Tamaño: px
Comenzar la demostración a partir de la página:

Download ""

Transcripción

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17 Relación entre Torque y Aceleración Angular. En los ejemplos de aplicación de un torque, el efecto observable es un movimiento de rotación que parte del reposo, o también puede ser un movimiento que pase de la rotación al reposo, o cualquiera otra variación del movimiento rotacional de un cuerpo rígido que implique una aceleración angular. Deduciremos a continuación una relación general entre torque y la aceleración angular de un cuerpo. Supongamos una partícula de masa m que rota a la distancia r del eje de rotación, y a la cual se aplica una fuerza tangencial F para que tenga un movimiento con aceleración angular.

18 Relación entre Torque y Aceleración Angular. Como la partícula tiene una aceleración angular α como consecuencia de la fuerza tangencial F aplicada a ella, se cumple: F = m r α, ya que la aceleración tangencial, como se ha visto antes, es at = r α. Luego, el torque aplicado a la partícula, según la definición de torque, es:

19 Relación entre Torque y Aceleración Angular. Pero la situación más general sucede cuando se aplica un torque a un cuerpo rígido, el cual está constituido por infinitas partículas. Entonces, extendiendo la relación última a todas estas partículas, se puede escribir, recordando que la aceleración angular α es igual para todas las partículas de un cuerpo que rota: Στ= (Σ m r2) α. Recuerdas qué representa la expresión Σ (m r2)? Es la inercia rotacional I del cuerpo que rota. Luego, suponiendo que es el torque neto externo aplicado al cuerpo en rotación, se tiene finalmente la siguiente relación entre el torque y la aceleración angular:

20 Relación entre Torque y Aceleración Angular. En la situación de la figura, la fuerza representada origina una aceleración tangencial a la partícula. Debería existir otra fuerza sobre la partícula, además de la representada? El torque que se debe aplicar para hacer rotar con igual aceleración angular un disco, depende de si toda la masa está distribuida a lo largo del borde del disco, o de si está distribuida uniformemente por todo el disco? Discute con tus compañeros.

21 APLICACIÓN DEL CONCEPTO DE TORQUE. La figura muestra un cilindro macizo compuesto, de radio r1 el exterior y r2 el interior. Puede rotar alrededor del eje longitudinal que pasa por el centro del cilindro compuesto. Se debe suponer que se aplican dos fuerzas por medio de dos cuerdas, como se ilustra en la figura. a. Determinar la expresión para el torque neto sobre el cilindro. b. En qué sentido rota el cilindro compuesto si los datos del problema son los siguientes? r1 = 30 cm, F1 = 4 N, r2 = 60 cm, F2 = 16 N

22 APLICACIÓN DEL CONCEPTO DE TORQUE. a. En la situación mostrada en la figura, el torque neto se determina sumando algebraicamente los dos torques parciales. El signo del torque es positivo cuando el cuerpo tiende a rotar en sentido anti horario, y negativo en caso contrario. Entonces: La relación anterior es válida cuando la fuerza aplicada es tangente al cilindro, porque en tal caso el brazo de palanca coincide con el radio respectivo del cilindro. b. Reemplazando: τneto= (0,60 m) (16 N) (0,30 m) (4 N) = 8,4 N m. Por resultar un torque neto positivo, se deduce que el cilindro macizo rota en sentido anti horario.

23 AHORA RESUELVES TÚ. a. En qué sentido rota el cilindro si los datos del problema son los siguientes? r1 = 60 cm, F1 = 4 N, r2 = 30 cm, F2 = 16 N

24 EL MOMENTO ANGULAR Y SU CONSERVACIÓN. El momento angular Recordemos el concepto de momento lineal p de una partícula de masa m que se traslada con velocidad v : La expresión general para el momento lineal tiene carácter vectorial, pero la igualdad anterior también se puede expresar en función de los módulos del momento lineal y de la velocidad, es decir, su rapidez. Para una partícula en movimiento de rotación, se define su momento angular respecto al centro de rotación, de la siguiente manera: relación válida cuando los vectores posición r y momento lineal p son perpendiculares entre sí, como en el movimiento circunferencial uniforme.

25 EL MOMENTO ANGULAR Y SU CONSERVACIÓN. Se debe notar que: La unidad del momento angular, según su definición, corresponde a kg m2/s. El momento angular es una magnitud física vectorial, perpendicular a los vectores r y v, a lo largo del eje de rotación (figura). Pero consideraremos principalmente solo su módulo. Así como el momento lineal es una herramienta conceptual que ayuda al análisis de situaciones de movimiento de traslación, veremos que el momento angular será de gran utilidad para comprender los movimientos de rotación.

26 EL MOMENTO ANGULAR Y SU CONSERVACIÓN. Apliquemos la definición del momento angular a una partícula de masa m que describe un movimiento circunferencial uniforme en sentido horario de radio r y rapidez lineal v, como muestra la figura. El módulo p del momento lineal para este movimiento es constante e igual a p = m v. Luego, el módulo del momento angular de la partícula que describe un movimiento circunferencial uniforme es L = r p = m v r. Podemos agregar que el vector L, en este ejemplo, tiene su origen en O y apunta hacia adentro de la figura. Si rotara en sentido contrario, el vector L apuntaría hacia afuera de la figura.

27 EL MOMENTO ANGULAR Y SU CONSERVACIÓN. Cómo se determina el momento angular de un cuerpo rígido, es decir, compuesto por muchas partículas (en realidad, infinitas)? Apliquemos la definición del momento angular a un disco rígido que rota alrededor de su eje de simetría con rapidez angular ω. Como cada partícula del disco rota con la misma rapidez angular ω, entonces el momento angular L de la partícula de vector posición r en la figura, respecto al eje de rotación, es igual a: L = m v r Pero la rapidez lineal v se puede expresar en función de la rapidez angular ω, se deduce para el momento angular de esa partícula: L = m r2 ω

28 EL MOMENTO ANGULAR Y SU CONSERVACIÓN. Ahora hay que sumar las contribuciones al momento angular de todas las partículas del disco, suponiendo que tienen la misma masa m y que solo difieren en su distancia r al eje de rotación. Se tiene, luego, para el momento angular de todo el cuerpo que gira: L = Σ(m1r1^2ω + m2r2^2ω + m3r3^2ω + ) y como la rapidez angular es igual para todas las partículas: L = [Σ(m1r1^2 + m2r2^2 + m3r3^2+ )] ω Recuerdas a qué corresponde la expresión contenida en el paréntesis cuadrado? En la sección anterior se vio que la inercia rotacional de un cuerpo compuesto por muchas partículas era igual a: I = Σ(m1r1^2 + m2r2^2+ m3r3^2 + ) por lo que podemos concluir: En esta relación, la magnitud I representa a la inercia rotacional del cuerpo que rota con rapidez angular ω.

29 EL MOMENTO ANGULAR Y SU CONSERVACIÓN. Supón un disco macizo que rota con rapidez angular ω. Si toda la masa de este disco se redistribuye en forma de anillo con igual radio que el disco macizo, manteniéndose la misma rapidez angular ω, compara el momento angular de los dos cuerpos en rotación.

30 EL MOMENTO ANGULAR Y SU CONSERVACIÓN. APLICACIÓN CUANTITATIVA DEL MOMENTO ANGULAR. Determina el momento angular de la Tierra en su movimiento de rotación alrededor del eje de rotación norte-sur. Supón que la Tierra es una esfera uniforme. Identificando la información. Los datos que será necesario conocer para resolver este problema, son la masa M y el radio R de la Tierra, además de su período de rotación T en segundos. En tablas de datos de la Tierra, encontramos: M = 5,98 10exp24 kg R = 6,40 10exp6 m T = 24 h = s = s Estrategia. En la sección anterior se vio que la inercia Rotacional de una esfera es I =2/5*MR^2. Una vez calculada, se multiplica por la rapidez angular de la Tierra en función del período, es decir, ω =2π/T.

31 EL MOMENTO ANGULAR Y SU CONSERVACIÓN. APLICACIÓN CUANTITATIVA DEL MOMENTO ANGULAR. Determina el momento angular de la Tierra en su movimiento de rotación alrededor del eje de rotación norte-sur. Supón que la Tierra es una esfera uniforme. Resolución. Con los datos conocidos, se determina la inercia rotacional de la Tierra y su rapidez angular. Resulta: I =2/5*(5,98 10^24 kg) (6,40 10^6 m)^2 = 97 10^24 kg m^2 ω =2π/T=2π rad/ s = 7,27 10^-5 s^-1 Remplazando estos resultados parciales en L = I ω, se obtiene: L = (97,0 10^36 kg m^2) (7,27 10^ 5 s^ 1) = 7,05 10^33 kg m^2/s

32 EL MOMENTO ANGULAR Y SU CONSERVACIÓN. APLICACIÓN CUANTITATIVA DEL MOMENTO ANGULAR. Análisis del resultado El resultado anterior por sí solo quizás no tenga mayor interpretación, aparte de su enorme valor que le adjudica el exponente 33 en la potencia de 10. Habría que compararlo con otro momento angular a nivel astronómico. El siguiente problema puede proporcionar esta comparación. AHORA RESUELVES TÚ Cuál sería el valor del momento angular de la Tierra si su radio fuera de 7000 km?

Capítulo 10. Rotación de un Cuerpo Rígido

Capítulo 10. Rotación de un Cuerpo Rígido Capítulo 10 Rotación de un Cuerpo Rígido Contenido Velocidad angular y aceleración angular Cinemática rotacional Relaciones angulares y lineales Energía rotacional Cálculo de los momentos de inercia Teorema

Más detalles

Dinámica del movimiento rotacional

Dinámica del movimiento rotacional Dinámica del movimiento rotacional Torca, momento angular, momento cinético o momento de torsión: La habilidad de una fuerza para rotar o girar un cuerpo alrededor de un eje. τ = r F r= es la posición

Más detalles

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones.

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Movimiento de rotación. Cuerpos rígidos un cuerpo con una forma definida, que no cambia en forma que las partículas que lo componen permanecen

Más detalles

Momento angular o cinético

Momento angular o cinético Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x

Más detalles

INSTITUTO NACIONAL Dpto. de Física

INSTITUTO NACIONAL Dpto. de Física Nombre: Curso: Torque y Rotación El giro de una partícula o cuerpo, requiere de la aplicación de una fuerza, la cual tenga una componente que este desplazada respecto del centro de masa del cuerpo. Es

Más detalles

ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω

ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω Suponiendo un cuerpo rígido que gira con velocidad angular ω alrededor del eje Z que permanece fijo al cuerpo. dl = ( dm R 2

Más detalles

Instituto Nacional Dpto. De Física Prof.: Aldo Scapini G.

Instituto Nacional Dpto. De Física Prof.: Aldo Scapini G. Nombre: Curso: Movimiento Circunferencial Uniforme. (MCU) Caracteristicas 1) La trayectoria es una circunferencia 2) La partícula recorre distancia iguales en tiempos iguales Consecuencias 1) El vector

Más detalles

Momento angular de una partícula. Momento angular de un sólido rígido

Momento angular de una partícula. Momento angular de un sólido rígido Momento angular de una partícula Se define momento angular de una partícula respecto de del punto O, como el producto vectorial del vector posición r por el vector momento lineal mv L=r mv Momento angular

Más detalles

MCU. Transmisión de movimiento. Igual rapidez. tangencial. Posee. Velocidad. Aceleración centrípeta variable. Velocidad angular constante

MCU. Transmisión de movimiento. Igual rapidez. tangencial. Posee. Velocidad. Aceleración centrípeta variable. Velocidad angular constante DINÁMICA ROTACIONAL MCU Transmisión de movimiento Igual rapidez tangencial Posee 1 R1 2 R2 Velocidad angular constante Velocidad tangencial variable Aceleración centrípeta variable Fuerza centrípeta variable

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 12 CONSERVACIÓN DE LA CANTIDAD DE MOVIMIENTO ANGULAR

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 12 CONSERVACIÓN DE LA CANTIDAD DE MOVIMIENTO ANGULAR APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 12 CONSERVACIÓN DE A CANTIDAD DE MOVIMIENTO ANGUAR Cantidad de movimiento angular de una partícula. Así como en el movimiento de traslación

Más detalles

Física: Torque y Momento de Torsión

Física: Torque y Momento de Torsión Física: Torque y Momento de Torsión Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Relación entre cantidades angulares y traslacionales. En un cuerpo que rota alrededor de un origen O, el punto

Más detalles

DINÁMICA DE LA ROTACIÓN

DINÁMICA DE LA ROTACIÓN DINÁMICA DE LA ROTACIÓN 1. La polea de la figura tiene radio R y momento de inercia, respecto a un eje que pasa por su centro de masa perpendicular al plano del papel. La cuerda no resbala sobre la polea

Más detalles

Física III Medio (matemáticos) Profesor: Patricio de Jourdan H.

Física III Medio (matemáticos) Profesor: Patricio de Jourdan H. Física III Medio (matemáticos) Profesor: Patricio de Jourdan H. pjourdan@colegiosdiaconales.cl Por qué estudiar física? https://www.youtube.com/watch?v=ruij3 wrxv3k Newton qué vamos a ver este año?

Más detalles

Movimiento Circunferencial Uniforme (MCU)

Movimiento Circunferencial Uniforme (MCU) Movimiento Circunferencial Uniforme (MCU) NOMBRE: Curso: Fecha: Características del movimiento circunferencial Generalmente para describir el movimiento de los cuerpos se recurre a situaciones ideales,

Más detalles

Guía de Materia Movimiento circular

Guía de Materia Movimiento circular Física Guía de Materia Movimiento circular Módulo Electivo III Medio www.puntajenacional.cl Nicolás Melgarejo, Verónica Saldaña Licenciados en Ciencias Exactas, U. de Chile Estudiantes de Licenciatura

Más detalles

Semana 13 : Tema 10 Dinámica del movimiento rotacional

Semana 13 : Tema 10 Dinámica del movimiento rotacional Semana 3 : Tema 0 Dinámica del movimiento rotacional 0. Momento de una fuerza y aceleración angular 0. Rotación alrededor de un eje en movimiento 0.3 Trabajo y potencia en el movimiento rotacional Capítulo

Más detalles

Instituto de Física Facultad de Ingeniería Universidad de la República

Instituto de Física Facultad de Ingeniería Universidad de la República SEUNDO PARCIAL - Física 1 1 de Julio de 014 g= 9,8 m/s Momento de Inercia de un disco de masa M y radio R respecto de un eje MR perpendicular que pasa por su centro de masa: I = Momento de Inercia de una

Más detalles

Para qué aprender FISICA? Materiales Potencia Rozamiento y Fricción Viscosidad Turbulencias Movimiento

Para qué aprender FISICA? Materiales Potencia Rozamiento y Fricción Viscosidad Turbulencias Movimiento Para qué aprender FISICA? Materiales Potencia Rozamiento y Fricción Viscosidad Turbulencias Movimiento OBJETIVOS Formular: Conceptos, Definiciones Leyes resolver PROBLEMAS Fomentar: Habilidades Destrezas

Más detalles

Contenidos que serán evaluados en el examen escrito, correpondiente segundo parcial en la asignatura Física III

Contenidos que serán evaluados en el examen escrito, correpondiente segundo parcial en la asignatura Física III Contenidos que serán evaluados en el examen escrito, correpondiente segundo parcial en la asignatura Física III Movimiento rotacional Movimiento circular uniforme. Física 3er curso texto del estudiante.

Más detalles

Módulo 1: Mecánica Sólido rígido. Rotación (II)

Módulo 1: Mecánica Sólido rígido. Rotación (II) Módulo 1: Mecánica Sólido rígido. Rotación (II) 1 Segunda ley de Newton en la rotación Se puede hacer girar un disco por ejemplo aplicando un par de fuerzas. Pero es necesario tener en cuenta el punto

Más detalles

Física: Rotación de un Cuerpo Rígido

Física: Rotación de un Cuerpo Rígido Física: Rotación de un Cuerpo Rígido Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Objetivo En esta sección dejaremos de considerar a los objetos como partículas puntuales. En vez, hablaremos

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado

Más detalles

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación CONTENIDO Definición de sólido rígido Cálculo de la posición del centro de masas Movimiento de rotación y de traslación Movimiento del sólido rígido en el plano Momento de inercia Teorema de Steiner Tema

Más detalles

Javier Junquera. Movimiento de rotación

Javier Junquera. Movimiento de rotación Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.

Más detalles

1. Calcúlese la posición del centro de masas de la letra L mayúscula, de densidad de masa superficial homogénea, mostrada en la figura.

1. Calcúlese la posición del centro de masas de la letra L mayúscula, de densidad de masa superficial homogénea, mostrada en la figura. 1. Calcúlese la posición del centro de masas de la letra L mayúscula, de densidad de masa superficial homogénea, mostrada en la figura. Solución: x C = 1,857 cm; yc= 3,857cm (medidas respecto a la esquina

Más detalles

Posición angular, θ (rad) Velocidad angular instantánea, Velocidad instantánea, v = (m/s) dθ ω = (rad/s) Torque, τ = Iα (N-m)

Posición angular, θ (rad) Velocidad angular instantánea, Velocidad instantánea, v = (m/s) dθ ω = (rad/s) Torque, τ = Iα (N-m) Experimento 7 Movimiento de rotación Objetivos 1. Establecer algunas similitudes entre el movimiento de traslación y el de rotación,. Medir la posición, velocidad y aceleración angulares de objetos girando,

Más detalles

Cap. 11B Rotación de cuerpo rígido JRW

Cap. 11B Rotación de cuerpo rígido JRW Cap. 11B Rotación de cuerpo rígido JRW 01 Repaso JRW 01 Objetivos: Después de completar este módulo, deberá: Definir y calcular el momento de inercia para sistemas simples.

Más detalles

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si Las pesas de la figura ruedan sin deslizar y sin 6 cm rozamiento por un plano inclinado 30 y de 10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si 100 cm las pesas parten

Más detalles

La cantidad de movimiento angular obedece una ley de conservación muy similar a la que obedece el momentum lineal.

La cantidad de movimiento angular obedece una ley de conservación muy similar a la que obedece el momentum lineal. En vista de la gran analogía que se han presentado entre la mecánica lineal y la mecánica rotacional, no debe ser ninguna sorpresa que la cantidad de movimiento o momento lineal tenga un similar rotacional.

Más detalles

1. RODADURA SOBRE UN PLANO INCLINADO: MONTAJE EXPERIMENTAL

1. RODADURA SOBRE UN PLANO INCLINADO: MONTAJE EXPERIMENTAL UNIVERSIDAD DEL VALLE Departamento de Física Laboratorio de Física Fundamental I Profesor: Otto Vergara. Diciembre 2 de 2012 NOTAS CLASE 4 1. RODADURA SOBRE UN PLANO INCLINADO: MONTAJE EXPERIMENTAL Figura

Más detalles

Física: Momento de Inercia y Aceleración Angular

Física: Momento de Inercia y Aceleración Angular Física: Momento de Inercia y Aceleración Angular Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Momento de Torsión (Torque) La capacidad de un fuerza de hacer girar un objeto se define como torque.

Más detalles

4. Fuerzas centrales. Comprobación de la segunda Ley de Kepler

4. Fuerzas centrales. Comprobación de la segunda Ley de Kepler 4. Fuerzas centrales. Comprobación de la segunda Ley de Kepler Fuerza central Momento de torsión respecto un punto Momento angular de una partícula Relación Momento angular y Momento de torsión Conservación

Más detalles

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas GUÍA DE PROBLEMAS

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas GUÍA DE PROBLEMAS UNIDAD V: CUERPO RÍGIDO GUÍA DE PROBLEMAS 1) a) Calcular los valores de los momentos de cada una de las fuerzas mostradas en la figura respecto del punto O, donde F1 = F = F3 = 110N y r1 = 110 mm, r =

Más detalles

60N. Solo hay que tener en cuenta las fuerzas perpendiculares a la barra y en qué sentido la hacen girar: M sen45 1,5 70cos ,51N m

60N. Solo hay que tener en cuenta las fuerzas perpendiculares a la barra y en qué sentido la hacen girar: M sen45 1,5 70cos ,51N m . Calcular en momento de las fuerzas que actúan sobre la barra de la figura que puede girar alrededor de un eje que pasa por el punto. qué fuerza aplicada en el centro de la barra impide el giro? Dinámica

Más detalles

TEMA 5 SÓLIDO RÍGIDO CONSEJOS PREVIOS A LA RESOLUCIÓN DE LOS PROBLEMAS

TEMA 5 SÓLIDO RÍGIDO CONSEJOS PREVIOS A LA RESOLUCIÓN DE LOS PROBLEMAS TEMA 5 SÓLIDO RÍGIDO CONSEJOS PREVIOS A LA RESOLUCIÓN DE LOS PROBLEMAS Ten presente la distinción entre velocidad angular ω Z y velocidad ordinaria v X. Si un objeto tiene una velocidad v X el objeto en

Más detalles

60N. Solo hay que tener en cuenta las fuerzas perpendiculares a la barra y en qué sentido la hacen girar: M sen45 1,5 70cos ,51N m

60N. Solo hay que tener en cuenta las fuerzas perpendiculares a la barra y en qué sentido la hacen girar: M sen45 1,5 70cos ,51N m . Calcular en momento de las fuerzas que actúan sobre la barra de la figura que puede girar alrededor de un eje que pasa por el punto O. qué fuerza aplicada en el centro de la barra impide el giro? Dinámica

Más detalles

Pontificia Universidad Católica de Chile Facultad de Física FIS109A: Física INTERROGACIÓN 3. Nombre:

Pontificia Universidad Católica de Chile Facultad de Física FIS109A: Física INTERROGACIÓN 3. Nombre: Pontificia Universidad Católica de Chile Facultad de Física FIS109A: Física P1 P2 P3 P4 Nota INTERROGACIÓN 3 Profesores: Aldo Valcarce Fecha: 10 de noviembre de 2014 Nombre: Tiempo para responder: 120

Más detalles

Universidad de Atacama. Física 1. Dr. David Jones. 11 Junio 2014

Universidad de Atacama. Física 1. Dr. David Jones. 11 Junio 2014 Universidad de Atacama Física 1 Dr. David Jones 11 Junio 2014 Vector de posición El vector de posición r que va desde el origen del sistema (en el centro de la circunferencia) hasta el punto P en cualquier

Más detalles

Mecánica del Cuerpo Rígido

Mecánica del Cuerpo Rígido Mecánica del Cuerpo Rígido Órdenes de Magnitud Cinemática de la Rotación en Contexto 7.1 Estime la frecuencia de giro a potencia máxima de un ventilador de techo y su correspondiente velocidad angular.

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 10 CINEMÁTICA DE ROTACIÓN

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 10 CINEMÁTICA DE ROTACIÓN APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 10 CINEMÁTICA DE ROTACIÓN Movimiento de rotación Qué tienen en común los movimientos de un disco compacto, las sillas voladoras, un esmeril,

Más detalles

CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS Un volante cuyo diámetro es de 3 m está girando a 120 r.p.m. Calcular: a) su frecuencia, b) el periodo, c) la velocidad angular, d) la velocidad

Más detalles

Ramírez López-Para, P; Loizaga Garmendia, M; López Soto, J

Ramírez López-Para, P; Loizaga Garmendia, M; López Soto, J Ejercicio 2, pag.1 lanteamiento El disco de la figura está soldado a la barra acodada y ésta lo está a su vez a la barra B. El conjunto gira con una velocidad angular ω rad/s y una aceleración angular

Más detalles

Dinámica del Sólido Rígido

Dinámica del Sólido Rígido Dinámica del Sólido Rígido El presente documento de clase sobre dinámica del solido rígido está basado en los contenidos volcados en la excelente página web del curso de Física I del Prof. Javier Junquera

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO

ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO Nombre: Marilyn Chela Curso: 1 nivel de Ing. Química TEMA: Relación entre la Dinámica Lineal y la Dinámica Rotacional. Dinámica rotacional: Se trabaja con el

Más detalles

En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente.

En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente. TORQUE Y EQUILIBRIO DE CUERPO RÍGIDO. En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente. De traslación a lo largo de una trayectoria, de rotación mientras se está trasladando,

Más detalles

momento de inercia para sistema de particulas n I = F= Δ P Δ t τ= Δ L L=I ω L=r p sen θ τ=r F sen θ m i r i

momento de inercia para sistema de particulas n I = F= Δ P Δ t τ= Δ L L=I ω L=r p sen θ τ=r F sen θ m i r i FORMULARIO P=mv L=I ω L=r p sen θ τ=r F sen θ F= Δ P Δ t τ= Δ L Δ t momento de inercia para sistema de particulas n I = i=1 m i r i 2 Momento de inercia para cuerpos rígidos con respecrtoa diferentes ejes

Más detalles

Dinámica del Sólido Rígido

Dinámica del Sólido Rígido Dinámica del Sólido Rígido El presente documento de clase sobre dinámica del solido rígido está basado en los contenidos volcados en la excelente página web del curso de Física I del Prof. Javier Junquera

Más detalles

DESCRIPCION DEL MOVIMIENTO CIRCUNFERENCIAL UNIFORME (MCU)

DESCRIPCION DEL MOVIMIENTO CIRCUNFERENCIAL UNIFORME (MCU) DESCRIPCION DEL MOVIMIENTO CIRCUNFERENCIAL UNIFORME (MCU) OBJETIVO Aplicar las nociones físicas fundamentales para explicar y describir el Movimiento Circunferencial Uniforme MOVIMIENTO CIRCUNFERENCIAL

Más detalles

GUIA DE PROBLEMAS PROPUESTOS Nº5: CUERPO RÍGIDO- ELASTICIDAD

GUIA DE PROBLEMAS PROPUESTOS Nº5: CUERPO RÍGIDO- ELASTICIDAD GUI DE PROLEMS PROPUESTOS Nº5: CUERPO RÍGIDO- ELSTICIDD Premisa de Trabajo: En la resolución de cada ejercicio debe quedar manifiesto: el diagrama de fuerzas y/o torcas que actúan sobre el cuerpo o sistema

Más detalles

Esta relación se obtiene mediante el denominado modelo dinámico, que relaciona matemáticamente:

Esta relación se obtiene mediante el denominado modelo dinámico, que relaciona matemáticamente: Introducción La dinámica se ocupa de la relación entre las fuerzas que actúan sobre un cuerpo y el movimiento que en el se origina. Por lo tanto, el modelo dinámico de un robot tiene por objetivo conocer

Más detalles

TRABAJO Y ENERGIA EN ROTACIÓN. Consideremos un cuerpo que gira alrededor de un eje tal como se muestra en la figura. La energía cinética de un

TRABAJO Y ENERGIA EN ROTACIÓN. Consideremos un cuerpo que gira alrededor de un eje tal como se muestra en la figura. La energía cinética de un TRABAJO Y ENERGIA EN ROTACIÓN. Consideremos un cuerpo que gira alrededor de un eje tal como se muestra en la figura. La energía cinética de un elemento de masa dm que gira a una distancia r del eje de

Más detalles

Problemas de Física I

Problemas de Física I Problemas de Física I DINÁMICA DEL SÓLIDO RÍGIDO (1 er Q.:prob impares, 2 ndo Q.:prob pares) 1. (T) Dos partículas de masas m 1 y m 2 están unidas por una varilla de longitud r y masa despreciable. Demostrar

Más detalles

Soluciones a los problemas de los temas 7 y 8 no resueltos en clase

Soluciones a los problemas de los temas 7 y 8 no resueltos en clase Asignatura Física General. Licenciatura en Química. Grupo B Soluciones a los problemas de los temas 7 y 8 no resueltos en clase 2. Teniendo en cuenta que el momento de la fuerza aplicada con respecto al

Más detalles

4. CINEMÁTICA DEL CUERPO RÍGIDO

4. CINEMÁTICA DEL CUERPO RÍGIDO ACADEMIA DE DINÁMICA DIVISIÓN DE CIENCIAS BÁSICAS FACULTAD DE INGENIERÍA Serie de ejercicios de Cinemática y Dinámica 4. CINEMÁTICA DEL CUERPO RÍGIDO Contenido del tema: 4.1 Definición de movimiento plano.

Más detalles

Física I F-123 PF1.7 Año 2017

Física I F-123 PF1.7 Año 2017 Práctica 6: Sólido Rígido 1. Determinar en cada caso el momento de inercia del sistema respecto de los ejes indicados. Utilizar cuando sea conveniente el teorema de Steiner. 2. Un disco de masa m = 50

Más detalles

Dinámica de Rotación del Sólido Rígido

Dinámica de Rotación del Sólido Rígido Dinámica de Rotación del Sólido Rígido 1. Movimientos del sólido rígido.. Momento angular de un sólido rígido. Momento de Inercia. a) Cálculo del momento de inercia de un sólido rígido. b) Momentos de

Más detalles

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m.

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m. Nombre: Curso:_3 Cuando un cuerpo están sometidos a una fuerzas neta nula es posible que el cuerpo este en reposo de traslación pero no en reposo de rotación, por ejemplo es posible que existan dos o más

Más detalles

Unidad 4C: Torque y momento angular Preparada por Rodrigo Soto

Unidad 4C: Torque y momento angular Preparada por Rodrigo Soto FI1A2 - SISTEMAS NEWTONIANOS Semestre 2008-1 Profesores: Hugo Arellano, Diego Mardones y Nicolás Mujica Departamento de Física Facultad de Ciencias Físicas y Matemáticas Universidad de Chile Unidad 4C:

Más detalles

Universidad Pontificia Bolivariana. Escuela de Ingenierías. Centro Ciencia Básica

Universidad Pontificia Bolivariana. Escuela de Ingenierías. Centro Ciencia Básica Universidad Pontificia Bolivariana. Escuela de Ingenierías. Centro Ciencia Básica Curso: Fundamentos de mecánica. 2015 20 Programación por semanas (teoría y práctica) Texto de apoyo Serway-Jewtt novena

Más detalles

1. Calcular el momento de inercia de una. 7. Calcular el momento de inercia de un. cilindro macizo y homogéneo respecto de

1. Calcular el momento de inercia de una. 7. Calcular el momento de inercia de un. cilindro macizo y homogéneo respecto de 1. Calcular el momento de inercia de una lámina rectangular y plana de dimensiones a y b, cuando gira sobre un eje perpendicular a su base a y paralelo a b. 7. Calcular el momento de inercia de un cilindro

Más detalles

Objetos en equilibrio - Ejemplo

Objetos en equilibrio - Ejemplo Objetos en equilibrio - Ejemplo Una escalera de 5 m que pesa 60 N está apoyada sobre una pared sin roce. El extremo de la escalera que apoya en el piso está a 3 m de la pared, ver figura. Cuál es el mínimo

Más detalles

LABORATORIO DE MECANICA INERCIA ROTACIONAL

LABORATORIO DE MECANICA INERCIA ROTACIONAL No 10 LABORATORIO DE MECANICA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Investigar la inercia rotacional de algunas distribuciones de masas conocidas.

Más detalles

Docente: Angel Arrieta Jiménez

Docente: Angel Arrieta Jiménez CINEMÁTICA DE UNA PARTÍCULA EN DOS DIMENSIONES EJERCICIOS DE MOVIMIENTO CIRCULAR 1. En el ciclo de centrifugado de una maquina lavadora, el tubo de 0.3m de radio gira a una tasa constante de 630 r.p.m.

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

TEMA 5 SÓLIDO RÍGIDO CONSEJOS PREVIOS A LA RESOLUCIÓN DE LOS PROBLEMAS

TEMA 5 SÓLIDO RÍGIDO CONSEJOS PREVIOS A LA RESOLUCIÓN DE LOS PROBLEMAS TEMA 5 SÓLIDO RÍGIDO CONSEJOS PREVIOS A LA RESOLUCIÓN DE LOS PROBLEMAS Ten presente la distinción entre velocidad angular ω Z y velocidad ordinaria v X. Si un objeto tiene una velocidad v X el objeto en

Más detalles

MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras UNIDAD 1: MOVIMIENTO CIRCUNFERENCIAL UNIFORME

MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras UNIDAD 1: MOVIMIENTO CIRCUNFERENCIAL UNIFORME Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras DEPARTAMENTO DE CIENCIAS Y TECNOLOGÍA MISS YORMA RIVERA M. PROF. JONATHAN CASTRO F. UNIDAD 1: MOVIMIENTO CIRCUNFERENCIAL

Más detalles

Dinámica de Rotaciones

Dinámica de Rotaciones Pontificia Universidad Católica de Chile Instituto de Física FIZ02 Laboratorio de Mecánica Clásica Dinámica de Rotaciones Objetivo Estudiar la dinámica de objetos en movimiento rotacional. Introducción

Más detalles

Problemas propuestos y resueltos: Cinemática de rotación Elaborado por: Profesora Pilar Cristina Barrera Silva

Problemas propuestos y resueltos: Cinemática de rotación Elaborado por: Profesora Pilar Cristina Barrera Silva Problemas propuestos y resueltos: Cinemática de rotación Elaborado por: Profesora Pilar Cristina Barrera Silva Física, Tipler Mosca, quinta edición, Editorial reverté 9-27 Un tocadiscos que gira rev/min

Más detalles

UNIDAD 1: FUERZA Y MOVIMIENTO MOVIMIENTO CIRCUNFERENCIAL UNIFORME

UNIDAD 1: FUERZA Y MOVIMIENTO MOVIMIENTO CIRCUNFERENCIAL UNIFORME FUNDACION CATALINA DE MARÍA LICEO SAGRADO CORAZÓN- COPIAPÓ 67 AÑOS, 1949 2016 Vivamos la Misericordia, educando con Calidad desde el Amor y la Reparación UNIDAD 1: FUERZA Y MOVIMIENTO MOVIMIENTO CIRCUNFERENCIAL

Más detalles

Momento Lineal, Momento Angular & Momento Radial

Momento Lineal, Momento Angular & Momento Radial Momento Lineal, Momento Angular & Momento Radial Antonio A. Blatter Licencia Creative Commons Atribución 3.0 (2015) Buenos Aires Argentina Este trabajo presenta el momento lineal, el momento angular y

Más detalles

MOVIMIENTO CIRCULAR - MCU - MCUV MOVIMIENTO CIRCULAR - MCU - MCUV

MOVIMIENTO CIRCULAR - MCU - MCUV MOVIMIENTO CIRCULAR - MCU - MCUV FISICA PREUNIERSITARIA MOIMIENTO CIRCULAR - MCU - MCU MOIMIENTO CIRCULAR - MCU - MCU CONCEPTO Es el movimiento de trayectoria circular en donde el valor de la velocidad del móvil se mantiene constante

Más detalles

1. El movimiento circular uniforme (MCU)

1. El movimiento circular uniforme (MCU) FUNDACIÓN INSTITUTO A DISTANCIA EDUARDO CABALLERO CALDERON Espacio Académico: Física Docente: Mónica Bibiana Velasco Borda mbvelascob@uqvirtual.edu.co CICLO: VI INICADORES DE LOGRO MOVIMIENTO CIRCULAR

Más detalles

EXAMEN FINAL DE FÍSICA

EXAMEN FINAL DE FÍSICA EXAMEN FINAL DE FÍSICA 1 er parcial Lic. En Química 7 - febrero 00 CUESTIONES PROBLEMAS 1 3 4 5 Suma 1 Suma Total APELLIDOS.NOMBRE.GRUPO. Cuestiones (1 punto cada una) 1. Qué energía hay que proporcionar

Más detalles

ESTÁTICA. El Centro de Gravedad (CG) de un cuerpo es el punto donde se considera aplicado el peso.

ESTÁTICA. El Centro de Gravedad (CG) de un cuerpo es el punto donde se considera aplicado el peso. C U S O: ÍSICA COMÚN MATEIAL: C-08 ESTÁTICA En esta unidad analizaremos el equilibrio de un cuerpo grande, que no puede considerarse como una partícula. Además, vamos a considerar dicho cuerpo como un

Más detalles

C U R S O: FÍSICA MENCIÓN ESTÁTICA MATERIAL: FM-11. Centro de gravedad de un cuerpo (CG)

C U R S O: FÍSICA MENCIÓN ESTÁTICA MATERIAL: FM-11. Centro de gravedad de un cuerpo (CG) C U R S O: ÍSICA MENCIÓN MATERIAL: M-11 ESTÁTICA En esta unidad analizaremos el equilibrio de un cuerpo grande, que no puede considerarse como una partícula. Además, vamos a considerar dicho cuerpo como

Más detalles

Vectores. El módulo de un vector se representa entre barras; por ejemplo, el módulo de la

Vectores. El módulo de un vector se representa entre barras; por ejemplo, el módulo de la Tema 7. Mecánica. Eje Temático: Física. Mecánica - Fluidos Contenido: Vectores; Movimiento circular uniforme; Rotaciones y momento de inercia; Rotaciones y momento angular; Trabajo mecánico y energía;

Más detalles

MUESTRA DE FÍSICA + +

MUESTRA DE FÍSICA + + MUESTRA DE FÍSICA 1. En un electroscopio cargado positivamente (fig.a) se observa que la separación de las hojas (h) disminuye al intercalar entre ellas, sin tocarlas, una lámina (L) descargada (carga

Más detalles

MOVIMIENTO CIRCULAR UNIFORME (MCU) = t

MOVIMIENTO CIRCULAR UNIFORME (MCU) = t U S O: FÍSIA Mención MATEIAL: FM-08 MOVIMIENTO IULA UNIFOME (MU) Una partícula se encuentra en movimiento circular, cuando su trayectoria es una circunferencia, como, por ejemplo, la trayectoria descrita

Más detalles

CONDICIONES DE EQUILIBRIO ESTATICO

CONDICIONES DE EQUILIBRIO ESTATICO 1 CONDICIONES DE EQUILIBRIO ESTATICO Departamento: Ciencias Básicas Laboratorio: Física y Química Asignatura: Física Objetivos específicos Analizar gráficamente y comprender las relaciones: a). El momento

Más detalles

DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil.

DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil. DINMIC DEL PUNTO Leyes de Newton Primera ley o ley de inercia: si sobre un sistema material no actúa fuerza alguna sigue en reposo o movimiento rectilíneo uniforme si inicialmente lo estaba. Segunda ley

Más detalles

DINÁMICA ROTACIONAL DEL CUERPO RÍGIDO

DINÁMICA ROTACIONAL DEL CUERPO RÍGIDO DINÁMICA ROTACIONAL DEL CUERPO RÍGIDO 1. Un aro de radio R = 0,2m y masa M = 0,4kg, partiendo del reposo, desde un plano inclinado, adquiere una velocidad angular de 20rad/s al cabo de 10s. Si el aro (I

Más detalles

27 de octubre de 2010

27 de octubre de 2010 Pontificia Universidad Católica de Chile Facultad de Física FIZ 11 Mecánica Clásica Profesor: Andrés Jordán Ayudantes: Eduardo Bañados T. eebanado@uc.cl Ariel Norambuena ainoramb@uc.cl Torque, Momento

Más detalles

Momento angular o cinético

Momento angular o cinético Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x

Más detalles

Realización de la práctica

Realización de la práctica DINÁMICA ROTACIONAL El movimiento de un objeto real que gira alrededor de algún eje, no se puede analizar como el de una partícula, esto debido a que en cualquier instante, diferentes partes del cuerpo

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física General 1 Proecto PMME - Curso 007 Instituto de Física Facultad de Ingeniería UdelaR TITULO DINAMICA DEL CARRETEL AUTORES Santiago Duarte, Nicolás Puppo Juan Manuel Del Barrio INTRODUCCIÓN En este

Más detalles

Física: Movimiento circular uniforme y velocidad relativa

Física: Movimiento circular uniforme y velocidad relativa Física: Movimiento circular uniforme y velocidad relativa Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Movimiento circular uniforme Propiedades: Este objeto tiene una trayectoria circular. El

Más detalles

Física 2º Bacharelato

Física 2º Bacharelato Física 2º Bacharelato DPARTAMNTO D FÍSICA QUÍMICA lectrostática 11/02/08 Nombre: Problemas 1. n la región comprendida entre dos placas cargadas, x véase la figura, existe un campo eléctrico uniforme de

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A FEBRERO 18 DE 2015 SOLUCIÓN Analice las siguientes preguntas

Más detalles

Tema 4: Movimiento en 2D y 3D

Tema 4: Movimiento en 2D y 3D Tema 4: Movimiento en 2D y 3D FISICA I, 1º Grado en Civil Escuela Técnica Superior de Ingeniería Universidad de Sevilla Física I, GIC, Dpto. Física Aplicada III, ETSI, Universidad de Sevilla, 2017/18 1

Más detalles

2DA PRÁCTICA CALIFICADA

2DA PRÁCTICA CALIFICADA 2DA PRÁCTICA CALIFICADA DINÁMICA (IC 244) ALUMNOS : CARITAS BARRIENTOS, Ronald ROBLES ROCHA, Hamilton TORRES PÉREZ, Walter A. TORO VELARDE, William DOCENTE : Ing. CASTRO PÉREZ, Cristian CINÉTICA DE UNA

Más detalles

La inercia rotacional

La inercia rotacional La inercia rotacional La inercia de los cuerpos El concepto de inercia no es nuevo para ti. En segundo año medio, estudiaste las leyes de Newton, y en estas tiene un papel importante la inercia. Recuerdas

Más detalles

UTN FACULTAD REGIONAL RECONQUISTA

UTN FACULTAD REGIONAL RECONQUISTA GUÍA DE TRABAJOS PRÁCTICOS Nº7 TEMA: SISTEMAS DE PARTÍCULAS 1. Cuatro objetos están situados a lo largo del eje y de la siguiente manera: un objeto de2 kg se ubica a +3m, un objeto de 3 kg está a +2,50

Más detalles

Para establecer la relación entre coordenadas cartesianas y polares es suficiente proyectar r sobre los ejes x e y. De la gráfica se sigue que:

Para establecer la relación entre coordenadas cartesianas y polares es suficiente proyectar r sobre los ejes x e y. De la gráfica se sigue que: COORDENADAS POLARES. Algunas veces conviene representar un punto P en el plano por medio de coordenadas polares planas (r, ), donde r se mide desde el origen y es el ángulo entre r y el eje x (ver figura).

Más detalles

Módulo 1: Electrostática Campo eléctrico

Módulo 1: Electrostática Campo eléctrico Módulo 1: Electrostática Campo eléctrico 1 Campo eléctrico Cómo puede ejercerse una fuerza a distancia? Para explicarlo se introduce el concepto de campo eléctrico Una carga crea un campo eléctrico E en

Más detalles

Momento angular en mecánica clásica

Momento angular en mecánica clásica Momento angular en mecánica clásica Conocemos como actúa un cuerpo al aplicarle una fuerza externa y la relación existente entre fuerza externa y variación de la cantidad de movimiento. También sabemos

Más detalles

Taller 10: Dinámica de Rotación Carlos Andrés Collazos Morales Copyright 2004 by W. H.

Taller 10: Dinámica de Rotación Carlos Andrés Collazos Morales  Copyright 2004 by W. H. Taller 10: Dinámica de Rotación Carlos Andrés Collazos Morales http://www.fisicacollazos.60mb.com/ Copyright 004 by W. H. Freeman & Company 1. OBJETVOS Determinar experimentalmente el momento de nercia

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Autores Introducción C O N S E R V A C I Ó N D E L M O M E N T O A N G U L A R Juan Andrés Diana, Fernando

Más detalles

El sólido rígido. Física I Grado en Ingeniería de Organización Industrial Primer Curso. Dpto.Física Aplicada III Universidad de Sevilla

El sólido rígido. Física I Grado en Ingeniería de Organización Industrial Primer Curso. Dpto.Física Aplicada III Universidad de Sevilla El sólido rígido Física I Grado en Ingeniería de Organización Industrial Primer Curso Ana Mª Marco Ramírez Curso 2015/2016 Dpto.Física Aplicada III Universidad de Sevilla Índice Condición geométrica de

Más detalles

GUÍA DE PROBLEMAS Nº 5: CUERPO RÍGIDO

GUÍA DE PROBLEMAS Nº 5: CUERPO RÍGIDO GUÍ DE PROLEMS Nº 5: UERPO RÍGIDO PROLEM Nº 1: Un avión cuando aterriza apaga sus motores. El rotor de uno de los motores tiene una rapidez angular inicial de 2000 rad/s en el sentido de giro de las manecillas

Más detalles

Academia Local de Física. Ing. Rafael A. Sánchez Rodríguez

Academia Local de Física. Ing. Rafael A. Sánchez Rodríguez 1 2 3 4 5 6 7 8 9 10 Preguntas de repaso 1) 10.1. Explique por medio de diagramas por qué se dirige hacia el centro la aceleración de un cuerpo que se mueve en círculos a rapidez constante. 2) 10.2. Un

Más detalles