Guía - 4 de Matemática: Trigonometría
|
|
|
- Xavier Toro Contreras
- hace 9 años
- Vistas:
Transcripción
1 entro Educacional San arlos de ragón. oordinación cadémica Enseñanza Media. Sector: Matemática. Nivel: NM Prof.: Ximena Gallegos H. 1 Guía - 4 de Matemática: Trigonometría Nomre(s): urso: Fecha. ontenido: Trigonometría. prendizaje Esperado: Resuelve prolemas relativos al cálculo de área y perímetro, utilizando teoremas conocidos y razones trigonométricas. Instrucciones: Resuelve en tu cuaderno cada uno de los siguientes prolemas. I) Desarrolla de texto!!! 1) 1) pág II) Desarrolla en tu cuaderno!!! 1) Determina la medida de la altura de un triángulo equilátero cuyo lado mide. cm ) alcula la medida del lado de un triángulo equilátero, cuya altura mide. cm ) Determina la medida de la diagonal de un cuadrado cuya área es 18 cm 4) En un triángulo rectángulo en, un cateto mide 8 cm, determina el perímetro del triángulo si los otros dos lados son números impares consecutivos. ) alcula las medidas de los catetos de un triángulo rectángulo cuyo perímetro es 60 cm y su hipotenusa mide 6 cm. 6) Determina la medida de la diagonal de un cuo, cuya arista mide cm. 7) Determina la medida de la arista de un cuo, si su diagonal mide cm 8) Las dimensiones del paralelepípedo recto rectangular de la figura, son: 1 cm, cm y 4 cm. Determina la medida de su diagonal D.
2 9) En un triángulo rectángulo en, las proyecciones de a y son: 18 p = cm y q = cm respectivamente. Determina la medida del lado a. 10) Determina el perímetro del triángulo equilátero cuya área es 48 cm 11) Los catetos de un triángulo rectángulo son a = 0 cm y = 80 cm. alcula la razón p : q de las proyecciones de estos catetos sore la hipotenusa. 1) En un triángulo rectángulo en, la proyección del cateto sore la hipotenusa mide cm menos que el mismo. Si la hipotenusa mide cm, determina la medida del cateto. 1) Utilizando las siguientes proposiciones, encuentra los valores de las razones trigonométricas restantes, suponiendo el ángulo agudo. a) sen = ) ctg = 7 14) Las ases de un trapecio isósceles miden 6 cm y 4 cm. el ángulo de la ase mide 60º. alcula el área y el perímetro del trapecio. D 4 cm 60º 6 cm E h 1) Una estatua de 1 metros se sitúa sore un pedestal. Si desde un sitio situado a 4 m del pié del pedestal, se oserva el extremo superior de la estatua con un ángulo de elevación de 6º; cuál es la altura del pedestal? 16) cincuenta metros de la ase de un edificio se oserva la ase de una chimenea con un ángulo de elevación de 6º y el punto más alto de la chimenea se oserva con un ángulo de elevación de 6º. alcula: a) La altura del edificio. ) La altura de la chimenea. 17) En las siguientes proposiciones calcula el valor del ángulo que satisface la ecuación a) senβ = 0,476 ) tg = 4,8 c) cosλ = 0,18 18) un grupo de personas que paseaan en ote, les llama la atención una andera que flamea sore un acantilado. Si los ángulos de elevación hacia los puntos más ajos y más alto del asta de una andera son 0º y 60º respectivamente y la altura del acantilado es de 4 metros, cuál es la altura de la andera?. 19) En la cima de un cerro se ha levantado una antena de telefonía celular. Desde un punto uicado en el valle se miden los ángulos de elevación del extremo superior y la ase de la antena. uál es la altura del cerro si estos ángulos son 7º y 4º respectivamente y la antema mide 80 m de alto?
3 0) Dos persona y oservan en la misma dirección un mismo edificio de 18 m de altura, el primero con un ángulo de elevación de º y el segundo con un ángulo de elevación de 0º. Qué distancia separa al oservador del? 1) uál dee ser el ángulo de inclinación de un avión próximo a aterrizar, si acaa de sorevolar a una altura de 40 km un galpón que se encuentra a km del aeropuerto. ) l colocarse a cierta distancia del pie de un árol, se ve la punta de esta con ángulo de 70º, ajo qué ángulo se verá el árol si uno se aleja el triple de la distancia inicial. ) Un agricultor quiere vender la parcela de la figura, cuánto otendrá por ella si le pagan $0.000 por m? 4) Un futolista va a lanzar un penal, saiendo que el alto del arco es de, metros de alto y que el punto de lanzamiento está a 1 metros del arco, cuál es el ángulo máximo de lanzamiento para que este no dé en el travesaño? Respuestas!!! 1) 1cm ) 4 cm ) 6 cm 4) 40 cm ) 10 cm ; 4 cm 6) cm 7) cm 8) 1 cm 9) a = 8 cm 10) 4 cm 11) p : q = 9 : 64 1) = 10 cm 1) 14) a) cos = ; tg = 7 P cm cm ) sen = ; cos = 9 9 = 14 = 1) 1,8 m 16) a) 94 m ) 1, m 17) a) β = 8, ) = 76,8 c) λ = 79,6 18) 8 m 19) 11,6 m 0), m 1) 8,6 ) = 4, ) 196 m $ ) = 11,8
4 entro Educacional San arlos de ragón. oordinación cadémica Enseñanza Media. Sector: Matemática. Nivel: NM Prof.: Ximena Gallegos H. 4 Guía - de Matemática: Trigonometría Nomre(s): urso: Fecha. ontenido: Trigonometría. prendizaje Esperado: Resuelve prolemas relativos al cálculo de área y perímetro, utilizando teoremas conocidos y razones trigonométricas. III) Selección Múltiple. 1) Si sen =, entonces cos =? 7 a) 7 ) Si ) 6 c) 6 7 tg =, entonces csc =? 4 ) 1 7 e) n.a. a) 4 ) 4 c) 4 d) 1 e) n.a. ) on los datos de la figura, la expresión sen c os es igual a: a) a c ) c a c) a c d) a c e) n.a. c a 4) Si cos =, entonces c t g =? 1 a) 1 1 ) 1 1 c) 1 d) 1 e) 1
5 ) alcular ( tg tg β ) +, en función de los lados. a c a) ) c) d) a + e) a + c c ac a c 6) Desde la ventana de un edificio, de 4 m de altura, se oserva un automóvil con un ángulo de depresión de 60º. alcula la distancia que hay desde el automóvil hasta la ase del edificio. a) 14 m ) 4 m c) 14 m d) 4 m e) n.a. 7) uál es el valor de (x + y) en la figura dada? a) 18+6 ) cm c) 18 x d) 9( + ) 0º e) Otro valor y 8) Una persona uicada en lo alto de un edificio P de 1 mts de altura, oserva a otra persona de igual tamaño, en lo alto de un edificio Q de 18 mts de altura, con un ángulo de elevación de 0º. uál es la distancia entre los dos edificios? a) mts. ) 6 mts. c) mts d) 1 mts. e) n.a. 8 9) Si cos =, entonces c s c =? 17 a) 17 ) 17 c) 1 d) 1 e) ) Un oservador está a una distancia de 1 mts de la ase de un edificio, formando un ángulo de elevación de 60º con el último piso, cuál es la altura del edificio? a) 1 mts ) 6 mts c) 8 mts d) 1 mts e) n.a.
6 6 11) uál de los siguientes triángulos es(son) rectángulo en? sen 4º cos 4º sen 0º cos 0º tg 4º tg 60º cos 0º sen 90º tg 4º a) I y II ) II y III c) I y III d) I, II y III e) n.a. 1) En la figura, uál(es) de las siguientes relaciones es (son) verdadera(s): I) tg = β 4 II) sen + cos β = x III) tg + tg β = 1 x a) Sólo I ) Sólo II c) I y II d) I y III e) Todas 1) El perímetro del es 48 m, cuál es el valor de sen, si tg = 0,7? 0 x y a) 1 ) 16 c) 4 14) cos 60º tg 4º i sen0º =? d) 16 0 e) a) ) 4 1 c) 0 d) 1 e) sen tg β en la figura? 1) uál es el valor de ( ) a) ) 11 6 c) d) 9 e) 0
7 16) En un triángulo isósceles de ase, cuál es la medida de su ase, si uno de sus lados mide 10 cm y uno de sus ángulos asales mide 0?. 7 a) cm ) cm c) cm d) cm e) Otro valor 17) Una escalera que mide 6 metros de largo, está apoyada en la parte superior de un muro, formando con el suelo un ángulo de 0º, cuál es la altura del muro? sen 0º 6 a) 6 cos 0º ) 6 sen 0º c) d) e) n.a. 6 sen 0º 18) Un oservador está a una distancia de 1 mts de la ase de un edificio, formando un ángulo de elevación de 60º con el último piso, cuál es la altura del edificio? a) 1 mts ) 6 mts c) 8 mts d) 1 mts e) n.a. 19) Un oservador de 1,80 m de altura oserva la azotea de un edificio con un ángulo de elevación de 60º. Si el oservador está a 1 m del edificio, cuál es la altura de éste? a) 4 m ) 1 m c) 8 m d) 4 + 1,8 m e) 1 + 1,8 m 0) En un triángulo isósceles de ase, cuál(es) de las siguientes expresiones representa(n) la medida del lado? I) 1,8 cos 0º II) 1,8 sen 40º III),6 cos0º 80º a) Sólo I ) Sólo II c) Sólo III d) Sólo I y II e) I, II y III 1) Un camión al chocar con un poste lo quiera y la punta del poste toca el suelo a una distancia de m de la ase del poste. Si la parte superior del poste querado forma con el suelo un ángulo de 4º, cuál era la altura original del poste?,6 a) 6 + m ) 6m c) + m d) 6 m e) Otro valor
8 8 ) En un triángulo rectángulo en, la altura de la hipotenusa mide la mitad de esta. En relación a esto se afirma que: I) ( p q) p + = 4pq II) q = III) p = q De estas afirmaciones es (son) verdadera(s): a) Sólo I ) Sólo II c) Sólo III d) Sólo I y II e) Sólo I y III ) Se puede determinar el perímetro del triángulo si: (1) tg = () = cm 4 a) (1) Por sí sola ) () Por sí sola c) mas juntas (1) y () d) ada una por sí sola (1) ó () e) Se requiere información adicional 4) El extremo superior de una escalera se encuentra apoyado en el punto más alto de una muralla, la escalera forma con el piso un ángulo de 60º. Se puede determinar la altura de la muralla si: (1) Se conoce el largo de la escalera () Se conoce la distancia entre el pie de la escalera y la muralla. a) (1) Por sí sola ) () Por sí sola c) mas juntas (1) y () d) ada una por sí sola (1) ó () e) Se requiere información adicional Respuestas.!!! 1) ) c ) a 4) e ) c 6) a 7) d 8) 9) 10) a 11) d 1) c 1) e 14) d 1) e 16) c 17) 18) a 19) e 0) d 1) c ) e ) c 4) d
I) Resuelve y encierra en un círculo la alternativa correcta.
entro Educacional San arlos de ragón. oordinación cadémica Enseñanza Media. Sector: Matemática. Prof.: Ximena Gallegos H. 1 Guía Nº 8 PSU Matemática NM : Áreas y Perímetros Nombre: urso: Fecha: ontenido:
PSU Matemática NM-4 Guía 15 Ángulos y Triángulos
entro Educacional San arlos de ragón. pto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM-4 Guía 5 Ángulos y Triángulos Nombre: : urso: Fecha: - ontenido: Geometría. prendizaje Esperado: Utiliza
Guía - 3 de Funciones y Procesos Infinitos: Trigonometría
Centro Educacional San Carlos de Aragón. Coordinación Académica Enseñanza Media. Prof.: Ximena Gallegos H. Guía - de Funciones y Procesos Infinitos: Trigonometría Nombre(s): Curso: Fecha. Contenido: Trigonometría.
Guía Nº 12 PSU NM 4: Cuadriláteros + Circunferencia. Nombre: Curso: Fecha:
1 entro Educacional San arlos de ragón. Dpto. de Matemática. Prof.: Ximena Gallegos H. Guía Nº 1 PSU NM : uadriláteros + ircunferencia Nombre: urso: Fecha: prendizaje Esperado: Determina medidas angulares,
PSU Matemática NM-4 Guía 17: Circunferencia
entro Educacional San arlos de ragón. Dpto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM-4 Guía 7: ircunferencia Nombre: urso: Fecha: - ontenido: Geometría. prendizaje Esperado: Utiliza el método
Guía Nº 11PSU NM 4: Circunferencia. Nombre: Curso: Fecha:
entro Educacional San arlos de ragón. pto. de Matemática. Prof.: Ximena Gallegos H. Guía Nº PSU NM 4: ircunferencia Nombre: urso: Fecha: prendizaje Esperado: etermina medidas angulares, utilizando propiedades
PSU Matemática NM-4 Guía 18: Circunferencia
1 entro Educacional San arlos de ragón. Dpto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM-4 Guía 18: ircunferencia Nombre: urso: Fecha: - ontenido: Geometría. prendizaje Esperado: Utiliza el
PSU Matemática NM-4 Guía 21: Semejanza de Triángulos
1 entro ducacional San arlos de ragón. pto. Matemática. Nivel NM 4 Prof. Ximena Gallegos H. PSU Matemática NM-4 Guía 1: Semejanza de Triángulos Nombre: urso: Fecha: - ontenido: trazos proporcionales. prendizaje
PSU Matemática NM-4 Guía 19: Circunferencia
1 entro Educacional San arlos de ragón. pto. Matemática. Nivel: NM 4 Prof. Ximena Gallegos H. PSU Matemática NM-4 Guía 19: ircunferencia Nombre: urso: Fecha: - ontenido: Geometría. prendizaje Esperado:
Guía - 2 de Funciones: Trigonometría
Centro Educacional San Carlos de Aragón. Coordinación Académica Enseñanza Media. Sector: Matemática. Nivel: NM 4 Prof.: Ximena Gallegos H. Guía - de Funciones: Trigonometría Nombre(s): Curso: Fecha. Contenido:
BOLETÍN Nº5. TRIGONOMETRÍA
BOLETÍN Nº5. TRIGONOMETRÍA 1. Completa la tabla:. Halla las restantes razones trigonométricas del ángulo α: 3. Expresa en función de ángulos del primer cuadrante, los senos y cosenos de los siguientes
PSU Matemática NM-4 Guía 14: Ángulos y Triángulos
1 Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM- Guía 1: Ángulos y Triángulos Nombre: Curso: Fecha: - Contenido: Geometría. Aprendizaje Esperado:
5.5 LÍNEAS TRIGONOMÉTRICAS
5.5 LÍNES TRIGONOMÉTRIS Sea (O, ) una circunferencia con centro en el origen de coordenadas O(0, 0) radio la unidad. Si se construe un ángulo con vértice en el origen sentido positivo podemos obtener las
4º E.S.O. OPCIÓN B. Departamento de Matemáticas. I.E.S. Príncipe de Asturias. Lorca
Relación ejercicios trigonometría 1) Halla la altura de un edificio que proyecta una sombra de 6 m. a la misma hora que un árbol de 1 m. proyecta una sombra de 4 m. Sol: 49 m ) En un mapa, la distancia
Edificio y árbol, qué altura tienen?
Nivel: 3.º medio Subsector: Matemática Unidad temática: Edificio y árbol, qué altura tienen? Joaquín es un joven inquieto, y entre muchas cosas que le llaman la atención es que cada vez que él camina,
6.- En un puerto de montaña aparece una señal de tráfico que señala una pendiente del 12 %. Cuál sería ese desnivel en grados?
TRIGONOMETRÍA 1.- En un triángulo rectángulo, la hipotenusa mide 8 dm y tgα 1' 43, siendo α uno de los ángulos agudos. Halla la medida de los catetos..- Si cos α 0' 46 y 180º α 70º, calcula las restantes
Ficha Expresa los siguientes ángulos en radianes, dejando el resultado en función de :
Ficha 1 1. Expresa los siguientes ángulos en radianes, dejando el resultado en función de : 2. Expresa los siguientes ángulos en grados sexagesimales y dibuja los ángulos centrales que tienen cada una
7. RAZONES TRIGONOMÉTRICAS
7. RAZONES TRIGONOMÉTRICAS 1. El papá de Pablo tiene una escalera que distando el pie de la escalera 1, 6m de la pared alcanza una atura sobre la pared de m. Entonces la dimensión de la escalera del papá
RELACIÓN DE TRIGONOMETRÍA
RELACIÓN DE TRIGONOMETRÍA ) Resuelve el triángulo ABC rectángulo en A del que se sabe que: a cm y ˆB 7º0' La hipotenusa mide 7 m y un cateto 8 m. Un cateto mide 0 cm, y su ángulo opuesto 0º. ) De un triángulo
Ejercicios resueltos de trigonometría
Ejercicios resueltos de trigonometría 1) Resuelve los siguientes triángulos: 9m 40º 10m 120º 2) Desde lo alto de una torre, mirando hacia la izquierda, se ve un árbol que está a 10 metros de la base, y
NOMBRE Y APELLIDOS: debe medir el tercero para que ese triángulo sea un triángulo rectángulo?
FICHA REFUERZO TEMA 8: TEOREMA DE PITAGORAS. SEMEJANZA. CURSO: 2 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Los dos lados menores de un triángulo miden 8 cm y 15 cm. Cuánto debe medir el tercero para que
Guía de Matemática NM 3: Inecuaciones
Centro Educacional San Carlos de Aragón. Coordinación Académica Enseñanza Media. Sector: Matemática. Nivel: NM Prof.: Ximena Gallegos H. Guía de Matemática NM : Inecuaciones Nombre(s): Curso: Fecha. Contenido:
FUNCIONES TRIGONOMÉTRICAS
FUNIONES TRIGONOMÉTRIS 1. Determina los valores faltantes en la siguiente tabla aplicando el teorema de Pitágoras y/o funciones trigonométricas: Funciones trigonométricas Lados Ángulos a b c 10 1 7 13
EJERCICIOS DE REPASO. TRIGONOMETRÍA I (Tomado de internet. Autor: Alfonso Sánchez Marín)
EJERCICIOS DE REPASO TRIGONOMETRÍA I (Tomado de internet. Autor: Alfonso Sánchez Marín) 1º.- Desde el puente de mando de un barco se observa un acantilado próimo con un ángulo de 40º. Si la distancia a
1. Determina la medida en radianes de los siguientes ángulos o viceversa.
EJERCICIOS. 1. Determina la medida en radianes de los siguientes ángulos o viceversa. a) 150º b) rd c) 10º d) 3 rd e) 135º f) 3 4 rd g) 60º h) 4 5 rd i) 450º j) 7 4 rd k) 360º l) 5 rd. Calcula todas las
1. Trigonometría 4º ESO-B. Cuaderno de ejercicios. Matemáticas JRM. Nombre y apellidos... INTRODUCCIÓN A LA TRIGONOMETRÍA Página 1
1. Trigonometría 4º ESO-B Cuaderno de ejercicios Matemáticas JRM Nombre y apellidos... INTRODUCCIÓN A LA TRIGONOMETRÍA Página 1 RESUMEN DE OBJETIVOS 1. Razones trigonométricas de un ángulo agudo. OBJETIVO
Nombre: Curso: Fecha: -
1 Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM-4 Guía 4: Isometrías Nombre: Curso: Fecha: - Contenido: Isometrías. Aprendizaje Esperado: Analiza
Examen de Matemáticas (1º E.S.O) UNIDAD 13: ÁREAS Y PERÍMETROS. Grupo: 1ºB Fecha: 11/06/2009
I.E.S SAN JOSÉ (CORTEGANA) DEPARTAMENTO DE MATEMÁTICAS Examen de Matemáticas (1º E.S.O) UNIDAD 13: ÁREAS Y PERÍMETROS Nombre y Apellidos: Grupo: 1ºB Fecha: 11/06/009 CALIFICACIÓN: Ejercicio nº 1.- Calcula
UNIDAD 4: TRIGONOMETRÍA
UNIDAD 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS La palara tri-gono-metría significa medida de las figuras con tres esquinas, es decir, de los triángulos. La trigonometría estudia las relaciones entre
Matemática 3 año
Trabajo Práctico N 7: Razones trigonométricas Matemática 3 año - 2016 1) Un arquitecto tiene que hacer la maqueta de una rampa. Para eso comienza dibujando un triángulo rectángulo ABC, que cumple con estas
TEMA 3. TRIGONOMETRÍA
TEMA 3. TRIGONOMETRÍA Definiciones: 0 30 45 60 90 180 270 360 Seno 0 1 0-1 0 Coseno 1 0-1 0 1 Tangente 0 1 0 0 Teorema del seno: Teorema del coseno: Fórmulas elementales: FÓRMULAS TRIGONOMÉTRICAS. Suma
EJERCICIOS DE TRIGONOMETRÍA. 1) Expresa en radianes las medidas de los siguientes ángulos: 2) Expresa en grados sexagesimales los siguientes ángulos:
Colegio María Inmaculada MATEMÁTICAS ACADÉMICAS 4º ESO EJERCICIOS DE TRIGONOMETRÍA 1) Expresa en radianes las medidas de los siguientes ángulos: 2) Expresa en grados sexagesimales los siguientes ángulos:
GEOMETRÍA DEL ESPACIO: PRISMA
FICHA DE TAAJO Nº Nombre Nº orden imestre IV 4ºgrado - sección A C D Ciclo IV Fecha: - - 1 Área Matemática Tema GEOMETÍA DEL ESPACIO: PISMA TEMA: PISMA Es el sólido que se encuentra limitado por dos polígonos
Funciones Trigonométricas Básicas, Teorema del Seno y del Coseno
Trigonometría Básica Funciones Trigonométricas Básicas, Teorema del Seno y del Coseno Introducción a la Trigonometría Rama de la matemática que estudia las relaciones métricas entre los lados y los ángulos
Tutorial MT-b9. Matemática Tutorial Nivel Básico. Trigonometría en triángulo rectángulo
45678904567890 M ate m ática Tutorial MT-b9 Matemática 006 Tutorial Nivel Básico Trigonometría en triángulo rectángulo Matemática 006 Tutorial Trigonometría en triangulo rectángulo.un poco de historia:
TEMAS 4 Y 5 TRIGONOMETRÍA
Temas 4 y 5 Trigonometría Matemáticas I º Bachillerato TEMAS 4 Y 5 TRIGONOMETRÍA UNIDADES DE MEDIDAS DE ÁNGULOS EJERCICIO a Pasa a radianes los siguientes ángulos: y 7 b) Pasa a grados los ángulos: 7 rad
A 2 TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO TEOREMA DE PITÁGORAS:
TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS ELEMENTOS CLASIFICACIÓN TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO A b h A b a A perímetro apotema A r TEOREMA DE PITÁGORAS: a b c 1 POLÍGONOS
EJERCICIOS DE RELACIONES TRIGONOMÉTRICAS (TEMA 1)
Colegio Diocesano Asunción de Nuestra Señora Ávila Tema EJERCICIOS DE RELACIONES TRIGONOMÉTRICAS (TEMA ).- Dados los ángulos = º y = 7º, calcula: a) + b) c) d).- Dados los ángulos = º 7 y = 7º, calcula:
PÁGINA 76. sen 34 = BC AB = = 0,56. cos 34 = AC AB = = 0,82. tg 34 = BC AC = = 0,68. Pág mm. 35 mm. 51 mm
Soluciones a las actividades de cada epígrafe PÁGIN 76 Pág. 1 1 Dibuja sobre un ángulo como el anterior, 34, un triánguo rectángulo mucho más grande. Halla sus razones trigonométricas y observa que obtienes,
TEMA 4: Trigonometría. 1.- Calcula las restantes razones trigonométricas de cada ángulo, si son conocidas:
Matemáticas Curso 011/1 º E.S.O. TEMA : Trigonometría. 1.- Calcula las restantes razones trigonométricas de cada ángulo, si son conocidas: a) = ¼ está situado en el primer cuadrante b) cotg = - π/ π c)
TRABAJO PARA LA TERCERA EVALUACION PARCIAL DE TRIGONOMETRIA Profra. Dulce Estrella Hernández Hernández.
NEXA A LA NORMAL DE NAUCALPAN TRABAJO PARA LA TERCERA EVALUACION PARCIAL DE TRIGONOMETRIA Profra. Dulce Estrella Hernández Hernández. Contesta a mano en hojas blancas, incluye todos los procedimientos.
Sin hacer uso de la calculadora, halla el valor exacto de las razones trigonométricas que faltan o del ángulo, sabiendo que 0 90 :
EJERCICIOS DE TRIGONOMETRÍA Ejercicio nº 1.- Halla las razones trigonométricas de los ángulos y del triángulo ABC sabiendo que es rectángulo. Ejercicio nº 2.- Sin hacer uso de la calculadora, halla el
Razones trigonométricas DE un ángulo agudo de un triángulo
RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO RAZONAMIENTO Y DEMOSTRACIÓN Calcula razones trigonométricas en un triángulo rectángulo. Demuestra identidades trigonométricas elementales Demuestra identidades
Ejercicios de repaso. Triángulos
Ejercicios de repaso Triángulos Matemáticas II Curso 2013-2014 Resuelve los siguientes problemas. 1) Calcula el valor de los ángulos exteriores del siguiente triángulo: 2) Uno de los ángulos agudos de
Trigonometría. 5. Calcula el valor de las siguientes expresiones, sin utilizar la calculadora: a) b) c) d)
Trigonometría 1. Razones trigonométricas de un ángulo agudo 1.1. Definiciones de seno de, coseno de y tangente de. 1.2. Relaciones entre las razones trigonométricas de un ángulo. 1.3. Razones trigonométricas
TRIGONOMETRÍA. c) 315º = d) 320º = 4.- Expresa los siguientes ángulos como suma de un número entero de vueltas y un ángulo menor
TRIGONOMETRÍA 1.- Expresa en grados los siguientes ángulos medidos en radianes: a) b) c) 5π rad = 4 7π rad = 6 4π rad = 3 10π d) rad = 9 e) 0,25 π rad = f) 1,25 π rad = 2.-Expresa en radianes los siguientes
Problemas de Aplicación
www.matebrunca.com Prof. Waldo Márquez González Ejercicios: Teorema de Pitágoras 1 Problemas de Aplicación 1. En los ejercicios siguientes, establézcase si la ecuación dada es correcta o no. Supóngase
EJEMPLO: Dadas las siguientes medidas calcula la longitud del segmento B C. = = 5,338 5
1.TEOREMA DE TALES. Si se traza un conjunto de rectas paralelas entre si, r, s, t, que cortan a otras dos rectas a e b, los segmentos que se determinan sobre las rectas a y b son proporcionales. A ' AB
3.- Calcula los ángulos de un rombo cuyas diagonales miden 12 y 8 m.
Departamento de Matemáticas 1.- Sabiendo que tga = 4, calcula sena, cosa y a. 2.- Sabiendo que sena = -0 4, calcula tga, cosa y a. 3.- Calcula los ángulos de un rombo cuyas diagonales miden 12 y 8 m. 4.-
9cm α = 50º. P R PR = 22 cm
EJERCCIOS DE TRIGONOMETRÍA II: 1. Calcula el área de un triángulo como el de la figura: 9cm α = 50º 19cm 2. Calcular la longitud de la sombra que arroja un poste de 2,5 m de altura cuando los rayos del
RESOLUCIÓN DE TRIÁNGULOS
RESOLUCIÓN DE TRIÁNGULOS Triángulos rectángulos, isósceles o equiláteros 1.- Resuelve los triángulos rectángulos, en los que A=90º: a) b=3, c=3; b) a=5; B=37º; c) c=15, b=8. Sol: a) B=45º, C=45º, b=3 2
PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA
CURSO PRE FACULTATIVO II-01 PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA 1. En una circunferencia de centro O, se traza el diámetro AB y se prolonga hasta el punto C a partir del
Matemáticas Física Curso de Temporada Verano Ing. Pablo Marcelo Flores Jara
Matemáticas Física Curso de Temporada Verano 2016 Ing. Pablo Marcelo Flores Jara [email protected] UNIDAD II: RESOLUCIÓN DE TRIÁNGULO CUALESQUIERA U OBLICUÁNGULOS Ing. Pablo Marcelo Flores Jara
LICEO MILITAR GENERAL ARTIGAS 13 / 01 / 10
4 1 PRUEBA TEÓRICA INGRESO A CUARTO Complete correctamente las siguientes afirmaciones: a Cada uno de los ángulos de un triángulo equilátero mide... b Los lados opuestos de un paralelogramo son.. c La
a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado...
Geometría Plana 3º E.S.O. PARTE TEÓRICA 1.- Define para un triángulo los siguientes conceptos: Mediatriz: Bisectriz: Mediana: Altura: 2.- Completa las siguientes frases: a) Las mediatrices de un triángulo
TRIGONOMETRÍA. d) 0,71 rad. 5.- Calcula las diagonales de un rombo sabiendo que sus ángulos son 60º y 120º y que sus lados miden 6cm.
TRIGONOMETRÍA 1.- Pasa de grados a radianes y viceversa: a) 1º b) 1º c) π rad 4 d) 0,71 rad.- Calcula las razones trigonométricas del ángulo A del siguiente triángulo rectángulo..- Calcula las razones
27.- La diferencia entre el lado de un triangulo equilátero y su altura es 12 cm. Cuanto mide el perímetro del triangulo?
EJERCICIOS 1.- Calcular la altura a la hipotenusa de un triángulo rectángulo cuyos catetos miden 6 y 8 cm. 5 2.- En un triángulo rectángulo, un cateto mide 15 cm., y la proyección del otro sobre la hipotenusa
UTILIZAMOS LA TRIGONOMETRÍA.
UTILIZAMOS LA TRIGONOMETRÍA. RAZONAMIENTO Y DEMOSTRACIÓN Determina las demás razones trigonométricas a través de un dato. Aplica las definiciones de razones trigonométricas en la solución de ejercicios
Elementos secundarios. Tiene TRIÁNGULOS. Clasificación. ACUTÁNGULO 3 ángulos agudos. RECTÁNGULO 1 ángulo recto. OBTUSÁNGULO 1 ángulo obtuso
Programa compañamiento uadernillo de ejercitación Ejercitación onceptos básicos de triángulos Es la cuantificación de la superficie. = base altura Mapa conceptual Área ltura (h) h Matemática Es la suma
GUIA DOS CUADRILATEROS
PROF.: XIMN STRO NIVL IV MIO GUI OS URILTROS 1) Si el lado de un cuadrado mide m, entonces cuánto mide la altura de un triángulo de base m y cuya área es equivalente al del cuadrado? ) m ) m ) m ) m )
TEMA 4. TRIGONOMETRÍA.
TEMA 4. TRIGONOMETRÍA. 4.1. Semejanza. - Criterios de semejanza de triángulos. - Teorema del cateto. - Teorema de la altura. 4.2. Razones trigonométricas. - Razones trigonométricas de un ángulo agudo.
Guía de Matemática. Unidad: Semejanza de las figuras planas 2 Medio 2011
Guía de Matemática Unidad: Semejanza de las figuras planas 2 Medio 2011 Nombre:.. urso: 2.. 1. Determina si las siguientes figuras son siempre semejantes: a) Dos triángulos rectángulos e) Dos circunferencias
RAZONES TRIGONOMÉTRICAS
RAZONES TRIGONOMÉTRICAS Las Razones trigonométricas se definen comúnmente como el cociente entre dos lados de un triangulo rectángulo asociado a sus ángulos. SENO, COSENO Y TANGENTE Recordarás que eisten
UNIDAD 6 La semejanza y sus aplicaciones
Pág. 1 de 5 I. Manejas la semejanza de figuras (mapas, planos, maquetas) para obtener medidas, incluidas áreas y volúmenes, de una a partir de la otra? 1 uáles de estas figuras son semejantes? Justifícalo
Conocidos dos ángulos, el tercero se saca como diferencia hasta 180º. ( ) ( ) º. b c
a. Resolver los siguientes triángulos: i. 57 c 00  57º Se conocen dos lados y el ángulo comprendido entre los dos. Aplicando el teorema del coseno se calcula el lado que falta. + c c cos  a + c c cos
TEOREMA DE PITÁGORAS. INTRODUCCIÓN
TEOREMA DE PITÁGORAS. INTRODUCCIÓN Pitágoras es muy conocido, a pesar de que no publicó ningún escrito durante su vida. Lo que sabemos de Pitágoras ha llegado a través de otros filósofos e historiadores.
TRIGONOMETRÍA. CONVERSIÓN DE UN SISTEMA A OTRO Tomando como base la equivalencia de un sistema a otro, podemos establecer la siguiente fórmula:
Cursos ALBERT EINSTEIN ONLINE Calle Madrid Esquina c/ Av La Trinidad LAS MERCEDES 9937172 9932305! www. a-einstein.com TRIGONOMETRÍA SISTEMAS DE MEDIDAS DE ÁNGULOS SISTEMA SEXAGESIMAL: Es el que considera
RELACIÓN DE EJERCICIOS DE GEOMETRÍA PLANA
RELACIÓN DE EJERCICIOS DE GEOMETRÍA PLANA 1. Halla el perímetro y el área de las siguientes figuras: 2. Entre las dos diagonales de un rombo suman 100 cm, siendo la menor 20 cm más corta que la mayor.
PSU Matemática NM-4 Guía 23: Isometrías. Nombre: Curso: Fecha: -
Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM- Guía : Isometrías Nombre: Curso: Fecha: - Contenido: Isometrías. Aprendizaje Esperado: Analiza traslaciones
7 Geometría del plano. Movimientos
Qué tienes que saber? 7 QUÉ tienes que saber? Lugares geométricos ctividades Finales 7 Teorema de Pitágoras. plicaciones Ten en cuenta Dos rectas secantes forman dos ángulos adyacentes si son consecutivos
EJERCICIOS DE VERANO MATEMÁTICAS 4º ESO
EJERCICIOS DE VERANO MATEMÁTICAS 4º ESO NOTA IMPORTANTE: Estos ejercicios se entregarán en el mes de septiembre el mismo día del examen de recuperación de matemáticas. La entrega de los mismos será condición
RESOLUCIÓN DE TRIÁNGULOS
RESOLUCIÓN DE TRIÁNGULOS 1. RELACIONES ENTRE LOS LADOS Y LOS ÁNGULOS DE UN TRIÁNGULO RECTÁNGULO Dado un triángulo rectángulo ABC, como el de la figura, supondremos que el ángulo recto es C. A continuación
TRABAJO DE MATEMÁTICAS B
TRABAJO DE MATEMÁTICAS B º ESO NOTA: EL TRABAJO SE ENTREGARÁ EL DÍA DEL EXAMEN DE SEPTIEMBRE. PUEDE SUBIR HASTA UN PUNTO LA NOTA, SIEMPRE Y CUANDO EN EL EXAMEN TENGAS UNA NOTA ENTRE Y. RECUERDA QUE TAMBIÉN
PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA
CURSO PRE FACULTATIVO 1-011 PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA 1. En una circunferencia de centro O, se traza el diámetro AB y se prolonga hasta el punto C a partir del
GUIA DE TRIGONOMETRÍA
GUIA DE TRIGONOMETRÍA Los ángulos se pueden medir en gos sexagesimales y ianes Un ángulo de 1 ián es aquel cuyo arco tiene longitud igual al io - 60º = ianes (una vuelta completa) - Un ángulo recto mide
EJERCICIOS DE MATEMÁTICAS 2º E.S.O. TEOREMA DE PITÁGORAS Y DISTANCIAS
Colegio Ntra. Sra. de las Escuelas Pías Dpto. de Matemáticas EJERCICIOS DE MATEMÁTICAS 2º E.S.O. TEOREMA DE PITÁGORAS Y DISTANCIAS 1. Un ángulo agudo de un triángulo rectángulo mide la mitad que el otro.
EJERCICIOS DE TRIÁNGULOS CON SOLUCIÓN
EJERCICIOS DE TRIÁNGULOS CON SOLUCIÓN 1. Uno de los catetos de un triángulo rectángulo mide 4,8 cm y el ángulo opuesto a este cateto mide 54º. Halla la medida del resto de los lados y de los ángulos del
GUIA DE ESTUDIO PARA EXAMEN EXTRAORDINARIO NOMBRE DEL ALUMNO: GRUPO: FECHA:
CENTRO DE BACHILLERATO TECNOLOGICO INDUSTRIAL Y DE SERVICIOS N 281 SEMS DGETI DEPARTAMENTO DE SERVICIOS DOCENTES ASIGNATURA: GEOMETRIA Y TRIGONOMETRIA GUIA DE ESTUDIO PARA EXAMEN EXTRAORDINARIO NOMBRE
SOLUCIONES TRIGONOMETRÍA19
SOLUCIONES EJERCICIOS DE TRIGONOMETRÍA Ejercicio nº 1.- Halla las razones trigonométricas de los ángulos y del triángulo ABC sabiendo que es rectángulo. Sea x la longitud de la hipotenusa; por el teorema
3.5 cm. 4.2 cm. a. sen(α) = 9. b. sen(α) = 9 2. c. cot(α) = cm
COMPLEJO EDUCATIVO CANTON TUTULTEPEQUE GUIA DE TRABAJO Profesor Responsable: Santos Jonathan Tzun Meléndez. Grado: º Bachillerato. Asignatura: Matemática I Periodo: Fecha de Entrega: UNIDAD. UTILICEMOS
EJERCICIOS de TRIGONOMETRÍA
EJERCICIOS de TRIGONOMETRÍA GRADOS Y RADIANES: 1. Pasar los siguientes ángulos a radianes: a) b) 45º c) 60º d) 90º e) 180º f) 270º g) 360º ) 135º i) 235º j) 75º 2. Pasar los siguientes ángulos, epresados
UNIDAD 7 FUNCIONES TRIGONOMÉTRICAS
UNIDAD 7 FUNCIONES TRIGONOMÉTRICAS Uso de la calculadora. Calcula, usando calculadora: a) sen 0 b) cos 70 e) cos 89 0 f) tan c) tan 0 0 g) sen 80 7 d) sen 7 0 h) cos 6 8. Encuentra el valor del ángulo
; b) Calcular el resultado de las siguientes operaciones lo más simplificado posible: ; b) 2
MATEMÁTICAS - SEPTIEMBRE TAREA DE VERANO 4º E.S.O.-B 4 1. Simplificar potencias: a) 4 ( ) 5 5 81 9 ; b) 4 0 5 9 5 4 ; c) 4 0 15 5 5 4 ; d) 9000 0'000000006 6000000 0'0007. Calcular el resultado de las
Geometría. 1 a.- Qué diferencia hay entre una recta y una semirrecta?, y entre una semirrecta y un segmento?
Geometría 1 a.- Qué diferencia hay entre una recta y una semirrecta?, y entre una semirrecta y un segmento? 2 a.- Qué originan dos puntos en una recta?. Cuántas rectas pasan por dos puntos?, y por un punto?
INSTITUCION EDUCATIVA MANUELA BELTRAN APROBADA SEGÚN RESOLUCION DE FUSION CON NUMERO 2049 DE SEPTIEMBRE DE 2002 y 2487 DE NOVIEMBRE DEL 2010
Versión: 02 Fecha: 01-01-2012 Página 1 de 7 Área: MATEMATICA Asignatura: TRIGONOMETRIA Curso(s): DECIMO Docente: ERNESTO CUADROS Período 2 : 1 de abril- 23 de junio /2013 Objetivos: (uno general y varios
El coseno del ángulo agudo Ĉ es la razón entre la longitud del cateto contiguo y de la. hipotenusa a 1. Razones trigonométricas inversas Secante de Ĉ
.- MEDIDA DE ÁNGULOS. El grado sexagesimal (º) es cada una de las 60 partes iguales en las que se divide la circunferencia (submúltiplos: el minuto y el segundo). El radián (rad) es la medida del ángulo
Preguntas propuestas. Aptitud Académica Matemática Cultura General Ciencias Naturales
Preguntas propuestas 1 01 ptitud cadémica atemática ultura General iencias Naturales NIVL ÁSI Sistemas de medición angular 1. La diferencia de las medidas de dos ángulos suplementarios es π rad. etermine
T3 Trigonometría. Definiciones. Las razones trigonométricas del ángulo agudo,, de un triángulo rectángulo son:
T Trigonometría Definiciones. Las razones trigonométricas del ángulo agudo,, de un triángulo rectángulo son: sen = cateto opuesto = a hipotenusa c hipotenusa cosec = = c cateto opuesto a cos = cateto adyacente
UNIDAD 6 La semejanza y sus aplicaciones
Pág. 1 de 5 I. Manejas la semejanza de figuras (mapas, planos, maquetas) para obtener medidas, incluidas áreas y volúmenes, de una a partir de la otra? 1 uáles de estas figuras son semejantes? Justifícalo
UNIVERSIDAD PONTIFICIA BOLIVARIANA FACULTAD DE INGENIERÍA INGENIERÍA ADMINISTRATIVA
UNIVERSIDAD PONTIFICIA BOLIVARIANA FACULTAD DE INGENIERÍA INGENIERÍA ADMINISTRATIVA GUIA DE TRIGONOMETRÍA (Tomado de: wwwsectormatematicacl//nm_trigonometria_doc) Los ángulos se pueden medir en grados
Guía para el docente Geometría Trigonometría en el triángulo rectángulo. Guía del docente
Guía del docente Descripción curricular: - Nivel: 3. Medio - Subsector: Matemática - Unidad temática: - Palabras clave: trigonometría, seno, coseno, tangente, ángulo de elevación, sombra - Contenidos curriculares:
COMPLEJO EDUCATIVO CANTON TUTULTEPEQUE GUION DE CLASE. Profesor Responsable: Santos Jonathan Tzun Meléndez.
COMPLEJO EDUCATIVO CANTON TUTULTEPEQUE GUION DE CLASE Profesor Responsable: Santos Jonathan Tzun Meléndez. Grado: 1º año de bachillerato Asignatura: Matemática Tiempo: Periodo: UNIDAD 1. UTILICEMOS LAS
UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA
C u r s o : Matemática Material N 18 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA GUÍA TEÓRICO PRÁCTICA Nº 15 SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando
GEOMETRIA Y TRIGONOMETRÍA PRIMER PARCIAL
GEOMETRIA Y TRIGONOMETRÍA PRIMER PARCIAL INVESTIGAR LOS SIGUIENTES CONCEPTOS Y DEFINICIONES UTILIZADOS EN LA GEOMETRIA PLANA 1.- Explicar Qué es la demostración en geometría? 2.- Explicar Qué es un Teorema?
a1 3 siendo a 1 y a 2 las aristas. 2 a a1
Semejanza y Trigonometria. 77 Ejercicios para practicar con soluciones Dos rectángulos tienen sus lados proporcionales. Los lados del primero miden 6 y 8 cm respectivamente. Si el perímetro del segundo
GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría-8a- Soluciones de relaciones métricas en los triángulos Fecha: Profesor: Fernando Viso
GUIA DE TRAJO Materia: Matemáticas. Tema: Geometría-8a- Soluciones de relaciones métricas en los triángulos Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDICIONES: Trabajo individual.
4º ESO ACADÉMICAS TRIGONOMETRÍA DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa. 3 y tg = 5
º ESO CDÉMICS TRIGONOMETRÍ DEPRTMENTO DE MTEMÁTICS. TRIGONOMETRÍ.- Demuestra, aplicando algún criterio de semejanza, que el triángulo () rectángulo isósceles es semejante al triángulo () de lados a =,
EJERCICIOS DE RECUPERACIÓN DE MATEMÁTICAS 2º ESO. 2ª PARTE
EJERCICIOS DE RECUPERACIÓN DE MATEMÁTICAS 2º ESO. 2ª PARTE CURSO 2015/2016 NOMBRE: IES ALCARRIA BAJA. MONDÉJAR UNIDAD 5. LENGUAJE ALGEBRAICO 1º) Traduce a lenguaje algebraico los siguientes enunciados:
EJERCICIOS DE TRIGONOMETRÍA
-Calcula las restantes razones trigonométricas del ángulo α en los siguientes casos: a) α I cuadrante; tg α=/4 b) α IV cuadrante; cos α=4/5 c) α I cuadrante; sen α=/5 d) α II cuadrante; cos α=-/ e) α III
