Límites de valores singulares de un haz de matrices

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Límites de valores singulares de un haz de matrices"

Transcripción

1 Límites de valores singulares de un haz de matrices Juan-Miguel Gracia Francisco E. Velasco Universidad del País Vasco Depto. de Matemática Aplicada y Estadística XXI CEDYA / XI CMA, Ciudad Real, 22 de septiembre de 2009.

2 Índice Motivación Acotaciones más ajustadas Comportamiento asintótico

3 Índice Motivación Acotaciones más ajustadas Comportamiento asintótico

4 Submatriz sudeste más próxima que hace múltiple a 0 ( n m ) n A B C (n+m) (n+m), det A 0. m C D d = sup t 0 d := mín X C m m 0 valor propio múltiple A B C X X D ( ) M tn f (t), f (t) := σ 2m 1 O M M := D CA 1 B, N := I m + CA 2 B Si t 1 0 t.q. d = f (t 1), = f acotada, estrict. creciente y rg N = 1. ( ) ( ) ( ) M tn O N M O = t + O M O O O M l := ĺım t f (t), = d = l.

5 Submatriz sudeste más próxima que hace múltiple a 0 ( n m ) n A B C (n+m) (n+m), det A 0. m C D d = sup t 0 d := mín X C m m 0 valor propio múltiple A B C X X D ( ) M tn f (t), f (t) := σ 2m 1 O M M := D CA 1 B, N := I m + CA 2 B Si t 1 0 t.q. d = f (t 1), = f acotada, estrict. creciente y rg N = 1. ( ) ( ) ( ) M tn O N M O = t + O M O O O M l := ĺım t f (t), = d = l.

6 Submatriz sudeste más próxima que hace múltiple a 0 ( n m ) n A B C (n+m) (n+m), det A 0. m C D d = sup t 0 d := mín X C m m 0 valor propio múltiple A B C X X D ( ) M tn f (t), f (t) := σ 2m 1 O M M := D CA 1 B, N := I m + CA 2 B Si t 1 0 t.q. d = f (t 1), = f acotada, estrict. creciente y rg N = 1. ( ) ( ) ( ) M tn O N M O = t + O M O O O M l := ĺım t f (t), = d = l.

7 Planteamiento y ejemplo F, G C m n, Problema Hallar ĺım σ i(tf + G), t i = 1, 2,..., mín(m, n). Ejemplo F := i , G := i i i i i i rg F = 2, σ i (tf + G).

8 Planteamiento y ejemplo F, G C m n, Problema Hallar ĺım σ i(tf + G), t i = 1, 2,..., mín(m, n). Ejemplo F := i , G := i i i i i i rg F = 2, σ i (tf + G).

9 σ i t Figura: Los 5 = mín(5, 6) valores singulares de tf + G.

10 Valores singulares para algunos t 0 σ(10 4 F + G) σ(10 5 F + G) σ(10 6 F + G) 17319, , , ,01 8, ,24321, ,00 8, ,24376, ,00 8, , , , ,94607

11 Índice Motivación Acotaciones más ajustadas Comportamiento asintótico

12 Acotación clásica A, E C m n, i = 1,..., mín(m, n), σ i (A + E) σ i (A) E c i ( ) 0 t.q. σ i (A + E) σ i (A) c i (E)? Li y Li dieron una respuesta afirmativa si la matriz E tiene cierta estructura. Notación X C p q : σ(x ) := ( σ 1(X ), σ 2(X ),..., σ máx(p,q) (X ) ) donde σ 1(X ) σ 2(X ) σ máx(p,q) (X ) σ i (X ) := 0 cuando i > rg X.

13 Acotación clásica A, E C m n, i = 1,..., mín(m, n), σ i (A + E) σ i (A) E c i ( ) 0 t.q. σ i (A + E) σ i (A) c i (E)? Li y Li dieron una respuesta afirmativa si la matriz E tiene cierta estructura. Notación X C p q : σ(x ) := ( σ 1(X ), σ 2(X ),..., σ máx(p,q) (X ) ) donde σ 1(X ) σ 2(X ) σ máx(p,q) (X ) σ i (X ) := 0 cuando i > rg X.

14 Acotación clásica A, E C m n, i = 1,..., mín(m, n), σ i (A + E) σ i (A) E c i ( ) 0 t.q. σ i (A + E) σ i (A) c i (E)? Li y Li dieron una respuesta afirmativa si la matriz E tiene cierta estructura. Notación X C p q : σ(x ) := ( σ 1(X ), σ 2(X ),..., σ máx(p,q) (X ) ) donde σ 1(X ) σ 2(X ) σ máx(p,q) (X ) σ i (X ) := 0 cuando i > rg X.

15 Acotación de los Li, Li Teorema (Li-Li, 2005) ( ) G1 O, O G 2 ( ) G1 E 1, E 2 G 2 ε := máx( E 1, E 2 ), i = 1, 2,..., { mín µ2 σ(g η i := 2 ) σ i µ 2 si σ i σ(g 1), mín µ1 σ(g 1 ) σ i µ 1 si σ i σ(g 2). Entonces, i = 1, 2,..., ( ) ( ) σ G1 E 1 G1 O 2ε 2 i σ E 2 G i 2 O G 2 η i + ηi 2 + 4ε. 2

16 Acotación de los Li, Li Teorema (Li-Li, 2005) ( ) G1 O, O G 2 ( ) G1 E 1, E 2 G 2 ε := máx( E 1, E 2 ), i = 1, 2,..., { mín µ2 σ(g η i := 2 ) σ i µ 2 si σ i σ(g 1), mín µ1 σ(g 1 ) σ i µ 1 si σ i σ(g 2). Entonces, i = 1, 2,..., ( ) ( ) σ G1 E 1 G1 O 2ε 2 i σ E 2 G i 2 O G 2 η i + ηi 2 + 4ε. 2

17 Acotación de los Li, Li Teorema (Li-Li, 2005) ( ) G1 O, O G 2 ( ) ( ) G1 E 1 O E1, E := E 2 G 2 E 2 O ε := máx( E 1, E 2 ), i = 1, 2,..., { mín µ2 σ(g η i := 2 ) σ i µ 2 si σ i σ(g 1), mín µ1 σ(g 1 ) σ i µ 1 si σ i σ(g 2). Entonces, i = 1, 2,..., ( ) ( ) σ G1 E 1 G1 O 2ε 2 i σ E 2 G i 2 O G 2 η i + ηi 2 + 4ε. 2 (( ) σ G1 O i O G 2 ) + E ( ) G1 O 2 E 2 σ i O G 2 η i + ηi E = c i(e). 2

18 Índice Motivación Acotaciones más ajustadas Comportamiento asintótico

19 Descomposición de valores singulares, SVD F, G C m n con r = rg F. matrices unitarias U C m m, V C n n t.q. ( ) U S1 O FV =, S O O 1 = diag(s 1,..., s r ) con s 1 s r > 0 los v.s. 0 de F. Supongamos ( ) U G11 G 12 GV =, con G G 21 G 11 C r r. = 22 t R y para cada i, ( ) ts1 + G 11 G 12 σ i (tf + G) = σ i. G 21 G 22

20 Haz regular A, B C n n, S 1, G 11 C r r, σ i (A) σ 1(B) σ i (A + B), i = 1, 2,..., n. t s i σ 1(G 11) = σ i (ts 1) σ 1(G 11) σ i (ts 1 + G 11) i = 1,..., r. Como s i > 0, = ĺım σ i(ts 1 + G t 11) =, i = 1,..., r.

21 Teorema principal Teorema ĺım σ i(tf + G) = t ( ) ĺım σ ts1 + G 11 G 12 i = t G 21 G 22 {, i = 1,..., r := rg F, σ i r (G 22), i = r + 1, r + 2,... Ion Zaballa

22 Aplicación al Ejemplo G 22 = 0 4i 0 0 4,0825 2,8577i 0,8165i 0, ,0412i 1, ,1213i 0, ,3333i 2,2357 0,0404i 0,2357 0,6667i Sus valores singulares, calculados con Matlab, son: 8, , ,94607 σ(10 4 F + G) σ(10 5 F + G) σ(10 6 F + G) 17319, , , ,01 8, ,24321, ,00 8, ,24376, ,00 8, , , , ,94607

23 Aplicación al Ejemplo G 22 = 0 4i 0 0 4,0825 2,8577i 0,8165i 0, ,0412i 1, ,1213i 0, ,3333i 2,2357 0,0404i 0,2357 0,6667i Sus valores singulares, calculados con Matlab, son: 8, , ,94607 σ(10 4 F + G) σ(10 5 F + G) σ(10 6 F + G) 17319, , , ,01 8, ,24321, ,00 8, ,24376, ,00 8, , , , ,94607

24 Fin Muchas gracias por vuestra atención.

Clase 7 Herramientas de Álgebra Lineal

Clase 7 Herramientas de Álgebra Lineal Clase 7 Herramientas de Álgebra Lineal 1 Formas cuadráticas La descomposición en valores singulares 3 Normas de matrices 4 Ejercicios Dada una matriz M R n n, la función escalar x T Mx, donde x R n, es

Más detalles

Valores singulares. Producto escalar y ortogonalidad. Proposición. Curso < x, y >= si F = C. Si x C n x i=1

Valores singulares. Producto escalar y ortogonalidad. Proposición. Curso < x, y >= si F = C. Si x C n x i=1 Valores singulares Curso 2017-18 1 Producto escalar y ortogonalidad < x, y >= n y i x i = y T x si F = R, n y i x i = y x Si x C n x x = n x i 2 = x 2 2. si F = C Si x, y C n x y = y x, pero si x, y R

Más detalles

Gustavo Rodríguez Gómez. Agosto Dicembre 2011

Gustavo Rodríguez Gómez. Agosto Dicembre 2011 Computación Científica Gustavo Rodríguez Gómez INAOE Agosto Dicembre 2011 1 / 44 Capítulo III Descomposición de Matrices 2 / 44 1 Descomposición de Matrices Notación Matrices Operaciones con Matrices 2

Más detalles

Submatriz sudeste más próxima que hace múltiple un valor propio prescrito

Submatriz sudeste más próxima que hace múltiple un valor propio prescrito XX Congreso de Ecuaciones Diferenciales y Aplicaciones X Congreso de Matemática Aplicada Sevilla, 24-28 septiembre 2007 pp. 1 8 Submatriz sudeste más próxima que hace múltiple un valor propio prescrito

Más detalles

Introducción al Método de los Elementos Finitos

Introducción al Método de los Elementos Finitos S 4 v v 5 Introducción al Método de los Elementos Finitos Parte Formulación abstracta del MEF para problemas elípticos Alberto Cardona, íctor Facinotti Cimec-Intec (UNL/Conicet), Santa Fe, Argentina Espacios

Más detalles

Tema 3: Función de Variable Aleatoria y Teoremas Asintóticos

Tema 3: Función de Variable Aleatoria y Teoremas Asintóticos Tema 3: Función de Variable Aleatoria y Teoremas Asintóticos Curso 2016-2017 Contenido 1 Función de una Variable Aleatoria 2 Cálculo de la fdp 3 Generación de Números Aleatorios 4 Momentos de una Variable

Más detalles

Tema 3: Funcio n de Variable Aleatoria

Tema 3: Funcio n de Variable Aleatoria Tema 3: Funcio n de Variable Aleatoria Teorı a de la Comunicacio n Curso 2007-2008 Contenido 1 Función de una Variable Aleatoria 2 3 Cálculo de la fdp 4 Generación de Números Aleatorios 5 Momentos de una

Más detalles

Propiedad de Completez (Parte 2) (3) Si A es un subconjunto de un campo ordenado F y u F, se dice que u es un máximo de A si,

Propiedad de Completez (Parte 2) (3) Si A es un subconjunto de un campo ordenado F y u F, se dice que u es un máximo de A si, Unidad. Números Reales.1 Números Naturales, Enteros, Racionales, Irracionales y Reales Propiedad de Completez (Parte ) Denición 1. (1) Si A es un subconjunto de un campo ordenado F y u F, se dice que es

Más detalles

Tema 6: Teorema de Representación de Riesz. 10 y 13 de mayo de 2010

Tema 6: Teorema de Representación de Riesz. 10 y 13 de mayo de 2010 Tema 6: Teorema de Representación de Riesz 10 y 13 de mayo de 2010 1 Funcionales lineales positivos 2 Regularidad de medidas de Borel 3 Funcionales lineales continuos Funciones continuas de soporte compacto

Más detalles

Elementos de Cálculo Numérico (M) - Cálculo Numérico

Elementos de Cálculo Numérico (M) - Cálculo Numérico Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática Elementos de Cálculo Numérico (M) - Cálculo Numérico Primer Cuatrimestre 204 Práctica N 2: Normas y Condicionamiento.

Más detalles

Tema 5: Convergencia y acotación. Subsucesiones. Operaciones con sucesiones convergentes.

Tema 5: Convergencia y acotación. Subsucesiones. Operaciones con sucesiones convergentes. Cálculo I Tema 5: Convergencia y acotación. Subsucesiones. Operaciones con sucesiones convergentes. Sucesiones Definición Una sucesión de números reales es una función f : N R. En lugar de notarlas de

Más detalles

Elementos de Cálculo Numérico / Cálculo Numérico Primer Cuatrimestre 2016

Elementos de Cálculo Numérico / Cálculo Numérico Primer Cuatrimestre 2016 Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática Elementos de Cálculo Numérico / Cálculo Numérico Primer Cuatrimestre 206 Práctica N : Número de condición.

Más detalles

Matemáticas II. Prácticas: Matrices y Determinantes ; C = 1 3 5

Matemáticas II. Prácticas: Matrices y Determinantes ; C = 1 3 5 Matemáticas II Prácticas: Matrices y Determinantes. Sean las matrices cuadradas siguientes: 4 5 6 B = 9 8 7 6 5 4 C = 5 7 9 0 7 8 9 Se pide calcular: a A B + C. b A AB + AC. c A B AB + ACB.. Sean las matrices:

Más detalles

1.II.3. Sistemas de ecuaciones lineales: métodos iterativos.

1.II.3. Sistemas de ecuaciones lineales: métodos iterativos. 1.II.3. Sistemas de ecuaciones lineales: métodos iterativos. Manuel Palacios Departamento de Matemática Aplicada Centro Politécnico Superior Universidad de Zaragoza Otoño 2003 Referencias [1] Burden, R.

Más detalles

Teoría espectral: problemas propuestos

Teoría espectral: problemas propuestos Teoría espectral: problemas propuestos ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 6. Problemas propuestos 1 6.1. Valores y vectores propios....................................

Más detalles

Comportamiento dinámico: Estabilidad

Comportamiento dinámico: Estabilidad Lección 5 Comportamiento dinámico: Estabilidad Estabilidad Dos tipos de estabilidad: ẋ(t) = f(t, x(t), u(t)) Estabilidad interna: ẋ(t) = f(t, x(t)) Estabilidad externa o Estabilidad Entrada-Salida : {

Más detalles

TEORÍA DE LA COMUNICACIÓN TEMA 2 RUIDO EN LOS SISTEMA DE COMUNICACIONES. Variable aleatoria (Real)

TEORÍA DE LA COMUNICACIÓN TEMA 2 RUIDO EN LOS SISTEMA DE COMUNICACIONES. Variable aleatoria (Real) TEORÍA DE LA COMUNICACIÓN TEMA 2 RUIDO EN LOS SISTEMA DE COMUNICACIONES Grado Ing Telemática (UC3M) Teoría de la Comunicación Variable Aleatoria / 26 Variable aleatoria (Real) Función que asigna un valor

Más detalles

Elementos de Cálculo Numérico / Cálculo Numérico Segundo Cuatrimestre 2017

Elementos de Cálculo Numérico / Cálculo Numérico Segundo Cuatrimestre 2017 Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática Elementos de Cálculo Numérico / Cálculo Numérico Segundo Cuatrimestre 207 Práctica N : Número de condición.

Más detalles

Descomposición en valores singulares Notas para los cursos 21 y 22 (J.L. Mancilla Aguilar)

Descomposición en valores singulares Notas para los cursos 21 y 22 (J.L. Mancilla Aguilar) Valores Singulares Descomposición en valores singulares Notas para los cursos y (JL Mancilla Aguilar) Tanto los valores singulares como la descomposición en valores singulares de una matriz son conceptos

Más detalles

Ms. C. Marco Vinicio Rodríguez

Ms. C. Marco Vinicio Rodríguez Ms. C. Marco Vinicio Rodríguez mvrodriguezl@yahoo.com http://mvrurural.wordpress.com/ Uno de los objetivos de la estadística es saber acerca del comportamiento de parámetros poblacionales tales como:

Más detalles

Descomposición del valor singular y sus aplicaciones

Descomposición del valor singular y sus aplicaciones 7 Descomposición del valor singular y sus aplicaciones Marlene J. Soldevilla Olivares William C. Echegaray Castillo Resumen El presente trabajo damos algunas propiedades de los valores singulares de una

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID. PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) MODELO DE EXAMEN (Curso )

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID. PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) MODELO DE EXAMEN (Curso ) UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) MODELO DE EXAMEN (Curso 00-003) MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES:

Más detalles

CÁLCULO III. Pablo Torres. Funciones definidas en R n. Facultad de Ciencias Exactas, Ingeniería y Agrimensura - Universidad Nacional de Rosario

CÁLCULO III. Pablo Torres. Funciones definidas en R n. Facultad de Ciencias Exactas, Ingeniería y Agrimensura - Universidad Nacional de Rosario CÁLCULO III Pablo Torres Facultad de Ciencias Exactas, Ingeniería y Agrimensura - Universidad Nacional de Rosario Funciones definidas en R n. INTRODUCCIÓN Sean n,m N y A R n. Una función f : A R m se denomina

Más detalles

Eigenvalores y eigenvectores. Método de la potencia

Eigenvalores y eigenvectores. Método de la potencia Clase No. 12: MAT 251 Eigenvalores y eigenvectores. Método de la potencia Dr. Alonso Ramírez Manzanares CIMAT A.C. e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/ Dr. Joaquín Peña Acevedo

Más detalles

De la convergencia en distribución a la aproximación uniforme

De la convergencia en distribución a la aproximación uniforme De la convergencia en distribución a la aproximación uniforme Egor Maximenko utilizando trabajos juntos con Johan Manuel Bogoya, Albrecht Böttcher y Sergei Grudsky Instituto Politécnico Nacional, ESFM,

Más detalles

Valores y vectores propios. Laboratorio de Matemáticas

Valores y vectores propios. Laboratorio de Matemáticas Valores y vectores propios Laboratorio de Matemáticas Conceptos básicos v vector propio asociado al valor propio λ Av = λ v Polinomio característico de la matriz A p(λ) = det(a- λ I) Ecuación característica

Más detalles

Límite superior y límite inferior de una sucesión

Límite superior y límite inferior de una sucesión Límite superior y límite inferior de una sucesión Objetivos. Definir las nociones de los límites superior e inferior de una sucesión y estudiar sus propiedades básicas. Requisitos. Supremo e ínfimo de

Más detalles

1. Estabilidad de Sistemas Lineales y Sistemas Lineales Perturbados

1. Estabilidad de Sistemas Lineales y Sistemas Lineales Perturbados 1. Estabilidad de Sistemas Lineales y Sistemas Lineales Perturbados 1.1. Introducción. Repaso de resultados conocidos AMPLIACIÓN DE ECUACIONES DIFERENCIALES GRADO EN MATEMÁTICAS, Universidad de Sevilla

Más detalles

MAT web:

MAT web: Clase No. 7: MAT 251 Matrices definidas positivas Matrices simétricas Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/

Más detalles

Introducción al Método de los Elementos Finitos

Introducción al Método de los Elementos Finitos v 4 5 S v Introducción al Método de los Elementos Finitos Parte Formulación abstracta del MEF para problemas elípticos Alberto Cardona, íctor Facinotti Cimec-Intec (UNL/Conicet), Santa Fe, Argentina 7-Oct-

Más detalles

INTERPOLACIÓN: Error en la la interpolación polinómica de Lagrange

INTERPOLACIÓN: Error en la la interpolación polinómica de Lagrange INTERPOLACIÓN: Error en la la interpolación polinómica de Lagrange Arturo Hidalgo LópezL Alfredo López L Benito Carlos Conde LázaroL Marzo, 007 Departamento de Matemática Aplicada y Métodos Informáticos

Más detalles

Estadística. Tema 3. Esperanzas Esperanza. Propiedades Varianza y covarianza. Correlación

Estadística. Tema 3. Esperanzas Esperanza. Propiedades Varianza y covarianza. Correlación Estadística Tema 3 Esperanzas 31 Esperanza Propiedades 32 Varianza y covarianza Correlación 33 Esperanza y varianza condicional Predicción Objetivos 1 Medidas características distribución de VA 2 Media

Más detalles

Probabilidad y estadística

Probabilidad y estadística UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL ROSARIO Probabilidad y estadística Teorema central del límite Año: 2017 En este material le presentamos ocho problemas que requieren de la aplicación

Más detalles

Conceptos clave para el examen de Análisis Matemático

Conceptos clave para el examen de Análisis Matemático Conceptos clave para el examen de Análisis Matemático 1. Axioma de Dedekind. Existencia de supremos e ínfimos. Sucesiones monótonas y acotadas. Axioma de Dedekind: Dados dos subconjuntos no vacíos A y

Más detalles

Algunos resultados acerca de B-matrices.

Algunos resultados acerca de B-matrices. XXI Congreso de Ecuaciones Diferenciales y Aplicaciones XI Congreso de Matemática Aplicada Ciudad Real, 21-25 septiembre 2009 (pp. 1 8) Algunos resultados acerca de B-matrices. Manuel F. Abad 1, María

Más detalles

Factorización de matrices totalmente no positivas y totalmente negativas

Factorización de matrices totalmente no positivas y totalmente negativas XXI Congreso de Ecuaciones Diferenciales y Aplicaciones XI Congreso de Matemática Aplicada Ciudad Real, 21-25 septiembre 2009 (pp. 1 8) Factorización de matrices totalmente no positivas y totalmente negativas

Más detalles

SEMICONTINUIDAD SUPERIOR DE MULTIFUNCIONES CON IMAGEN UN CONJUNTO CONVEXO Y CERRADO

SEMICONTINUIDAD SUPERIOR DE MULTIFUNCIONES CON IMAGEN UN CONJUNTO CONVEXO Y CERRADO t t 27 Congreso Nacional de Estadística e Investigación Operativa Lleida, 8-11 de aril de 2003 SEMICONTINUIDAD SUPERIOR DE MULTIFUNCIONES CON IMAGEN UN CONJUNTO CONVEXO Y CERRADO M.J. Cánovas 1, M.A. López

Más detalles

Repaso de Estadística

Repaso de Estadística Teoría de la Comunicación I.T.T. Sonido e Imagen 25 de febrero de 2008 Indice Teoría de la probabilidad 1 Teoría de la probabilidad 2 3 4 Espacio de probabilidad: (Ω, B, P) Espacio muestral (Ω) Espacio

Más detalles

Elementos de Cálculo Numérico

Elementos de Cálculo Numérico Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática Elementos de Cálculo Numérico Primer cuatrimestre 2006 Práctica N 2: Condicionamiento de una matriz. Descomposición

Más detalles

Ejercicio 1 Explica por qué el coste de invertir una matriz utilizando el algoritmo LU es de orden

Ejercicio 1 Explica por qué el coste de invertir una matriz utilizando el algoritmo LU es de orden CUESTIONES Ejercicio 1 Explica por qué el coste de invertir una matriz utilizando el algoritmo LU es de orden cúbico Ejercicio 2 Explica por qué si λ 1 ě λ 2 ě ě λ n son los valores propios de la matrix

Más detalles

Tema 4: Determinantes

Tema 4: Determinantes Tema 4: Determinantes Curso 2016/2017 Ruzica Jevtic Universidad San Pablo CEU Madrid Índice de contenidos Introducción Propiedades de los determinantes Regla de Cramer Inversión de matrices Áreas y volúmenes

Más detalles

El Teorema del Modulo Máximo

El Teorema del Modulo Máximo Capítulo 5 El Teorema del Modulo Máximo. El Principio del Máximo. Pruebe el siguiente Principio del Mínimo. Si f es una función analítica no constante sobre un conjunto abierto G acotado y es continua

Más detalles

Revisión - soluciones. lunes 9 de octubre de 2017

Revisión - soluciones. lunes 9 de octubre de 2017 Introducción a los Procesos Estocásticos Curso 7 Revisión - soluciones lunes 9 de octubre de 7. Ejercicio (5 puntos) Considere una cadena de Markov homogénea {X n } n con espacio de S = {,,, } y matriz

Más detalles

Matriz inversa generalizada y descomposición del valor singular

Matriz inversa generalizada y descomposición del valor singular Matriz inversa generalizada y descomposición del valor singular Divulgación Fernando Velasco Luna y Jesús Hernández Suárez Laboratorio de Investigación y Asesoría Estadística, Facultad de Estadística e

Más detalles

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos.

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada

Más detalles

MATRICES,DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES

MATRICES,DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES Departamento de Matemática Aplicada II EEI ÁLGEBRA Y ESTADÍSTICA Boletín n o 1 (2010-2011 MATRICES,DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES 1 Sean A, B, C, D y E matrices de tamaño 4 5, 4 5, 5 2,

Más detalles

1 Espacios de Banach:

1 Espacios de Banach: Ecuaciones Diferenciales - 2 cuatrimestre 2003 Resultados preliminares parte II Espacios de Banach: Sea X un IR-espacio vectorial. Definición. Una función : X [0, + ) se dice una norma si. x + y x + y

Más detalles

Kolmogorov y la teoría de la la probabilidad. David Nualart. Academia de Ciencias y Universidad de Barcelona

Kolmogorov y la teoría de la la probabilidad. David Nualart. Academia de Ciencias y Universidad de Barcelona Kolmogorov y la teoría de la la probabilidad David Nualart Academia de Ciencias y Universidad de Barcelona 1 La axiomatización del cálculo de probabilidades A. N. Kolmogorov: Grundbegriffe des Wahrscheinlichkeitsrechnung

Más detalles

MMAF: Espacios normados y espacios de Banach

MMAF: Espacios normados y espacios de Banach MMAF: Espacios normados y espacios de Banach Licenciatura en Estadística R. Álvarez-Nodarse Universidad de Sevilla Curso 2011/2012 Espacios vectoriales Definición Sea V un conjunto de elementos sobre el

Más detalles

1.2 Valores y vectores propios. Método de las potencias y Rayleigh.

1.2 Valores y vectores propios. Método de las potencias y Rayleigh. 20 Prelininares. 1.2 Valores y vectores propios. Método de las potencias y Rayleigh. 1.2.1 Cálculo del Polinomio Caracterstico: ALGORITMO DE SOURIAU. ENTRADA: la matriz A 1 = A, p 1 = traza(a 1 ), n =

Más detalles

ELEMENTOS DE ANÁLISIS FUNCIONAL

ELEMENTOS DE ANÁLISIS FUNCIONAL ELEMENTOS DE ANÁLISIS FUNCIONAL Guillermo Ames Universidad Tecnológica Nacional - Facultad Regional Córdoba 2011 TEMA 1: NOCIONES BÁSICAS DE ESPACIOS MÉTRICOS Espacios métricos: definición y ejemplos Definición

Más detalles

Pontificia Universidad Católica del Perú ICA624: Control Robusto. 2. Características de los Sistemas MIMO Valores Singulares Normas Matriciales

Pontificia Universidad Católica del Perú ICA624: Control Robusto. 2. Características de los Sistemas MIMO Valores Singulares Normas Matriciales Pontificia Universidad Católica del Perú ICA624: Control Robusto 2. Características de los Sistemas Valores Singulares Matriciales Hanz Richter, PhD Profesor Visitante Cleveland State University Mechanical

Más detalles

Extensión de medidas

Extensión de medidas Extensión de medidas Problemas para examen Semianillos de conjuntos 1. Escriba la definición de semianillo de conjuntos. 2. Convenio: el conjunto vacío pertenece a cualquier semianillo. En los siguientes

Más detalles

String Matching. Análisis y diseño de algoritmos II

String Matching. Análisis y diseño de algoritmos II Análisis y diseño de algoritmos II Encontrar todas las ocurrencias de un patrón en un texto. Texto Patrón a b c a b a a b c a a b a a b a c Aplicaciones Funcionalidad de editores de texto Patrones en secuencias

Más detalles

2. LÍMITES Y CONTINUIDAD DE LAS FUNCIONES REALES DE VARIABLE REAL.

2. LÍMITES Y CONTINUIDAD DE LAS FUNCIONES REALES DE VARIABLE REAL. 2. LÍMITES Y CONTINUIDAD DE LAS FUNCIONES REALES DE VARIABLE REAL. ESQUEMA LÍMITES Y CONTINUIDAD DE LAS FUNCIONES REALES DE VARIABLE REAL Límites. Límite de una función. Tipos de límites. Álgebra de límites.

Más detalles

Interpolación. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Interpolación 1 / 35

Interpolación. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Interpolación 1 / 35 Interpolación Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Computación Numérica Interpolación 1 / 35 Contenidos 1 Introducción 2 Interpolación de Taylor Cálculo del polinomio

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) 1er. Cuatrimestre 2017 Práctica 3: Diferenciación Aplicación de algunos resultados de diferenciación en una variable 1. Vericar que se

Más detalles

Inecuaciones Lineales en una Variable Real

Inecuaciones Lineales en una Variable Real en una Variable Real Carlos A. Rivera-Morales Matemática Preuniversitaria Tabla de Contenido Contenido : Contenido Discutiremos: resolver inecuaciones lineales en una variable real. : Contenido Discutiremos:

Más detalles

2. CONSTRUCCIÓN DE MEDIDAS.

2. CONSTRUCCIÓN DE MEDIDAS. 2. CONSTRUCCIÓN DE MEDIDAS. 1. MEDIDAS EXTERIORES. (2,1,1) Definición. Una medida exterior es una aplicación µ : P(X) [0, + ] que cumple: (a) µ ( ) = 0. (b) Monotonía: Si A B, entonces µ (A) µ (B). (c)

Más detalles

Construcción de Paul Lévy del Movimiento Browniano Estándar, según P. Morters y Y. Peres. August 31, 2016

Construcción de Paul Lévy del Movimiento Browniano Estándar, según P. Morters y Y. Peres. August 31, 2016 del Movimiento Browniano Estándar, según P. Morters y Y. Peres August 31, 016 Algunos preliminares Definición Una función de distribución (de probabilidades) es una función F : R R tal que 1. F es no decreciente.

Más detalles

Complementos de Matemáticas, ITT Telemática

Complementos de Matemáticas, ITT Telemática Aproximación de funciones Interpolación Int. Segm. Complementos de Matemáticas, ITT Telemática Tema 2. Departamento de Matemáticas, Universidad de Alcalá Aproximación de funciones Interpolación Int. Segm.

Más detalles

Variables aleatorias. Descripción breve del tema. Objetivos. Descripción breve del tema. Tema 4

Variables aleatorias. Descripción breve del tema. Objetivos. Descripción breve del tema. Tema 4 Descripción breve del tema Variables aleatorias Tema 4 Ignacio Cascos Depto. Estadística, Universidad Carlos III 1 Ignacio Cascos Depto. Estadística, Universidad Carlos III 2 Objetivos Descripción breve

Más detalles

Teoría de Calderón-Zygmund con medidas generales

Teoría de Calderón-Zygmund con medidas generales Teoría de Calderón-Zygmund con medidas generales José Manuel Conde Alonso Seminario de Doctorandos UCM Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid 15 de octubre de

Más detalles

Elementos básicos de mecánica de

Elementos básicos de mecánica de Elementos básicos de mecánica de sólidos Ignacio Romero ignacio.romero@upm.es Escuela Técnica Superior de Ingenieros Industriales Universidad Politécnica de Madrid Curso 2015/16 1. Tensión El vector tensión

Más detalles

Extremos de funciones de varias variables

Extremos de funciones de varias variables Extremos de funciones de varias variables R. Álvarez-Nodarse Universidad de Sevilla Cuándo una función f (x) de una variable tiene extremo? Cuándo una función f (x) de una variable tiene extremo? Definición

Más detalles

Calculando los valores singulares y la pseudo-inversa de una matriz

Calculando los valores singulares y la pseudo-inversa de una matriz Calculando los valores singulares y la pseudo-inversa de una matriz Juan David Alzate Universidad Nacional de Colombia jdalzater@unal.edu.co May 30, 2018 Juan David Alzate (UNAL) Calculando los valores

Más detalles

Teoremas de la función inversa, función implícita y del rango constante

Teoremas de la función inversa, función implícita y del rango constante Teoremas de la función inversa, función implícita y del rango constante Pablo Zadunaisky 13 de marzo de 2015 A lo largo de este documento usamos varias normas sobre espacios vectoriales de dimensión finita,

Más detalles

Para localizar un punto o un objeto en el espacio necesitamos un sistema de referencia. R es una cuaterna { O,i, j, k}

Para localizar un punto o un objeto en el espacio necesitamos un sistema de referencia. R es una cuaterna { O,i, j, k} Geometría afín del espacio MATEMÁTICAS II 1 1 SISTEMA DE REFERENCIA. ESPACIO AFÍN Para localizar un punto o un objeto en el espacio necesitamos un sistema de referencia. Definición: Un sistema de referencia

Más detalles

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009 Cálculo 2. Cálculo diferencial de funciones de varias variables Mayo, 2009 Definición IR 2 = {(x 1,x 2 )/x 1 IR,x 2 IR} Sean dos puntos a y b, de coordenadas respectivas (a 1,a 2 ) y (b 1,b 2 ). Definición

Más detalles

Hipercuádricas afines. Clasificación. Elementos afines y euclídeos.

Hipercuádricas afines. Clasificación. Elementos afines y euclídeos. Capítulo 6 Hipercuádricas afines. Clasificación. Elementos afines y euclídeos. Sea k un cuerpo de característica distinta de dos. Definición 6.0.1. Una hipercuádrica afín en k n es una ecuación de segundo

Más detalles

Extensión de medidas

Extensión de medidas Extensión de medidas Problemas para examen Semianillos de conjuntos 1. Escriba la definición de semianillo de conjuntos. 2. Convenio: el conjunto vacío pertenece a cualquier semianillo. En los siguientes

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Estadística I curso 2008 2009 Una variable aleatoria es un valor numérico que se corresponde con

Más detalles

Problemas con soluciones

Problemas con soluciones Departamento de Matemática, Universidad Técnica Federico Santa María, MAT-223. Problemas con soluciones 1) Muestre que si A es una base de una toplogía en X, entonces la topología generada por A es iqual

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 4

Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Ejercicio Determinar las funciones enteras f para las que Solución f( + w) = f()f(w), w C. En primer lugar, f(0) = f(0 + 0) = f(0)f(0) = f(0) 2,

Más detalles

Teoría de la Integración

Teoría de la Integración Licenciatura en Matemáticas y Física Universidad de Antioquia 1 Introducción 2 3 Introducción Para toda persona con formación matemática superior, es conocida la teoría de la integración de Riemann. Sin

Más detalles

ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes

ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes ANOVA Análisis de la Varianza Univariante Efectos fijos Muestras independientes De la t a la F En el test de la t de Student para muestras independientes, aprendimos como usar la distribución t para contrastar

Más detalles

Análisis de Datos en Física de Partículas

Análisis de Datos en Física de Partículas Análisis de Datos en Física de Partículas Sección de Posgrado Facultad de Ciencias Universidad Nacional de Ingeniería C. Javier Solano jsolano@uni.edu.pe http://compinformatidf.wordpress.com/ Página del

Más detalles

1 Funciones de Varias Variables y Diferenciabilidad

1 Funciones de Varias Variables y Diferenciabilidad 1 Funciones de Varias Variables y Diferenciabilidad (a) Definición: Diferenciabilidad Sea una función f : Ω R n R m, donde Ω es un abierto en R n, y x 0 Ω. Decimos que f es diferenciable en x 0 si existe

Más detalles

ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio

ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio Muestra aleatoria Conceptos probabiĺısticos básicos El problema de inferencia Estadísticos. Media y varianza

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS MATEMÁTICAS E.A.P. DE. MATEMÁTICA PURA Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos

Más detalles

CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 MATRICES

CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 MATRICES CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 Unidades: - Matrices (Bloque Álgebra) - Determinantes (Bloque Álgebra) - Sistemas de ecuaciones lineales (Bloque Álgebra) - Vectores (Bloque

Más detalles

Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos

Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos Departamento de Investigación Operativa Instituto de Computación, Facultad de Ingeniería Universidad de la República, Montevideo, Uruguay

Más detalles

Métodos Estadísticos Multivariados

Métodos Estadísticos Multivariados Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 34 Álgebra matricial y vectores aleatorios Una matriz es un arreglo

Más detalles

Aplicación de la distribución empírica: Tests de bondad de ajuste

Aplicación de la distribución empírica: Tests de bondad de ajuste Aplicación de la distribución empírica: Tests de bondad de ajuste 4 de marzo de 2009 Test de bondad de ajuste Supongamos que se dispone de una m.a.s de tamaño n de una población X con distribución desconocida

Más detalles

Controlabilidad y observabilidad

Controlabilidad y observabilidad Lección 5 Controlabilidad y observabilidad 1 Eventos alcanzables y controlables Σ = (T, U, U, X, Y, ψ, η) un sistema de control arbitrario T X= Espacio de eventos (t, x) T X= el estado del sistema en el

Más detalles

ÁLGEBRA LINEAL I Práctica 3

ÁLGEBRA LINEAL I Práctica 3 ÁLGEBRA LINEAL I Práctica 3 Matrices y determinantes (Curso 2017 2018) 1. En el conjunto de las matrices n n de elementos reales, demostrar que el producto de matrices triangulares inferiores es otra matriz

Más detalles

Cálculo infinitesimal Grado en Matemáticas Curso 20014/15 Clave de soluciones n o 6. Derivadas de orden superior

Cálculo infinitesimal Grado en Matemáticas Curso 20014/15 Clave de soluciones n o 6. Derivadas de orden superior Cálculo infinitesimal Grado en Matemáticas Curso 2004/5 Clave de soluciones n o 6 Derivadas de orden superior 70. Hallar los polinomios de Taylor del grado indicado y en el punto indicado para las siguientes

Más detalles

Ejemplo 1: Ovalidad de Tubos

Ejemplo 1: Ovalidad de Tubos Ejemplo 1: Ovalidad de Tubos Histogramas de Ovalidades 0 5 10 15 20 Tuvo Tratamiento Termico 0.0 0.1 0.2 0.3 0. 0.5 0.6 Ovalidad 0 2 6 8 10 12 No tuvo Tratamiento Termico 0.0 0.1 0.2 0.3 0. 0.5 0.6 Ovalidad

Más detalles

Tema 5: Programas Universales

Tema 5: Programas Universales Tema 5: Programas Universales Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Lógica y Computabilidad Curso 2006 07 LC, 2006 07 Programas universales 5.1 Procedimientos

Más detalles

Temas preliminares de Análisis Real

Temas preliminares de Análisis Real Temas preliminares de Análisis Real Problemas para examen Usamos la notación A B en el siguiente sentido: A es un subconjunto de B, puede ser que A = B. Propiedades de las operaciones con conjuntos 1.

Más detalles

Tema 7: Programación matemática

Tema 7: Programación matemática Tema 7: Programación matemática Formulación general: Optimizar f( x) sujeto a x X f : D R n R..................................................................... función objetivo x = (x 1, x 2,..., x

Más detalles

Cálculo de valores propios de matrices

Cálculo de valores propios de matrices Cálculo de valores propios de matrices Curso 2016-17 1 Cálculo de valores propios: principio básico» λ 1 0 λ 2 Teorema de Schur: U AU T...... fl 0 0 λ n Si ppλq λ 5 p 1 λ 4 p 2 λ 3 p 3 λ 2 p 4 λ p 5» 0

Más detalles

Vectores y matrices. v 1 v 2. = [v. v = v n. Herramientas de A.L. p.1/64

Vectores y matrices. v 1 v 2. = [v. v = v n. Herramientas de A.L. p.1/64 Vectores y matrices Los elementos básicos en teoría de sistemas lineales son vectores n 1 (columna) o 1 n (fila) y matrices n m con elementos reales (i.e. v R n y A R n m ). Denotamos el elemento i del

Más detalles

P R O P I E D A D E S F I S I C A S

P R O P I E D A D E S F I S I C A S 15 micras PESO UNITARIO gr/m2 13.5 +/- (.9 gr) BRILLO 75 MIN COEFICIENTE DE FRICCION 1470 MAX 2880 MAX 163 MAX 63 MAX 6. 3. 20 micras P R O P I E D A D E S F I S I C A S PESO UNITARIO gr/m2 18.13 +/- (.9

Más detalles

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 23

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 23 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1 / 23 Cómo la derivada afecta la forma de una grá ca? En muchas de las aplicaciones del cálculo depende de nuestras destrezas para deducir situaciones

Más detalles

9. Normas y métodos iterativos de resolución de sistemas lineales.

9. Normas y métodos iterativos de resolución de sistemas lineales. 9. Normas y métodos iterativos de resolución de sistemas lineales. Manuel Palacios Departamento de Matemática Aplicada Centro Politécnico Superior Universidad de Zaragoza Otoño 2010 Contents 9 Normas

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) Primer Cuatrimestre - 03 Práctica 3: Diferenciación Aplicación de algunos resultados de diferenciación en una variable. Vericar que se

Más detalles

Tema 1: Matrices y Determinantes

Tema 1: Matrices y Determinantes Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz

Más detalles