FACTORIZACIÓN DE POLINOMIOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FACTORIZACIÓN DE POLINOMIOS"

Transcripción

1 FACTORIZACIÓN DE OLINOMIOS FAQ Qué es factorizar un polinomio? Es epresarlo como producto de otros polinomios de grado igual o menor a él ara qué factorizar un polinomio? ara poder ver rápidamente sus raíces y tener una idea de su gráfica comportamiento) Cómo se factoriza un polinomio? Eisten varios métodos, unos más generales que otros, que combinados permiten factorizarlos al máimo usando sus raíces Todos los polinomios se pueden factorizar? Algunos polinomios no son factorizables salvo numéricamente); se los llama irreducibles no tienen raíces reales) Factor Común Es la operación que deshace la propiedad distributiva. Se trata de encontrar el o los factores que están presentes en TODOS los términos de un polinomio. Recuerden: a. b a b a : b ab Numérico Literal Numérico y Literal Ej: ) el mismo número en todos los términos 7 7 Ej: 6 9 ) trabajamos con el máimo común divisor entre los coeficientes del polinomio original Ej: ) trabajamos con la misma letra elevada al 6 Ej: ) Normalización el coeficiente principal como factor común forzoso) menor eponente con el que aparezca en el polinomio original 5 5 Ej: ) 7 7 Ej: ) Ej: 6 ) 9 9 Ej: - ) ) Saquen el factor común numérico, cuando sea posible: a) 6 b) c) d) 6 e) f) g) EEM N DE "Asociación Atlética Argentinos Juniors"; h) 6 5 i) j) 6 9 k) l) m) 9 7 n) 6 Matemática, rof: Marcelo Stigliano

2 ) Saquen el factor común literal, cuando sea posible: a) 6 7 b) c) 5 7 d) e) f) g) h) ) Saquen los factores comunes numérico y el literal, cuando sea posible: a) 6 b) c) d) 6 e) f) g) 6 5 h) ) Saquen los factores comunes que sean posibles, ya sea numérico y/o literal: a) 6 9 b) c) d) 5 7 e) f) g) 5 h) i) j) k) 9 5 l) Trinomio Cuadrado erfecto Es el desarrollo del cuadrado de un binomio del tipo: ± a) ± a a Método: ) Dado un trinomio, buscamos reescribir dos de los tres términos como cuadrados de otras epresiones numéricas y/o literales) ) Verificamos que el doble del producto entre ambas epresiones sea igual al tercer término del trinomio ) Epresamos el trinomio como el cuadrado del binomio hallado: ± a a ± a) Ej: 6 9 es, obviamente, el cuadrado de es el cuadrado de luego: ) Se verifica que el doble de ambos da el tercer término es decir:.. 6 Recuerden que si al verificar el tercer término la diferencia es sólo de signos, lo único que hay que hacer es 6 9 quedará epresado como cambiar el signo del segundo término, es decir, ) 5) Epresen, cuando sea posible, los siguientes trinomios como cuadrados de un binomio: a) b) c) 0 5 d) 8 6 e) f) g) 6 h) i) 9 j) 9 9 EEM N DE "Asociación Atlética Argentinos Juniors"; Matemática, rof: Marcelo Stigliano

3 Resolvente para Grado La vamos a usar para factorizar únicamente polinomios de grado, es decir, de la forma: ara hallar sus posibles raíces usamos la fórmula resolvente: a b c, b± b ac y reescribimos el polinomio así: ) a ) ) a Ej: a -; b -; c, ) ± ). ). ). X ± 96 ± Luego, )) ) ) ) que es el polinomio factorizado por sus raíces a X 6) Factoricen los siguientes trinomios, cuando sea posible, usando la fórmula resolvente para cuadráticas: a) 5 b) 6 c) 8 6 d) e) f) 5 6 g) 6 8 h) 9 i) 6 9 j) 0 8 k) 58 l) m) 6 n) o) 9 Diferencia de Cuadrados Se aplica a binomios del tipo a - b que resultan de aplicar una doble distributiva a la epresión ab)a-b) Ej: ) ) el segundo paso no es necesario escribirlo) 7) Factoricen los siguientes binomios, cuando sea posible, usando diferencia de cuadrados: a) b) 9 c) 6 d) 6 e) f) 9 g) 9 h) 5 i) j) 5 l) m) 8 9 n) o) 6 9 p) 9 q) r) 9 s) 6 Gauss - Ruffini Este método de factorización se aplica a cualquier polinomio que tenga TODOS sus coeficientes enteros a i z ) y su término independiente distinto de cero a 0 0 ). Un polinomio tiene a lo sumo tantas raíces como su grado, por ejemplo, si es de grado tendrá a lo sumo cuatro raíces, pudiendo tener tres, dos, una o ninguna raíz pero nunca cinco o más. EEM N DE "Asociación Atlética Argentinos Juniors"; Matemática, rof: Marcelo Stigliano

4 Si se cumplen las condiciones debemos seguir los siguientes pasos: ) Buscar todos los divisores positivos y negativos) del término independiente a 0 ), llamados "p" ) Buscar todos los divisores positivos y negativos) del coeficiente principal a ), llamados "q" n ) Armar todas las combinaciones q p posibles irreducibles y sin repetir) p ) Reemplazamos la "" por los en el polinomio y nos quedamos con los que verifiquen 0, es q decir, con aquellos que sean raíz del polinomio ; ; etc) p q Si tenemos suerte, encontraremos rápidamente una cantidad de raíces igual al grado, con lo cual no es necesario hacer más cuentas porque podemos poner: a ). ) )... ) y listo! n Si la cantidad de raíces es menor al grado del polinomio debemos continuar 5) Dividir a ) por ) usando la regla de Ruffini y hallar el polinomio cociente, llamado C ) 6) Reescribir a ) ). C ) C ) cumple las condiciones de Gauss, entonces podemos volver a repetir el procedimiento quizás algunos q p ya no servirán). Esto lo hacemos hasta que lleguemos a un polinomio A) irreducible sin raíces reales). Recordemos que al aplicar Ruffini, el polinomio C ) resultará de un grado menor que ) n Ejemplo : Vemos que todos sus coeficientes son enteros ; -; ) y que a 0 0 ) a 0 siendo todos sus divisores p { ± ; ± ; ± ; ± ; ± 6; ± } a n siendo todos sus divisores p { ± ; ± } ) p ) Todas las combinaciones irreducibles y sin repetir) son: ± ; ± ; ± ; ± ; ± 6; ± ; ± ; ± q ) robamos primero con los números enteros más "chicos", primero los positivos y después los negativos. Si encontramos tres que sean raíz la factorización será muy rápida:.. 0 ) ) ).. ) 0 ).. 0 ) ) ).. 0 ). ) 0 ). ) 0 ). ) 0. ) ). ) ). y listo! ) ) Como el polinomio es de grado y encontramos tres raíces podemos poner: a n X -) - ) ) y ya está! X X EEM N DE "Asociación Atlética Argentinos Juniors"; Matemática, rof: Marcelo Stigliano

5 Ejemplo : 5 - Vemos que todos sus coeficientes son enteros ; ; -; ; -) y a 0 0 Entonces podemos aplicar Gauss: ) a 0 siendo todos sus divisores p { ± ; ± ; ± } a n siendo todos sus divisores p { ± ; ± } ) p ) Todas las combinaciones irreducibles y sin repetir) son: ± ; ± ; ± ; ± q ) Debemos probar con todos; conviene empezar primero con los números enteros más "chicos", primero los positivos y después los negativos. Si encontramos tres que sean raíz la factorización será muy rápida: ) ) ) ) ) ) 0 ). ). ). ) - ) 0 ). ). ). ) - ) 0 ). ). ). ) - ) 0. ). ). ) ) ) 0 Como el polinomio es de grado y sólo encontramos raíces mala suerte ) debemos usar Ruffini para encontrar la epresión factorizada del polinomio: Raíz de ) Coeficientes ordenados y completos de ) Resto: si lo hicimos bien SIEMRE debe dar CERO Coeficientes ordenados y completos del polinomio cociente, es decir, C ) : Como C ) también cumple con las condiciones de Gauss podemos volver a aplicarlo efecto muñeca rusa) Si probamos con todas las raíces de ) veremos que sólo - verifica C -) 0, luego aplicamos Ruffini otra vez: Raíz de C ) Coeficientes ordenados y completos de C ) Resto: si lo hicimos bien SIEMRE debe dar CERO Coeficientes ordenados y completos del nuevo polinomio cociente, es decir, D ) : EEM N DE "Asociación Atlética Argentinos Juniors"; Matemática, rof: Marcelo Stigliano

6 Ahora, si probamos con todas las posibles raíces en D ), vemos que ninguna da cero, es decir que D ) no tiene raíces reales y por lo tanto es irreducible por sus raíces. 6 Con esto, los cálculos terminaron, sólo nos queda dar la epresión factorizada de ) ) ). D ) es decir: ) ). ) al fin!) Irreducible por sus raíces 8) Factoricen los siguientes polinomios usando, cuando sea posible, Gauss-Ruffini: Raíces reales distintas a) 6 6 e) 6 5 b) 5 8 f) c) 5 d) 6 g) 7 6 h) 0 Raíces reales simples, dobles o triples i) l) j) m) k) n) Menor cantidad de raíces que su grado q) t) 5 r) u) s) v) Casos Combinados El objetivo de combinar los casos de factoreo es lograr que el polinomio quede finalmente epresado como: a ). ) )... ) con "n" raíces reales n o si no n an ). ) )... Q ) con Q ) irreducible Eisten otros casos de factoreo para polinomios pero para trabajar en el curso nos limitaremos a los vistos. La mejor estrategia para factorizar un polinomio es ir tratando de aplicar los distintos casos siguiendo prácticamente el mismo orden en el que los vimos, es decir:. Factor Común. Trinomio Cuadrado erfecto. Resolvente para Grado. Diferencia de Cuadrados 5. Gauss- Ruffini 6. Normalización de ser necesario) EEM N DE "Asociación Atlética Argentinos Juniors"; Matemática, rof: Marcelo Stigliano

7 Multiplicidad 7 La cantidad de veces que aparezca una misma raíz en la factorización de un polinomio determina su multiplicidad. Ej: ). ) ) ) ) ) ) ) ) Ejemplo : Sus raíces son:, de multiplicidad, de multiplicidad o simple -, de multiplicidad ) ) 5. Factor común Trinomio Cuadrado erfecto Factorización terminada. El polinomio tiene cinco raíces reales: cero multiplicidad ) y - multiplicidad ) Ejemplo : 6 6. ) Factor común Está en condiciones de Gauss ). ). ). ). ). Gauss: es raíz Ruffini: polinomio cociente Resolvente: - y - raíces reales distintas Factorización terminada. El polinomio tiene tres raíces reales:, - y - todas de multiplicidad o simples) Ejemplo : Suma y resta de las bases ). Diferencia de Cuadrados: ) y )... Normalización: El como factor común forzoso en ambos binomios Factorización terminada. El polinomio tiene dos raíces reales: y de multiplicidad o simples) EEM N DE "Asociación Atlética Argentinos Juniors"; Matemática, rof: Marcelo Stigliano

8 9) Factoricen los polinomios de la siguiente tabla según el o los casos que sean necesarios. 8 N olinomio N olinomio Sí, son muchos Ánimo!! EEM N DE "Asociación Atlética Argentinos Juniors"; Matemática, rof: Marcelo Stigliano

FACTORIZACIÓN DE POLINOMIOS en Q (racionales)

FACTORIZACIÓN DE POLINOMIOS en Q (racionales) FACTORIZACIÓN DE OLINOMIOS en Q racionales FAQ Qué es factorizar un polinomio? Es expresarlo como un producto por eso lo de "factorizar" de otros polinomios de grado igual o menor a él ara qué factorizar

Más detalles

FACTORIZACIÓN DE POLINOMIOS en Q (racionales)

FACTORIZACIÓN DE POLINOMIOS en Q (racionales) FACTORIZACIÓN DE OLINOMIOS en Q racionales FAQ Qué es factorizar un polinomio? Es expresarlo como un producto por eso lo de "factorizar" de otros polinomios de grado igual o menor a él ara qué factorizar

Más detalles

lím lím lím lím f(x) TP N LÍMITES lím "el límite de la función f cuando x tiende al valor a es igual a L" Notación:

lím lím lím lím f(x) TP N LÍMITES lím el límite de la función f cuando x tiende al valor a es igual a L Notación: TP N LÍMITES Notación: f() Se lee: "ite de la función f cuando tiende al valor a por la derecha" f() Se lee: "ite de la función f cuando tiende al valor a por la izquierda" ) Cuando f() f( decimos directamente:

Más detalles

EJERCICIOS. 7.3 Valor de un polinomio para x = a. Por lo tanto: para determinar expresiones

EJERCICIOS. 7.3 Valor de un polinomio para x = a. Por lo tanto: para determinar expresiones or lo tanto: para determinar epresiones a que sean divisores de un polinomio con coeficientes enteros, se deben asignar valores al número a que dividan al término independiente. Apliquemos este resultado

Más detalles

LECTURA Nº 12: MÉTODOS DE FACTORIZACIÓN

LECTURA Nº 12: MÉTODOS DE FACTORIZACIÓN Tenemos un cuadrado cuyos lados miden ( + + ) = + por lo que el área sería: Largo. ancho = ( + ).( + ) = ( + ) Pero ya se conoce el área total que es 9 unidades cuadradas Entonces: ( + ) = 9 donde despejando

Más detalles

UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES

UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES Temario: Definición de epresiones algebraicas y clasificación. Polinomio, grado. Operaciones. Regla de Ruffini. Factorización de Polinomios.

Más detalles

x a que sean divisores de un polinomio con coeficientes enteros, se deben asignar valores al número a que dividan al término independiente.

x a que sean divisores de un polinomio con coeficientes enteros, se deben asignar valores al número a que dividan al término independiente. or lo tanto: para determinar epresiones a que sean divisores de un polinomio con coeficientes enteros, se deben asignar valores al número a que dividan al término independiente. Apliquemos este resultado

Más detalles

El cuadrado de la suma de dos números es igual al cuadrado del primero más el cuadrado del segundo más el doble producto del primero por el segundo.

El cuadrado de la suma de dos números es igual al cuadrado del primero más el cuadrado del segundo más el doble producto del primero por el segundo. IDENTIDADES NOTABLES Definición Qué es una identidad notable? Es una identidad algebraica que, por su relevancia y por la gran cantidad de veces que se usa en las operaciones matemáticas, recibe el nombre

Más detalles

UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES

UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES Temario: Definición de epresiones algebraicas y clasificación. Polinomio, grado. Operaciones. Regla de Ruffini. Factorización de Polinomios.

Más detalles

Expresiones algebraicas

Expresiones algebraicas Epresiones algebraicas Matemáticas I 1 Epresiones algebraicas Epresiones algebraicas. Monomios y polinomios. Monomios y polinomios. Una epresión algebraica es una combinación de letras, números y signos

Más detalles

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia

Más detalles

TEMA 3: Polinomios. Tema 3: Polinomios 1

TEMA 3: Polinomios. Tema 3: Polinomios 1 TEMA : olinomios Tema : olinomios ESQUEMA DE LA UNIDAD.- olinomios. Valor numérico...- olinomios...- Valor numérico de un polinomio..- Suma y resta de polinomios..- Multiplicación de polinomios...- roducto

Más detalles

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS Matemática Unidad 3-1 UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS ÍNDICE GENERAL DE LA UNIDAD Epresiones Algebraicas Enteras...... 3 Polinomios..... 3 Actividades... 4 Valor Numérico del polinomio........

Más detalles

UNIDAD DOS FACTORIZACIÓN

UNIDAD DOS FACTORIZACIÓN UNIDAD DOS FACTORIZACIÓN Factorizar quiere decir descomponer en factores, los factores son divisores de una expresión que, multiplicados entre sí, dan como resultado la primera expresión. FACTOR COMÚN

Más detalles

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS Ingreso 019 Matemática Unidad 3-1 UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS ÍNDICE GENERAL DE LA UNIDAD Epresiones Algebraicas Enteras...... 3 Polinomios..... 3 Actividades... 4 Valor Numérico del

Más detalles

Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5

Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5 Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1 POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio entre otro monomio de grado igual

Más detalles

Factorización de Polinomios

Factorización de Polinomios Factorización de Polinomios Curso de Nivelación Ingreso FaMAF 2016 Marcelo E. Rubio Abstract En este apunte se introduce el concepto de factorización de polinomios, y se muestran algunas herramientas útiles

Más detalles

a) Factoriza el monomio común. En este caso 6 se puede dividir de cada término:

a) Factoriza el monomio común. En este caso 6 se puede dividir de cada término: Materia: Matemática de 5to Tema: Factorización y Resolución de ecuaciones 1) Factorización Marco Teórico Decimos que un polinomio está factorizado completamente cuando no podemos factorizarlo más. He aquí

Más detalles

UNIDAD 2: Expresiones Algebraicas

UNIDAD 2: Expresiones Algebraicas UNIDAD : Epresiones Algebraicas Unidad Epresiones Algebraicas A - DEFINICIONES Epresión literal: Es la reunión de letras (variables) y cifras (números reales) combinados entre sí y sometidos a operaciones

Más detalles

Colegio San Patricio Matemática 3 año Prof. Selva Hernández Trabajo Práctico N 9 : Factorización de polinomios.

Colegio San Patricio Matemática 3 año Prof. Selva Hernández Trabajo Práctico N 9 : Factorización de polinomios. Colegio San Patricio Matemática 3 año - 2015 Prof. Selva Hernández Trabajo Práctico N 9 : Factorización de polinomios. Factorizar un polinomio es escribirlo como producto de factores irreducibles. El concepto

Más detalles

lím lím lím lím f(x) TP N LÍMITES Notación: lím "el límite de la función f cuando x tiende al valor a es igual a L"

lím lím lím lím f(x) TP N LÍMITES Notación: lím el límite de la función f cuando x tiende al valor a es igual a L TP N LÍMITES Notación: f( Se lee: "ite de la función f cuando tiende al valor a por la derecha" f( Se lee: "ite de la función f cuando tiende al valor a por la izquierda" Cuando f( f( decimos directamente:

Más detalles

CEPA Rosalía de Castro. Fundamentos de Matemáticas Tema 4: Expresiones algebraicas

CEPA Rosalía de Castro. Fundamentos de Matemáticas Tema 4: Expresiones algebraicas TEMA 4. Expresiones algebraicas: 1. Una expresión algebraica es una expresión formada por operadores algebraicos que combinan operandos que pueden ser letras o números. Las letras se llaman variables y

Más detalles

FACTORIZACION FACTORIZACIÓN. Factorizar un número consiste en expresarlo como producto de dos de sus divisores.

FACTORIZACION FACTORIZACIÓN. Factorizar un número consiste en expresarlo como producto de dos de sus divisores. -PA-0 FACTORIZACION V0 Página de 9 NOCION: FACTORIZACIÓN Factorizar un número consiste en epresarlo como producto de dos de sus divisores. Ejemplo: Factoriza 0 en dos de sus divisores :, es decir 0 = Y

Más detalles

Expresiones Algebraicas. Polinomios

Expresiones Algebraicas. Polinomios Epresiones lgeraicas olinomios Una epresión algeraica es una epresión en la que se operan con valores indeterminados, números y constantes, mediante un número finito de sumas, restas, productos, cocientes,

Más detalles

Polinomios II. I. Regla de Ruffini

Polinomios II. I. Regla de Ruffini Polinomios II En las matemáticas se define el polinomio como una expresión que está formada por un número finito de variables (no conocidas) y constantes (coeficientes) siendo muy utilizados en las matemáticas

Más detalles

POLINOMIOS. OPERACIONES CON POLINOMIOS: 1.- Suma y resta de polinomios: Sumando o restando los monomios que sean semejantes.

POLINOMIOS. OPERACIONES CON POLINOMIOS: 1.- Suma y resta de polinomios: Sumando o restando los monomios que sean semejantes. Recordemos previamente algunos conceptos: POLINOMIOS MONOMIO: expresión algebraica de la forma a x n, siendo a un número real y n un número natural. ( a se llama coeficiente, x n es la parte literal y

Más detalles

FACTORIZACION FACTORIZACIÓN. Factorizar un número consiste en expresarlo como producto de dos de sus divisores.

FACTORIZACION FACTORIZACIÓN. Factorizar un número consiste en expresarlo como producto de dos de sus divisores. Resolución Aprobación de Estudios No. 0-0 de Noviembre de 008 Código DANE No. 7900079 Nit: 8980- GU-PA-0 /07/08-V0 Página de 9 NOCION: FACTORIZACIÓN Factorizar un número consiste en epresarlo como producto

Más detalles

EJE N 3 : ECUACION LINEAL, CUADRATICA Y SISTEMA DE ECUACIONES

EJE N 3 : ECUACION LINEAL, CUADRATICA Y SISTEMA DE ECUACIONES TALLER DE INGRESO 018 EJE N : ECUACION LINEAL, CUADRATICA Y SISTEMA DE ECUACIONES ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA 1) Halla el valor de x a) b) c) d) e) f) g) h) i) j) k) l) m) n) ) Resolver

Más detalles

FACTORIZACIÓN GUÍA CIU NRO:

FACTORIZACIÓN GUÍA CIU NRO: República Bolivariana de Venezuela Ministerio de la Defensa Universidad Nacional Experimental Politécnica de la Fuerza Armada Núcleo Caracas Curso de Inducción Universitaria CIU Cátedra: Razonamiento Matemático

Más detalles

1. Sacar factor común: Es aplicar la propiedad distributiva de la multiplicación respecto de la suma, Así, la propiedad distributiva dice:

1. Sacar factor común: Es aplicar la propiedad distributiva de la multiplicación respecto de la suma, Así, la propiedad distributiva dice: FACTORIZACIÓN DE POLINOMIOS Para factorizar polinomios hay varios métodos:. Sacar factor común: Es aplicar la propiedad distributiva de la multiplicación respecto de la suma, Así, la propiedad distributiva

Más detalles

Tema 3. Polinomios y fracciones algebraicas

Tema 3. Polinomios y fracciones algebraicas Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.

Más detalles

Tema 3. Polinomios y fracciones algebraicas

Tema 3. Polinomios y fracciones algebraicas Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.

Más detalles

REPASO DE LA FACTORIZACIÓN DE POLINOMIOS

REPASO DE LA FACTORIZACIÓN DE POLINOMIOS REASO DE LA FACTORIZACIÓN DE OLINOMIOS OLINOMIO IRREDUCIBLE O RIMO.- Un polinomio ( x se llama irreducible o primo, si ( x o más polinomios con grado. Según esta definición: o Todos los polinomios de grado

Más detalles

FACTORIZACIÓN. Factorizar es escribir o representar una expresión algebraica como producto de sus factores.

FACTORIZACIÓN. Factorizar es escribir o representar una expresión algebraica como producto de sus factores. FACTORIZACIÓN Factorizar es escribir o representar una epresión algebraica como producto de sus factores. Ejemplo: 5 ( 5)( 5) Una epresión queda completamente factorizada cuando se representa como el producto

Más detalles

Factorización - Álgebra

Factorización - Álgebra Factorización - Álgebra Ana María Beltrán Docente Matemáticas Febrero 4 de 2013 1 Qué es factorizar? Definición 1. Factorizar un polinomio es representarlo mediante el producto de otros polinomios de menor

Más detalles

Comprueba que 5 2 es una raíz del polinomio 2x3 9x x 5. EJERCICIO RESUELTO. Entonces: x 3 + 2x x + 3 = ( x + 1) ( x 2 + x + 3)

Comprueba que 5 2 es una raíz del polinomio 2x3 9x x 5. EJERCICIO RESUELTO. Entonces: x 3 + 2x x + 3 = ( x + 1) ( x 2 + x + 3) Polinomios 7. Teorema del resto. Factorización Polinomios Actividades Aprenderás a Identificar el resto de la división de un polinomio por un binomio de la forma a como el valor numérico para = a. Aplicar

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Una epresión algebraica es aquella en la que se operan números conocidos y números desconocidos representados por las letras a, b, c,, y, z,..., que se denominan

Más detalles

FACTORIZACION DE POLINOMIOS

FACTORIZACION DE POLINOMIOS 5to H FACTORIZACION DE POLINOMIOS Factorizar un polinomio, de n cantidad de términos, es expresarlo como un producto de polinomios primos. Existen varias formas de factorizar un polinomio, según las características

Más detalles

Curs MAT CFGS-18

Curs MAT CFGS-18 Curs 2015-16 MAT CFGS-18 Factorización de un polinomio Sacar factor común Consiste en aplicar la propiedad distributiva: a b + a c + a d = a (b + c + d) Descomponer en factores sacando factor común y hallar

Más detalles

3.1 Polinomios Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios.

3.1 Polinomios Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios. Tema : Polinomios, Ecuaciones y Sistemas de ecuaciones..1 Polinomios Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios. Ejemplo: P(x) = x 4 x + x + 5 Terminología: Ejemplo:

Más detalles

TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO

TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO 1. División de polinomios Dados dos polinomios P (el dividendo) y D (el divisor), dividir P entre D es encontrar dos polinomios Q (el cociente)

Más detalles

LA FACTORIZACIÓN COMO HERRAMIENTA PARA LA SIMPLIFICACIÓN DE EXPRESIONES ALGEBRAICAS.

LA FACTORIZACIÓN COMO HERRAMIENTA PARA LA SIMPLIFICACIÓN DE EXPRESIONES ALGEBRAICAS. LA FACTORIZACIÓN COMO HERRAMIENTA PARA LA SIMPLIFICACIÓN DE EXPRESIONES ALGEBRAICAS. Material adaptado con fines instruccionales por Teresa Gómez, de: Ochoa, A., González N., Lorenzo J. y Gómez T. (008)

Más detalles

4 ESO. Mat B. Polinomios y fracciones algebraicas

4 ESO. Mat B. Polinomios y fracciones algebraicas «El que pregunta lo que no sabe es ignorante un día. El que no lo pregunta será ignorante toda la vida» 4 ESO Mat B Polinomios y fracciones algebraicas ÍNDICE: 0. EL LENGUAJE SIMBÓLICO O ALGEBRAICO 1.

Más detalles

3º ESO PMAR POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS

3º ESO PMAR POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS º ESO PMAR POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. POLINOMIOS 1.- POLINOMIOS Una expresión algebraica está formada por números y letras asociados por medio de las operaciones aritméticas (suma, resta,

Más detalles

APUNTE N 3 : FACTOREO DE EXPRESIONES ALGEBRAICAS Y GRÁFICOS APROXIMADOS

APUNTE N 3 : FACTOREO DE EXPRESIONES ALGEBRAICAS Y GRÁFICOS APROXIMADOS APUNTE N 3 : FACTOREO DE EXPRESIONES ALGEBRAICAS Y GRÁFICOS APROXIMADOS FACTOREO FACTORIZAR O FACTOREAR un polinomio, al igual que un número, es expresarlo como un producto de polinomios primos. El número

Más detalles

4º ESO ACADÉMICAS POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS

4º ESO ACADÉMICAS POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS POLINOMIOS 1.- POLINOMIOS Una epresión algebraica está formada por números y letras asociados por medio de las operaciones aritméticas (suma, resta, multiplicación, división y potenciación). 1 t Ejemplo:

Más detalles

Titulo: FACTORIZACION (Descomposición Factorial) Año escolar: 2do: año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo

Más detalles

Monomios. Monomios 75. 9x 4. 5x 2. x 11. a) x 8 c)

Monomios. Monomios 75. 9x 4. 5x 2. x 11. a) x 8 c) Polinomios Qué tienes que saber? 58 QUÉ tienes que saber? Ten en cuenta Un monomio es una epresión algebraica formada por el producto de un número, llamado coeficiente, y una o más variables con eponente

Más detalles

Raíces de polinomios

Raíces de polinomios Raíces de polinomios En ésta página podrás conocer las herramientas necesarias para poder encontrar las raíces de polinomios de una variable con coeficientes enteros. Para ello hemos dividido esta página

Más detalles

SOLUCIONES EJERCICIOS PROPUESTOS TEMA SOLUCIÓN DE ECUACIONES POLINÓMICAS POR FACTORIZACIÓN

SOLUCIONES EJERCICIOS PROPUESTOS TEMA SOLUCIÓN DE ECUACIONES POLINÓMICAS POR FACTORIZACIÓN CURSO MATE 0066 Verano 009 SOLUCIONES EJERCICIOS PROPUESTOS TEMA SOLUCIÓN DE ECUACIONES POLINÓMICAS POR FACTORIZACIÓN 1. Igualando a cero la epresión tenemos una ecuación polinómica de la forma + b + c.

Más detalles

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las

Más detalles

Colegio La Salle Envigado FORMANDO EN VALORES PARA LA VIDA GUIA FACTORIZACION

Colegio La Salle Envigado FORMANDO EN VALORES PARA LA VIDA GUIA FACTORIZACION GUIA FACTORIZACION Esta guía tiene como objetivo afianzar los conocimientos teórico-prácticos en los diferentes casos de factorización, para ello se darán en esta guía algunos ejercicios de factorización

Más detalles

Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales.

Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales. Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales. Índice de contenido Polinomios y fracciones algebraicas: nociones básicas...2 Qué es y qué no es un polinomio...2

Más detalles

Tema 2 Algebra. Expresiones algebraicas Índice

Tema 2 Algebra. Expresiones algebraicas Índice Tema 2 Algebra. Expresiones algebraicas Índice 1. Expresiones algebraicas comunes... 2 2. Valor numérico de una expresión algebraica... 2 3. Tipos de expresiones algebraicas... 2 4. Monomios... 2 4.1.

Más detalles

Reducción de dos términos semejantes del mismo signo P r o c e d i m i e n t o

Reducción de dos términos semejantes del mismo signo P r o c e d i m i e n t o . Definición: Dos o más términos son semejantes cuando tienen las mismas letras y afectadas por el mismo exponente. Reducción de dos términos semejantes del mismo signo P r o c e d i m i e n t o Para reducir

Más detalles

Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS

Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS FACTORIZACIÓN DE POLINOMIOS 1. Polinomios Un monomio es el producto de un número real por una o más letras que pueden estar elevadas a exponentes que sean números naturales. La suma de los exponentes de

Más detalles

TRABAJO PRÁCTICO Nº 4 FUNCIONES POLINÓMICAS

TRABAJO PRÁCTICO Nº 4 FUNCIONES POLINÓMICAS TRABAJO PRÁCTICO Nº 4 FUNCIONES POLINÓMICAS En este eje intentaremos continuar desarrollando en los estudiantes la competencia básica de Resolución de Problemas y además las siguientes competencias específicas

Más detalles

Tema 2. Polinomios y fracciones algebraicas

Tema 2. Polinomios y fracciones algebraicas Tema. Polinomios y fracciones algebraicas. Polinomios.... Definiciones.... Operaciones con polinomios.... Factorización de un polinomio.... Teorema del resto. Criterio de divisibilidad por -a.... Propiedades

Más detalles

LICEO Nº1 JAVIERA CARRERA 2012 MATEMATICA Benjamín Rojas F. FACTORIZACIÓN

LICEO Nº1 JAVIERA CARRERA 2012 MATEMATICA Benjamín Rojas F. FACTORIZACIÓN LICEO Nº1 JAVIERA CARRERA 2012 MATEMATICA Benjamín Rojas F. FACTORIZACIÓN Factorizar es transformar un número o una expresión algebraica en un producto. Ejemplos: Transformar en un producto el número 6

Más detalles

Factorización y resolución de expresiones fraccionarias. 1. La propiedad distributiva de la multiplicación y el factor

Factorización y resolución de expresiones fraccionarias. 1. La propiedad distributiva de la multiplicación y el factor Factorización y resolución de expresiones fraccionarias 1. La propiedad distributiva de la multiplicación y el factor común Ya hemos visto en los temas anteriores la propiedad distributiva de la multiplicación

Más detalles

OPERACIONES CON MONOMIOS Y POLINOMIOS. Suma de monomios

OPERACIONES CON MONOMIOS Y POLINOMIOS. Suma de monomios OPERACIONES CON MONOMIOS Y POLINOMIOS Suma de monomios Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de

Más detalles

, 5m2 + n 1 son expresiones algebraicas. Hay diversidad de situaciones que se pueden expresar mediante expresiones algebraicas.

, 5m2 + n 1 son expresiones algebraicas. Hay diversidad de situaciones que se pueden expresar mediante expresiones algebraicas. 1.- POLINOMIOS Y OPERACIONES Expresiones algebraicas Una expresión algebraica está formada por números y letras relacionados por operaciones aritméticas. Por ejemplo, 3x 3x1 x +, a 3 b, y 3, 5m + n 1 son

Más detalles

Polinomios y Fracciones Algebraicas

Polinomios y Fracciones Algebraicas Polinomios y Fracciones Algebraicas UNIDAD DIDÁCTICA 2 1 o de Bachillerato CCSS Diana Barredo Blanco 1 1 Profesora de Matemáticas 1 o Bachiller (CCSS) 1. POLINOMIOS 1. POLINOMIOS Polinomio: Un polinomio

Más detalles

Una variable es una cantidad que se simboliza por una literal y que puede tomar diferentes valores.

Una variable es una cantidad que se simboliza por una literal y que puede tomar diferentes valores. MATEMÁTICAS BÁSICAS TEORÍA DE ECUACIONES DEFINICIÓN DE OLINOMIO Y DE ECUACIÓN Una variable es una cantidad que se simboliza por una literal y que puede tomar diferentes valores. Una constante es una magnitud

Más detalles

Instituto San Marcos MATEMATICA 4 Año Expresiones algebraicas, polinomios, operaciones Docente responsable: Fernando Aso

Instituto San Marcos MATEMATICA 4 Año Expresiones algebraicas, polinomios, operaciones Docente responsable: Fernando Aso Epresiones algebraicas enteras Instituto San Marcos MATEMATICA Año Una epresión algebraica es una combinación cualquiera de números, de letras o de números y letras, unidos entre sí por las operaciones

Más detalles

6 P x Q x. ( ). ( ). R( x ) 5 ( ). 9 ( ) + 6) 7x y. Q x x x x CIU I) Dados los polinomios: 3 2

6 P x Q x. ( ). ( ). R( x ) 5 ( ). 9 ( ) + 6) 7x y. Q x x x x CIU I) Dados los polinomios: 3 2 CIU-009- REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DE LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NACIONAL NÚCLEO BARINAS UNEFA 1 Problemas Propuestos para de Evaluar

Más detalles

Expresiones algebraicas

Expresiones algebraicas Polinomios Expresiones algebraicas Una expresión algebraica es cualquier combinación de números y letras relacionados por operaciones aritméticas: suma, resta, producto, división y potenciación. Ejemplos

Más detalles

Proyecto Guao FACTORIZACIÓN DE UN POLINOMIO

Proyecto Guao FACTORIZACIÓN DE UN POLINOMIO FACTORIZACIÓN DE UN POLINOMIO Y si tuvieras una expresión trinomial cómo? Cómo factorizas esta expresión? Después de completar esta lección, serás capaz de factorizar trinomios de cuadrados perfectos como

Más detalles

UNEFA C.I.N.U. Matemáticas 2011

UNEFA C.I.N.U. Matemáticas 2011 UNEFA C.I.N.U. Matemáticas 0 ALGUNOS MÉTODOS PARA FACTORIZAR EXPRESIONES ALGEBRAICAS. Material adaptado con fines instruccionales por Teresa Gómez, de: Ochoa, A., González N., Lorenzo J. y Gómez T. (008)

Más detalles

CASO I: FACTORIZACION DE BINOMIOS

CASO I: FACTORIZACION DE BINOMIOS CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: FUNDAMENTOS MATEMATICOS DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD N : FACTORIZACION

Más detalles

FACTORIZACIÓN DE POLINOMIOS

FACTORIZACIÓN DE POLINOMIOS FACTORIZACIÓN DE OLINOMIOS Un polinomio se dice IRREDUCIBLE cuando no se puede descomponer en producto de otros polinomios de menor grado que él. En caso contrario se dice que es REDUCIBLE. Ejemplos a

Más detalles

Tema 5. Factorización de Polinomios y fracciones algebraicas.

Tema 5. Factorización de Polinomios y fracciones algebraicas. Tema. Factorización de Polinomios y fracciones algebraicas.. Polinomio múltiplo y divisor. Factor de un polinomio. Ruffini. Valor numérico de un polinomio. Raíz del polinomio.. Factorización de un polinomio..

Más detalles

3º ESO POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS

3º ESO POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS º ESO POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. POLINOMIOS 1.- POLINOMIOS Una expresión algebraica está formada por números y letras asociados por medio de las operaciones aritméticas (suma, resta, multiplicación,

Más detalles

Llamamos expresión algebraica a toda combinación de letras y números relacionados entre sí a través de las operaciones matemáticas

Llamamos expresión algebraica a toda combinación de letras y números relacionados entre sí a través de las operaciones matemáticas Llamamos expresión algebraica a toda combinación de letras y números relacionados entre sí a través de las operaciones matemáticas Ejemplo: 3x 2 z 5 + 2πx 3 2 Monomio.- Entendemos como tal toda combinación

Más detalles

Ordenada en el origen: Es el valor de la función cuando la variable x es 0 También llamado corte con el eje de ordenadas o corte Oy.

Ordenada en el origen: Es el valor de la función cuando la variable x es 0 También llamado corte con el eje de ordenadas o corte Oy. Función polinómica: La función polinómica está compuesta por una serie de operaciones; sumas, restas, productos potencias. Todas ellas están perfectamente definidas en el conjunto de los números reales.

Más detalles

UNIVERSIDAD AMERICANA. Curso BAN-03: Matemática I ( Jueves- Noche ) Prof. Edwin Gerardo Acuña Acuña

UNIVERSIDAD AMERICANA. Curso BAN-03: Matemática I ( Jueves- Noche ) Prof. Edwin Gerardo Acuña Acuña UNIVERSIDAD AMERICANA Escuela de Matemática, II C-12. Curso BAN-03: Matemática I ( Jueves- Noche ) Prof. Edwin Gerardo Acuña Acuña PRÁCTICA DE ALGEBRA (Factorización, Ecuaciones e Inecuaciones) La factorización

Más detalles

6. ECUACIONES POLINOMICAS Y RACIONALES

6. ECUACIONES POLINOMICAS Y RACIONALES 6. ECUACIONES POLINOMICAS Y RACIONALES En las unidades anteriores hemos estudiado las ecuaciones de primer y segundo grado. a b 0 a 0 a b c 0 a 0 Estas son casos particulares de ecuaciones de carácter

Más detalles

Álgebra vs Aritmética. ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: Polinomios. Expresiones algebraicas. Álgebra elemental.

Álgebra vs Aritmética. ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: Polinomios. Expresiones algebraicas. Álgebra elemental. 16/01/01 ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: olinomios Álgebra vs Aritmética La Aritmética siempre opera sobre números concretos. El Álgebra hace cálculos simbólicos en los que las

Más detalles

UNIDAD DIDÁCTICA #5 CONTENIDO I. PRODUCTOS NOTABLES III. DIVISIÓN DE POLINOMIOS II. CUBO DE LA SUMA O DIFERENCIA DE DOS CANTIDADES

UNIDAD DIDÁCTICA #5 CONTENIDO I. PRODUCTOS NOTABLES III. DIVISIÓN DE POLINOMIOS II. CUBO DE LA SUMA O DIFERENCIA DE DOS CANTIDADES UNIDAD DIDÁCTICA #5 CONTENIDO I. PRODUCTOS NOTABLES II. CUBO DE LA SUMA O DIFERENCIA DE DOS CANTIDADES III. DIVISIÓN DE POLINOMIOS IV. FACTORIZACIÓN DE EXPRESIONES ALGEBRAICAS I. PRODUCTOS NOTABLES Los

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS Matemática EXPRESIONES ALGEBRAICAS Unidad N OBJETIVOS GENERALES Convertir las frases del lenguaje coloquial al lenguaje algebraico viceversa Identificar a las epresiones algebraicas según sean racionales

Más detalles

PRODUCTO NOTABLE. Producto Notable

PRODUCTO NOTABLE. Producto Notable PRODUCTO NOTABLE Producto Notable Para elevar un binomio al cuadrado (es decir, multiplicarlo por sí mismo), se suman los cuadrados de cada término con el doble del producto de ellos. Es decir: Un trinomio

Más detalles

UNIDAD DE APRENDIZAJE III

UNIDAD DE APRENDIZAJE III MATEMÁTICAS I ALGEBRA Unidad de Aprendizaje III UNIDAD DE APRENDIZAJE III Saberes procedimentales Saberes declarativos Expresa un polinomio en sus factores primos A Concepto de factores primos algebraicos

Más detalles

Ecuaciones cuadráticas Resolver ecuaciones cuadráticas fórmula cuadrática y casos especiales

Ecuaciones cuadráticas Resolver ecuaciones cuadráticas fórmula cuadrática y casos especiales Ecuaciones cuadráticas Resolver ecuaciones cuadráticas fórmula cuadrática y casos especiales Departamento de Matemáticas Universidad de Puerto Rico - Arecibo Ecuación cuadrática en forma general Una ecuación

Más detalles

POLINOMIOS. El grado de un monomio es la suma de todos los exponentes de las letras o variables.

POLINOMIOS. El grado de un monomio es la suma de todos los exponentes de las letras o variables. RESUMEN Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas

Más detalles

24 = = = = = 12. 2

24 = = = = = 12. 2 UNIVERSIDAD MARIANO GÁLVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MATEMÁTICAS APLICADA I 015 Lic. Manuel

Más detalles

Q(x,t) = -2x 2 t 3 - xt x 5-3x 3 + 4x 2 +2x- 7 22/03/2016. División de polinomios. P(x) = -x 4 + 3x 2-5 R(x) = 5x 4-2x 3 + 3x

Q(x,t) = -2x 2 t 3 - xt x 5-3x 3 + 4x 2 +2x- 7 22/03/2016. División de polinomios. P(x) = -x 4 + 3x 2-5 R(x) = 5x 4-2x 3 + 3x S Escribe un polinomio que cumpla las siguientes condiciones: A)Se llama P(x, y) B)Tiene 5 términos C)Es de grado seis D)No tiene término independiente S Escribe un polinomio que cumpla las siguientes

Más detalles

VALOR NUMÉRICO DE UNA EXPRESIÓN ALGEBRAICA. 1. Calcula el valor numérico de las siguientes expresiones para los valores que se indican: (Sol: 5x

VALOR NUMÉRICO DE UNA EXPRESIÓN ALGEBRAICA. 1. Calcula el valor numérico de las siguientes expresiones para los valores que se indican: (Sol: 5x Boletín Epresiones algebraicas VALOR NUMÉRICO DE UNA EXPRESIÓN ALGEBRAICA.. Calcula el valor numérico de las siguientes epresiones para los valores que se indican para, 5 (Sol 9) a b para a 5, b 5 (Sol

Más detalles

UNIDAD 2 ÁLGEBRA. Definiciones, Operaciones algebraicas, MCM, MCD. Dr. Daniel Tapia Sánchez

UNIDAD 2 ÁLGEBRA. Definiciones, Operaciones algebraicas, MCM, MCD. Dr. Daniel Tapia Sánchez UNIDAD 2 ÁLGEBRA Definiciones, Operaciones algebraicas, MCM, MCD Dr. Daniel Tapia Sánchez El Álgebra En esta unidad aprenderás a: Sumar, restar, multiplicar y dividir expresiones algebraicas. Reconocer

Más detalles

APUNTES DE FUNDAMENTOS DE MATEMATICA. CASO I: Cuando todos los términos de un polinomio tienen un factor común.

APUNTES DE FUNDAMENTOS DE MATEMATICA. CASO I: Cuando todos los términos de un polinomio tienen un factor común. FACTORIZACION DE POLINOMIOS. CASO I: Cuando todos los términos de un polinomio tienen un factor común. Cuando se tiene una expresión de dos o más términos algebraicos y si se presenta algún término común,

Más detalles

POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO

POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO Dado que los polinomios se utilizan para describir curvas de diferentes tipos, la gente los utiliza en el mundo real para dibujar curvas. Por ejemplo,

Más detalles

Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo

Polinomios: Definición: Se llama polinomio en x de grado n a una expresión del tipo Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales

Más detalles

FACTORIZACIÓN DE EXPRESIONES CUADRÁTICAS

FACTORIZACIÓN DE EXPRESIONES CUADRÁTICAS Capítulo 8 FACTORIZACIÓN DE EXPRESIONES CUADRÁTICAS 8.. 8..4 En el Capítulo 8, los alumnos aprenderán a reescribir epresiones cuadráticas y resolver ecuaciones cuadráticas. Las funciones cuadráticas son

Más detalles