Señales y Analisis de Fourier

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Señales y Analisis de Fourier"

Transcripción

1 Señales y Analisis de Fourier Señales y Análisis de Fourier En esta práctica se pretende revisar parte de la materia del tema 2 de la asignatura desde la perspectiva de un entorno de cálculo numérico y simulación por ordenador. El objetivo fundamental es familiarizarse con la definición, manipulación y representación de señales en MATLAB. Para ello, en primer lugar, repasaremos y consolidaremos las nociones de MATLAB adquiridas en la práctica anterior; en particular la definición, operación y representación de señales en el dominio del tiempo. Posteriormente, utilizaremos algunas de las funciones que ofrece MATLAB para el Análisis de Fourier así como para la manipulación de señales en los dominios del tiempo y la frecuencia, 1 INTRODUCCIÓN Como ya estudiamos en diversos ejemplos de la práctica anterior, MATLAB es muy utilizado en la definición, manipulación y representación de señales analógicas. Siendo rigurosos, el procedimiento seguido en esos ejemplos no es adecuado para el análisis de señales analógicas; es más, en general, MATLAB no permite analizar señales analógicasi. Esto se debe a que la forma natural de representar una señal en MATLAB es definir una secuencia finita de valores mediante un vector fila. Así, como veremos en el siguiente ejercicio, podemos definir la secuencia de instantes de tiempo equidistantes (intervalo 1 ms) entre 0 y 0.25s. Y del mismo modo, definimos una señal sinusoide como una secuencia de valores. 2 EJERCICIO 1 Genere una secuencia de instantes de tiempo que parta de t=0s y llegue hasta t=0.25s en intervalos de 1ms. Construya una función seno en esa base de tiempo de amplitud 1 y frecuencia 5Hz. Use plot para dibujar la forma de onda. Además, destaque cada punto de la gráfica con *. >> Tinicial=0; % Definimos el tiempo inicial >> Tfinal=0.25; % Definimos el tiempo final >> step=0.001; % Definimos el paso entre instantes de tiempo >> t=tinicial:step:tfinal-step; % Se genera el vector de tiempos

2 >> y=1*sin(5*2*pi*t); % Se genera y >> plot(t,y); hold on; % Dibujamos y >> plot(t,y, * ); % Dibujamos las muestras de y Por tanto, siendo estrictos, en MATLAB toda señal es discreta en tiempo, mientras que en amplitud puede ser discreta (cuantizada) o continua (aunque limitada por la precisión de los tipos numéricos). No obstante, si los intervalos temporales entre valores son suficientemente pequeños y el rango temporal en el que se define la señal es suficientemente amplio, la secuencia de valores empleada para representar la señal y las operaciones realizadas para su análisis proporcionan una buena aproximación a los resultados teóricos. En el caso más simple y frecuente, los valores se toman en instantes equiespaciados, intervalo que no debe confundirse con el periodo de muestreo. De momento, ignoraremos el efecto de la discretización de señales (utilizaremos intervalos de tiempo suficientemente pequeños, de modo que los efectos sean despreciables). Asimismo, la amplitud de las señales está sometida a una discretización que, dada la precisión de los tipos numéricos empleados en MATLAB, podemos ignorar. 3 SEÑALES ESPECIALES. Vamos a ver una posible forma de representar en MATLAB algunas señales analógicas típicas. SEÑAL ESCALÓN % Ejemplo de señal escalon >> f_escalon=[zeros(1,1000),ones(1,1001)]; >> plot(t,f_escalon); SEÑAL PULSO % Ejemplo de señal pulso >> f_pulso=[zeros(1,950),ones(1,101),zeros(1,950)]; >> plot(t,f_pulso); SEÑAL SAMPLING % Ejemplo de señal sampling % Señal sampling nula en t=n*pi, n=1,2,... >> f_sampling=sin(t)./t; >> plot(t,f_sampling); % Señal sinc nula en t=n, n=1,2,...

3 >> f_sinc=sinc(t); >> plot(t,f_sinc); SEÑAL IMPULSO O DELTA DE DIRAC % Ejemplo de señal impulso >> f_impulso=[zeros(1,1000),1,zeros(1,1000)]; >> plot(t,f_impulso); SEÑAL DIENTE DE SIERRA % Ejemplo de señal diente de sierra de periodo 0.1Hz % sawtooth(x,width) señal en diente de sierra con periodo 2*pi para los % elementos del vector x. El parámetro width es un escalar entre% 0 y 1, y describe la fracción del periodo 2*pi en el que ocurre el % máximo. >> width=0.10; >> f_sierra=sawtooth(2*pi*0.1*t,width); >> plot(t,f_sierra); SEÑAL TRIANGULAR % Ejemplo de señal triangular de periodo 0.1Hz % Es un caso particular de señal diente de sierra con width=0.5 >> f_triangular=sawtooth(2*pi*0.1*t,0.5); >> plot(t,f_triangular); SEÑAL EXPONENCIAL % Ejemplo de señal exponencial decreciente % tau: constante de tiempo (RC) >> tau=200e-2; >> f_expon=exp(-t/tau); >> plot(t,f_expon); SEÑAL CUADRADA % Ejemplo de señal cuadrada de frecuencia 0.5Hz % square(x,duty) genera una onda cuadrada de periodo 2*pi con un duty cycle dado >> duty=50; % porcentaje del periodo en el que la señal es positiva >> f_cuadrada=square(2*pi*0.5*t,duty); >> plot(t,f_cuadrada);

4 4 ANÁLISIS DE FOURIER Las series de Fourier permiten describir señales periódicas como una combinación de señales armónicas (sinusoides). Con esta herramienta, podemos analizar una señal periódica en términos de su contenido frecuencial o espectro. Además, nos permite establecer la dualidad entre tiempo y frecuencia, de forma que operaciones realizadas en el dominio del tiempo tienen su dual en el dominio frecuencial. Utilizando operaciones sobre vectores, se pueden calcular fácilmente los coeficientes de Fourier correspondientes a una señal. En el ejercicio 2, se definen el vector n, que contiene los índices de los coeficientes, y el vector cn, que contiene los coeficientes. Los coeficientes cn, son los coeficientes espectrales de la señal. La gráfica de esos coeficientes en función del índice armónico n o de las frecuencias nωo se denomina espectro. Hay dos tipos de gráficos, uno con la magnitud de los coeficientes y otro de la fase. Ambas funciones son discretas en frecuencia. 5 EJERCICIO 2 Escriba un fichero MATLAB que proporcione los coeficientes de Fourier de una señal cuadrada de periodo 0.2s (frecuencia 5Hz) y amplitud igual a 1 V. % Obtener los coeficientes de Fourier para una señal cuadrada de periodo % 0.2s y amplitud 1. clear; % frecuencia de la señal cuadrada (=1/T) f=5; T=1/f; % Indice de los coeficientes n=1:10; % Coeficientes de Fourier cn=2*(cos(n*pi)-1)./(-2*j*n*pi); co=1; subplot(2,1,1); stem(n,abs(cn));

5 ylabel('magnitud de cn'); subplot(2,1,2); stem(n,angle(cn)); ylabel('fase de cn'); xlabel('n'); A partir de la serie de Fourier, es posible reconstruir una señal periódica. Cuanto mayor sea el número de armónicos utilizado en el desarrollo en serie, mejor será la reconstrucción. Un parámetro importante en la reconstrucción de señales es la velocidad de convergencia, o lo que es lo mismo, la velocidad con la que los coeficientes de Fourier tienden a 0. 6 EJERCICIO 3 Escriba un fichero en MATLAB para dibujar n armónicos de una señal cuadrada de periodo 0.2s y amplitud 1. % Desarrollo en serie de Fourier de una señal cuadrada de periodo 0.2s y amplitud 1 clear; % frecuencia de la señal cuadrada (=1/T) f=5; T=1/f; % Indice de los coeficientes n=1:10; % Generamos la serie de Fourier t=-1:0.01:1; % vector de tiempos for i=1:50 for k=1:size(t,2) s(i,k)=(2*(1-cos(pi*i))/(pi*i))*sin(2*pi*i*f*t(k)); end end for k=1:size(t,2) st(k)=sum(s(:,k)); end st(1)=st(1)+1;

6 plot(t,st,'r'); hold on; % Señal cuadrada original f_cuadrada=square(2*pi*f*t,50); plot(t,f_cuadrada); xlabel( tiempo ); ylabel( Amplitud ); MATLAB está equipado con funciones especiales que nos van a permitir realizar un análisis de Fourier de funciones definidas por un conjunto de valores discretos. Por ejemplo, el comando fft() nos permite obtener la transformada rápida de Fourier (fast Fourier Transform) de una secuencia de números definida por el vector x. Por ejemplo: >> X=fft(x); donde X es un vector de números complejos ordenados desde k=0...n-1. Si queremos que sea más eficiente en el cálculo de la fft, la longitud del vector x deberá ser una potencia de 2. Podemos rellenar de ceros el vector x para que tenga la longitud apropiada. Esto se consigue automáticamente haciendo: >> X=fft(x,N); donde N es exponente de 2. Mientras más largo sea x, más fina será la escala para la fft. Debido a un fenómeno de plegamiento del espectro, sólo la primera mitad de los puntos obtenidos son de utilidad. La función fftshift() reordena el vector X en orden creciente de frecuencia. Si X es el vector resultante de hacer una fft, utilizando esta función reordenamos los puntos en función de la frecuencia. >> X=fftshift(X); 7 EJERCICIO 4 Obtenga la transformada de Fourier de una señal exponencial modulada en amplitud con una frecuencia de portadora de 200Hz, x(t)=exp(- 2 t) sin(2 pi 200 t). % Ejemplo de una fft de una señal exponencial modulada en amplitud % con una frecuencia portadora de 200Hz. % Definicion de la señal t=-0.25:0.001:0.25; x=exp(-2*t).*sin(2*pi*200*t); % Representacion en el tiempo subplot(3,1,1); plot(t,x); title('x(t)=exp(-2t) sin(2 pi 200 t)');

7 xlabel('tiempo (t)');ylabel('x(t)'); % Transformada de Fourier X=fftshift(fft(x)); % Magnitud y fase de la transformada Xm=abs(X); Xf=unwrap(angle(X))*180/pi; % Base de frecuencias delta_t = t(2)-t(1); f = ((1:length(t)) - ceil(length(t)/2)) / length(t) / delta_t; % Representacion en frecuencia subplot(3,1,2); plot(f,xm,'r'); title('módulo de transformada de Fourier de x(t)'); xlabel('frecuencia (Hz)');ylabel(' X(jw) '); subplot(3,1,3); plot(f,xf,'r');zoom; title('fase de la transformada de Fourier de x(t)'); xlabel('frecuencia (Hz)'); ylabel('fase X(jw)'); A partir de la transformada de Fourier, es posible reconstruir la señal en el dominio del tiempo. El comando ifft() sirve para obtener la transformada inversa de Fourier de una serie de números complejos: >> x=ifft(x); 8 EJERCICIO 5 Obtenga la transformada de Fourier de una señal exponencial modulada en amplitud, x(t)=exp(-2 t) sin(2 pi 3 t). Realice la transformada inversa y obtenga la señal en el tiempo a partir de su transformada. % Ejemplo de una fft de una señal exponencial modulada en amplitud

8 % Obtención de la señal en el tiempo a partir de su transformada % Definicion de la señal t=-0.25:0.001:0.25; x=exp(-2*t).*sin(2*pi*3*t); % Representacion en el tiempo figure(1); plot(t,x); title('x(t)=exp(-2t) sin(2 pi 200 t)'); xlabel('tiempo (t)'); ylabel('x(t)'); % Transformada y representacion en frecuencia Xt=fft(x); X=fftshift(Xt); % Magnitud y fase de la transformada Xm=abs(X); Xf=unwrap(angle(X))*180/pi; % Base de frecuencias delta_t = t(2)-t(1); f = ((1:length(t)) - ceil(length(t)/2)) / length(t) / delta_t; figure(2); subplot(2,1,1); plot(f,xm,'r');zoom; title('módulo de transformada de Fourier de x(t)'); xlabel('frecuencia (Hz)');ylabel(' X(jw) '); subplot(2,1,2); plot(f,xf,'r');zoom; title('fase de la transformada de Fourier de x(t)'); xlabel('frecuencia (Hz)');ylabel('fase X(jw)'); % Obtener la señal en el dominio del tiempo a partir de su transformada xrec=ifft(xt);

9 figure(3); plot(t,xrec); title('transformada inversa') xlabel('tiempo (t)'); ylabel('xrec(t)'); 9 PRODUCTO DE CONVOLUCIÓN La convolución es una potente herramienta matemática utilizada en el procesado de señales. Aunque en general se define como un operador que permite determinar la respuesta de un sistema lineal, invariante en el tiempo ante una determinada entrada, también se puede aplicar a dos señales arbitrarias. La convolución de f y g se denota por f*g y se define como la integral del producto de ambas funciones después de que una sea invertida y desplazada. En MATLAB contamos con la función conv() que realiza la la convolución de los vectores x y h. El vector resultante tiene un tamaño igual a length(x)+length(h)-1. >> y=conv(x,h); 10 EJERCICIO 6 Genere un fichero MATLAB donde realice la convolución de una señal coseno de frecuencia 100Hz y una señal escalón. Compruebe que se verifican las propiedades de la transformada de Fourier respecto al producto de convolución. % Ejemplo de una fft de una señal exponencial modulada en amplitud % Obtención de la señal en el tiempo a partir de su transformada % Definicion de las señales t = -pi:0.001:pi; g_escalon=[zeros(1,1000*pi+1), ones(1,1000*pi+1)]; w = 2*pi; g = cos(w*100*t); g_conv = conv(g,g_escalon); figure(1); subplot(3,1,1); plot(t,g_escalon);

10 title('señal ESCALON'); xlabel('tiempo (t)'); ylabel('e(t)'); subplot(3,1,2); plot(t,g); title('cos(2 pi t)'); xlabel('tiempo (t)');ylabel('cos(2*pi*100*t)'); % Convolucion g_conv = conv(g,g_escalon); subplot(3,1,3); plot(t,g_conv(1:length(g)),'r') title('convolucion'); xlabel('tiempo (t)');

Señales y Análisis de Fourier

Señales y Análisis de Fourier 2 Señales y Análisis de Fourier En esta práctica se pretende revisar parte de la materia del tema 2 de la asignatura desde la perspectiva de un entorno de cálculo numérico y simulación por ordenador. El

Más detalles

Práctica 1: Señales y análisis de Fourier

Práctica 1: Señales y análisis de Fourier Física de las Comunicaciones 2006/2007 Práctica 1 1 Práctica 1: Señales y análisis de Fourier 1. Objetivo y contenido En esta práctica pretendemos revisar parte de la materia del tema 2 de la asignatura

Más detalles

Señales: Tiempo y Frecuencia PRÁCTICA 1

Señales: Tiempo y Frecuencia PRÁCTICA 1 Señales: Tiempo y Frecuencia PRÁCTICA 1 (1 sesión) Laboratorio de Señales y Comunicaciones PRÁCTICA 1 Señales: Tiempo y Frecuencia 1. Objetivo El objetivo de esta primera práctica es revisar: las principales

Más detalles

Señales y Sistemas. Señales y Clasificación Sistemas y Clasificación Respuesta al impulso de los sistemas. 5º Curso-Tratamiento Digital de Señal

Señales y Sistemas. Señales y Clasificación Sistemas y Clasificación Respuesta al impulso de los sistemas. 5º Curso-Tratamiento Digital de Señal Señales y Sistemas Señales y Clasificación Sistemas y Clasificación Respuesta al impulso de los sistemas Señales El procesamiento de señales es el objeto de la asignatura, así que no vendría mal comentar

Más detalles

Taller de Filtros Digitales 2016 Práctica 1

Taller de Filtros Digitales 2016 Práctica 1 Taller de Filtros Digitales 2016 Práctica 1 1. Objetivo El objetivo de esta práctica es la familiarización con el tratamiento digital de señales: Generación y visualización de señales digitales. Convolución

Más detalles

PROCESAMIENTO DIGITAL DE SEÑALES

PROCESAMIENTO DIGITAL DE SEÑALES BIBLIOGRAFÍA PROCESAMIENTO DIGITAL DE SEÑALES 1. Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice Hall, 1989. 2. Parks, T.W., and C.S. Burrus. Digital

Más detalles

TRANSMISIÓN DIGITAL PRÁCTICA 1

TRANSMISIÓN DIGITAL PRÁCTICA 1 TRANSMISIÓN DIGITAL PRÁCTICA Curso 7-8 Transmisión Digital Práctica Introducción Esta primera práctica trata de familiarizar al alumno con el lenguaje de programación Matlab, permitiéndole afrontar materias

Más detalles

Capítulo 2 Análisis espectral de señales

Capítulo 2 Análisis espectral de señales Capítulo 2 Análisis espectral de señales Objetivos 1. Se pretende que el alumno repase las herramientas necesarias para el análisis espectral de señales. 2. Que el alumno comprenda el concepto de espectro

Más detalles

2º INGENIERÍA INDUSTRIAL TEORÍA DE CIRCUITOS Y SISTEMAS

2º INGENIERÍA INDUSTRIAL TEORÍA DE CIRCUITOS Y SISTEMAS º INGENIERÍA INDUSTRIAL TEORÍA DE CIRCUITOS Y SISTEMAS PRÁCTICA 7 SISTEMAS. UTILIDADES MATLAB. TRANSFORMADAS Y ANTITRANSFORMADAS Matlab permite obtener transformadas y antitransformadas de Fourier, Laplace

Más detalles

Transformada Discreta de Fourier.

Transformada Discreta de Fourier. Transformada Discreta de Fourier. Hasta ahora se ha visto Importancia de la respuesta en frecuencia de un sistema Transformada de Fourier de una señal discreta Tenemos otra forma de caracterizar los sistemas

Más detalles

Análisis espectral de señales periódicas con FFT

Análisis espectral de señales periódicas con FFT Análisis espectral de señales periódicas con FFT 1 Contenido 7.1 Introducción a la Transformada Discreta de Fourier 3-3 7.2 Uso de la Transformada Discreta de Fourier 3-5 7.3 Método de uso de la FFT 3-8

Más detalles

1. Señales y sistemas Sistemas lineales e invariantes en el tiempo (SLI) 13.5

1. Señales y sistemas Sistemas lineales e invariantes en el tiempo (SLI) 13.5 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO ANÁLISIS DE SISTEMAS Y SEÑALES 1418 4 09 Asignatura Clave Semestre Créditos Ingeniería Eléctrica Ingeniería de Control

Más detalles

Cursada Segundo Cuatrimestre 2012 Guía de Trabajos Prácticos Nro. 1

Cursada Segundo Cuatrimestre 2012 Guía de Trabajos Prácticos Nro. 1 Temas: Ambiente de trabajo MATLAB. Creación de matrices y vectores. Matrices pre-definidas. Operador dos puntos. Operaciones con matrices y vectores. Direccionamiento de elementos de matrices y vectores.

Más detalles

Práctica 2: Periodicidad

Práctica 2: Periodicidad Práctica 2: Periodicidad Apellidos, nombre Apellidos, nombre Grupo Puesto Fecha El objetivo de esta práctica es explorar las utilidades de representación gráfica de MATLAB para observar las especiales

Más detalles

TEORÍA DE SISTEMAS PRÁCTICA 7 SISTEMAS. SISTEMAS DISCRETOS Y MUESTREADOS 1. INTRODUCCIÓN DE SISTEMAS DISCRETOS EN SIMULINK

TEORÍA DE SISTEMAS PRÁCTICA 7 SISTEMAS. SISTEMAS DISCRETOS Y MUESTREADOS 1. INTRODUCCIÓN DE SISTEMAS DISCRETOS EN SIMULINK TEORÍA DE SISTEMAS PRÁCTICA 7 SISTEMAS. SISTEMAS DISCRETOS Y MUESTREADOS OBJETIVOS DE LA PRÁCTICA Estudiar las funciones disponibles en Matlab y Simulink para el modelado y simulación de sistemas discretos

Más detalles

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy).

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy). UNIDAD II: VECTORES EN DOS Y TRES DIMENSIONES Un espacio vectorial (o espacio lineal) es el objeto básico de estudio en la rama de la matemática llamada álgebra lineal. A los elementos de los espacios

Más detalles

1. Modelos Matemáticos y Experimentales 1

1. Modelos Matemáticos y Experimentales 1 . Modelos Matemáticos y Experimentales. Modelos Matemáticos y Experimentales.. Definición.. Tipos de Procesos.3. Tipos de Modelos 3.4. Transformada de Laplace 4.5. Función de Transferencia 7.6. Función

Más detalles

Tema Contenido Contenidos Mínimos

Tema Contenido Contenidos Mínimos 1 Estadística unidimensional - Variable estadística. - Tipos de variables estadísticas: cualitativas, cuantitativas discretas y cuantitativas continuas. - Variable cualitativa. Distribución de frecuencias.

Más detalles

Transformada Discreta de Fourier (DFT)

Transformada Discreta de Fourier (DFT) Transformada Discreta de Fourier (DFT) Transformada Discreta de Fourier FFT (Fast Fourier Transform) Transformada Discreta de Fourier Antes de definir la DFT, analizaremos primero la Transformada de Fourier

Más detalles

Mapa Curricular: Funciones y Modelos

Mapa Curricular: Funciones y Modelos A.PR.11.2.1 Determina el dominio y el alcance de las funciones a partir de sus diferentes representaciones. A.PR.11.2.2 Identifica y aplica las relaciones entre los puntos importantes de una función (ceros,

Más detalles

Asignatura: SISTEMAS LINEALES. Horas/Semana:4 Teoría + 0 Laboratorio. Objetivos

Asignatura: SISTEMAS LINEALES. Horas/Semana:4 Teoría + 0 Laboratorio. Objetivos Asignatura: SISTEMAS LINEALES Curso académico: 2007/2008 Código: 590000804 Créditos: 6 Curso: 2 Horas/Semana:4 Teoría + 0 Laboratorio Departamento: ICS Objetivos 1() Para todas las titulaciones OBJETIVOS

Más detalles

2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO. Una señal puede ser definida como una portadora física de información. Por ejemplo,

2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO. Una señal puede ser definida como una portadora física de información. Por ejemplo, 2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO Una señal puede ser definida como una portadora física de información. Por ejemplo, las señales de audio son variaciones en la presión del aire llevando consigo

Más detalles

Asignatura: SISTEMAS LINEALES. Horas/Semana:4 Teoría + 0 Laboratorio. Objetivos. Programa

Asignatura: SISTEMAS LINEALES. Horas/Semana:4 Teoría + 0 Laboratorio. Objetivos. Programa Asignatura: SISTEMAS LINEALES Curso académico: 2012/2013 Código: 590000628 Créditos: 6 Curso: 2 Horas/Semana:4 Teoría + 0 Laboratorio Departamento: ICS Objetivos 1() Para todas las titulaciones OBJETIVOS

Más detalles

Comunicaciones I. Capítulo 4 CODIFICACIÓN Y MODULACIÓN

Comunicaciones I. Capítulo 4 CODIFICACIÓN Y MODULACIÓN Comunicaciones I Capítulo 4 CODIFICACIÓN Y MODULACIÓN 1 Resumen de lo visto en el Capítulo 4 Se analizó la diferencia entre datos analógicos y digitales, y entre señales analógicas y digitales. A partir

Más detalles

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico.

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. Tema 1: Matrices El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. 1. Terminología Comenzamos con la definición de matriz

Más detalles

Sistemas Lineales e Invariantes PRÁCTICA 2

Sistemas Lineales e Invariantes PRÁCTICA 2 Sistemas Lineales e Invariantes PRÁCTICA 2 (1 sesión) Laboratorio de Señales y Comunicaciones PRÁCTICA 2 Sistemas Lineales e Invariantes 1. Objetivo Los objetivos de esta práctica son: Revisar los sistemas

Más detalles

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y). TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:

Más detalles

ELECTIVA I PROGRAMA DE FISICA Departamento de Física y Geología Universidad de Pamplona Marzo de 2010 NESTOR A. ARIAS HERNANDEZ - UNIPAMPLONA

ELECTIVA I PROGRAMA DE FISICA Departamento de Física y Geología Universidad de Pamplona Marzo de 2010 NESTOR A. ARIAS HERNANDEZ - UNIPAMPLONA ELECTIVA I PROGRAMA DE FISICA Departamento de Física y Geología Universidad de Pamplona Marzo de 2010 PDS Señal Analoga Señal Digital Estabilidad y Repetibilidad condiciones externa) Inmunidad al ruido

Más detalles

LABORATORIO DE SEÑALES Y SISTEMAS PRACTICA 1

LABORATORIO DE SEÑALES Y SISTEMAS PRACTICA 1 LABORATORIO DE SEÑALES Y SISTEMAS PRACTICA CURSO 005-006 PRÁCTICA SEÑALES Y SISTEMAS CONTINUOS Las presente practica trata distintos aspectos de las señales y los sistemas en tiempo continuo. Los diferentes

Más detalles

PROCESAMIENTO DIGITAL DE SEÑALES PRACTICAS MATLAB/LABVIEW

PROCESAMIENTO DIGITAL DE SEÑALES PRACTICAS MATLAB/LABVIEW PROCESAMIENTO DIGITAL DE SEÑALES PRACTICAS MATLAB/LABVIEW DR. DANIEL U. CAMPOS DELGADO PROFESOR-INVESTIGADOR FACULTAD DE CIENCIAS UASLP Noviembre, 2007 I. Procesamiento Digital en MATLAB (Diseño Filtros

Más detalles

Redes y Comunicaciones

Redes y Comunicaciones Departamento de Sistemas de Comunicación y Control Redes y Comunicaciones Solucionario Tema 3: Datos y señales Tema 3: Datos y señales Resumen La información se debe transformar en señales electromagnéticas

Más detalles

Ondas. Vasili Kandinsky: Puntos, oleo, 110 x 91,8 cm, 1920

Ondas. Vasili Kandinsky: Puntos, oleo, 110 x 91,8 cm, 1920 Ondas Vasili Kandinsky: Puntos, oleo, 110 x 91,8 cm, 1920 Este documento contiene material multimedia. Requiere Adobe Reader 7.1 o superior para poder ejecutarlo. Las animaciones fueron realizadas por

Más detalles

Sistemas Lineales. Examen de Septiembre Soluciones

Sistemas Lineales. Examen de Septiembre Soluciones Sistemas Lineales Examen de Septiembre 25. Soluciones. (2.5 pt.) La señal y(t) [sinc( t)] 4 puede escribirse como y(t) [sinc( t)] 4 [ ] sin(o πt) 4 o πt [ sin(o πt) ] 4 4 πt 4 [y (t)] 4 4 y (t) y (t) y

Más detalles

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares

Más detalles

ECUACIÓN DE OSCILACIONES. Tomado del texto de Ecuaciones Diferenciales de los Profesores. Norman Mercado. Luis Ignacio Ordoñéz

ECUACIÓN DE OSCILACIONES. Tomado del texto de Ecuaciones Diferenciales de los Profesores. Norman Mercado. Luis Ignacio Ordoñéz ECUACIÓN DE OSCILACIONES Tomado del texto de Ecuaciones Diferenciales de los Profesores Norman Mercado Luis Ignacio Ordoñéz Muchos de los sistemas de ingeniería están regidos por una ecuación diferencial

Más detalles

Concepto y Definición de Convolución

Concepto y Definición de Convolución Convolución Concepto y Definición de Convolución Propiedades Correlación y Autocorrelación Convolución Discreta 1 Concepto y Definición de Convolución Mediante la convolución calcularemos la respuesta

Más detalles

PRÁCTICA No. 2 FORMA POLAR Y EXPONENCIAL DE UN NÚMERO COMPLEJO. Otra forma de expresar un número complejo es la forma polar o forma módulo-argumento,

PRÁCTICA No. 2 FORMA POLAR Y EXPONENCIAL DE UN NÚMERO COMPLEJO. Otra forma de expresar un número complejo es la forma polar o forma módulo-argumento, PRÁCTICA No. 2 FORMA POLAR Y EXPONENCIAL DE UN NÚMERO COMPLEJO OBJETIVO EDUCACIONAL El alumno obtendrá, a través de Octave (o MatLab), la magnitud y al argumento de un número complejo a fin de establecer,

Más detalles

Matlab para Análisis Dinámico de Sistemas

Matlab para Análisis Dinámico de Sistemas Matlab para Análisis Dinámico de Sistemas Análisis Dinámico de Sistemas, curso 26-7 7 de noviembre de 26 1. Introducción Para usar las funciones aquí mencionadas se necesita Matlab con el paquete de Control

Más detalles

13. Utilizar la fórmula del término general y de la suma de n términos consecutivos

13. Utilizar la fórmula del término general y de la suma de n términos consecutivos Contenidos mínimos 3º ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Utilizar las reglas de jerarquía de paréntesis y operaciones, para efectuar cálculos con números racionales, expresados en forma

Más detalles

Tema 4. Proceso de Muestreo

Tema 4. Proceso de Muestreo Ingeniería de Control Tema 4. Proceso de Muestreo Daniel Rodríguez Ramírez Teodoro Alamo Cantarero Contextualización del tema Conocimientos que se adquieren en este tema: Conocer el proceso de muestreo

Más detalles

Bloque 1. Contenidos comunes. (Total: 3 sesiones)

Bloque 1. Contenidos comunes. (Total: 3 sesiones) 4º E.S.O. OPCIÓN A 1.1.1 Contenidos 1.1.1.1 Bloque 1. Contenidos comunes. (Total: 3 sesiones) Planificación y utilización de procesos de razonamiento y estrategias de resolución de problemas, tales como

Más detalles

La función, definida para toda, es periódica si existe un número positivo tal que

La función, definida para toda, es periódica si existe un número positivo tal que Métodos con series de Fourier Definición: Función periódica La función, definida para toda, es periódica si existe un número positivo tal que para toda. El número en un periodo de la función. Si existe

Más detalles

Última modificación: 1 de julio de

Última modificación: 1 de julio de Contenido SEÑALES DIGITALES Y CAPACIDAD DE CANAL 1.- Señales digitales de 2 y más niveles. 2.- Tasa de bit e intervalo de bit. 3.- Ancho de banda de una señal digital. 4.- Límites en la tasa de transmisión.

Más detalles

Trabajo opcional tema 4: modulación

Trabajo opcional tema 4: modulación Trabajo opcional tema 4: modulación Alberto Mateos Checa I. Telecomunicación 2 Trabajo opcional tema 4: modulación angular ÍNDICE DE CONTENIDOS: 1. Introducción.... 3 2. Diseño.... 3 2.1. Sistema completo....

Más detalles

PRÁCTICAS DE REGULACIÓN AUTOMÁTICA

PRÁCTICAS DE REGULACIÓN AUTOMÁTICA PRÁCTICAS DE REGULACIÓN AUTOMÁTICA Dpto. Ing. Sistemas y Automática Universidad de Sevilla Manuel López Martínez Análisis y Control de Sistemas usando MATLAB 1.1. Introducción En lo que sigue, se va a

Más detalles

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones.

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones. TEMA 1: MATRICES Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

PROGRAMA DE ESTUDIO. Práctica. Práctica ( ) Semestre recomendado: 8º. Requisitos curriculares: Sistemas Digitales 2

PROGRAMA DE ESTUDIO. Práctica. Práctica ( ) Semestre recomendado: 8º. Requisitos curriculares: Sistemas Digitales 2 PROGRAMA DE ESTUDIO Nombre de la asignatura: PROCESAMIENTO DIGITAL DE SEÑALES Clave: IEE25 Fecha de elaboración: marzo 2015 Horas Semestre Horas semana Horas de Teoría Ciclo Formativo: Básico ( ) Profesional

Más detalles

Representación y aplicaciones de las funciones tipo

Representación y aplicaciones de las funciones tipo Representación y aplicaciones de las funciones tipo Actividad Interdisciplinar Córdoba, junio de 2009 1 de 10 1. Introducción En este trabajo vamos a ver la forma de representar funciones matemáticas con

Más detalles

1. Los números reales. 2. Representación. 3. Densidad de los números racionales. 4. Propiedades de los números reales

1. Los números reales. 2. Representación. 3. Densidad de los números racionales. 4. Propiedades de los números reales EJES ARTICULADORES Y PRODUCTIVOS DEL AREA SISTEMA DE CONOCIMIENTOS GRADO: 10 11 1. Los números reales 1. Desigualdades. 2. Representación 2. Propiedades. 3. Densidad de los números racionales 4. Propiedades

Más detalles

FUNCIONES REALES 1º DE BACHILLERATO CURSO

FUNCIONES REALES 1º DE BACHILLERATO CURSO FUNCIONES REALES 1º DE BACHILLERATO CURSO 2007-2008 Funciones reales Definición Clasificación Igual de funciones Dominio Propiedades Monotonía Extremos relativos Acotación. Extremos absolutos Simetría

Más detalles

Trabajo opcional tema 3: modulación lineal

Trabajo opcional tema 3: modulación lineal Trabajo opcional tema 3: modulación lineal Alberto Mateos Checa I. Telecomunicación 2 Trabajo opcional tema 3: modulación lineal ÍNDICE DE CONTENIDOS: 1. Introducción.... 3 2. Diseño.... 3 2.1. Sistema

Más detalles

Propiedades de los sistemas (con ecuaciones)

Propiedades de los sistemas (con ecuaciones) Propiedades de los sistemas (con ecuaciones) Linealidad: Para verificar si un sistema es lineal requerimos que le sistema sea homogéneo y aditivo es decir, cumplir con la superposición. Método: Dada una

Más detalles

Tema: Uso del analizador espectral.

Tema: Uso del analizador espectral. Sistemas de Comunicación I. Guía 1 1 I Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de comunicación Tema: Uso del analizador espectral. Objetivos Conocer el funcionamiento de un Analizador

Más detalles

Práctica 3. Sistemas Lineales Invariantes con el Tiempo

Práctica 3. Sistemas Lineales Invariantes con el Tiempo Universidad Carlos III de Madrid Departamento de Teoría de la Señal y Comunicaciones LABORATORIO DE SISTEMAS Y CIRCUITOS CURSO 2003/2004 Práctica 3. Sistemas Lineales Invariantes con el Tiempo 12 de diciembre

Más detalles

apuntes señales SEÑALES Y SISTEMAS 1.- Representar convenientemente a la señal de entrada x 3.- Obtener la salida usando el método mas apropiado

apuntes señales SEÑALES Y SISTEMAS 1.- Representar convenientemente a la señal de entrada x 3.- Obtener la salida usando el método mas apropiado SEÑALES Y SISTEMAS 2.1.-INTRODUCCION: Tal y como se dijo anteriormente, los sistemas de comunicación eléctrica son los que han tenido más éxito debido a que logran la mayor eficiencia al transmitir mas

Más detalles

MATRICES. Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

MATRICES. Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. MATRICES Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

Lección 1.- Ecuaciones Diferenciales de Primer Orden

Lección 1.- Ecuaciones Diferenciales de Primer Orden Métodos Matemáticos de la Ingeniería Química. 009 0. Lección.- Ecuaciones Diferenciales de Primer Orden - Sección.: al. - Sección.: c, a, 3, 5, 7, 9,, 4 y. - Sección.3: y 3. - Sección.4:, 3, 5 y 5. - Sección.5:,

Más detalles

Fundamentos de Estadística y Simulación Básica

Fundamentos de Estadística y Simulación Básica Fundamentos de Estadística y Simulación Básica TEMA 2 Estadística Descriptiva Clasificación de Variables Escalas de Medición Gráficos Tabla de frecuencias Medidas de Tendencia Central Medidas de Dispersión

Más detalles

Unidad 3. Técnicas de Modulación

Unidad 3. Técnicas de Modulación Unidad 3. 3.1 Modulación de Onda Continua. 3.2 Modulación por Pulsos. 1 Antes de transmitir una señal con información a través de un canal de comunicación se aplica algun tipo de modulación. Esta operación

Más detalles

Última modificación: 1 de septiembre de

Última modificación: 1 de septiembre de Contenido 1.- Analógico y digital. DATOS Y SEÑALES 2.- Señales analógicas periódicas. 3.- Señales compuestas. 4.- Señales digitales. Objetivo.- Al finalizar el tema, el estudiante será capaz de usar representaciones

Más detalles

Mapa Curricular: Funciones y Modelos

Mapa Curricular: Funciones y Modelos A.PR.11.2.1 Determina el dominio y el alcance de las funciones a partir de sus diferentes representaciones. A.PR.11.2.2 Identifica y aplica las relaciones entre los puntos importantes de una función (ceros,

Más detalles

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones. Robótica Industrial. Universidad de Granada

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones. Robótica Industrial. Universidad de Granada Dpt. Teoría de la Señal, Telemática y Comunicaciones Robótica Industrial Universidad de Granada Tema 5: Análisis y Diseño de Sistemas de Control para Robots S.0 S.1 Introducción Sistemas Realimentados

Más detalles

Teoría de Sistemas y Señales

Teoría de Sistemas y Señales Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica Teoría de Sistemas y Señales Trabajo Práctico Nº 3 Análisis Frecuencial de Señales

Más detalles

SIMULACIÓN DE LA MODULACIÓN POR AMPLITUD DE PULSOS (PAM) EN MATLAB

SIMULACIÓN DE LA MODULACIÓN POR AMPLITUD DE PULSOS (PAM) EN MATLAB SIMULACIÓN DE LA MODULACIÓN POR AMPLITUD DE PULSOS (PAM) EN MATLAB 1. OBJETIVOS: General: o Implementar en simulink un sistema de bloques que permita simular Modulación por Amplitud de Pulsos (PAM), a

Más detalles

AUDIO DIGITAL. Diego Cabello Ferrer Dpto. Electrónica y Computación Universidad de Santiago de Compostela

AUDIO DIGITAL. Diego Cabello Ferrer Dpto. Electrónica y Computación Universidad de Santiago de Compostela AUDIO DIGITAL Diego Cabello Ferrer Dpto. Electrónica y Computación Universidad de Santiago de Compostela 1. Introducción Señal de audio: onda mecánica Transductor: señal eléctrica Las variables físicas

Más detalles

TEMA I.4. Descripción Matemática de una Onda. Dr. Juan Pablo Torres-Papaqui

TEMA I.4. Descripción Matemática de una Onda. Dr. Juan Pablo Torres-Papaqui TEMA I.4 Descripción Matemática de una Onda Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas,

Más detalles

Series de Fourier y Transformada de Fourier

Series de Fourier y Transformada de Fourier 2.5.-Series de Fourier.nb 174 Series de Fourier y Transformada de Fourier Series de Fourier Función Escalón Unidad La función escalón unidad, UnitStep[x] se define igual a la unidad cuando x es mayor que

Más detalles

Matemáticas para estudiantes de Química

Matemáticas para estudiantes de Química Matemáticas para estudiantes de Química PROYECTO EDITORIAL BIBLIOTECA DE QUÍMICAS Director: Carlos Seoane Prado Catedrático de Química Orgánica Universidad Complutense de Madrid Matemáticas para estudiantes

Más detalles

Contenidos mínimos 1º ES0. 1. Contenidos. Bloque I: Aritmética y álgebra.

Contenidos mínimos 1º ES0. 1. Contenidos. Bloque I: Aritmética y álgebra. Contenidos mínimos 1º ES0. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Resolver expresiones con números naturales con paréntesis y operaciones combinadas. 2. Reducir expresiones aritméticas y algebraicas

Más detalles

Ecuaciones en Derivadas Parciales y Análisis Numérico. Prácticas

Ecuaciones en Derivadas Parciales y Análisis Numérico. Prácticas Ecuaciones en Derivadas Parciales y Análisis Numérico Prácticas Capítulo 2. Ecuaciones diferenciales ordinarias (EDOs). 2.1 Resolución de una ecuación diferencial ordinaria. Vamos a resolver numéricamente

Más detalles

TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 1º E.S.O. TEMA 08: Funciones. TEMA 08: FUNCIONES. 1. Correspondencia.

Más detalles

Ecuaciones Diferenciales Tema 4. Series de Fourier

Ecuaciones Diferenciales Tema 4. Series de Fourier Ecuaciones Diferenciales Ester Simó Mezquita Matemática Aplicada IV 1 1. Funciones periódicas 2. Serie de Fourier de una función periódica 3. Convergencia. Teorema de Dirichlet. Fenómeno de Gibbs 4. Forma

Más detalles

FORMACIÓN Y PROCESADO ÓPTICO DE IMÁGENES

FORMACIÓN Y PROCESADO ÓPTICO DE IMÁGENES FORMACIÓN Y PROCESADO ÓPTICO DE IMÁGENES Autor. Moisés Valenzuela Gutiérrez. 2009. Moisés Valenzuela Gutiérrez Portada diseño: Celeste Ortega (HUwww.cedeceleste.comUH) Edición cortesía de HUwww.publicatuslibros.comUH.

Más detalles

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x Funciones. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable real. "Es toda correspondencia, f, entre un subconjunto D de números reales y R (o una parte de R), con la condición de que

Más detalles

Curso de Inducción de Matemáticas

Curso de Inducción de Matemáticas Curso de Inducción de Matemáticas CAPÍTULO 1 Funciones y sus gráficas M.I. ISIDRO I. LÁZARO CASTILLO Programa del Curso 1. Funciones y sus gráficas. 2. Límites. 3. Cálculo Analítico de Límites. 4. Derivación.

Más detalles

PRÁCTICA No. 2 FORMA POLAR DE UN NUMERO COMPLEJO. Otra forma de expresar un número complejo es la forma polar o forma módulo-argumento,

PRÁCTICA No. 2 FORMA POLAR DE UN NUMERO COMPLEJO. Otra forma de expresar un número complejo es la forma polar o forma módulo-argumento, OBJETIVO EDUCACIONAL PRÁCTICA No. 2 FORMA POLAR DE UN NUMERO COMPLEJO Resolver problemas de aplicación e interpretar las soluciones utilizando matrices y sistemas de ecuaciones lineales para las diferentes

Más detalles

3.º ESO. Matemáticas orientadas a las enseñanzas aplicadas

3.º ESO. Matemáticas orientadas a las enseñanzas aplicadas 3.º ESO. Matemáticas orientadas a las enseñanzas aplicadas BLOQUE DE APRENDIZAJE I: PROCESOS, MÉTODOS Y ACTITUDES EN MATEMÁTICAS 1. Identificar, formular y resolver problemas numéricos, geométricos, funcionales

Más detalles

Práctica IV: La transformada Discreta/Rápida de Fourier.

Práctica IV: La transformada Discreta/Rápida de Fourier. AMPLIACIÓ DE MATEMÁTICAS (2 o Ing. de Telecomunicación) Departamento de Matemática Aplicada II. Universidad de Sevilla CURSO ACADÉMICO 2008-2009 Práctica IV: La transformada Discreta/Rápida de Fourier.

Más detalles

Conversión Analógica a Digital

Conversión Analógica a Digital Índice Conversión analógica a digital Señales básicas de tiempo discreto Relación Exponencial Discreta con sinusoides Relación Exponencial discreta con sinusoides Propiedades exponenciales complejas continuas

Más detalles

M a t L a b. Oriol Roca POLINOMIOS EN MATLAB.

M a t L a b. Oriol Roca POLINOMIOS EN MATLAB. POLINOMIOS EN MATLAB Polinomios Los polinomios son expresiones matemáticas utilizadas muy frecuentemente en el modelado de problemas científicos x 4-12x 3 +25x+116 Polinomios Matlab proporciona poderosas

Más detalles

3. LA DFT Y FFT PARA EL ANÁLISIS FRECUENCIAL. Una de las herramientas más útiles para el análisis y diseño de sistemas LIT (lineales e

3. LA DFT Y FFT PARA EL ANÁLISIS FRECUENCIAL. Una de las herramientas más útiles para el análisis y diseño de sistemas LIT (lineales e 3. LA DFT Y FFT PARA EL AÁLISIS FRECUECIAL Una de las herramientas más útiles para el análisis y diseño de sistemas LIT (lineales e invariantes en el tiempo), es la transformada de Fourier. Esta representación

Más detalles

UNAM Facultad de ingeniería Laboratorio de sistemas de comunicaciones Análisis de señales deterministicas Práctica numero 2 Ramírez Ríos Fermín

UNAM Facultad de ingeniería Laboratorio de sistemas de comunicaciones Análisis de señales deterministicas Práctica numero 2 Ramírez Ríos Fermín UNAM Facultad de ingeniería Laboratorio de sistemas de comunicaciones Análisis de señales deterministicas Práctica numero 2 Ramírez Ríos Fermín Nombre del profesor de laboratorio: Fonseca Chávez Elizabeth

Más detalles

UNIDAD 7: PROGRESIONES OBJETIVOS

UNIDAD 7: PROGRESIONES OBJETIVOS UNIDAD 7: PROGRESIONES Reconocer sucesiones y deducir su regla de formación en los casos en que sea posible. Obtener distintos términos en sucesiones recurrentes. Distinguir si una sucesión es una progresión

Más detalles

UNIDAD 1: NÚMEROS RACIONALES OBJETIVOS

UNIDAD 1: NÚMEROS RACIONALES OBJETIVOS UNIDAD 1: NÚMEROS RACIONALES Distinguir las distintas interpretaciones de una fracción. Reconocer fracciones equivalentes. Amplificar fracciones. Simplificar fracciones hasta obtener la fracción irreducible.

Más detalles

Números Complejos y DFFT. Ing. Abel Augusto Durand Loaiza IBEROTEC. 05 de Diciembre de 2016

Números Complejos y DFFT. Ing. Abel Augusto Durand Loaiza IBEROTEC. 05 de Diciembre de 2016 Números Complejos y DFFT 1 Números Complejos y DFFT Ing. Abel Augusto Durand Loaiza IBEROTEC 05 de Diciembre de 2016 Números Complejos y DFFT 2 Resumen La presente guía didáctica comprende una aproximación

Más detalles

Calendario Lenguaje Matemática Inglés Hist. Cs.Soc Cs.Nat (1º -8º Básico) 17 de Junio 23 de Junio 28 de Junio 30 de Junio 4 de Julio

Calendario Lenguaje Matemática Inglés Hist. Cs.Soc Cs.Nat (1º -8º Básico) 17 de Junio 23 de Junio 28 de Junio 30 de Junio 4 de Julio Curso: 7º Básico Nivel de Séptimos del Primer Semestre (coef. 2), de según fecha indicada para cada sector de Hist. Cs.Soc Cs.Nat (1º -8º Básico) 17 de Junio 23 de Junio 30 de Junio 4 de Julio Los Sectores

Más detalles

Laboratorio de Procesamiento Digital de Voz Practica 4 CUANTIZACION ESCALAR, LOGARITMICA, (A)DM y (A)DPCM

Laboratorio de Procesamiento Digital de Voz Practica 4 CUANTIZACION ESCALAR, LOGARITMICA, (A)DM y (A)DPCM Laboratorio de Procesamiento Digital de Voz Practica 4 CUANTIZACION ESCALAR, LOGARITMICA, (A)DM y (A)DPCM Objetivos: Manejar los conceptos de cuantización escalar, logarítmica y manejo de cuantizadores

Más detalles

PLANES CURRICULARES GRADO9º/ 01 PERIODO

PLANES CURRICULARES GRADO9º/ 01 PERIODO PLANES CURRICULARES GRADO9º/ 01 PERIODO Grado: 9º Periodo: 01 PRIMERO Aprobado por: G. Watson - Jefe Sección Asignatura: MATEMATICAS Profesor: Gloria rueda y Jesús Vargas ESTANDARES P.A.I. I.B. A. Conocimiento

Más detalles

Competencia específica. Conceptos básicos. Función. f : X Y

Competencia específica. Conceptos básicos. Función. f : X Y Funcio nes inplícit as FUNCI ONES Cncept os iniciale s Sucesio nes Grafica ción Operaci ones Clasific ación Competencia específica Comprender el concepto de función real e identificar los tipos de funciones,

Más detalles

CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS

CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS SEPTIEMBRE. DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS MATEMÁTICAS 1º ESO U.D. 1 Números Naturales El conjunto de los números naturales. Sistema de numeración decimal. Aproximaciones

Más detalles

4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE

4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE Análisis de funciones de una variable 49 4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE En esta sección realizaremos algunos ejercicios sobre el estudio de funciones de una variable: En la parte final hay ejercicios

Más detalles

La eficiencia de los programas

La eficiencia de los programas La eficiencia de los programas Jordi Linares Pellicer EPSA-DSIC Índice General 1 Introducción... 2 2 El coste temporal y espacial de los programas... 2 2.1 El coste temporal medido en función de tiempos

Más detalles

Tratamiento y Transmisión de Señales Ingenieros Electrónicos SEGUNDA PRÁCTICA

Tratamiento y Transmisión de Señales Ingenieros Electrónicos SEGUNDA PRÁCTICA Tratamiento y Transmisión de Señales Ingenieros Electrónicos SEGUNDA PRÁCTICA NOTA: en toda esta práctica no se pueden utilizar bucles, para que los tiempos de ejecución se reduzcan. Esto se puede hacer

Más detalles

Guía de uso de DERIVE. 2) Botones de acceso rápido Al colocar el cursor sobre el botón aparece un recuadro con su función

Guía de uso de DERIVE. 2) Botones de acceso rápido Al colocar el cursor sobre el botón aparece un recuadro con su función Sobre la pantalla principal de DERIVE distinguimos: 1) La barra del menú 2) Botones de acceso rápido Al colocar el cursor sobre el botón aparece un recuadro con su función UNIDAD DOCENTE DE MATEMÁTICAS

Más detalles

DEPARTAMENTO DE MATEMÁTICAS. IES GALLICUM

DEPARTAMENTO DE MATEMÁTICAS. IES GALLICUM UNIDAD I: NÚMEROS (6 Horas) 1.- Repasar el cálculo con números racionales y potencias de exponente entero. 2.- Resolver problemas de la vida cotidiana en los que intervengan los números racionales. 1.-

Más detalles

INDICE Capitulo Primero. Número. Variable. Función Capitulo II. Límite y Continuidad de las Funciones Capitulo III. Derivada y Diferencial

INDICE Capitulo Primero. Número. Variable. Función Capitulo II. Límite y Continuidad de las Funciones Capitulo III. Derivada y Diferencial INDICE Capitulo Primero. Número. Variable. Función 1. Números reales. Representación de números reales por los puntos 1 del eje numérico 2. Valor absoluto de un número real 3 3. Magnitudes variables y

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una

Más detalles

Técnicas Avanzadas de Control Memoria de ejercicios

Técnicas Avanzadas de Control Memoria de ejercicios Memoria de ejercicios Curso: 2007/08 Titulación: Ingeniero Técnico Industrial Especialidad: Electrónica Industrial Alumno: Adolfo Hilario Tutor: Adolfo Hilario Caballero Índice general Presentación. 2..

Más detalles

Tratamiento de imágenes Adquisición y Digitalización

Tratamiento de imágenes Adquisición y Digitalización Tratamiento de imágenes Adquisición y Digitalización hamontesv@uaemex.mx http://scfi.uaemex.mx/hamontes Advertencia No use estas diapositivas como referencia única de estudio durante este curso. La información

Más detalles