Primario de Evaluación Nutricional con Perímetro Braquial

Instructivo del Llenado de Formularios de Registro Primario de Evaluación Nutricional con Perímetro Braquial Instructivo del Llenado de ormularios de Registro Primario de Evaluación Nutricional con Perímetro Braquial Sistema de Información Gerencial de Salud SIGSA Guatemala, ayo 2012 Instructivo del Llenado de

Más detalles

UNIVERSIDAD DE SANTIAGO DE CHILE INGENIERIA COMERCIAL APLICACIÓN COMPUTACIONAL I INTELIGENCIA DE NEGOCIOS

UNIVERSIDAD DE SANTIAGO DE CHILE INGENIERIA COMERCIAL APLICACIÓN COMPUTACIONAL I INTELIGENCIA DE NEGOCIOS UNIVERSIDAD DE SANTIAGO DE CHILE INGENIERIA COMERCIAL APLICACIÓN COMPUTACIONAL I INTELIGENCIA DE NEGOCIOS Integrante: Profesor: Maximiliano Heise Luis Ríos Fecha de entrega: miércoles 18 de abril de 2012

Más detalles

TECNOLOGÍA SOFTWARE PARA EL DESARROLLO DE SISTEMAS DE INFORMACIÓN. Sistemas Informacionales (BI Business Intelligence) Sonia Marrero Cáceres

TECNOLOGÍA SOFTWARE PARA EL DESARROLLO DE SISTEMAS DE INFORMACIÓN. Sistemas Informacionales (BI Business Intelligence) Sonia Marrero Cáceres TECNOLOGÍA SOFTWARE PARA EL DESARROLLO DE SISTEMAS DE INFORMACIÓN Sistemas Informacionales (BI Business Intelligence) Sonia Marrero Cáceres Sistemas Informacionales Sistemas informacionales: Sistemas de

Más detalles

PROGRAMA DEL DIPLOMADO DE PROCESO BENCHMARKING. TEMA 7. MANEJO DE LA INFORMACIÓN.

PROGRAMA DEL DIPLOMADO DE PROCESO BENCHMARKING. TEMA 7. MANEJO DE LA INFORMACIÓN. PROGRAMA DEL DIPLOMADO DE PROCESO BENCHMARKING. TEMA 7. MANEJO DE LA INFORMACIÓN. Objetivo: Al final de la unidad el alumno comprenderá la presencia de estas herramientas informáticas (programas Datamining))

Más detalles

REPOSITORIO COR O P R OR O A R T A I T VO V

REPOSITORIO COR O P R OR O A R T A I T VO V REPOSITORIO CORPORATIVO Repositorio Corporativo Que es? Antecedentes? Por que lo necesito? Multiplicidad de sistemas Retraso en obtención de reportes Info 3 Info 2 Info 1 Redundancia Inconsistencia de

Más detalles

Sistemas de Información para la Gestión

Sistemas de Información para la Gestión Sistemas de Información para la Gestión UNIDAD 3: RECURSOS DE TECNOLOGÍA DE INFORMACIÓN Aplicaciones UNIDAD 3: RECURSOS DE TI Aplicaciones 1. Administración de bases de datos e información: Sistemas de

Más detalles

UNIVERSIDAD DE COSTA RICA SISTEMA DE ESTUDIOS DE POSGRADO POSGRADO EN COMPUTACION E INFORMATICA JUSTIFICACIÓN OBJETIVO GENERAL OBJETIVOS ESPECÍFICOS

UNIVERSIDAD DE COSTA RICA SISTEMA DE ESTUDIOS DE POSGRADO POSGRADO EN COMPUTACION E INFORMATICA JUSTIFICACIÓN OBJETIVO GENERAL OBJETIVOS ESPECÍFICOS UNIVERSIDAD DE COSTA RICA SISTEMA DE ESTUDIOS DE POSGRADO POSGRADO EN COMPUTACION E INFORMATICA PF-3808 Minería de Datos II Semestre del 2009 Profesor: Dr. Francisco J. Mata (correo: fmatach@racsa.co.cr;

Más detalles

Taller para desarrolladores

Taller para desarrolladores Taller para desarrolladores III Jornadas gvsig Francisco José Peñarrubia fpenarru@gmail.com Victor Olaya volaya@unex.es César Martínez Izquierdo volaya@unex.es Indice Introducción Arquitectura interna

Más detalles

Operational Data Store (ODS)

Operational Data Store (ODS) Operational Data Store (ODS) Rosa María Castillo Div. de Servicios de Redes de Datos Telefónica I+D 28037 Madrid rmcc@tid.es Jesús Morata Div. DataWareHouse para Telefónica de España Telefónica I+D 28037

Más detalles

BI BUSINESS INTELLIGENCE

BI BUSINESS INTELLIGENCE ESCUELA SUPERIOR POLITECNICA DEL LITORAL MAESTRÍA EN SISTEMAS DE INFORMACION GERENCIAL 7 ma. PROMOCIÓN BI BUSINESS INTELLIGENCE Grupo No. 1 Geannina Aguirre Henry Andrade Diego Maldonado Laura Ureta MATERIA:

Más detalles