Práctica 4: Series de Fourier

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Práctica 4: Series de Fourier"

Transcripción

1 Práctica 4: Series de Fourier Apellidos, nombre Apellidos, nombre Grupo Puesto Feca El objetivo de esta práctica es profundizar en la respuesta de sistemas LTI, comprobar el comportamiento de estos sistemas ante señales eponenciales complejas, y desarrollar prácticamente varios de los conceptos relacionados con el Desarrollo en Serie de Fourier (DSF) de señales discretas periódicas. Para llevar a cabo la práctica, desarrolle cada ejercicio en un ficero de comandos ejercicio_x.m separado (salvo cuando se le solicite desarrollar una función, en cuyo caso el ficero llevará el nombre de la función). Justo antes de finalizar la práctica, comprima los ficeros.m generados en un único ficero practica_4_puesto_xx. zip, conéctese al sistema de entrega de prácticas de la Intranet y entréguelo en el grupo que corresponda. Salvo que se le indique lo contrario en algún apartado concreto, no está permitido utilizar en los scripts las funciones de control de flujo del programa de MATLAB (for, if-else, etc.). 4.1 Eponenciales complejas como autofunciones de sistemas LTI Ejercicio 1: sistemas LTI causales El objetivo de este ejercicio es comprobar que las eponenciales complejas discretas son efectivamente autofunciones de los sistemas LTI. Para comprobarlo, este ejercicio está orientado a localizar los autovalores correspondientes a varias de estas funciones. Sea un sistema LTI causal definido por la siguiente relación entrada/salida: y [] n 0.25y[ n 1] = [] n + 0.9[ n 1] Suponiendo que se verifica la condición de reposo inicial para n < 0, es posible obtener n = δ n y n = n, aplicando recurrencia: analíticamente su respuesta al impulso, [ ] [ ] [ ] [ ] De la ecuación que describe el sistema, se desprende que [ n] = [ n] + 0.9[ n 1] y[ n 1] y : [] 0 = y[] 0 = [ 0] + 0.9[ 1] y[ 1] = 1 [] 1 = y[] 1 = [] [ 0] y[ 0] = [] 2 = y[] 2 = [ 2] + 0.9[ 1] y[ 1] = 0.25 ( ) 2 [] 3 = y[] 3 = [ 3] + 0.9[ 2] y[ 2] = 0.25 ( ) Deduzca la epresión general de [] n :

2 []= n Sean las señales: π j n [] n e 4 1 = [] n = sin( n π ) 2 π [] n ( 9 ) n 10 3 = [] n = n Defina las cuatro señales i [] n en el intervalo n [ 20,50], y la señal [ n] en el intervalo n [ 0,70] y represéntelas en cinco gráficos en fila en una misma ventana (utilice subplot). Caso de que alguna señal tenga parte real y parte imaginaria, representa simultáneamente su módulo y fase en el mismo gráfico (comando old y dos colores). Parte A: obtención de las respuestas con la función conv. Observe que [] n toma valores en el intervalo n [ 0, ) ; por lo tanto, ya que en la práctica no podemos definir un vector de infinitos valores, cualquier cálculo de una respuesta y [ n] utilizando la función conv tendrá que utilizar una versión reducida o truncada de [ n], que denominaremos [] n. Según se vio en la práctica anterior, ello ará que la respuesta obtenida, y T [ n], sea una versión reducida o truncada de la respuesta teórica, y [] n. Teniendo en cuenta que en este caso T [ n] se a definido en el intervalo n [ 0,70], indique en qué intervalo se verificará que [ n] y[ n] y T =. T n Obtenga, utilizando la función conv, las respuestas y i [ n], y represéntelas en un nuevo gráfico de cuatro filas; represéntelas únicamente en el intervalo en que son válidas. Obtención de los autovalores: Debido a la imposibilidad que tiene MATLAB de trabajar con señales infinitamente largas, las señales i [] n an de comenzar en un instante determinado. Ello da lugar a una respuesta natural o transitoria en y i [] n, que conforme aumenta n se va aciendo despreciable. En este caso, comenzando las señales en n = 20, el transitorio es prácticamente nulo para n 0. Como la propiedad de las eponenciales como autofunciones se da en régimen permanente, para comprobarla compararemos las entradas y las respuestas sólo desde el índice n = 0 asta el final del intervalo de validez de las respuestas. En este

3 intervalo, si la relación yi [] n i [] n es constante, indica que [ n] dica constante es el autovalor buscado. i es una autofunción del sistema, y que Represente las cuatro señales H y [ n] [ n] adjunta: Es autofunción (SI/NO) Autovalor H: i = i i en un nuevo gráfico de cuatro filas y rellene la tabla 1 [ n] 2 [ n] 3 [ n] [ n] 4 Parte B: obtención de las respuestas con la función filter. El comando filter calcula la respuesta de un sistema LTI causal especificado por una ecuación en diferencias, lineal y de coeficientes constantes, y suponiendo reposo inicial. Más específicamente, sea el sistema está definido por la ecuación: N = 0 a y M [ n ] = b [ n ] = 0 Para un vector fila de valores de entrada,, la epresión y=filter(b,a,) obtiene el vector de valores de salida, y, siendo a un vector con los valores de a, y b un vector fila con los valores de b. El vector de salida tiene el mismo rango de valores que el de entrada, y todos sus valores son válidos (a diferencia de lo que ocurre con la función conv debido al uso de [ n], truncada por necesidad). Obtenga, aora utilizando la función filter, las respuestas y i [ n], y represéntelas en un nuevo gráfico de cuatro filas. Obtenga, como en el caso anterior, los autovalores, comparando las entradas y las respuestas desde el índice n = 0. Represente de nuevo las cuatro señales H y [ n] [ n] la tabla adjunta: Es autofunción (SI/NO) Autovalor H: i = i i en un nuevo gráfico de cuatro filas y rellene 1 [ n] 2 [ n] 3 [ n] [ n] Desarrollo en Serie de Fourier de señales discretas periódicas Dada una señal [] n periódica, para obtener con MATLAB los coeficientes a de su DSF, utilice la función a=(1/n)*fft(), donde N es el periodo fundamental de la señal [ n], y es un vector fila que contiene los valores de un periodo cualquiera, y sólo uno, de [ n]. La operación inversa se realiza del siguiente modo: dada la serie de coeficientes a, [ 0, N 1],

4 utilice =N*ifft(a) para obtener un periodo de la señal periódica [ n]. Para evitar efectos derivados de la precisión finita con que opera MATLAB, redondee al quinto decimal (recuerde lo visto en la Práctica 2) los valores de las señales resultantes de ambas operaciones (fft e ifft) antes de acer nada más con ellas Ejercicio 2: DSF de sinusoides discretas Sean las siguientes señales discretas periódicas: ~ 1 [] n = cos n, que es una señal par 10 ~ 2 [] n = sin n, que es una señal impar 10 Obtenga los coeficientes de su DSF siguiendo el procedimiento indicado: defina las señales n ~ n n ~ n n 0, N 0 1, y aplique la epresión indicada. En un 1[] = 1[] y 2 [] = 2[] en el intervalo [ ] mismo gráfico, represente en la fila superior tres gráficos con 1 [ n], el módulo de sus coeficientes y la fase de sus coeficientes; en la fila inferior represente en otros tres gráficos la información correspondiente de 2 [] n. Compruebe que los coeficientes corresponden con lo que cabría esperar, y que efectivamente verifican las propiedades que corresponden a las señales pares e impares. Comente, en este sentido, el resultado obtenido: Ejercicio 3: Obtención de una señal a partir de sus coeficientes Sea una señal discreta periódica de periodo N 0 = 5, con coeficientes: * jπ 4 * jπ 3 0 = 1, a2 = a 2 = e, a4 = a 4 2e a = A la vista de los coeficientes, espera que la señal periódica a que pertenecen, ~ [] n, sea una señal que tome valores complejos, que sólo tome valores reales, o que sólo los tome imaginarios? Determine analíticamente el valor de los coeficientes a. Para ello recuerde que los coeficientes del DSF cumplen la relación a a + =. N 0 a, [ 0, N 0 1]

5 Aplique sobre el vector de coeficientes la función ifft para obtener un periodo, [] n de la señal periódica a que pertenecen. Genere a continuación la señal ~ [ n] en el intervalo n [ 3N 0,3N 0 1] replicando la señal [] n, y represéntela: ~ [n] Ejercicio 4: DSF de señales discretas cuadradas Sean las siguientes señales discretas periódicas: [] n 1, 1 = 0,, n = 0 n = 1 1, 2[] n = 0,, 0 n 7 8 n 15 1, 3[] n = 0,, 0 n 7 8 n 31 con periodos N = 01 2, N 02 = 16 y N 03 = respectivamente. Defina tres vectores, 1, 2 y 3, cada uno con un solo periodo de las tres señales definidas. Represente a continuación en un mismo gráfico de tres filas las tres señales periódicas en el intervalo n 0,63 (para ello, replique los periodos de cada una que sea necesario). [ ] Obtenga los coeficientes del DSF de las tres señales y represente su módulo en un mismo gráfico de tres filas. Indique cuál es el valor medio en un periodo de cada señal y compruebe que el primer coeficiente del desarrollo de cada señal coincide con su valor medio en un periodo. Asimismo calcule la energía por período de las tres señales, tanto a partir de las muestras de la señal como de los coeficientes a : Valor medio: Coeficiente a 0 : Energía a partir de [n] 1 [ n] 2 [ n] [ n] 3 Energía a partir de a Nota: la energía por período a partir de los coeficientes a se calcula como N N a = 0 2

6 4.2.4 Ejercicio 5: Reconstrucción de una señal a partir de parte de sus coeficientes. El objetivo del ejercicio es observar el efecto que tiene eliminar parte de las componentes frecuenciales de una señal, y comprobar que en señales discretas no se produce el fenómeno de Gibbs. Este ejercicio parte de la serie de coeficientes, a, [ 0,31], obtenidos para la señal 3 [] n del ejercicio anterior; por lo tanto, replique la parte del ejercicio anterior necesaria para obtenerlos. * Teniendo en cuenta que al ser 3 [] n una señal real, sus coeficientes verifican a = a, genere en el intervalo n [ 0,] las siguientes señales, 3 _ m [ n], que consisten en el DSF de 3 [] n truncado (es decir, con sólo m de los armónicos): 3_ 2 3_ 8 3_12 3_ all 2 = 2 8 = 8 12 a e a e = a e a = 15 j n j n e j n j n Represente las cuatro señales en un mismo gráfico de cuatro filas, de modo que se muestre cómo la familia de funciones va convergiendo a 3 [ n]. Indique si se aprecia el fenómeno de Gibbs en las reconstrucciones parciales. Valor medio: Coeficiente a 0 : Energía a partir de [n] 3_2 [n] 3_8 [n] 3_12 [n] 3_all [n] Energía a partir de a

Práctica 4: Series de Fourier

Práctica 4: Series de Fourier Práctica 4: Series de Fourier Apellidos, nombre Apellidos, nombre SOLUCION Grupo Puesto Fecha El objetivo de esta práctica es profundizar en la respuesta de sistemas LTI, comprobar el comportamiento de

Más detalles

Práctica 3: Convolución

Práctica 3: Convolución Práctica 3: Convolución Grupo Puesto Apellidos, nombre SOLUCIÓN Fecha Apellidos, nombre SOLUCIÓN El objetivo de esta práctica es familiarizar al alumno con la suma de convolución, fundamental en el estudio

Más detalles

Práctica 5: Transformada de Fourier

Práctica 5: Transformada de Fourier Práctica 5: Transformada de Fourier Apellidos, nombre Apellidos, nombre SOLUCION Grupo Puesto Fecha El objetivo de esta práctica es mostrar al alumno el modo de obtener la Transformada de Fourier (TF de

Más detalles

Práctica 2: Periodicidad

Práctica 2: Periodicidad Práctica 2: Periodicidad Apellidos, nombre Apellidos, nombre Grupo Puesto Fecha El objetivo de esta práctica es explorar las utilidades de representación gráfica de MATLAB para observar las especiales

Más detalles

Práctica 5: Transformada de Fourier

Práctica 5: Transformada de Fourier Práctica 5: ransformada de Fourier Apellidos, nombre Apellidos, nombre Grupo Puesto Fecha El objetivo de esta práctica es mostrar al alumno el modo de obtener la ransformada de Fourier (F de una señal

Más detalles

Práctica 6: Aplicaciones de la TF

Práctica 6: Aplicaciones de la TF Práctica 6: Aplicaciones de la TF Apellidos, nombre Apellidos, nombre Grupo Puesto Fecha El objetivo de esta práctica es mostrar al alumno diversas aplicaciones básicas de la Transformada de Fourier en

Más detalles

Práctica 6: Aplicaciones de la TF

Práctica 6: Aplicaciones de la TF Práctica 6: Aplicaciones de la TF Apellidos, nombre Apellidos, nombre SOLUCION Grupo Puesto Fecha El objetivo de esta práctica es mostrar al alumno diversas aplicaciones básicas de la Transformada de Fourier

Más detalles

Señales: Tiempo y Frecuencia PRÁCTICA 1

Señales: Tiempo y Frecuencia PRÁCTICA 1 Señales: Tiempo y Frecuencia PRÁCTICA 1 (1 sesión) Laboratorio de Señales y Comunicaciones PRÁCTICA 1 Señales: Tiempo y Frecuencia 1. Objetivo El objetivo de esta primera práctica es revisar: las principales

Más detalles

Práctica 6: Operadores globales

Práctica 6: Operadores globales Práctica 6: Operadores globales Apellidos, nombre Apellidos, nombre Grupo Puesto Fecha El objetivo de esta práctica es presentar al alumno los fundamentos de las transformadas discretas lineales y parte

Más detalles

ELO 385 Laboratorio de Procesamiento Digital de Señales Laboratorio 5: Transformada Discreta de Fourier Parte I

ELO 385 Laboratorio de Procesamiento Digital de Señales Laboratorio 5: Transformada Discreta de Fourier Parte I 1 ELO 385 Laboratorio de Procesamiento Digital de Señales Laboratorio 5: Transformada Discreta de Fourier Parte I Este laboratorio está compuesto por dos sesiones en la cuales se estudiará la transformada

Más detalles

Análisis Espectral mediante DFT PRÁCTICA 4

Análisis Espectral mediante DFT PRÁCTICA 4 Análisis Espectral mediante DFT PRÁCTICA 4 (2 sesiones) Laboratorio de Señales y Comunicaciones PRÁCTICA 4 Análisis Espectral mediante DFT. Objetivo Habitualmente, el análisis de señales y sistemas LTI

Más detalles

Práctica 5: Códigos Lineales

Práctica 5: Códigos Lineales TRANSMISIÓN DE DATOS 2008/09 Práctica 5: Códigos Lineales Apellidos, nombre Apellidos, nombre Grupo Puesto Fecha 26 de Noviembre y 1y 4 de Diciembre del 2008 El objetivo de esta práctica es familiarizar

Más detalles

Transformada Discreta de Fourier

Transformada Discreta de Fourier UNL - FICH - Departamento de Informática - Ingeniería Informática Procesamiento digital de señales Guía de trabajos prácticos: Unidad IV Transformada Discreta de Fourier 1. Objetivos Aplicar los conceptos

Más detalles

Práctica 1: Perturbaciones: distorsión y ruido

Práctica 1: Perturbaciones: distorsión y ruido Apellidos, nombre Apellidos, nombre TEORÍA DE LA COMUNICACIÓN 009/010 Práctica 1: Perturbaciones: distorsión y ruido Grupo Puesto Fecha El objetivo de esta práctica es familiarizar al alumno con los efectos

Más detalles

Práctica 1: Señales en MATLAB

Práctica 1: Señales en MATLAB Práctica 1: Señales en MATLAB Apellidos, nombre Apellidos, nombre Grupo Puesto Fecha El objetivo de esta práctica es presentar al alumno el modo de orientar las herramientas que ofrece MATLAB a la representación

Más detalles

Señales y Analisis de Fourier

Señales y Analisis de Fourier Señales y Analisis de Fourier Señales y Análisis de Fourier En esta práctica se pretende revisar parte de la materia del tema 2 de la asignatura desde la perspectiva de un entorno de cálculo numérico y

Más detalles

Práctica 3: Convolución

Práctica 3: Convolución Práctica 3: Covolució Apellidos, ombre Apellidos, ombre Grupo Puesto Fecha El objetivo de esta práctica es familiarizar al alumo co la suma de covolució, fudametal e el estudio de los sistemas lieales,

Más detalles

TEMA 1: MATRICES. x 2. Ejercicio y B =, se pueden encontrar matrices C y D para que existan los productos ACB y BDA?.

TEMA 1: MATRICES. x 2. Ejercicio y B =, se pueden encontrar matrices C y D para que existan los productos ACB y BDA?. TEMA : MATRICES Ejercicio.- 0 2 2 Dadas las matrices A = y B = -2 0 5, calcula BBt AA t. Ejercicio 2.- 0 x 2 Sean las matrices A =, B = y C =, halla x e y para que se 2 y verifique ABC = A t C. Ejercicio

Más detalles

Escuela Politécnica Superior 3º Ingeniería Informática. Laboratorio TAAO1. Curso 2004/2005. Autor de la práctica: Prof. Doroteo Torre Toledano

Escuela Politécnica Superior 3º Ingeniería Informática. Laboratorio TAAO1. Curso 2004/2005. Autor de la práctica: Prof. Doroteo Torre Toledano Escuela Politécnica Superior 3º Ingeniería Informática Laboratorio TAAO1 Curso 2004/2005 Autor de la práctica: Prof. Doroteo Torre Toledano Práctica 6 Técnicas de diseño de filtros digitales. Primer Apellido

Más detalles

3 La transformada de Fourier

3 La transformada de Fourier Prácticas de circuitos como sistemas lineales. Ejercicios sencillos con Matlab 57 3 La transformada de Fourier En esta sección se presentan algunas rutinas de Matlab de interés en relación con la utilización

Más detalles

a a a a

a a a a JUNIO 2012 GENERAL 1. Se consideran las matrices: A = 3 1 0 1 3 0 0 0 2 e I 3 = 1 0 0 0 1 0 a) Resuelve la ecuación det (A x I 3 ) = 0. (1 punto) JUNIO 2012 ESPECÍFICA a 1 2 a 1 2. Dado el número real

Más detalles

Práctica 5: Códigos Lineales

Práctica 5: Códigos Lineales TRANSMISIÓN DE DATOS 2006/07 Práctica 5: Códigos Lineales Apellidos, nombre Apellidos, nombre Grupo Puesto Fecha 30 Noviembre 14 Diciembre 4 Diciembre 11 Diciembre El objetivo de esta práctica es familiarizar

Más detalles

Sistemas Lineales e Invariantes PRÁCTICA 2

Sistemas Lineales e Invariantes PRÁCTICA 2 Sistemas Lineales e Invariantes PRÁCTICA 2 (1 sesión) Laboratorio de Señales y Comunicaciones PRÁCTICA 2 Sistemas Lineales e Invariantes 1. Objetivo Los objetivos de esta práctica son: Revisar los sistemas

Más detalles

Ampliación de Señales y Sistemas

Ampliación de Señales y Sistemas Grados Ing. de Telecomunicación. Universidad Rey Juan Carlos Página 1/6 Ampliación de Señales y Sistemas PRÁCTICA 2: La DFT en Matlab Profesora responsable de esta práctica: Alicia Guerrero Bibliografía:

Más detalles

ELO 385 Laboratorio de Procesamiento Digital de Señales Laboratorio 4: Filtros digitales Parte I

ELO 385 Laboratorio de Procesamiento Digital de Señales Laboratorio 4: Filtros digitales Parte I 1 ELO 385 Laboratorio de Procesamiento Digital de Señales Laboratorio 4: Filtros digitales Parte I 0. Introducción Este laboratorio está compuesto por dos sesiones en la cuales se estudiarán filtros digitales.

Más detalles

Tema 3. Análisis de Fourier de señales y sistemas de tiempo continuo.

Tema 3. Análisis de Fourier de señales y sistemas de tiempo continuo. Tema 3. Análisis de Fourier de señales y sistemas de tiempo continuo. 205-206 Tema 3. Análisis de Fourier de tiempo continuo 205-206 / 23 Índice Introducción 2 Respuesta de sistemas LTI a exponenciales

Más detalles

ACTIVIDADES SELECTIVIDAD MATRICES

ACTIVIDADES SELECTIVIDAD MATRICES ACTIVIDADES SELECTIVIDAD MATRICES Ejercicio 1 Para qué valores de m tiene solución la ecuación matricial? (b) Resuelve la ecuación matricial dada para. Ejercicio 2 Siendo I la matriz identidad de orden

Más detalles

Práctica 3: Operadores puntuales

Práctica 3: Operadores puntuales Práctica 3: Operadores puntuales Apellidos, nombre Apellidos, nombre Grupo Puesto Fecha El objetivo de esta práctica es presentar al alumno las técnicas para realizar operadores puntuales sobre imágenes

Más detalles

Análisis Espectral mediante DFT PRÁCTICA 4

Análisis Espectral mediante DFT PRÁCTICA 4 Análisis Espectral mediante DFT PRÁCTICA 4 (2 sesiones) Laboratorio de Señales y Comunicaciones 1 PRÁCTICA 4 Análisis Espectral mediante DFT 1. Objetivo Habitualmente, el análisis de señales y sistemas

Más detalles

Integral de Fourier y espectros continuos

Integral de Fourier y espectros continuos 9 2 2 2 Esta expresión se denomina forma de Angulo fase (o forma armónica) de la serie de Fourier. Integral de Fourier y espectros continuos Las series de Fourier son una herramienta útil para representar

Más detalles

Análisis Espectral mediante DFT PRÁCTICA 4

Análisis Espectral mediante DFT PRÁCTICA 4 Análisis Espectral mediante DFT PRÁCTICA 4 (2 sesiones) Laboratorio de Señales y Comunicaciones 3 er curso, Ingeniería Técnica de Telecomunicación Sistemas de Telecomunicación 1 PRÁCTICA 4 Análisis Espectral

Más detalles

A = [a 1 a 2 a 3. El sistema Ax = c tiene infinitas soluciones N. Existe un único vector x tal que T (x) = c X. T es suprayectiva

A = [a 1 a 2 a 3. El sistema Ax = c tiene infinitas soluciones N. Existe un único vector x tal que T (x) = c X. T es suprayectiva Asignatura: ÁLGEBRA LINEAL Fecha: 6 de Julio de Fecha publicación notas: 6 de Julio de Fecha revisión examen: de Julio de Duración del examen: horas y media APELLIDOS Y NOMBRE: DNI: Titulación:. ( punto:,

Más detalles

Más ejercicios y soluciones en fisicaymat.wordpress.com MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES

Más ejercicios y soluciones en fisicaymat.wordpress.com MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES - Considere el sistema 3 5 7 0 3 3 6 0 3 4 6 0 a) Estudie para qué valores del número real a, la única solución del sistema es la nula. b) Resuélvalo, si

Más detalles

Tema 2. Análisis de Sistemas en Tiempo Continuo. Indice:

Tema 2. Análisis de Sistemas en Tiempo Continuo. Indice: Indice: 1. Clasificación de Sistemas en tiempo continuo Lineales y no Lineales Invariante y Variantes en el tiempo Causal y no Causal Estable e Inestables Con y sin Memoria 2. La Convolución La Integral

Más detalles

2. Sistemas de ecuaciones lineales

2. Sistemas de ecuaciones lineales 2 Sistemas de ecuaciones lineales 2 Ejercicios resueltos Ejercicio 2 Estudiar el número de condición de Frobenius de la matriz a b A a + ε b Solución: El determinante de A es A ab + ba + ε b ε Si b 0 y

Más detalles

4 MÉTODOS DIRECTOS PARA RESOLVER SISTEMAS DE ECUACIONES LINEALES

4 MÉTODOS DIRECTOS PARA RESOLVER SISTEMAS DE ECUACIONES LINEALES 57 4 MÉTODOS DIRECTOS PARA RESOLVER SISTEMAS DE ECUACIONES LINEALES En este capítulo se estudia el componente algorítmico y computacional de los métodos directos para resolver sistemas de ecuaciones lineales.

Más detalles

Preguntas IE TEC. Total de Puntos: 80 Puntos obtenidos: Porcentaje: Nota:

Preguntas IE TEC. Total de Puntos: 80 Puntos obtenidos: Porcentaje: Nota: IE TEC Nombre: Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica EL-470 Modelos de Sistemas Profesor: Dr. Pablo Alvarado Moya II Semestre, 005 Examen Final Total de Puntos: 80 Puntos

Más detalles

INDICE 1. Panorama 2. Señales Analógicas 3. Señales Discretas 4. Sistemas Analógicos 5. Sistemas en Tiempo Discreto

INDICE 1. Panorama 2. Señales Analógicas 3. Señales Discretas 4. Sistemas Analógicos 5. Sistemas en Tiempo Discreto INDICE Prefacio XI Del Prefacio a la Primera Edición XIII 1. Panorama 1.0. Introducción 1 1.1. Señales 1 1.2. Sistemas 3 1.3. El dominio de la frecuencia 4 1.4. Del concepto a la aplicación 7 2. Señales

Más detalles

Primera parte (2.5 puntos, 20 minutos):

Primera parte (2.5 puntos, 20 minutos): TRATAMIENTO DIGITAL DE SEÑALES EXAMEN FINAL 24/06/2013 APELLIDOS NOMBRE DNI NO DE LA VUELTA A ESTA HOJA HASTA QUE SE LO INDIQUE EL PROFESOR MIENTRAS TANTO, LEA ATENTAMENTE LAS INSTRUCCIONES PARA LA REALIZACIÓN

Más detalles

Primera parte (2.5 puntos, 20 minutos):

Primera parte (2.5 puntos, 20 minutos): TRATAMIENTO DIGITAL DE SEÑALES EXAMEN FINAL 24/06/2013 APELLIDOS NOMBRE DNI NO DE LA VUELTA A ESTA HOJA HASTA QUE SE LO INDIQUE EL PROFESOR MIENTRAS TANTO, LEA ATENTAMENTE LAS INSTRUCCIONES PARA LA REALIZACIÓN

Más detalles

Tema IV. Transformada de Fourier. Contenido. Desarrollo de la Transformada de Fourier en Tiempo Continuo. Propiedades de las transformadas de Fourier

Tema IV. Transformada de Fourier. Contenido. Desarrollo de la Transformada de Fourier en Tiempo Continuo. Propiedades de las transformadas de Fourier Tema IV Transformada de Fourier Contenido Desarrollo de la Transformada de Fourier en Tiempo Continuo Transformadas coseno y seno de Fourier Propiedades de las transformadas de Fourier Transformada de

Más detalles

Se llama adjunto de un elemento de una matriz A, al número resultante de multiplicar por el determinante de la matriz complementaria

Se llama adjunto de un elemento de una matriz A, al número resultante de multiplicar por el determinante de la matriz complementaria T.3: MATRICES Y DETERMINANTES 3.1 Determinantes de segundo orden Se llama determinante de a: 3.2 Determinantes de tercer orden Se llama determinante de a: Ejercicio 1: Halla los determinantes de las siguientes

Más detalles

Ejercicios de la práctica 3

Ejercicios de la práctica 3 Ejercicios de la práctica 3 Ejercicio 1. Consideremos la siguiente matriz 4 2 4 0 A = 2 10 22 4 5 2 5 2. 24 6 16 8 Si R es la forma escalonada por filas de A, calcular, usando MATLAB, las matrices Q y

Más detalles

ÁLGEBRA LINEAL. EXAMEN FINAL 18 de Enero de b) (0, 5 puntos) Estudia si la siguiente afirmación es verdadera o falsa, justificando

ÁLGEBRA LINEAL. EXAMEN FINAL 18 de Enero de b) (0, 5 puntos) Estudia si la siguiente afirmación es verdadera o falsa, justificando ÁLGEBRA LINEAL EXAMEN FINAL 8 de Enero de Apellidos y Nombre: Duración del examen: 3 horas Publicación de notas: enero Revisión de Examen: feb Ejercicio. ( puntos a (, puntos Estudia si la siguiente afirmación

Más detalles

Sistemas Lineales. Examen de Junio SOluciones

Sistemas Lineales. Examen de Junio SOluciones . Considere la señal xt) sinπt) Sistemas Lineales Examen de Junio 22. SOluciones a) Obtenga su transformada de Fourier, X), y represéntela para 7π. b) Calcule la potencia y la energía de xt). c) Considere

Más detalles

DINAMICA DE ESTRUCTURAS CI4203 TAREA N 2 ANALISIS EN EL DOMINIO DE LA FRECUENCIA

DINAMICA DE ESTRUCTURAS CI4203 TAREA N 2 ANALISIS EN EL DOMINIO DE LA FRECUENCIA DINAMICA DE ESTRUCTURAS CI4203 TAREA N 2 ANALISIS EN EL DOMINIO DE LA FRECUENCIA Profesor : Ruben Boroschek Ayudante : Juan Martinez Nombre : Bastian Garrido Fecha de entrega : 24 Septiembre de 2012 Tabla

Más detalles

MATRICES Y DETERMINANTES EJERCICIOS RESUELTOS

MATRICES Y DETERMINANTES EJERCICIOS RESUELTOS Índice Presentación... 3 Operaciones con matrices... 4 Potencias de una matriz... 5 Productos notables de matrices... 6 Determinantes de una matriz... 7 Rango de matriz... 8 Inversa de una matriz... 10

Más detalles

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades:

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades: CAPÍTULO 2: ESPACIOS VECTORIALES 2.1- Definición y propiedades. 2.1.1-Definición: espacio vectorial. Sea un cuerpo conmutativo a cuyos elementos denominaremos escalares o números. No es necesario preocuparse

Más detalles

Tema 3. Series de Fourier. Análisis de Espectros. Indice:

Tema 3. Series de Fourier. Análisis de Espectros. Indice: Indice: Espectros de Frecuencia Discreta Representación de una señal compuesta en el Tiempo y la Frecuencia Espectro de Amplitud y Fase Espectro Unilateral o de una Cara Espectro de Frecuencia de dos Caras.

Más detalles

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 2 de julio de 2012 Duración del examen: 3 horas Fecha publicación notas: 11 de julio

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 2 de julio de 2012 Duración del examen: 3 horas Fecha publicación notas: 11 de julio ÁLGEBRA LINEAL EXAMEN EXTRAORDINARIO 2 de julio de 22 Duración del examen: 3 horas Fecha publicación notas: de julio Fecha revisión examen: 3 de julio Apellidos: Nombre: Grupo: Titulación: ESCRIBA EL APELLIDO

Más detalles

CONTENIDOS. 1. Procesos Estocásticos y de Markov. 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD

CONTENIDOS. 1. Procesos Estocásticos y de Markov. 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD CONTENIDOS 1. Procesos Estocásticos y de Markov 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD 4. Comportamiento Estacionario de las CMTD 1. Procesos Estocásticos

Más detalles

Primera parte (3 puntos, 25 minutos):

Primera parte (3 puntos, 25 minutos): TRATAMIENTO DIGITAL DE SEÑALES EXAMEN FINAL 18/01/2013 APELLIDOS NOMBRE DNI NO DE LA VUELTA A ESTA HOJA HASTA QUE SE LO INDIQUE EL PROFESOR MIENTRAS TANTO, LEA ATENTAMENTE LAS INSTRUCCIONES PARA LA REALIZACIÓN

Más detalles

SISTEMAS LINEALES. Tema 6. Transformada Z

SISTEMAS LINEALES. Tema 6. Transformada Z SISTEMAS LINEALES Tema 6. Transformada Z 6 de diciembre de 200 F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA 3 Contenidos. Autofunciones de los sistemas LTI discretos. Transformada Z. Región de convergencia

Más detalles

Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3

Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3 1.- DETERMINANTE DE UNA MATRIZ CUADRADA Determinante de una matriz cuadrada de orden 1 Dada una matriz cuadrada de orden 1, A = (a), se define det A = det (a) = a Determinante de una matriz cuadrada de

Más detalles

Profesor Francisco R. Villatoro 13 de Diciembre de 1999 SOLUCIONES. 1. Una matriz A de n n es diagonalmente dominante (estrictamente) por filas si

Profesor Francisco R. Villatoro 13 de Diciembre de 1999 SOLUCIONES. 1. Una matriz A de n n es diagonalmente dominante (estrictamente) por filas si Cuarta relación de problemas Técnicas Numéricas Profesor Francisco R. Villatoro 13 de Diciembre de 1999 SOLUCIONES 1. Una matriz A de n n es diagonalmente dominante estrictamente por filas si a ii > a

Más detalles

Si u y v son vectores cualquiera en W, entonces u + v esta en W. Si c es cualquier numero real y u es cualquier vector en W, entonces cu esta en W.

Si u y v son vectores cualquiera en W, entonces u + v esta en W. Si c es cualquier numero real y u es cualquier vector en W, entonces cu esta en W. Unidad 4 Espacios vectoriales reales 4.1 Subespacios Si V es un espacio vectorial y W un subconjunto no vacío de V. Entonces W es un subespacio de V si se cumplen las siguientes condiciones Si u y v son

Más detalles

DETERMINANTES. Resuelve los siguientes sistemas y calcula el determinante de cada matriz de coeficientes: 2x + 3y = x + 6y = 16.

DETERMINANTES. Resuelve los siguientes sistemas y calcula el determinante de cada matriz de coeficientes: 2x + 3y = x + 6y = 16. DETERMINANTES REFLEXIONA Y RESUELVE Determinantes de orden 2 Resuelve los siguientes sistemas y calcula el determinante de cada matriz de coeficientes: 2x + y = 29 5x y = 8 a b x y = 5 10x + 6y = 16 4x

Más detalles

Ingeniería de Control I Tema 2. Transformadas

Ingeniería de Control I Tema 2. Transformadas Ingeniería de Control I Tema 2 Transformadas 1 1. Transformadas. Transformación de dominios: 1. Objetivo de la transformación de dominios 2. Representación de señales 3. Series de Fourier 4. Transformada

Más detalles

Tema IV: Series de Fourier

Tema IV: Series de Fourier 29 Tema IV: Series de Fourier 1 Introducción En este tema presentaremos la forma en la MatLab puede ser utilizado para obtener la representación gráfica de una señal periódica que ha sido expresada mediante

Más detalles

Señales y Análisis de Fourier

Señales y Análisis de Fourier 2 Señales y Análisis de Fourier En esta práctica se pretende revisar parte de la materia del tema 2 de la asignatura desde la perspectiva de un entorno de cálculo numérico y simulación por ordenador. El

Más detalles

ESPACIOS VECTORIALES Y APLICACIONES LINEALES

ESPACIOS VECTORIALES Y APLICACIONES LINEALES Departamento de Matemática Aplicada II E.E.I. ÁLGEBRA Y ESTADÍSTICA Boletín n o (010-011 ESPACIOS VECTORIALES Y APLICACIONES LINEALES 1. En el espacio vectorial ordinario R 4 estudiar cuáles de los siguientes

Más detalles

SISTEMAS LINEALES. Tema 3. Análisis y caracterización de sistemas continuos empleando la transformada de Laplace

SISTEMAS LINEALES. Tema 3. Análisis y caracterización de sistemas continuos empleando la transformada de Laplace SISTEMAS LINEALES Tema 3. Análisis y caracterización de sistemas continuos empleando la transformada de Laplace 2 de octubre de 200 F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA 3 Contenidos. Autofunciones

Más detalles

1. Señales continuas o sinusoidales. 2. Cualquier señal (incluyendo continuas o sinusoidales).

1. Señales continuas o sinusoidales. 2. Cualquier señal (incluyendo continuas o sinusoidales). La transformación de Laplace permite tratar cualquier señal en el dominio del tiempo mediante la formulación de dicha señal en el dominio complejo. Alternativamente, la transformación de Fourier expresa

Más detalles

IES Fco Ayala de Granada Junio de 2016 (Modelo 2) Soluciones Germán-Jesús Rubio Luna. Opción A. a g(x)

IES Fco Ayala de Granada Junio de 2016 (Modelo 2) Soluciones Germán-Jesús Rubio Luna. Opción A. a g(x) IES Fco Ayala de Granada Junio de 06 (Modelo ) Soluciones Germán-Jesús Rubio Luna germanjss@gmailcom Opción A Ejercicio opción A, modelo Junio 06 ln( + ) - a sen() + cos(3) ['5 puntos] Sabiendo que lim

Más detalles

Clasificación de ceros de una función y transformada z.

Clasificación de ceros de una función y transformada z. Capítulo 5 Clasificación de ceros de una función y transformada z. 5.1. Polinomio de Taylor El polinomio de Taylor de grado n de f (z) en z = a está definido por: P n (z) = f (a) + f (a) 1! (z a) + f (a)

Más detalles

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes.

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes. Una forma fácil de recordar esta suma (regla de Sarrus): Ejemplos: Tarea: realizar al menos tres ejercicios de cálculo de determinantes de matrices de 2x2 y otros tres de 3x3. PARA DETERMINANTES DE MATRICES

Más detalles

A502 - Teoría de Sistemas y Señales

A502 - Teoría de Sistemas y Señales A50 - Teoría de Sistemas y Señales Transparencias Densidad Espectral de Energía de Señales Aperiódicas Autor: Dr. Juan Carlos Gómez Señales de Potencia Verifican TD: TC: Algunas Definiciones N 1 < P lim

Más detalles

TEST DE DETERMINANTES

TEST DE DETERMINANTES Página 1 de 7 TEST DE DETERMINANTES 1 Si A es una matriz cuadrada de orden 3 con A = -2, a qué es igual -A? A -2 B 2 C 0 D -6 2 A -144 B 44 C 88 D -31 3 Indicar qué igualdad es falsa: A B C D 4 A -54 B

Más detalles

SISTEMAS DE ECUACIONES LINEALES MÉTODO DE LA MATRIZ INVERSA

SISTEMAS DE ECUACIONES LINEALES MÉTODO DE LA MATRIZ INVERSA MÉTODO DE LA MATRIZ INVERSA Índice Presentación... 3 Método de la matriz inversa... 4 Observaciones... 5 Ejemplo I.I... 6 Ejemplo I.II... 7 Ejemplo II... 8 Sistemas compatibles indeterminados... 9 Método

Más detalles

Grado en Ciencias Ambientales. Matemáticas. Curso 10/11.

Grado en Ciencias Ambientales. Matemáticas. Curso 10/11. Grado en Ciencias Ambientales. Matemáticas. Curso 0/. Problemas Tema 2. Matrices y Determinantes. Matrices.. Determinar dos matrices cuadradas de orden 2, X e Y tales que: 2 2X 5Y = 2 ; X + 2Y = 4.2. Calcular

Más detalles

IV. Vibración bajo condiciones forzadas generales

IV. Vibración bajo condiciones forzadas generales Objetivos: 1. Reconocer que existen excitaciones periódicas no harmónicas y no periódicas.. Analizar la respuesta de un sistema de primer y de segundo orden bajo una fuerza periódica general. 3. Analizar

Más detalles

Práctica 6: Diagramas de ojos

Práctica 6: Diagramas de ojos TEORÍA DE LA COMUNICACIÓN 2009/10 EPS-UAM Práctica 6: Diagramas de ojos Apellidos, nombre Apellidos, nombre Grupo Puesto Fecha El objetivo de esta práctica es familiarizar al alumno con los principios

Más detalles

PRÁCTICA No. 2 FORMA POLAR Y EXPONENCIAL DE UN NÚMERO COMPLEJO. Otra forma de expresar un número complejo es la forma polar o forma módulo-argumento,

PRÁCTICA No. 2 FORMA POLAR Y EXPONENCIAL DE UN NÚMERO COMPLEJO. Otra forma de expresar un número complejo es la forma polar o forma módulo-argumento, PRÁCTICA No. 2 FORMA POLAR Y EXPONENCIAL DE UN NÚMERO COMPLEJO OBJETIVO EDUCACIONAL El alumno obtendrá, a través de Octave (o MatLab), la magnitud y al argumento de un número complejo a fin de establecer,

Más detalles

CONTENIDOS. 1. Procesos Estocásticos y de Markov. 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD

CONTENIDOS. 1. Procesos Estocásticos y de Markov. 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD CONTENIDOS 1. Procesos Estocásticos y de Markov 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD 4. Comportamiento Estacionario de las CMTD 1. Procesos Estocásticos

Más detalles

Señales y sistemas, 2 o Curso (tiempo: 4h) Apellidos: Nombre: v(t) = sin(4πt). πt. f(t) = e t2 /(2σ 2),

Señales y sistemas, 2 o Curso (tiempo: 4h) Apellidos: Nombre: v(t) = sin(4πt). πt. f(t) = e t2 /(2σ 2), E.T.S.I.I. y de Telecomunicación, UC Ingeniería de Telecomunicación 13 de septiembre de 2004 Apellidos: Nombre: DNI: Firma: Señales y sistemas, 2 o Curso (tiempo: 4h) P1 P2 P3 P4 P5 T 1. Resuelve los siguientes

Más detalles

1. Clasifica las siguientes cónicas dando su ecuación reducida, centro o vértice y ejes (si es posible): (1.d) x 2 + y 2 + 2x + 1 = 0

1. Clasifica las siguientes cónicas dando su ecuación reducida, centro o vértice y ejes (si es posible): (1.d) x 2 + y 2 + 2x + 1 = 0 Clasificación de cónicas.. Clasifica las siguientes cónicas dando su ecuación reducida, centro o vértice y ejes si es posible:.a x xy + y + x y + 0.b x + xy y 6x + y 0.c x + xy + y x y 0.d x + y + x +

Más detalles

CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 MATRICES

CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 MATRICES CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 Unidades: - Matrices (Bloque Álgebra) - Determinantes (Bloque Álgebra) - Sistemas de ecuaciones lineales (Bloque Álgebra) - Vectores (Bloque

Más detalles

Práctica 9 (19/04/2016)

Práctica 9 (19/04/2016) Series de Fourier Curso 5 6 Prácticas Matlab Cálculo II Objetivos Práctica 9 (9/0/06) Obtener series de Fourier de funciones periódicas. Visualizar gráficamente la aproimación de una función periódica

Más detalles

Problemas de la prueba de acceso a la Universidad. Matemáticas II. Álgebra y Geometría. I. Sistemas de ecuaciones.

Problemas de la prueba de acceso a la Universidad. Matemáticas II. Álgebra y Geometría. I. Sistemas de ecuaciones. Problemas de la prueba de acceso a la Universidad. Matemáticas II. Álgebra y Geometría. Instrucciones: Todas las pruebas de acceso a la universidad contienen las siguientes instrucciones, que serán consideradas

Más detalles

Rango de una matriz. Antes de nada daremos algunas definiciones. Para ello supongamos que tenemos una matriz de orden m n: A M m n.

Rango de una matriz. Antes de nada daremos algunas definiciones. Para ello supongamos que tenemos una matriz de orden m n: A M m n. En un artículo anterior dijimos que el rango de una matriz A, ra), es el número de filas que son linealmente independientes. También se hizo uso del método de Gauss para calcular el rango de una matriz:

Más detalles

PRACTICA 1: GENERACIÓN Y GRAFICACIÓN DE SEÑALES CONTINUAS Y DISCRETAS

PRACTICA 1: GENERACIÓN Y GRAFICACIÓN DE SEÑALES CONTINUAS Y DISCRETAS PRACTICA 1: GENERACIÓN Y GRAFICACIÓN DE SEÑALES CONTINUAS Y DISCRETAS OBJETIVOS 1. Comprender como se simulan señales continuas y discretas en el tiempo usando MATLAB 2. Generar señales exponenciales,

Más detalles

Problemas de Filtros Digitales FIR. VENTANAS

Problemas de Filtros Digitales FIR. VENTANAS Problemas de Filtros Digitales FIR. VENTANAS Síntesis de Filtros Digitales FIR. Ventanas 1.- Se pretende diseñar un filtro FIR de fase lineal tipo II (número de coeficientes par y simetría par en la respuesta

Más detalles

Práctica 4 - Programación en MatLab

Práctica 4 - Programación en MatLab LABORATORIO DE TRANSMISIÓN Práctica 4 - Programación en MatLab Introducción En esta práctica veremos la utilización de diversas órdenes de MatLab, así como el uso de bucles y la creación de funciones y

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

Práctica 1: Imágenes en MATLAB

Práctica 1: Imágenes en MATLAB Práctica 1: Imágenes en MATLAB Apellidos, nombre Apellidos, nombre Grupo Puesto Fecha El objetivo de esta práctica es presentar al alumno las herramientas que ofrece MATLAB para la representación y manejo

Más detalles

Matrices y determinantes. Sistemas de ecuaciones lineales

Matrices y determinantes. Sistemas de ecuaciones lineales Tema 0 Matrices y determinantes Sistemas de ecuaciones lineales 01 Introducción Definición 011 Se llama matriz a un conjunto ordenado de números, dispuestos en filas y columnas, formando un rectángulo

Más detalles

Matrices y Sistemas Lineales

Matrices y Sistemas Lineales Matrices y Sistemas Lineales Álvarez S, Caballero MV y Sánchez M a M salvarez@umes, mvictori@umes, marvega@umes 1 ÍNDICE Matemáticas Cero Índice 1 Definiciones 3 11 Matrices 3 12 Sistemas lineales 5 2

Más detalles

( 1 sesión) Laboratorio de Señales y Comunicaciones (LSC) Curso

( 1 sesión) Laboratorio de Señales y Comunicaciones (LSC) Curso Cuantificación y Codificación PRÁCTICA 6 ( 1 sesión) Laboratorio de Señales y Comunicaciones (LSC) 3 er curso, Ingeniería de Telecomunicación Curso 2005 2006 Javier Ramos López, Fernando Díaz de María,

Más detalles

Taller de Filtros Digitales 2016 Práctica 2

Taller de Filtros Digitales 2016 Práctica 2 Taller de Filtros Digitales 2016 Práctica 2 1. Objetivo Familiarizarse con distintas técnicas de diseño de filtros digitales. 2. FIR - Diseño por ventanas Se desea diseñar un filtro pasabanda de fase lineal

Más detalles

Examen ordinario de Matemáticas E.T.S.I. de Telecomunicación

Examen ordinario de Matemáticas E.T.S.I. de Telecomunicación Examen ordinario de Matemáticas E.T.S.I. de Telecomunicación 27 de Enero de 29 1. Enunciados 1.1. Ejercicio 1 1.1.1. Problema 1. (3 puntos) (1) Calcule C(i,2) (cos z + sin z)/(z 1)n dz, donde C(i, 2) denota

Más detalles

a) Plantear un sistema de ecuaciones para calcular los coeficientes de f y resolverlo usando la descomposición LU de la matriz del sistema.

a) Plantear un sistema de ecuaciones para calcular los coeficientes de f y resolverlo usando la descomposición LU de la matriz del sistema. E.T.S. de Álgebra Numérica 30 de junio de 2006 Se quiere encontrar una función de la forma f(x) = ax 3 + bx + c que pase por los puntos (1, 4), ( 2, 23) y (2, 21). a) Plantear un sistema de ecuaciones

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

Práctica Nº2: Transformada de Fourier y Filtros Espaciales.

Práctica Nº2: Transformada de Fourier y Filtros Espaciales. UIVERSIDAD ACIOAL DE SA JUA DEPARTAETO DE ELECTROICA Y AUTOATICA. CARRERA: BIOIGEIERIA. ASIGATURA: IÁGEES E EDICIA. Práctica º2: Transformada de Fourier y Filtros Espaciales. Objetivos. Aplicar la Transformada

Más detalles

Ejercicios de Matrices, determinantes y sistemas de ecuaciones lineales. Álgebra 2008

Ejercicios de Matrices, determinantes y sistemas de ecuaciones lineales. Álgebra 2008 Ejercicios de Matrices, determinantes sistemas de ecuaciones lineales. Álgebra 8 - Dado el sistema de ecuaciones lineales 5 (a) ['5 puntos] Clasifícalo según los valores del parámetro λ. (b) [ punto] Resuélvelo

Más detalles

Cómo calculo numéricamente el desarrollo en serie de Fourier (DSF) de una función continua usando la FFT?

Cómo calculo numéricamente el desarrollo en serie de Fourier (DSF) de una función continua usando la FFT? Cómo calculo numéricamente el desarrollo en serie de Fourier (DSF) de una función continua usando la FFT? F. J. Fraile Peláez En este documento explico cómo se usa la FFT para calcular el desarrollo en

Más detalles

Temas Avanzados en Procesado de Señales Tratamiento Digital de Señales Visuales

Temas Avanzados en Procesado de Señales Tratamiento Digital de Señales Visuales Temas Avanzados en Procesado de Señales Tratamiento Digital de Señales Visuales Tema 5: Operadores Globales transformadas lineales, transformadas morfológicas gicas José María Martínez Sánchez Escuela

Más detalles

Tema 11.- Autovalores y Autovectores.

Tema 11.- Autovalores y Autovectores. Álgebra 004-005 Ingenieros Industriales Departamento de Matemática Aplicada II Universidad de Sevilla Tema - Autovalores y Autovectores Definición, propiedades e interpretación geométrica La ecuación característica

Más detalles