Probabilidad Condicional
|
|
|
- María Carmen Torregrosa Plaza
- hace 9 años
- Vistas:
Transcripción
1 Cómo actualizar la probabilidad de un evento dado que ha sucedido otro? o Cómo cambia la probabilidad de un evento cuando se sabe que otro evento ha ocurrido?
2 Ejemplo: Una persona tiene un billete de lotería con los Números 2,7,10,14,15,20. Antes de que se realice el sorteo la probabilidad de que gane la lotería es X.
3 Veamos como se puede definir la probabilidad condicional. Después de realizar muchas veces un experimento, se tiene que es el número de intentos en los que B ocurre. Entre estos elementos se cuenta los intentos en que el evento A también ocurre. La razón es una medida de la probabilidad (condicional) de A dado B
4 Definición: Si se sabe que un evento B ha ocurrido y deseamos conocer la probabilidad de otro evento A, tomando en cuenta que B ha ocurrido, tenemos que esta probabilidad condicional está dada por: con Pr(B)>0
5 Regresando al problema anterior: Sea B={uno de los números ganadores es el número 7} y A={los números 2,7,10,14,15,20 son seleccionados}
6 Otro ejemplo: Suponga que se lanzan dos dados y se observa que la suma X es un número impar Cuál es la probabilidad de que X sea menor que 8?
7 Regla de multiplicación para probabilidades condicionales. Sean A y B dos eventos. Si Pr(B) > 0 entonces Similarmente, si Pr(A)>0,
8 Ejemplo: Se tiene que dos bolas son seleccionadas aleatoriamente (sin reemplazo) de un caja que contiene r bolas rojas y b bolas azules. Cuál es la probabilidad de que la primera bola sea roja y la segunda azul?
9 Generalización a más eventos: Para 3 eventos: Para n eventos:
10 Ejemplo: Supongamos ahora que tenemos 4 bolas que serán seleccionadas una a una (sin reemplazamiento) de una caja que contiene r bolas rojas, b bolas azules ( ) Cuál es la probabilidad de obtener la serie: roja, azul, roja, azul?
11 Comentario: las probabilidades condicionales siguen las mismas reglas que las probabilidades normales (no condicionales).
12 Ley de la probabilidad total Partición: Sea S el espacio muestral de un experimento y considere k eventos en S, tal que son eventos disjuntos y. Se dice entonces que los eventos B forman un partición.
13 Ley de la probabilidad total Teorema: Suponga que los eventos forman una partición de S y para j=1,2,...k. Entonces para cada evento A en S:
14 Ejemplo Se tienen dos cajas que contienen tornillos largos y cortos. Una de ellas tiene 60 tornillos largos y 40 cortos. La segunda caja contiene 10 tornillos largos y 20 cortos. Suponga que una caja se selecciona al azar y se saca aleatoriamente un tornillo. Cuál es la probabilidad de que el tornillo seleccionado sea un tornillo largo?
15 Eventos independientes: Si el conocimiento de que el evento B ocurre no cambia la probabilidad de que el evento A ocurra, se dice que A y B son eventos independientes.
16 Probabilidad condicional Ejemplo: Se tienen 2 máquinas (1 y 2) en una fábrica que funcionan independientemente una de otra. Sea A el evento de que la máquina 1 se estropee durante 8 hrs y sea B el evento de que la máquina 2 se estropee durante 8 hrs. Suponga que Pr(A)=1/3 y Pr(B)=1/4 Cuál es la probabilidad de que al menos una de las máquinas se estropee durante el mismo período?
17 Probabilidad condicional Ejemplo: Se tienen 2 máquinas (1 y 2) en una fábrica que funcionan independientemente una de otra. Sea A el evento de que la máquina 1 se estropee durante 8 hrs y sea B el evento de que la máquina 2 se estropee durante 8 hrs. Suponga que Pr(A)=1/3 y Pr(B)=1/4 Cuál es la probabilidad de que al menos una de las máquinas se estropee durante el mismo período?
18 Eventos independientes (generalización): Los k eventos
19 Ejemplo: Para que A, B y C sean independientes se deben satisfacer las siguientes relaciones:
20 Ejemplo: Suponga que una moneda se lanza dos veces de modo que se tiene el siguiente espacio muestral: S={FF, FC, CF, CC}. Sean los siguientes eventos: -F en el 1er lanzamiento: A={FF, FC} -F en el 2do lanzamiento: B={FF, CF} -ambos resultados iguales: C={FF, CC}
21 Teorema de Bayes Si se conoce Pr(A B i ) para cada i, el teorema de Bayes proporciona una fórmula útil para calcular las probabilidades condicionales de los B i eventos dado A.
22 Teorema de Bayes Sea B i,...,b k los eventos que forman una partición del espacio S tal que Pr(B i )>0 para j=1,2,...,k y sea A un evento tal que Pr(A) >0. Entonces para i=1,...,k,
23 Teorema de Bayes Suponga que el ministerio de sanidad está ofreciendo hacer un test gratis para una cierta enfermedad. El test tiene una fiabilidad del 90%. Por otro lado, una colección de datos indican que la posibilidad de tener esa enfermedad es de 1 entre Como el test es gratis, no duele y es rápido, decidimos hacer el test. Cuál es la probabilidad de tener la enfermedad después de saber que el resultado del test fue positivo?
24 Teorema de Bayes Se tienen 3 diferentes máquinas M 1 M 2 M 3 con las que se fabrica cierto producto. Supongamos que los productos se guardan en un almacén y se sabe que el 20% de esos productos fueron hechos con la maquina M 1, 30% con la M 2 y 50% con M 3. También se sabe que el 1% de los productos hechos con la máquina M 1 son defectuosos, mientras que con M 2, 2% son defectuosos y con M 3, 3% de los productos son defectuosos.
25 Teorema de Bayes Pregunta: Si se selecciona aleatoriamente un producto del almacén y resulta que éste es defectuoso, cuál es la probabilidad de que dicho producto fuese producido por M 2?
Probabilidad Condicional
Cómo actualizar la probabilidad de un evento dado que ha sucedido otro? o Cómo cambia la probabilidad de un evento cuando se sabe que otro evento ha ocurrido? Ejemplo: Una persona tiene un billete de lotería
Probabilidad Condicional
Cómo actualizar la probabilidad de un evento dado que ha sucedido otro? o Cómo cambia la probabilidad de un evento cuando se sabe que otro evento ha ocurrido? Ejemplo: Una persona tiene un billete de lotería
Probabilidad Condicional
Otro ejemplo: Suponga que se lanzan dos dados (distinguibles) y se observa que la suma X es un número impar Cuál es la probabilidad de que X sea menor que 8? Regla de multiplicación para probabilidades
Probabilidad Condicional
Probabilidad Condicional Ejemplo: Se tiene que dos bolas son seleccionadas aleatoriamente (sin reemplazo) de un caja que contiene r bolas rojas y b bolas azules. Cuál es la probabilidad de que la primera
Probabilidad Condicional
Probabilidad Condicional Ejemplo: Se tiene que dos bolas son seleccionadas aleatoriamente (sin reemplazo) de un caja que contiene r bolas rojas y b bolas azules. Cuál es la probabilidad de que la primera
Álgebra lineal. Curso Tema 5. Hoja 1. Tema 5. PROBABILIDAD. 1. Probabilidad: conceptos fundamentales. Regla de Laplace.
Álgebra lineal. Curso 2007-2008. Tema 5. Hoja 1 Tema 5. PROBABILIDAD. 1. Probabilidad: conceptos fundamentales. Regla de Laplace. 1. Un dado se lanza dos veces. Se pide: (a) Construir el espacio muestral.
Tema 4. Probabilidad Condicionada
Tema 4. Probabilidad Condicionada Presentación y Objetivos. En este tema se dan reglas para actualizar una probabilidad determinada en situaciones en las que se dispone de información adicional. Para ello
Probabilidad condicional
4 Profra. Blanca Lucía Moreno Ley March 18, 2014 Sumario 1 Resumen 2 Probabilidad Supongamos que un experimento E tiene un espacio muestral U y un evento A está definido en dicho espacio muestral, entonces
PROBABILLIDAD DE VARIABLE DISCRETA; LA BINOMIAL CÁLCULO DE PROBABILIDADES
PROBABILLIDAD DE VARIABLE DISCRETA; LA BINOMIAL CÁLCULO DE PROBABILIDADES 1- En una bolsa hay 5 bolas numeradas del 1 al 5. Cuál es la probabilidad de que, al sacar tres de ellas, las tres sean impares?
CÁLCULO DE PROBABILIDADES
CÁLCULO DE PROBABILIDADES 1. Regla de Laplace. Ejercicio 1. (2005) Ejercicio 2. (2004) María y Laura idean el siguiente juego: cada una lanza un dado, si en los dos dados sale el mismo número, gana Laura;
Estadística I Tema 4: Probabilidad
Estadística I Tema 4: Probabilidad Tema 4. Probabilidad Contenidos Experimentos aleatorios, espacio muestral, sucesos elementales y compuestos. Definición de probabilidad. Propiedades. Probabilidad condicionada
PRINCIPIOS DE PROBABILIDAD GERMÁN E. RINCÓN
PRINCIPIOS DE PROBABILIDAD GERMÁN E. RINCÓN CONCEPTOS BÁSICOS Tipos de fenómenos: Fenómenos determinísticos Una acción un solo resultado posible Se puede pronosticar con precisión lo que va a ocurrir Qué
Teoría de probabilidades (espacio muestral simple)
Teoría de probabilidades (espacio muestral simple) Muchos experimentos muestran cierta regularidad, i.e., la frecuencia de un evento es aproximadametente la misma en una serie de intentos Un espacio muestral
Curs MAT CFGS-17
Curs 2015-16 MAT CFGS-17 Sigue la PROBABILIDAD Resumen de Probabilidad Teoría de probabilidades: La teoría de probabilidades se ocupa de asignar un cierto número a cada posible resultado que pueda ocurrir
Probabilidad y Estadística
Probabilidad y Estadística Probabilidad Conceptos como probabilidad, azar, aleatorio son tan viejos como la misma civilización. Y es que a diario utilizamos el concepto de probabilidad: Quizá llueva mañana
Materia: Matemática de Octavo Tema: Sucesos. Marco teórico
Materia: Matemática de Octavo Tema: Sucesos En esta lección aprenderás términos básicos de la estadística y algunas reglas de la probabilidad. También aprenderás cómo enumerar eventos simples y muestras
PROBABILIDAD Relación de problemas 1: Fundamentos de Probabilidad
PROBABILIDAD Relación de problemas 1: Fundamentos de Probabilidad 1. Una urna contiene 5 bolas numeradas del 1 al 5. Calcular la probabilidad de que al sacar dos bolas la suma de los números sea impar
PROBLEMAS DE PROBABILIDAD. 3. Calcula la probabilidad de que al lanzar dos dados la suma de sus puntos sea: a) igual a 5 b) mayor que 10
1. Se lanza un dado. Halla la probabilidad: a) de salir el 3 b) de salir un número par c) de salir un número mayor que 2 PROBLEMAS DE PROBABILIDAD 2. Calcula la probabilidad de que al lanzar dos monedas:
Conceptos de Probabilidad (II)
Conceptos de Probabilidad (II) Jhon Jairo Padilla A., PhD. Necesidad Es común escuchar frases como: Juan Probablemente ganará el torneo de tenis Tengo posibilidad de ganarme la lotería esta noche La mayoría
Hoja 2 Probabilidad. 1.- Sean Ω un espacio muestral y A P(Ω) una σ-álgebra. Para A A fijado, Además, resolver el ejercicio 3 desde (5.a) y (5.b).
Hoja 2 Probabilidad 1.- Sean Ω un espacio muestral y A P(Ω) una σ-álgebra. Para A A fijado, se define A A = {B Ω : B = A C con C A}. Demostrar que A A P(A) es σ-álgebra. 2.- Sea {A n : n 1} A una sucesión
MOOC UJI: La Probabilidad en las PAU
4. Probabilidad Condicionada: Teoremas de la Probabilidad Total y de Bayes 4.1. Probabilidad Condicionada Vamos a estudiar como cambia la probabilidad de un suceso A cuando sabemos que ha ocurrido otro
2º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 10.- PROBABILIDAD PROFESOR: RAFAEL NÚÑEZ NOGALES
1.- EXPERIMENTOS ALEATORIOS. SUCESOS 1 Se consideran los sucesos A y B. Exprese, utilizando las operaciones con sucesos, los siguientes sucesos: a) Que no ocurra ninguno de los dos. b) Que ocurra al menos
DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL
DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Página 4 REFLEXIONA Y RESUELVE Recorrido de un perdigón Dibuja los recorridos correspondientes a: C + C C, + C + C, + C C C, + + + +, C+CC
Probabilidad Condicional
Probabilidad Condicional Algunas veces la ocurrencia de un evento A puede afectar la ocurrencia posterior de otro evento B; por lo tanto, la probabilidad del evento B se verá afectada por el hecho de que
Capítulo. Reglas de Probabilidad Pearson Prentice Hall. All rights reserved
Capítulo 35 Reglas de Probabilidad Eventos mutuamente excluyentes Dos eventos son disjuntos o mutuamente excluyentes si no tienen resultados en común. Eventos mutuamente excluyentes son eventos que no
1. EXPERIMENTOS ALEATORIOS.SUCESOS Se llama experimento aleatorio a aquel en el que no se puede predecir el resultado.
UNIDAD 8: PROBABILIDAD 1. EXPERIMENTOS ALEATORIOS.SUCESOS 2. CONCEPTO DE PROBABILIDAD. REGLA DE LAPLACE 3. PROBABILIDAD CONDICIONADA. INDEPENDENCIA DE SUCESOS 4. PROBABILIDAD COMPUESTA 5. PROBABILIDAD
Probabilidad Condicional. Dr. José Dionicio Zacarias Flores
Probabilidad Condicional Dr. José Dionicio Zacarias Flores Introducción Sea E un experimento aleatorio con espacio de probabilidad (Ω,F,P). Algunas veces podemos poseer información incompleta sobre el
Pendientes 1ºMACS y CyT. Probabilidad PROBABILIDAD
PROBABILIDAD 1. Lanzamos dos monedas al aire (primero una y luego la otra). Calcular la probabilidad de obtener: a) Una sola cara b) Al menos una cara c) Dos caras Sol: a) 1/2; b) 3/4; c) 1/4 2. Un lote
JUN Tres hombres A, B y C disparan a un objetivo. Las probabilidades de que cada uno de ellos alcance el objetivo son 1 6, 1 4 y 1 3
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. 1 SEP 2008. El 70% de los estudiantes aprueba una asignatura A y un 60% aprueba otra asignatura B. Sabemos, además, que un 35% del total aprueba ambas.
Teoría elemental de la probabilidad
La es el medio por el cual a partir de la información muestral tomamos decisiones o hacemos afirmaciones que se refieren a toda una población, mediante el proceso llamado inferencia estadística La nos
Probabilidad. Probabilidad
Espacio muestral y Operaciones con sucesos 1) Di cuál es el espacio muestral correspondiente a las siguientes experiencias aleatorias. Si es finito y tiene pocos elementos, dilos todos, y si tiene muchos,
AXIOMAS DE PROBABILIDAD: REGLA DE LA ADICIÓN
AXIOMAS DE PROBABILIDAD: REGLA DE LA ADICIÓN Conocida ahora la probabilidad de un evento, se pueden reunir ciertas características conocidas como axiomas de probabilidad que satisfacen la probabilidad
ESTADÍSTICA INFERENCIAL
ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 2 Nombre: Probabilidad Contextualización En la sesión anterior analizamos cómo a largo plazo un fenómeno aleatorio o probabilístico posee un
Universidad Mariano Gálvez Estadística y probabilidad para Ingeniería Sección B. UNIDAD 2 PROBABILIDAD
Universidad Mariano Gálvez Estadística y probabilidad para Ingeniería Sección B. UNIDAD 2 PROBABILIDAD PRESENTA DRA. EN ING. RITA VICTORIA DE LEÓN ARDÓN 2.Trabajo en equipo 3. Estudio independiente 1.
ESTADÍSTICA Y ANÁLISIS DE DATOS. Práctica del Tema 4. Rudimentos de probabilidad
ESTADÍSTICA Y ANÁLISIS DE DATOS Práctica del Tema 4. Rudimentos de probabilidad 1. Simplifica las siguientes expresiones: a) (A B) (A B c ). b) (A B) (A c B) (A B c ). c) (A B) (B C). d) (A B) (A c B c
Unidad Temática 2 Probabilidad
Unidad Temática 2 Probabilidad Responda verdadero o falso. Coloque una letra V a la izquierda del número del ítem si acepta la afirmación enunciada, o una F si la rechaza. 1. El experimento que consiste
2.11. Problemas de probabilidad condicional, regla. de la multiplicación, probabilidad total, regla. de Bayes e independencia
74 Capítulo 2. Probabilidades 2.11. Problemas de probabilidad condicional, regla de la multiplicación, probabilidad total, regla de Bayes e independencia 1. La caja 1 contiene x esferas blancas y y rojas.
Probabilidad y Estadística
Probabilidad y Estadística Probabilidad Ing. Ivannia Hasbum., M.Eng. Todos los días tomamos decisiones pero no las tomamos a ciegas, imaginar las probabilidades de varios resultados posibles nos ayuda
Probabilidad condicional (Regla de Bayes) Universidad de Puerto Rico ESTA Prof. Héctor D. Torres Aponte
Probabilidad condicional (Regla de Bayes) Universidad de Puerto Rico ESTA 3041 Prof. Héctor D. Torres Aponte 1. Regla de Bayes Utilizando el ejemplo 1.5 (semana #6), sabemos los valores de P (A) y P (A
PROBABILIDAD Y ESTADÍSTICA
PROBABILIDAD Y ESTADÍSTICA Pablo Torres Facultad de Ciencias Exactas, Ingeniera y Agrimensura - Universidad Nacional de Rosario Unidad 2: Probabilidad INTRODUCCIÓN Al lanzar un dado muchas veces veremos
MAE275 Probabilidad y Estadística
1.- Para cada uno de los experimentos a seguir, describa el espacio muestral e indique el número de sus elementos. (a) En una linea de produción se cuenta el número de piezas defectuosas en un intervalo
ESTADÍSTICA Y PROBABILIDAD. a) Si el experimento consiste en tirar una moneda y ver qué sale, el espacio muestral es:
ESTADÍSTICA Y PROBABILIDAD 1. ESPACIO MUESTRAL a) Si el experimento consiste en tirar una moneda y ver qué sale, el espacio muestral es: b) Si se lanza un dado y una moneda el espacio muestral es: c) Si
REGLAS DE PROBABILIDAD
Capítulo 4 Probabilidad REGLAS DE PROBABILIDAD 4.1-1 Evento Compuesto Un evento compuesto es cualquier evento que combina 2 o más eventos simples. Ejemplo: Al lanzar un dado justo de 6 caras, cuál es la
IES ALFONSO ESCÁMEZ PROBABILIDAD EN LA EBAU DE MURCIA
PROBABILIDAD EN LA EBAU DE MURCIA 1. (Septiembre 2017) Para que un producto cosmético tenga el informe favorable de una agencia de sanidad debe superar tres pruebas de evaluación de garantía sanitaria.
UNIDAD II: EXRIMENTOS ALEOTORIOS
UNIDAD II: EXRIMENTOS ALEOTORIOS Un experimento aleatorio es aquél en el que si lo repetimos con las mismas condiciones iniciales no garantiza los mismos resultados. Así, por ejemplo, al lanzar una moneda
Dr. Francisco Javier Tapia Moreno. Octubre 14 de 2015.
Dr. Francisco Javier Tapia Moreno Octubre 14 de 2015. Nuestra explicación anterior de intersecciones y uniones indica que nos interesa calcular las probabilidades de sucesos tales como A y B y A o B. Estos
Estadística aplicada al Periodismo
Estadística aplicada al Periodismo Temario de la asignatura Introducción. Análisis de datos univariantes. Análisis de datos bivariantes. Series temporales y números índice. Probabilidad y Modelos probabilísticos.
Dr. Francisco Javier Tapia Moreno. Octubre 19 de 2016.
Dr. Francisco Javier Tapia Moreno Octubre 19 de 2016. Introducción En esta ocasión veremos otros conceptos básicos de probabilidad tales como las reglas de la probabilidad, la probabilidad condicional
Capítulo. Técnicas de conteo Pearson Prentice Hall. All rights reserved
Capítulo 35 Técnicas de conteo La regla de multiplicación y conteo Si una tarea consiste de una secuencia de opciones en las cuales hay p posibilidades para la primera opción, q posibilidades para la segunda
Espacio muestral. Operaciones con sucesos
Matemáticas CCSS. 1º Bachiller Tema 12. Probabilidad Espacio muestral. Operaciones con sucesos 1. Determina el espacio muestral de los siguientes experimentos a) Lanzar una moneda y anotar el resultado
( ) = ( i) ( i) 1 Probabilidad P A P A B P B. Teorema de la probabilidad total y Teorema de Bayes
1 Probabilidad Teorema de la probabilidad total y Teorema de Bayes S: Espacio muestral A,B,..: Cualquier subconjunto de S, eventos que pueden ocurrir. AXIOMAS 1. P(A) 0 2. P(S)=1 3. {A 1,A 2, } A i A J
UNIVERSIDAD DE LA SALLE
UNIVERSIDAD DE LA SALLE Taller Probabilidad Básica. Bioestadística. 1. Determine cuáles de los siguientes experimentos son aleatorios y en caso afirmativo hallar su espacio muestral: (a) Extraer una carta
02 - Introducción a la teoría de probabilidad. Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales
02 - Introducción a la teoría de probabilidad Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 Contenido Repaso de teoría de conjuntos Fenómenos determinísticos
Conceptos. Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado.
Teresa Pérez P DíazD Profesora de matemática tica Conceptos Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado. Ejemplos: E : Lanzar un dado,
Juan Carlos Colonia P. PROBABILIDADES
Juan Carlos Colonia P. PROBABILIDADES EXPERIMENTO ALEATORIO Se conocen todos los resultados posibles antes de realizar el experimento. Antes de realizar el experimento no se puede conocer el resultado
U D PROBABILIDAD 2º BACHILLERATO Col. LA PRESENTACIÓN PROBABILIDAD
PROBABILIDAD 0. DEFINICIONES PREVIAS 1. DISTINTAS CONCEPCIONES DE PROBABILIDAD a. Definición Clásica b. Definición Frecuentista 2. DEFINICIÓN AXIOMÁTICA DE PROBABILIDAD a. Espacio Muestral b. Suceso Aleatorio
Probabilidad. a) Determinista. c) Aleatorio. e) Determinista. b) Aleatorio. d) Aleatorio.
Probabilidad 08 Clasifica estos experimentos en aleatorios o deterministas. a) Lanzar una piedra al aire y verificar si cae al suelo o no. b) Hacer una quiniela y comprobar los resultados. c) Predecir
PROBABILIDAD. 8. En una bolsa hay 7 bolas blancas y 3 negras. Cuál es la probabilidad de que al extraer
PROBABILIDAD 1. Lanzamos dos monedas al aire (primero una y luego la otra). Calcular la probabilidad de obtener: a) Una sola cara b) Al menos una cara c) Dos caras Sol: a) 1/2; b) 3/4; c) 1/4 2. Un lote
PROBABILIDAD Y DISTRIBUCIÓN BINOMIAL
Matemáticas 1º CCSS 1 RESUMEN PROBABILIDAD Y DISTRIBUCIÓN BINOMIAL Algunas definiciones La probabilidad es una medida de la posibilidad de que acontezca un suceso aleatorio determinado, asignándosele un
Probabilidad condicional, independencia y regla del producto
Probabilidad condicional, independencia y regla del producto 1 Departamento de Ingeniería Mecánica Universidad Politécnica Salesiana 2016, P48 (UPS) Probabilidad condicional, independencia y regla del
FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES
FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES EXPERIMENTO ALEATORIO: ESPACIO MUESTRAL Y SUCESOS 1) Se considera el experimento que consiste en la extracción de tres tornillos de una caja que contiene tornillos
SÉPTIMA SESIÓN DE APRENDIZAJE VI UNIDAD
SÉPTIMA SESIÓN DE APRENDIZAJE VI UNIDAD PROPÓSITO DE LA SESIÓN: Determinar el espacio muestral y los sucesos de una situación problemática contextualizada. Situación 1: En una urna hay 15 bolas numeradas
Son los experimentos de los que podemos predecir el resultado antes de que se realicen.
PROBABILIDAD La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse cuando se realiza un experimento aleatorio. Experimentos deterministas
Probabilidad y Estadística
Probabilidad y Estadística Probabilidad, un concepto básico el cual puede considerarse como indefinido, expresando de algún modo un grado de creencia, o la frecuencia límite de una serie aleatoria. Ambos
A. MEDIA ARITMÉTICA Viene a ser la suma de todos los datos dividido entre el número total de datos.
A. MEDIA ARITMÉTICA Viene a ser la suma de todos los datos dividido entre el número total de datos. Ejemplo: Sean las notas de un grupo de alumnos las siguientes: 12; 15; 12; 11; 16; 19; 12 12 La media
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II JUNIO 2000
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II JUNIO 2000 Dos compañeros de estudios comparten piso. El primero prepara la comida el 40% de los días y el resto lo hace el segundo. El porcentaje de veces
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Parte I, Opción A Junio, Ejercicio 3, Parte I, Opción B Reserva 1,
Capítulo 1. Teoría de la probabilidad Teoría de conjuntos
Capítulo 1 Teoría de la probabilidad 1.1. Teoría de conjuntos Definición 1.1.1 El conjunto S de todos los posibles resultados de un experimento aleatorio es llamado el espacio muestral. Un espacio muestral
PROBABILIDAD. Profesor: Rafael Núñez Nogales CÁLCULO DE PROBABILIDADES. Experimentos y sucesos
PROBABILIDAD CÁLCULO DE PROBABILIDADES Experimentos y sucesos Experimento aleatorio Es aquel cuyo resultado depende del azar, es decir no se puede predecir de antemano qué resultado se va a obtener aunque
Probabilidad Condicional- Probabilidad Total- Teorema de Bayes
Probabilidad Condicional- Probabilidad Total- Teorema de ayes De un grupo de 50 empleados, 30 tiene una antigüedad de más de 10 años. Se eligen dos empleados al azar. Calcular la probabilidad de que los
ESTADISTICA GENERAL. PROBABILIDADES Profesor: Celso Celso Gonzales
ESTADISTICA GENERAL PROBABILIDADES Profesor: Celso Celso Gonzales OBJETIVOS Desarrollar la comprensión de los conceptos básicos de probabilidad. Definir que es probabilidad Definir los enfoques clasico,
También son experimentos aleatorios: lanzar una moneda, sacar una bola de una bolsa, sacar una carta de la baraja, etc.
3º ESO E UNIDAD 16.- SUCESOS ALEATORIOS. PROBABILIDAD PROFESOR: RAFAEL NÚÑEZ -------------------------------------------------------------------------------------------------------------------------------------
- Determinísticos. - Aleatorios. Un experimento determinístico es aquel en que se conoce su resultado antes de realizarlo.
Probabilidad - Determinísticos Experimentos - leatorios Un experimento determinístico es aquel en que se conoce su resultado antes de realizarlo. Un experimento aleatorio, también llamado ensayo o acción
Asignación Número Uno
Asignación Número Uno (Valor 5%) A continuación se presenta una lista de ejercicios asociados a la distribución binomial. Seleccione tres (3) de ellos de forma aleatoria y proceda a resolverlos. La evaluación
ESTADÍSTICA-PROBABILIDAD- DISTRIBUCIÓN BINOMIAL
ESTADÍSTICA-PROBABILIDAD- DISTRIBUCIÓN BINOMIAL 139 - En un taller trabajan 12 operarios. La siguiente tabla da el tiempo empleado por cada uno de ellos, durante la jornada de mañana (x) y de la tarde
Análisis de Datos y Métodos Cuantitativos para la Toma de Decisiones 7ma versión MGM
Universidad Católica del Norte Escuela de Negocios Mineros Magíster en Gestión Minera Análisis de Datos y Métodos Cuantitativos para la Toma de Decisiones 7ma versión MGM Antofagasta, Junio de 2014 Freddy
Lanzamos 1 dado y comprobamos cuál es el resultado que aparece en la cara superior.
Curso ON LINE Tema 01 SÓLO ENUNCIADOS. PROBABILIDADES I Lanzamos 1 dado y comprobamos cuál es el resultado que aparece en la cara superior. 001 002 003 004 005 Lanzamos 1 dado y comprobamos cuál es el
TEMA 10: DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL.
TEMA 10: DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL. 10.1 Experimentos aleatorios. Sucesos. 10.2 Frecuencias relativas y probabilidad. Definición axiomática. 10.3 Distribuciones de
GUIA Nº1: EJERCICIOS DE CÁLCULO DE PROBABILIDADES
GUIA Nº: EJERCICIOS DE CÁLCULO DE PROBABILIDADES. Hallar la probabilidad de sacar una suma de puntos al lanzar dos dados.. Hallar la probabilidad de sacar por suma o bien, o bien al lanzar dos dados..
Unidad 8: Probabilidad
SOLUCIONES A LOS EJERCICIOS COMPLEMENTARIOS DE PROBABILIDAD 1. En un colegio hay 60 alumnos de bachillerato. De ellos 40 estudian inglés, 24 estudian francés y 12 los dos idiomas. Se elige un alumno al
a) la primera de las monedas es cara. b) por lo menos una de las monedas es cara.
Estadística II Ejercicios Instrucciones: Resolver los siguientes problemas. Entregar un trabajo por grupo el día del primer parcial, el trabajo deberá tener carátula con los nombres de los integrantes
ESCUELA SECUNDARIA FEDERAL 327 JORNADA AMPLIADA GUIA DE MATEMÁTICAS III MAESTRA MÓNICA VÁZQUEZ MARTÍNEZ NOMBRE: GRUPO: N.L.
ESCUELA SECUNDARIA FEDERAL 327 JORNADA AMPLIADA GUIA DE MATEMÁTICAS III MAESTRA MÓNICA VÁZQUEZ MARTÍNEZ NOMBRE: GRUPO: N.L. RECUERDA VI. CONOCIMIENTO DE LA ESCALA DE LA PROBABILIDAD Evento Independiente:
CLASIFICAR LOS EXPERIMENTOS. OBTENER EL ESPACIO MUESTRAL
OBJETIVO 1 CLASIICAR LOS EXPERIMENTOS. OBTENER EL ESPACIO MUESTRAL Nombre: Curso: echa: Un experimento determinista es aquel experimento en el que podemos predecir su resultado, es decir, sabemos lo que
Probabilidad Condicional. Teorema de Bayes para probabilidades condicionales:
Probabilidad Condicional Teorema de Bayes para probabilidades condicionales: Definición: Sea S el espacio muestral de un experimento. Una función real definida sobre el espacio S es una variable aleatoria.
70 EJERCICIOS de PROBABILIDAD 2º BACH. CC. SS.
70 EJERCICIOS de PROBABILIDAD 2º BACH. CC. SS. En los siguientes ejercicios se recomienda: Considerar previamente, cuando proceda, el espacio muestral. Utilizar siempre el lenguaje de sucesos convenientemente.
PROBABILIDADES Y ESTADÍSTICA (C) Práctica Se arroja dos veces un dado equilibrado, registrándose los resultados obtenidos.
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 1 1. Se arroja dos veces un dado equilibrado, registrándose los resultados obtenidos. a) Definir un espacio muestral S apropiado para este experimento. b) Describir
UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA DE LA FUERZA ARMADA NACIONAL
UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA DE LA FUERZA ARMADA NACIONAL GUIA DE ACTIVIDADES. UNIDAD I Introducción a la Teoría de Probabilidad. Sistemas Determinísticos: Sistemas que interactúan de
Relación 1. Sucesos y probabilidad. Probabilidad condicionada.
Relación. Sucesos y probabilidad. Probabilidad condicionada.. Sean A, B y C tres sucesos cualesquiera. Determine expresiones para los siguientes sucesos: Ocurre sólo A. Ocurren A y B pero no C. c) Ocurren
2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales
2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales consta A? Cuál es el suceso contrario de A? 3. Si consideramos
Matemáticas Aplicadas a las Ciencias Sociales II Hoja 5: Cálculo de Probabilidades
Profesor: Miguel Ángel Baeza Alba (º Bachillerato) Matemáticas Aplicadas a las Ciencias Sociales II Hoja 5: Cálculo de Probabilidades Ejercicio : Tres máquinas A, B y C fabrican tornillos del mismo tipo.
Regla de la multiplicación
Técnicas de Conteo Regla de la multiplicación Permutaciones de n objetos tomados r a la vez Combinaciones de n objetos tomados r a la vez Repartiendo objetos distinguibles en cajas Repartiendo Objetos
Probabilidad. 2. Hallar la probabilidad de obtener 12 al multiplicar los resultados de dos dados correctos.
Probabilidad 1. Lanzamos un dado chapucero 1000 veces. Obtenemos f(1) = 117, f(2) = 302, f(3) = 38, f(4) = 234, f(5) 196, f(6) = 113. a. Hallar la probabilidad de las distintas caras. b. Probabilidad de
FORMACIÓN PROFESIONAL BÁSICA MATEMÁTICAS II CAPÍTULO 8: PROBABILIDAD
FORMACIÓN PROFESIONAL BÁSICA MATEMÁTICAS II CAPÍTULO 8: PROBABILIDAD ACTIVIDADES PROPUESTAS 1. Indica si son, o no, fenómenos aleatorios: a) La superficie de las provincias españolas. b) Anotar el sexo
2.6. Probabilidad Condicional
64 2.6. Probabilidad Condicional 2.6.1. Introducción. En la aplicación de la teoría de probabilidades a problemas prácticos es frecuente que el experimentador este confrontando con la siguiente situación:
IINTRODUCCIÓN AL ANÁLISIS DE DATOS TEMA 5: Nociones básicas de Probabilidad
IINTRODUCCIÓN AL ANÁLISIS DE DATOS TEMA 5: Nociones básicas de Probabilidad 1.- Si tiramos dos dados no trucados (seis caras) y contabilizamos la suma de los resultados obtenidos en cada dado, el espacio
a. ambas bolas sean punteadas b. la primera bola sea negra y la segunda punteada c. una bola sea negra y una rayada
Ejercicios 1. (a) Cual es la probabilidad de obtener una suma de 9 o más, al arrojar un par de dados? (b) Cuál es la probabilidad de obtener un total de 7 al arrojar un par de dados? 2. Una caja contiene
