Segunda Ley de Newton
|
|
|
- Manuela Martín Aguirre
- hace 8 años
- Vistas:
Transcripción
1 Sen 55 Epeceos! Sludos estidos prticipntes, y estos encindos en el sber de ls leyes del oviiento. En l sen nterior vios cóo se relcion l fuerz net que ctú sobre un cuerpo con su estdo de oviiento que puede ser un equilibrio estático o dináico, pero, qué sucede cundo un cuerpo celer? Pierde su estdo de equilibrio, pero por qué? y cóo podeos clculr l dirección de l celerción? Est y otrs pregunts serán respondids durnte est sen, con l intención de coprender ls leyes del oviiento y su plicción en situciones cotidins. Qué sbes de...? Pr coprender los conceptos de este te conviene relizr los siguientes experientos: 1. Si dos cuerpos cen con l is celerción, signific que sobre ellos ctún fuerzs igules? Dej cer un piedr pequeñ y otr de yor tño l iso tiepo, tienen l is celerción? Reliz el digr de cuerpo libre de cd un. Actún ls iss fuerzs? 2. Epuj un escritorio (o un es) con tod tu fuerz hci delnte. Qué sucede? 3. Epuj un pupitre (o un sill) con l is fuerz ejercid en l ctividd nterior. Qué ocurrió? Si sobre dos cuerpos ctú l is fuerz, se ueven con l is celerción? El reto es Clcul l celerción de un vionet de 2000 kg con un solo otor, justo ntes de despegr si el epuje de su otor es de 500 N. ) Cuál es l celerción si su s uent el 25%?
2 Sen 5 b) Con el uento de s ddo, cóo debe ser l fuerz de epuje pr que teng l is celerción que tení inicilente? 2. Cuál es l celerción áxi que puede dquirir un corredor si l fricción entre los pies y el pviento es del 90% de su peso? Vos l grno Acelerción: rzón con l que cbi l velocidd de un objeto con el pso del tiepo; el cbio de velocidd puede ser en l gnitud, en l dirección o en bs. Est rzón de cbio l expresos teáticente sí: = vf - vo, t donde vf es l velocidd finl, vo es l velocidd inicil y t es el tiepo. Ley de l fuerz L celerción de un cuerpo es, en gnitud, directente proporcionl l fuerz resultnte que ctú sobre él e inversente proporcionl su s. Y el oviiento resultnte es en dirección prlel est fuerz. L ecución que se deduce prtir del enuncido de est ley es: = En l yorí de los csos, los cuerpos celern sólo con respecto uno de los ejes; sí que se utilizn ls ecuciones: x = (cundo celer en x) y y = (cundo celer en y) Est Ley puede ser estudid desde tres principles relciones, pr fcilitr su coprensión. En ls situciones plnteds en l sección Qué sbes de? pudios ver lgunos ejeplos que se refieren ests relciones. Pudiste hllr l relción sin necesidd de cálculos? Ahor te presentos en lenguje teático ls conclusiones ls que llegste experientlente: 1. Relción s-celerción nteniendo l fuerz constnte Cundo epujste el escritorio con tods tus fuerzs, notste que hubo un cbio en el estdo de oviiento; deás, cundo hiciste lo propio con el pupitre tbién hubo un celerción. Pero, cuál cuerpo tuvo yor celerción? 169
3 Sen 5 De l is ner, si epujs un vehículo livino de dos puerts, celer, pero si epujs con l is fuerz un cionet doble cbin (vehículo pesdo), su celerción será ucho enor. De quí se deduce que l celerción y l s son inversente proporcionles; es decir, cundo l s uent, l celerción disinuye y vicevers. Ejeplo: l is fuerz plicd l doble de s produce l itd de l celerción. = / = / ½ 2. Relción fuerz-celerción con s constnte Desde otr perspectiv, supongos que en nuestr cs quereos reorgnizr l cocin y decidios over l never. Juncito, un niño de 5 ños, quiere overl. Al principio lo hce solo, pero luego Pedro, su herno de 15 ños, decide yudrlo. En cuál de los csos le plicron yor fuerz l never? En cuál de los csos l never tuvo yor celerción? De quí se deduce que l fuerz que ctú sobre un cuerpo es directente proporcionl l celerción del cuerpo; es decir, edid que l fuerz uent, l celerción tbién lo hce. Si un cuerpo le plicos el triple de un fuerz, su celerción será el triple que cundo le plicos un sol fuerz. = / = / Relción fuerz-s con celerción constnte Por últio, un cso que precier un poco confuso, pero que en relidd es un for interesnte de coprender ls leyes de l ísic
4 Sen 5 Cundo dejs cer un etr uy pequeñ desde un brrnco, est ce con l is celerción que lo hrí un yunque uy pesdo, excepción de los efectos del ire (recuerd el pensiento ristotélico y l respuest de Glileo, vists en l Sen 1). L pregunt es: sobre ellos ctú l is fuerz? No, l únic fuerz que ctú sobre ellos es el peso y obviente el peso de l etr es ucho enor que el del yunque, pero entonces: si sobre un cuerpo ctú un fuerz ucho yor deberí celerr ás? Y l respuest en este cso es: no necesriente. Veos l siguiente explicción. Solente un fuerz ctú sobre un objeto en cíd libre: l fuerz de grvedd. Recordeos, en principio, que l s es l edid de l inerci de un cuerpo y l inerci es l resistenci que pone el cuerpo cbir su estdo de oviiento. Así, cundo un cuerpo con uch s ce debido que su peso es uy grnde, l iso tiepo, tod l s se opone que cig ás rápido; por lo tnto, el peso y l inerci de un cuerpo siepre se vn copensr de ner que cign con l is celerción: l celerción de l grvedd (9,81 /s 2 ). De l is ner, si sobre un cuerpo que tiene el cuádruple de s se plic cutro veces l fuerz que se plicó l inicil, se obtiene l is celerción. = / = / Pr sber ás Experient con siuldores! En el siuldor uerz y oviiento: fundentos (disponible en vrí l cntidd de persons que hln l crret y notrás que cundo l fuerz es yor de uno de los ldos de l crret tendrá un celerción; es decir, se overá cd vez ás rápido. Experient luego sin fricción y observ ls relciones entre fuerz-s-celerción que prendios est sen; lleg tus propis conclusiones. Agrégle fricción tus experientos y relcion l fuerz net sobre un cuerpo con l celerción que se obtiene (pr cbir de plicción, utiliz ls pestñs de rrib l izquierd). 171
5 Sen 5 Aplic tus sberes Sbiendo l relción entre ls vribles fuerz, s y celerción, podreos resolver uy fácilente los probles que se plnten coo retos. En l prier situción, nos dn coo dtos l s de l vionet y l fuerz del otor; por lo cul, con un siple división clculos l celerción de l vionet. Luego, si uentos l s 25%, nteniendo l fuerz constnte, sbeos que l celerción v disinuir; bst con sber que yor s, se tiene enor celerción nteniendo l fuerz constnte. Por últio, y hbíos uentdo l s y, por tnto, disinuido l celerción; hor piden un nuev fuerz pr tener l is celerción inicil; es decir, debeos uentr l fuerz del otor. El resto son cálculos en los que se debe tener ucho cuiddo por estr trbjndo con porcentjes. En cunto l segund situción, teneos que considerr que l fuerz de epuje necesriente es igul l fuerz de fricción entre los pies y l pist; por lo tnto, nos dn coo dto l fuerz en función de l s (porque el peso es s ultiplicdo por l grvedd); de quí deducios l celerción. Coprobeos y deostreos que Copr y discute tus resultdos con el resto de los prticipntes en el CCA. L coprción de resultdos les yudrá deterinr si los cálculos relizdos son correctos y si hn desrrolldo ls copetencis necesris en l plicción de l. Resultdos situción 1: ) = 0,25 /s 2 ; b) 2 = 0,2 /s 2 ; c) 2 = 625 N Resultdos situción 2: = 8,82 /s 2 172
Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR
Físic Generl Proyecto PMME - Curso 00 Instituto de Físic Fcultd de Inenierí UdelR TITULO DINÁMICA DE LA PARTÍCULA - MÁQUINA DE ATWOOD DOBLE. AUTORES: Gonzlo d Ros, Jvier Belzren, Dieo Aris. INTRODUCCIÓN
SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Dinámica I: fuerza y leyes de Newton
SOLUCIORIO GUÍ ESTÁDR UL Dináic I: fuerz y leyes de ewton SGUICES016C3-16V1 Solucionrio guí Dináic I: fuerz y leyes de ewton Íte lterntiv Hbilidd 1 D Coprensión Coprensión 3 E plicción 4 D plicción 5 plicción
- 1 - PLANO INCLINADO
- 1 - PLNO INCLINDO DESCOMPOSICIÓN DE L FUERZ PESO Suponé que tengo un cuerpo que está poydo en un plno que está inclindo un ángulo. L fuerz peso punt pr bjo de est ner: UN CUERPO POYDO EN UN PLNO INCLINDO.
FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: ( ) ( )
Isbel Nóvo Arechg FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: El tnto i y el tiepo n, tienen que estr correlciondos, es decir, referidos l iso período de tiepo, generlente
TEMA 3: SISTEMAS DE ECUACIONES LINEALES Para empezar:
Pl Mdre Mols, nº 86- MADRID Correo: [email protected] / Telf. 9 59 95 / 69 56 698 / F 9 55 59 / www.nsconsolcion.co TEMA : SISTEMAS DE ECUACIONES LINEALES Pr eper:. Discutir resolver los siguientes
LICENCIATURA EN OBSTETRICIA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica
LICECIATURA E OBSTETRICIA TRABAJO PRACTICO º Dinámic LICECIATURA E OBSTETRICIA TRABAJO PRACTICO º Dinámic Ing. ROIO GUAYCOCHEA Ing. MARCO DE ARDI Ing. ESTEBA LEDROZ Ing. THELMA AURORA ZAO AÑO 014 Ing.
Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a:
odelo. Proble B.- (Clificción ái puntos) Se consider el siste linel de ecuciones dependiente del práetro rel ) Discútse en función de los vlores del práetro R. b) Resuélvse pr.. l siste se clsific en función
PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS
POBLEMAS DE ODADUA EJEMPLOS SELECCONADOS UNDAMENTOS ÍSCOS DE LA NGENEÍA Antonio J. Brbero / Alfonso Cler Belmonte / Mrino Hernández Puche Dpt. ísic Aplicd. ETS ng. Agrónomos (Albcete) EJEMPLO Considere
Resumen de los errores más frecuentes en Matemáticas de 1º ESO.
Resuen de los errores ás frecuentes en Mteátics de 1º ESO. 1º. Propiedd distributiv. L propiedd distributiv respecto l producto-división y l su-diferenci nos dice: A) b c b c B) b c b c Observ: b c b c
Fuerza: soluciones. 1.- Un móvil cuya masa es de 600 kg acelera a razón de 1,2 m/s 2. Qué fuerza lo impulsó?
Fuerz: soluciones 1.- Un óvil cuy s es de 600 kg celer rzón de 1,2 /s 2. Qué uerz lo ipulsó? = 600 kg = 1,2 /s 2 F = >>>>> F = 600 kg 1,2 /s 2 = 720 2.- Qué s debe tener un cuerpo pr que un uerz de 588
ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012
ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012 Nombre Prlelo. 16 de Julio de 2012 CADA UNO DE LOS TEMAS VALE 3.182 PUNTOS.
Grado en Biología Tema 3 Integración. La regla del trapecio.
Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con
INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE
INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,
( ) ( ) ( ) ( ) 4. Aplique las propiedades de la potenciación y la radicación para simplificar las siguientes expresiones.
DEPARTAMENTO DE MATEMÁTICAS ÁREA DE MATEMÁTICAS TEMA: PERÍODO: ORIENTADOR: ESTUDIANTE: E-MAIL: FECHA: TEORÍA DE LOS EXPONENTES, LOS RADICALES Y LOS LOGARITMOS PRIMERO UNIDAD TEORÍA DE LOS EXPONENTES, LOS
Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores
Semn 2 2 Repso de vectores Repso de vectores Empecemos! Estimdo prticipnte, en est sesión tendrás l oportunidd de refrescr tus seres en cunto l tem de vectores, los cules tienen como principl plicción
EJERCICIOS DE CINEMÁTICA PARA REPASAR
EJERCICIOS DE CINEMÁTICA PARA REPASAR 1. L poición de un óvil, que igue un tryectori rectilíne, qued deterind por l ecución x = 5 + t, en l que tod l gnitude etán expred en el S.I. ) Arrnc el óvil dede
Se desea calcular la longitud de un lado de una pista de baile de forma cuadrada, cuya área es 16 u 2. Sustituyendo el valor del área
Núeros irrcionles Algun vez hs utilizdo núeros irrcionles? Se dese clculr l longitud de un ldo de un pist de bile de for cudrd, cuy áre es 6 u A = 6 u x x Definios los eleentos: x = ldo del cudrdo A =
Nivelación de Cálculo
Guí de Conceptos y Ejercicios Aplicdos l Cálculo Desrrolldos y Propuestos 1. Potencis. Nivelción de Cálculo Ejeplo plicdo l cálculo: Clcul el siguiente líite: n n lí 5 Pr desrrollr este ejercicio de cálculo,
Propiedades de la Potencia. Observación: La potencia no es distributiva con respecto a la suma ni a la resta.
Propieddes de l Potenci Distributiv con respecto l producto ( = b Distributiv con respecto l división b b Producto de potencis de igul bse n = n + División de potencis de igul bse n n Potenci de potenci
DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas:
ÁLGEBR Educgui.com DETERMINNTES Determinnte es l expresión numéric de un mtriz. Según el orden de l mtriz el determinnte se resuelve de distints forms: DETERMINNTE DE SEGUNDO ORDEN Pr poder solucionr un
Tema9. Sucesiones. Tema 9. Sucesiones.
Tem 9. Sucesiones.. Definición. Forms de definir un sucesión.. Progresión ritmétic... Definición.. Sum progresión ritmétic. Progresión geométric... Definición.. Sum finit de progresión geométric... Sum
Para estudiar la traslación horizontal, se debe fijar primero el valor del parámetro a y después variar el valor del parámetro b.
TRASLACIÓN HORIZONTAL (DESPLAZAMIENTO HORIZONTAL) Pr estudir l trslción horizontl, se debe fijr primero el vlor del prámetro y después vrir el vlor del prámetro b. Veremos que l función b es el resultdo
Tema 9. Sistemas de Ecuaciones. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 9
Te Sistes de Ecuciones.- Introducción..- Sistes de Ecuciones Lineles..- Método de Guss..- Discusión de Sistes Lineles..- Regl de Crer..- Mtri Invers..- Ecuciones Mtriciles..- Rngo de un Mtri..- Ejercicios
CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel
x Estido luno: Aquí encontrrás ls clves de corrección, ls hbiliddes y los procediientos de resolución socidos cd pregunt, no obstnte, pr reforzr tu prendizje es fundentl que sists l corrección edid por
El clásico problema del bloque y la cuña, pero esta vez no tan clásico... Santiago Silva y Guillermo Paredes.
El cláico proble del bloque y l cuñ, pero et vez no tn cláico... INTRODUCCION: Sntigo Silv y Guillero rede. lnteo del proble: ROBLEMA 3 L figur uetr un cuñ de ángulo 30º, 60º, y 90º y ltur h que e encuentr
MATRICES. MATRIZ INVERSA. DETERMINANTES.
DP. - AS - 59 7 Mteátics ISSN: 988-79X 5 6 MATRICES. MATRIZ INVERSA. DETERMINANTES. () Define rngo de un triz. () Un triz de tres fils y tres coluns tiene rngo tres, cóo vrí el rngo si quitos un colun?
Facultad de Ciencias Exactas y Tecnologías UNSE Apuntes de Cátedra: Investigación Operativa / I Año: 2006.- II. LA PROGRAMACIÓN LINEAL
Fcultd de Ciencis Ects ecnologís UNSE Apuntes de Cátedr: Investigción Opertiv / I Año: 6.- II. LA PROGRAMACIÓN LINEAL El Método Siple Definición: Un progr linel es quel que optiiz el siguiente odelo teático
La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante.
LA ELIPSE DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6., los focos están representdos por los puntos y f.
X obtener las relaciones que deben
odelo. Ejercicio. Clificción áxi puntos ) ( punto) Dd l triz y l triz t z y x X otener ls relciones que deen cuplir x, y, z, t pr que l triz X verifique X X. ) (, puntos) Dr un ejeplo de l triz X distint
PROGRESIONES ARITMETICAS
PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00
Tema 5. Trigonometría y geometría del plano
1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene
FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 6ª RELACIÓN DE PROBLEMAS.
EPARTAMENTO E QUÍMICA ANALÍTICA Y TECNOLOGÍA E ALIMENTOS FUNAMENTOS E ANÁLISIS INSTRUMENTAL. 6ª RELACIÓN E PROBLEMAS..- Considerndo que un determindo compuesto AB present un vlor de 0 pr un sistem prticulr
El tremendo error que se ha cometido no está en lo mal que se hayan hecho las operaciones, sino en
SIMPLIFICAR EXPRESIONES (OPERAR) Y DESPEJAR O RESOLVER ECUACIONES. Por qué el título enion tres oss que se estudin por seprdo o que ni siquier se estudin?. Pues no lo sé, pero tnto pr operr oo pr despejr
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS Aplicciones de Trigonometrí de Triángulos Rectángulos Un triángulo tiene seis
DINÁMICA Y LAS LEYES DE NEWTON
DINÁMICA Y LAS LEYES DE NEWTON EXPERIENCIA N 7 Un propiedd de los cuerpos mteriles es su ms inercil. L fuerz es otro concepto nuevo, útil cundo se trt de describir ls intercciones entre cuerpos mteriles.
TEMA VI: ACIDOS Y BASES
www.selectividd-cgrnd.com TEMA VI: ACIDOS Y BASES 1.- El ácido clorocético (ClCH COOH) en concentrción 0,01M y 5 C se encuentr disocido en 1%. Clculr: ) L constnte de disocición de dicho ácido. b) El ph
Razones trigonométricas
LECCIÓ CODESADA 12.1 Rzones trigonométrics En est lección Conocerás ls rzones trigonométrics seno, coseno y tngente Usrás ls rzones trigonométrics pr encontrr ls longitudes lterles desconocids en triángulos
Modelo 6 Opción A. Como me dicen que es y = 1 me están dando las condiciones
Modelo 6 Opción A Ejercicio º [ puntos] Deterin l función f : R R sbiendo que f ( que l rect tngente l gráfic de f en el punto de bscis es l rect. L rect tngente de f( en es " f( f (( " Coo e dicen que
1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre
Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).
64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls
APUNTES DE MATEMÁTICAS
APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición
CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE
CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS
PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO
PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este
UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS
Mtemátic Unidd - UNIDAD N : EXPRESIONES ALGEBRAICAS POLINOMIOS ÍNDICE GENERAL DE LA UNIDAD Epresiones Algebrics Enters...... Polinomios..... Actividdes... 4 Vlor Numérico del polinomio........ 4 Concepto
TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES
TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES 5.1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES 5.1.1. Concepto de tendenci Decimos que " tiende " si tom los vlores de un sucesión que se proim. Se
BLOQUE III Geometría
LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40
Tema 4. Integración de Funciones de Variable Compleja
Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores
GRAVITACIÓN I: LEY DE LA GRAVITACIÓN UNIVERSAL
8 0 GRVICIÓ I: LEY DE L GRVICIÓ UIVERSL j Sigue pcticndo Indic sobe l tyectoi de un plnet con óbit elíptic lededo del Sol, que ocup uno de los focos, los puntos de áxi y íni elocidd Rzon l espuest b t
CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES
Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques.
Tema 4. Integración compleja
Not: Ls siguientes línes son un resuen de ls cuestiones que se hn trtdo en clse sore este te. El desrrollo de todos los tópicos trtdos está recogido en l iliogrfí recoendd en l Progrción de l signtur.
10.- Teoremas de Adición.
Trigonometrí 10.- Teorems de Adición. Rzones trigonométrics de los ángulos A + B y A B. Hy que tener cuiddo de no confundir l rzón trigonométric de l sum de dos ángulos, con l sum de dos rzones trigonométrics.
TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD
Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,
MOV. CIRCULARES: Solución: I.T.I. 93, 96, I.T.T. 00. Texto solución
MOV. CICULAES: Un prto de un prque de trcciones consiste en un grn cilindro verticl que gir lrededor de su eje lo suficientemente rápido pr que culquier person que se encuentre dentro de él se mnteng pegd
Nombre y apellidos:... Curso:... Fecha:... PROPORCIONALIDAD. Una proporción es la igualdad de... a. b c a. = c. d 21 EJEMPLO: EJERCICIO: = 8 x =...
4 Proporcionlidd y porcentjes Esquem de l unidd Curso:... Fech:... PROPORCIONALIDAD PROPORCIÓN Un proporción es l iguldd de...... b = Los términos y d se llmn... Los términos b y c se llmn... c d EJEMPLO:
FUNCIONES ELEMENTALES
FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() m + n Sus gráfics son rects pr representrls bst con obtener dos puntos
Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.
UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN
7.1. Definición de integral impropia y primeras propiedades
Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,
Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=±
CAPÍTULO X ECUACIÓN DE º GRADO Y FUNCIÓN CUADRÁTICA 9.. ECUACIÓN DE º GRADO Un ecución de segundo grdo con un incógnit es tod quell que puede ser puest en l form x + bx + c = 0 siendo, b y c coeficientes
FUNCIONES ELEMENTALES
FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() = m + n Sus gráfics son rects pr representrls bst con obtener dos puntos
MOVIMIENTO DE RODADURA
E.T.S.. Agrónomos. U.P.. OVENTO DE ODADUA Cuerpos rodntes. Considermos el moimiento de cuerpos que, debido su geometrí, tienen l cpcidd de rodr: eser, ro, disco, supericie eséric, cilindro poydo sobre
Estabilidad de los sistemas en tiempo discreto
Estbilidd de los sistems en tiempo discreto En tiempo discreto tmbién se puede hblr de estbilidd de estdo y de estbilidd de entrd slid de form similr l empled pr los sistems en tiempo continuo. Podemos
MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS. Guía Trabajos Prácticos N 4 Ecuación de Bernoulli. Mediciones manométricas
MECNIC DE FLUIDOS Y MQUINS FLUIDODINMICS Guí Trbjos Prácticos N 4 Ecución de Bernoulli. Mediciones mnométrics. L presión mnométric en es -0, Kg/cm. Determinr el peso específico reltivo del líquido mnométrico.
Laboratorio N 7, Asíntotas de funciones.
Universidd Diego Portles Fcultd de Ingenierí. Instituto de Ciencis Básics Asigntur: Cálculo I Lortorio N 7, Asíntots de funciones. Introducción. Ls síntots de un función son rects que seprn ls regiones
O(0, 0) verifican que. Por tanto,
Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O
Ejemplo práctico de obtención de la resistencia a pandeo de los soportes de acero
Ejemplo práctico de obtención de l resistenci pndeo de los soportes de cero Apellidos, nombre Gurdiol Víllor, Arinn ([email protected].) Deprtmento Centro Mecánic del Medio Continuo Teorí de Estructurs Escuel
Determinantes y la Regla de Cramer
Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos
a) Decimales finitos: Corresponden a los cuocientes exactos entre el numerador y el denominador. Ejemplo: : 8 = (b)
Clse-06 Números rcionles expresdos en form deciml: Todo número rcionl con b 0 se puede trnsformr form deciml l dividir b el numerdor por su denomindor. En form deciml los siguientes rcionles quedn escritos
2. Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo.
REPSO DE GEOMETRÍ MÉTRIC PLN. Hllr el siétrico del punto (, - ) respecto de M(-, ).. Clcul ls coordends de D pr que el cudrilátero de vértices: (-, -), B(, -), C(, ) D; se un prlelogro.. Ddos los vectores
Integrales impropias
Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección
TEMA 1. FUNCIONES REALES. DEFINICIÓN Y LÍMITES
Uidd. Fucioes. Defiició y Líites TEMA. FUNCIONES REALES. DEFINICIÓN Y LÍMITES. Fucioes reles de vrible rel. Doiio de u fució.. Doiios de ls fucioes ás hbitules. Coposició de fucioes. Propieddes. Fució
MATEMÁTICAS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 25 AÑOS LOGARITMOS
PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 5 AÑOS LOGARITMOS Unidd 4 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 5 AÑOS UNIDAD DIDÁCTICA 4: LOGARITMOS. ÍNDICE. Introducción. Potencis funciones eponenciles.
CAPITULO 7. de ejes y elementos accesorios. División 1. Generalidades. Revisión de métodos estáticos Métodos Dinámicos y por Fatiga
CAPITULO 7 Proyecto y cálculo de ejes y eleentos ccesorios División 1 Generliddes. Revisión de étodos estáticos Métodos Dináicos y por Ftig Descripción En este cpítulo se drán herrients pr el cálculo de
(2132) Repuestos de maquinaria 80.000
3. Norms prticulres sobre el inmovilizdo mteril 80.000 25.000 800 (2131) Mquinri. Motores (75.000 + 5.000) (28132) Amortizción cumuld. Repuestos de mquinri (motores) (100.000/8) x 2 (472) Hciend Públic,
3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m
LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener
INTEGRADORA I. El profesor solicita a Federico que realice las siguientes actividades:
Olimpid Ncionl de Construcciones 2014 Instnci escolr Fech: 18 de setiembre de 2014 INTEGRADORA I Estimdos prticipntes Como futuros Mestros Myores de Obrs están conformndo un equipo de trbjo. Entre todos
de Thales y Pitágoras
8 Teorems de Thles y Pitágors 8.1. Cuents y problem del dí 1. Reliz l siguiente operción: 874,53 + 3 607,8 + 875,084 2. Reliz l siguiente operción, obtén dos decimles en el cociente y hz l prueb de l división:
Capitulo 14. Mezclas de Gas-Vapor y Aire Acondicionado. Guía de estudio en PowerPoint
Cpitulo 14 Mezcls de Gs-Vpor y Aire Acondiciondo Guí de estudio en oweroint r Acopñr Therodynics: An Engineering Approch, 6th edition by Yunus A. Çengel nd Michel A. Boles Objetios Diferencir entre ire
71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES
71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 5. APLICACIONES (EN UNA BASE ORTONORMAL) 6. EJERCICIOS Y PROBLEMAS Vectores
TABLA DE DISTRIBUCIÓN DE FRECUENCIAS
TABLA DE DISTRIBUCIÓN DE FRECUENCIAS L.C. y Mtro. Frncisco Jvier Cruz Ariz L.C. y Mtro. Frncisco Jvier Cruz Ariz TABLA DE DISTRIBUCIÓN DE FRECUENCIAS Un mner de simplificr los dtos es usr un tbl de frecuenci
Un vector es simplemente un segmento orientado. sentido. módulo a
1 1-MAGNITUDES ESCALARES Y ECTORIALES. CÁLCULO ECTORIAL BÁSICO -CINEMÁTICA. MAGNITUDES FUNDAMENTALES PARA EL ESTUDIO DEL MOIMIENTO. 3-CLASIFICACIÓN DE MOIMIENTOS. 4-COMPOSICIÓN DE MOIMIENTOS. PROYECTILES.
EL MUELLE. LAS FUERZAS ELÁSTICAS
EL MUELLE. LAS FUERZAS ELÁSTICAS En una pista horizontal copletaente lisa, se encuentra un uelle de 30 c de longitud y de constante elástica 100 N/. Se coprie 0 c y se sitúa una asa de 500 g frente a él.
METODOLOGÍA PARA CAMBIO DE FLOTAS EN TRANSPORTE DE MERCANCIAS POR CARRETERA
METODOLOGÍA PARA CAMBIO DE FLOTAS EN TRANSPORTE DE MERCANCIAS POR CARRETERA Est metodologí es plicble ls ctividdes de proyecto que conllevn un cmbio de flot de vehículos pesdos en el trnsporte de mercncís
