FRACCIONES ALGEBRAICAS
|
|
|
- Julia Ruiz Alvarado
- hace 9 años
- Vistas:
Transcripción
1 FRACCIONES ALGEBRAICAS CÓMO ESTAMOS EN EL TEMA?. Cuáno dee ñdirse / r oener l unidd?. De ué número h ue resr / r oener l se re del número?. Qué número sumdo con sus / con sus / es?. Un erson inviere los / de su dinero le sor l ercer re menos $00 Cuáno dinero ení?. Qué vlor om l eresión n n 7 r los siguienes vlores de n: A. n -? B. n? C. n? D. n /? E. n 0.? F. n 0/7?. Desrroll ls siguienes oerciones: A. B. 7 0 C. D. 7 7 E. FRACCIONES ALGEBRAICAS Págin
2 FRACCIONES ALGEBRAICAS FRACCIONES ALGEBRAICAS Tod eresión de l form, se uede llmr lgeric ue reresen el cociene enre dos érminos de io lgerico. Es imorne nor ue l simlificción se us r resenr l mism eresión dd, en or de mor simlicidd. Pr ello es necesrio el mnejo correco de los csos de Fcorición, el mnejo de ls roieddes de l oencición l simlificción riméic. Como ejemlos de frcciones lgerics se ueden cir: 7 ) ) ; ; ; cd ) ) c Ls frcciones lgerics cumlen roieddes como culuier ene numérico, se ueden rescr lguns de erem imornci: Al mulilicr el numerdor de un frcción lgeric, és ued mulilicd od or dicho vlor. Al mulilicr el denomindor de un frcción lgeric, és ued dividid od or dicho vlor. Si el denomindor el numerdor de un frcción lgeric son mulilicdos or un mismo vlor, l eresión no se ler. El signo de l frcción será uel ue se encuenre nes de l r divisori. Si el numerdor o el denomindor oseen lgún signo ése será oerdo con el signo de l r cenrl, cumliendo ls misms roieddes de l mulilicción de signos, es decir: ) ) ) ) ) ) ) ) SIMPLIFICACIÓN DE LAS FRACCIONES ALGEBRAICAS Simlificr un frcción lgeric es converirl en un frcción euivlene cuos érminos sen rimos enre si, es decir, l frcción se vuelve irreducile. 7 7 m Así or ejemlo: 7 00 m n m n 0 FRACCIONES ALGEBRAICAS Págin
3 OPERACIONES CON LAS FRACCIONES ALGEBRAICAS Tods ess oerciones se efecún siguiendo los rámeros ue cumlen ls oerciones enre números frccionrios. Pr ello se deerá recordr ue odos los resuldos se simlificrán en l medid de lo osile. SUMA DE FRACCIONES ALGEBRAICAS: De igul mner ue si fuern números frccionrios, se nli rimero si ienen el mismo denomindor, ues recordemos ue de ser sí se coloc el denomindor se efecú l sum enre numerdores. Como los érminos sumr son eresiones de io lgerico se endrá esecil cuiddo el resolver l sum, ue es osile ue or l nurle de los érminos en cuesión l sum uede indicd solmene. Si los denomindores son diferenes el rocedimieno consise en mulilicr los denomindores enre si colocr el resuldo como el nuevo denomindor de l eresión resuldo. Luego se mulilicn el numerdor de l rimer eresión con el denomindor de l segund eresión r sumrlo con l mulilicción del denomindor de l rimer eresión con el numerdor de l segund eresión. Es mulilicción ue lguns ersons llmn en cru o crudos, se coloc en el numerdor de l frcción resuldo. Tod resues deerá simlificrse hs donde se osile. Puede resolverse un sum de eresiones lgerics licndo mién los siguienes sos: Enconrr el mínimo común múlilo de los denomindores. Ese será el denomindor de l eresión resuldo. Dividir ese común múlilo enre cd denomindor de ls eresiones sumr, cd resuldo mulilicrlo or su resecivo numerdor. Colocr esos resuldos en el numerdor de l eresión resuldo recedidos del signo corresondiene l de ls eresiones iniciles. Simlificr hs donde se osile l resues. m m ) m) m) Así or ejemlo: m m m m m m m m m ) m m m m RESTA DE FRACCIONES ALGEBRAICAS: De igul mner ue si fuern números frccionrios, se nli rimero si ienen el mismo denomindor, ues recordemos ue de ser sí se coloc el denomindor se efecú l res enre numerdores. Como los érminos resr son eresiones de io lgerico se endrá esecil cuiddo el resolver l res, ue es osile ue or l nurle de los érminos en cuesión l res uede indicd solmene. Si los denomindores son diferenes el rocedimieno consise en mulilicr los denomindores enre si colocr el resuldo como el nuevo denomindor de l eresión resuldo. Luego se mulilicn el numerdor de l rimer eresión con el denomindor de l segund eresión r resrles l mulilicción del denomindor de l rimer eresión con el numerdor de l segund eresión. FRACCIONES ALGEBRAICAS Págin
4 Es mulilicción ue lguns ersons llmn en cru o crudos, se coloc en el numerdor de l frcción resuldo. Tod resues deerá simlificrse hs donde se osile. Puede resolverse un res de eresiones lgerics licndo mién los siguienes sos: Enconrr el mínimo común múlilo de los denomindores. Ese será el denomindor de l eresión resuldo. Dividir ese común múlilo enre cd denomindor de ls eresiones resr, cd resuldo mulilicrlo or su resecivo numerdor. Colocr esos resuldos en el numerdor de l eresión resuldo recedidos del signo corresondiene l de ls eresiones iniciles. Simlificr hs donde se osile l resues. m m ) m) m) Así or ejemlo: m m m m m m m m m ) m m m m MULTIPLICACION DE FRACCIONES ALGEBRAICAS: Pr mulilicr dos eresiones lgerics sólo s mulilicr enre si numerdores con numerdores denomindores con denomindores. Por lo generl es un uen cosumre simlificr ls eresiones nes de efecur l mulilicción. Así or ejemlo: DIVISION DE FRACCIONES ALGEBRAICAS: Pr dividir dos eresiones lgerics se om l rimer eresión se mulilic or el inverso mulilicivo de l or eresión, es decir, en l segund eresión se cmi l osición del numerdor or l del denomindor vicevers. Or mner es colocr un eresión dejo de l or, r conformr lo ue oulrmene se conoce como le de l orej, donde se mulilicn los eremos de l eresión se divide enre l mulilicción de los elemenos inernos. Se dee clrr ue es no es ningun le. Así or ejemlo: ) ) ) ) ) Oro ejemlo: ) ) ) ) FRACCIONES ALGEBRAICAS Págin
5 FRACCIONES ALGEBRAICAS Págin ) ) ) ) ) ) ) FRACCIONES COMPLEJAS Se definen sí uells eresiones cuos numerdores, denomindores o mos son frcciones lgerics. En esos csos es mejor rjr l simlificción usndo le rocedimieno de l orej Le de los Ouesos). Adicionlmene se recomiend ue se efecúen rimero ls oerciones indicds en los numerdores denomindores, su ve ue se v simlificndo resuldos rciles. De cuerdo con lo nerior se uede decir ue un frcción comlej no es más ue un división de frcciones lgerics. Así or ejemlo:. ) ) ). ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ). ) ) TALLER: FRACCIONES ALGEBRAICAS I Simlificr ls siguienes frcciones lgerics: m c n c.. 0 c c )
6 FRACCIONES ALGEBRAICAS Págin II. Resuelve ls siguienes oerciones enre frcciones lgerics: ) ) ). ) )
7 III. Simlific ls siguienes eresiones lgerics: ). ) IV. Simlific ls siguienes eresiones lgerics:... FRACCIONES ALGEBRAICAS Págin 7
8 ). ) FRACCIONES ALGEBRAICAS Págin
CURSO MATE 0066 Verano 2009 SOLUCIONES EJERCICIOS PROPUESTOS TEMA FRACCIONES ALGEBRAICAS. Como las fracciones algebraicas tienen el 2x
CURSO MATE 00 Verno 009 SOLUCIONES EJERCICIOS PROPUESTOS TEMA FRACCIONES ALGEBRAICAS Como ls frcciones lgerics tienen el mismo denomindor, este se unific + + + + ( ) + ( ) + Se eliminn los réntesis teniendo
En general, si. son números racionales, la suma es un número racional.
... SUMA DE FRACCIONES. Al relizr sums con números rcionles encontrmos csos muy específicos, como son los siguientes: Sum de números rcionles con el mismo denomindor. Pr resolver este tipo de ejercicios
La raíz cuadrada de un número es otro nº que al elevarlo al cuadrado nos da el radicando La raíz cuadrado de 9 es 3. Pues 3 2 es
Curso 1/1 Mtemátics L ríz es l oerción contrri l otenci. c c L ríz cudrd de un número es otro nº que l elevrlo l cudrdo nos d el rdicndo. 9 L ríz cudrdo de 9 es. Pues es 9 9 L ríz cudrd de culquier nº
dec. per. puros dec. per. mixtos Irracionales dec. inf. cifras no periódicas.
Cmo numérico. Nurles N Eneros Z Negivos Rcionles Q dec. excos dec. er. uros dec. er. mixos Reles R Frccionrios Irrcionles dec. inf. cifrs no eriódics. Alguns considerciones. Pr sr de un nº en form frccionri
Módulo 12 La División
Módulo L División OBJETIVO: Epresrá lguns propieddes de l división usndo propieddes de l división los inversos; epresr un numero rcionl de l form deciml frcción común vicevers. L división es un operción
Definición de un árbol Rojinegro
Definición de un árol Rojinegro Árol inrio esrico (los nodos nulos se ienen en cuen en l definición de ls operciones odo nodo oj es nulo) Cd nodo iene esdo rojo o negro Nodos oj (nulos) son negros L rí
MATRICES Y DETERMINANTES.
punes de. Cbñó MTRICES Y DETERMINNTES. CONTENIDOS: Definición y erminologí básic. Operciones con mrices: sum y produco. Produco de un mriz por un esclr. Mriz opues. Mriz invers. Epresión mricil de un sisem
EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique.
ES Pdre Poved (Gudi) Memáics plicds ls SS Deprmeno de Memáics loque : Álgebr Linel Profesor: Rmón Lorene Nvrro Uniddes : Mrices Deerminnes EJEROS UNDDES : MTRES Y DETERMNNTES (Jun-96) Encuenre un mriz
Escuela Nacional Adolfo Pérez Esquivel U.N.C.P.B.A. 3º año. Radicación Operaciones con irracionales Racionalización de denominadores
Escuel Ncionl Adolfo Pérez Esquivel UNCPBA º ño Rdicción Oerciones con irrcionles Rcionlizción de denoindores Recordndo RADICACIÓN Ddo un núero rel un núero entero ositivo n, se ll ríz enési de otro núero
OPERACIONES CON FRACIONES
LEY DE SIGNOS OPERACIONES CON FRACIONES SUMA Y RESTA: Si se sumn dos números con el mismo signo, se sumn los vlores solutos y se coloc el signo común (+) + (+) = + 8 (-) + (-) = - 8 Si se sumn dos números
es incompatible: a) Si m = 1 b) Si m = 2 c) Ninguna de las anteriores. Solución:, siendo r(a) = 2 y r(m) = 3 Sistema incompatible.
nálisis eáico José rí ríne edino PROBLES DE SITES rouesos en eáenes) Preguns de io es. El sise es incoible: ) Si = b) Si = c) Ningun de ls neriores. 8 si r) =, SCD. Si =,, siendo r) = r) = Sise incoible.
TEMA 3: Polinomios y fracciones algebraicas. Tema 3: Polinomios y fracciones algebraicas 1
TEMA Polinomios y frcciones lgerics Tem Polinomios y frcciones lgerics ESQUEMA DE LA UNIDAD.- Operciones con polinomios...- Sum y rest de polinomios...- Producto de polinomios...- División de polinomios..-
EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique.
ES Pdre Poved (Gudi) Memáics plicds ls SS Deprmeno de Memáics loque : Álgebr Linel Profesor: Rmón Lorene Nvrro Uniddes : Mrices Deerminnes EJEROS UNDDES : MTRES Y DETERMNNTES (Jun-96) Encuenre un mriz
COLEGIO SAN FRANCISCO DE SALES Prof. Cecilia Galimberti
COLEGIO SAN FRANCISCO DE SALES - 0 - Prof. Cecili Glimerti MATEMÁTICA AÑO B GUÍA N - NÚMEROS IRRACIONALES NUMEROS IRRACIONALES Conocemos hst hor distintos Conjuntos Numéricos: - Los n nturles: (, 8,.8),
CAPÍTULO 9. INTEGRALES IMPROPIAS 9.1. Límites de integración infinitos 9.2. Integrales con integrando que tiende a infinito 9.3. Observaciones a las
CAPÍTULO 9. INTEGRALES IMPROPIAS 9.. Límies de inegrción infinios 9.. Inegrles con inegrndo que iende infinio 9.. Oservciones ls inegrles impropis Cpíulo 9 Inegrles impropis f ( ) f ( ) f f ( ) () f()
Unidad 1: Números reales.
Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y
1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN
http://www.cepmrm.es ACFGS - Mtemátics ESG - /0 Pág. de Polinomios: Teorí ejercicios. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN Tnto en mtemátics, como en físic, en economí, en químic,... es corriente el
Unidad 2. Fracciones y decimales
Mtemátics Múltiplo.º ESO / Resumen Unidd Unidd. Frcciones y decimles FRACCIONES NÚMEROS DECIMALES EXPRESIÓN, 8, 9 SIGNIFICADO FRACCIONES EQUIVALENTES 0 30 0 0 Prte de un unidd Prte de un cntidd ORDENACIÓN
POTENCIAS.- a determina la potencia de base a y exponente n, significa que hemos de multiplicar a por si mismo n veces.
POTENCIAS.- determi l oteci de se y exoete, sigific ue hemos de multilicr or si mismo veces. Defiició: L otció Bse Exoet El exoete,, idic ls veces ue se reite l se e el roducto de ést or si mism. L se,,
INSTITUTO VALLADOLID PREPARATORIA página 147
INSTITUTO VALLADOLID PREPARATORIA págin 17 págin 18 EXPONENTES NEGATIVOS Y FRACCIONARIOS EXPONENTES L ide de los eponentes nce con l necesidd de revir cierts multiplicciones. Como es sido, cundo se multiplic
Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( )
Concepto clve L derivd de un función se define principlmente de dos mners: 1. Como el límite del cociente de Fermt f ( ) lím x f ( x) f ( ) x. Como el límite del cociente de incrementos f ( x) lím x 0
Inecuaciones con valor absoluto
Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor
Colegio Diocesano Sagrado Corazón de Jesús EJERCICIOS MATEMÁTICAS 3º ESO VERANO 2015
Colegio Diocesno Sgrdo Corzón de Jesús EJERCICIOS MATEMÁTICAS º ESO VERANO º. Amplific ls siguientes frcciones pr que tods tengn denomindor b c d º. Cuál de ls siguientes frcciones es un frcción mplificd
RESUMEN 01 NÚMEROS. Nombre : Curso. Profesor :
RESUMEN 01 NÚMEROS Nomre : Curso : Profesor : PÁGINA 1 Números Los elementos del conjunto N = {1, 2, 3, 4, 5, } se denominn Números Nturles. Los Números Crdinles corresponden l unión del conjunto de los
GUIA Nº: 7 PRODUCTOS NOTABLES
CORPORACION UNIFICADA NACIONAL DE EDUCACIÓN SUPERIOR CUN DEPARTAMENTO DE INGENIERIAS Y CIENCIAS BÁSICAS FUNDAMENTOS DE MATEMATICAS PRODUCTOS NOTABLES Y FACTORIZACION GUIA Nº: 7 PRODUCTOS NOTABLES Productos
EXPRESIONES ALGEBRAICAS: MONOMIOS Y POLINOMIOS
EXPRESIONES LGERIS: MONOMIOS Y POLINOMIOS EXPRESIÓN LGERI.- Un epresión lgeric es culquier cominción de números letrs unidos por ls operciones ritmétics (sum, rest, multiplicción, división, potenci, (o)
IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE:
IES Fernndo de Herrer de octure de 0 Primer trimestre - Primer exmen 4º ESO NOMBRE: ) Nomrr los principles conjuntos numéricos, explicitndo cuáles son sus elementos y ls relciones de inclusión entre ellos
El conjunto de los números naturales tiene las siguientes características
CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que
Multiplicación y división con expresiones racionales
Versión0 Multipliccióndivisiónconepresionesrcionles Por:SndrElviPérezMárquez. Pr relizr operciones con epresiones rcionles, plicmoslsmismspropieddestécnicsqueseutilizn conlsfrccionesnumérics. Recuerdscómohcerlssiguientesoperciones?
CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES
FUNDAMENTOS DEL ÁLGEBRA CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES NOMBRE ID SECCIÓN SALÓN Prof. Evelyn Dávil Tbl de contenido TEMA A. CONJUNTOS NUMÉRICOS... REGLA PARA LA SUMA DE NÚMEROS REALES...
Nivelación de Cálculo
Guí de Conceptos y Ejercicios Aplicdos l Cálculo Desrrolldos y Propuestos 1. Potencis. Nivelción de Cálculo Ejeplo plicdo l cálculo: Clcul el siguiente líite: n n lí 5 Pr desrrollr este ejercicio de cálculo,
Determinantes y matrices
emáics SS Deerminnes José rí rínez edino Deerminnes mrices. Dds ls mrices:, Hll l invers de, l mriz l que. ; ; djun de De. lcul l mriz invers de l mriz L mriz invers viene dd por, siendo l mriz de los
GUIA DE MATEMATICA. Coeficiente numérico. Es toda combinación de números y letras ligados por los signos de las operaciones aritméticas.
www.colegiosntcruzrioueno.cl Deprtmento de Mtemátic GUIA DE MATEMATICA Unidd: Álger en R Contenidos: - Conceptos lgericos ásicos - Operciones con epresiones lgerics - Vlorción de epresiones lgerics - Notción
Potencias y radicales
Potencis y rdicles. Rdicles Definición Llmmos ríz n-ésim de un número ddo l número que elevdo n nos d. por ser n n Un rdicl es equivlente un potenci de eponente frccionrio en l que el denomindor de l frcción
INSTITUTO VALLADOLID PREPARATORIA página 81
INSTITUTO VALLADOLID PREPARATORIA págin 81 págin 8 Si se divide un curt prte de un pstel l mitd se otiene un octv prte del mismo, lo que escrito en simologí mtemátic es Lo nterior es lo mismo que 1 1 4
SISTEMAS DE ECUACIONES DE PRIMER GRADO
el log e me e i: Memáis I. Sisems e euiones. pág. SISTEMAS DE ECUACIONES DE PRIMER GRADO Un sisem e os euiones e primer gro on os inógnis puee esriirse sí: += `+`=` one los oefiienes e ls inógnis los érminos
5.1 LÍMITES INFINITOS 5.2 INTEGRANDOS INFINITOS
MOISES VILLEA MUÑOZ 5 5. LÍMITES IFIITOS 5. ITEGRADOS IFIITOS Objeivo: Se reende que el esudine clcule inegrles sobre regiones no cods y resuelv roblems de licción relciondos con ls inegrles imrois 97
LÁMINA No. 1.1 LECTURA Y ESCRITURA DE UN NÚMERO
6 LÁMINA No. 1.1 REPRESENTACION GRÁFICA DE N N {0, 1,,, 4, 5,...} Propieddes de N: 1. Tiene primer elemento. 0 1 4 5... 1er elemento suc() último elemento. Todo número tiene sucesor. No existe último elemento
POTENCIAS Y LOGARITMOS DE NÚMEROS REALES
www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (
a n =b Si a es múltiplo de b, entonces b es divisor de a. Números primos: son números cuyos únicos divisores son ellos mismos y el 1.
1) NÚMEROS NATURALES Son números que sirven pr contr. Descomposición polinómic de un número. Ej : 1.34.567 1: Uniddes de millón : Centens de millr 3: Decens de millr 4: Uniddes de millr 5: Centens 6: Decens
EXPONENTES Y RADICALES
. UNIDAD EXPONENTES Y RADICALES Objetivo generl. Al terinr est Unidd resolverás ejercicios probles en los que pliques ls lees de los eponentes de los rdicles. Objetivos específicos:. Recordrás l notción
UNIDAD I FUNDAMENTOS BÁSICOS
Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Myo de 2015 Operciones Básics con Frcciones Número
Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso
Colegio Técnico Ncionl Arq. Rúl Mrí Benítez Perdomo Mtemátic Primer Curso Rdicción Se un número rel culquier, n un número nturl mor que 1, se llm ríz n esim de todo número rel, que stisfce l ecución n
TEMA 2. Determinantes Problemas Resueltos
Memáis II (hillero de Cienis). Soluiones de los prolems propuesos. Tem Clulo de deerminnes TEM. Deerminnes Prolems Resuelos. Hll el vlor de los siguienes deerminnes ) ) ) C Soluión ) Se desrroll por l
Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3
Máximo común divisor El máximo común divisor de dos números nturles y es el número más grnde que divide tnto como. se denot mcd,. Lists: (tl vez, el más intuitivo, pero el menos eficiente) Encontrr mcd
56 CAPÍTULO 2. CÁLCULO ALGEBRAICO. SECCIÓN 2.4 Resolución de Ecuaciones de Segundo Grado
56 CAPÍTULO. CÁLCULO ALGEBRAICO SECCIÓN.4 Resolución de Ecuciones de Segundo Grdo Introducción Hemos estudido cómo resolver ecuciones lineles, que son quells que podemos escribir de l form x + b = 0. Si
Las expresiones algebraicas provienen de fórmulas físicas, geométricas, de economía, etc. Son expresiones
Definición de Polinomio Epresiones Algerics Epresión lgeric es tod cominción de números letrs ligdos por los signos de ls operciones ritmétics: dición, sustrcción, multiplicción, división potencición.
TEMA 1. LOS NÚMEROS REALES.
TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones
Ecuaciones de 1 er y 2º grado
Ecuciones de 1 er y º grdo Antes de empezr resolver estos tipos de ecuciones hemos de hcer un serie de definiciones previs, que irán compñds por lgunos ejemplos. Un iguldd lgebric está formd por dos epresiones
Los números enteros y racionales
Los números enteros y rcionles Objetivos En est quincen prenderás : Representr y ordenr números enteros Operr con números enteros Aplicr los conceptos reltivos los números enteros en problems reles Reconocer
SUAVIZAMIENTO EXPONENCIAL AJUSTADO A LA TENDENCIA Y A LA VARIACIÓN ESTACIONAL: MÉTODO DE WINTERS
Pronósicos II Un maemáico, como un inor o un oea, es un fabricane de modelos. i sus modelos son más duraderos que los de esos úlimos, es debido a que esán hechos de ideas. Los modelos del maemáico, como
LOS CONJUNTOS NUMÉRICOS
Pontifici Universidd Ctólic de Chile Fcultd de Educción Nivelción de Estudios pr Adultos CREA Educción Mtemátic Nivel 2 Profesor Jun Núñez Fernández LOS CONJUNTOS NUMÉRICOS Como se mencionó en l clse nterior,
4 FRACCIONES INTRODUCCIÓN A LAS FRACCIOES. FRACCIONES EQUIVALENTES COMPARACIÓN DE FRACCIONES. REDUCCIÓN A COMÚN DENOMINADOR
FRACCIONES..- INTRODUCCIÓN A LAS FRACCIOES. FRACCIONES EQUIVALENTES...- COMPARACIÓN DE FRACCIONES. REDUCCIÓN A COMÚN DENOMINADOR..- OPERACIONES CON FRACCIONES (I)..- OPERACIONES CON FRACCIONES (II)..-
a. (0.5 puntos) Determine la dimensión que debe de tener la matriz A para que se verifique la igualdad:.
Seleividd ndluí. emáis plids ls ienis Soiles. loque ries. www.useleividd.om Págin EJEROS E EÁENES E SELETV NLUÍ.LOQUE TRES.. JUNO. OPÓN. Sen ls mries siendo un número rel ulquier.. ( puno) Oeng l mriz..
Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada
Jun nonio González o Proesor de emáics del Colegio Jun XIII Zidín de Grnd ITEGRCIÓ ITEGRES IDEFIIDS ÉTODOS DE ITEGRCIÓ PRIITIV DE U FUCIÓ ITEGR IDEFIID Sen y F dos unciones reles deinids en un mismo dominio
Madrid OPOSICIONES AL CUERPO DE PROFESORES DE ENSEÑANZA SECUNDARIA EN LA ESPECIALIDAD DE MATEMÁTICAS
OPOSICIONES AL CUERPO DE PROFESORES DE ENSEÑANA SECUNDARIA EN LA ESPECIALIDAD DE MATEMÁTICAS Mdrid. Se M el uno medio de un cuerd P Q de un circunferenci. Por M se rzn ors dos cuerds AB y CD: L cuerd AD
INTEGRAL IMPROPIA. Extensión del concepto de integral definida La integral definida. 3. La función f (x) sea continua en dicho intervalo.
Inegrles INTEGRAL IMPROPIA Eensión del oneo de inegrl definid L inegrl definid d requiere que: El inervlo [, ] se finio L funión f () esé od en el inervlo [, ] L funión f () se oninu en diho inervlo Cundo:
GUIA Nº 3 ÁLGEBRA BÁSICA
RECUERDA QUE: GUIA Nº ÁLGEBRA BÁSICA Un epresión lgeric es un cominción de números, vriles signos de operción. Dos o más términos son semejntes si difieren únicmente en su coeficiente. Sólo se puede dicionr
APUNTES DE MATEMÁTICAS
APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición
Números racionales son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresar en forma de fracción.
MATEMÁTICAS ºACT TEMA. EL NÚMERO REAL. NÚMEROS RACIONALES. Números rcionles son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresr en form de frcción. Los números
CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS
CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD
pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.
LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 + + + + 4 4 n n + es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de
Clase 2: Expresiones algebraicas
Clse 2: Expresiones lgebrics Operr expresiones lgebrics usndo ls propieddes lgebrics de ls operciones sum y producto, propieddes de ls potencis, regls de signos y préntesis. Evlur expresiones lgebrics
Ecuaciones Integradas de Velocidad
Químic Fíic I Velocidd de Rección Ecucione Inegrd de Velocidd Reccione de Primer Orden e Pr un rección del io P, l ecución diferencil de velocidd d d k k (donde k k ). Inegrndo e oiene d d [ ] d k d k.
I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.
I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,
OPERACIONES CON RADICALES
OPERACIONES CON RADICALES RAÍCES Y RADICALES L ríz n-ésim de un número, representd por n, es un operción sore que d como resultdo un número tl que n. Si n es pr, h dos resultdos posiles: positivo negtivo:,
Regla de Sarrus: Para recordar con mayor facilidad el desarrollo del determinante de orden 3, podemos usar esta regla:
UNIDD 8: Determinntes. DETERMINNTES DE ORDEN Y Definición: Pr un mtriz cudrd de orden, por det( ) ó, l siguiente nº rel: det( ) = = = Definición: Pr un mtriz cudrd de orden, not por det( ) ó, l siguiente
pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.
LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 4 n 4 n es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de un sucesión
el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES
el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,
TEMA 4 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES
Te Resolución de sises edine deerinnes Meáics II º chillero TEM RESOLUIÓN DE SISTEMS MEDINTE DETERMINNTES Resolución de sises Regl de rer Teore de Rouché-Froenius EJERIIO Resuelve plicndo l regl de rer
Capítulo 4: Expresiones algebraicas. Polinomios.
Mtemátics orientds ls enseñnzs cdémics: º B de ESO Cítulo : Eresiones lgebrics. Polinomios. commons.wikimedi Eresiones lgebrics. Polinomios. ºB ESO Índice. INTRODUCCIÓN. EXPRESIONES ALGEBRAICAS.. INTRODUCCIÓN..
UNIDAD I FUNDAMENTOS BÁSICOS
Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Septiembre de 2015 Conjuntos Numéricos ) Los Números
( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3.
Colegio Diocesno Sgrdo Corzón de Jesús MATEMÁTICAS I / º Bchillerto C y T LOGARTIMOS Logritmos El ritmo de un número, m, positivo, en bse, positiv y distint de uno, es el eponente l que hy que elevr l
1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre
Álgebra 1 de Secundaria: I Trimestre. yanapa.com. a n. a m = a n+m. (a. b) n = a n. b n. ;. (a n ) m = a n. m.
Álgebr 1 de Secundri: I Trimestre I: EXPRESIONES ALGEBRAICAS R Sen 1 Son epresiones lgebrics T 1 log R',, z 3 z A 1 TÉRMINO ALGEBRAICO TÉRMINOS SEMEJANTES ) 3z ; - 3z ; 6z Son términos semejntes b) b;
a) Decimales finitos: Corresponden a los cuocientes exactos entre el numerador y el denominador. Ejemplo: : 8 = (b)
Clse-06 Números rcionles expresdos en form deciml: Todo número rcionl con b 0 se puede trnsformr form deciml l dividir b el numerdor por su denomindor. En form deciml los siguientes rcionles quedn escritos
3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que:
PROLEMS SORE MTRICES. PROFESOR: NTONIO PIZRRO. http://ficus.pntic.mec.es/pis NDLUCÍ-MTEMÁTICS PLICDS LS CCSSII: º) (ndlucí, Junio, 98) Si son dos mtrices culquier, es correct l siguiente cden de igulddes?:
