Estadística. Soluciones ejercicios: Procesos estocásticos. Versión 8. Emilio Letón

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Estadística. Soluciones ejercicios: Procesos estocásticos. Versión 8. Emilio Letón"

Transcripción

1 Estadística Soluciones ejercicios: Procesos estocásticos Versión 8 Emilio Letón. Nivel. Calcular la media del proceso estocástico X (t) = A+t con A U (0; ). Utilizar dos métodos distintos: propiedades de la esperanza y la función de densidad de primer orden del proceso estocástico. Qué método es más fácil? El más fácil es mediante las propiedades de la esperanza: E [X (t)] = E [A + t] = E [A] + t = + t: El segundo método, más difícil, se basa en la función de densidad de primer orden. Intuitivamente si se tiene una v.a. U (0; ) y se traslada ésta en t unidades, se tiene una U (0 + t; + t) : Esto se puede demostrar de forma análitica mediante el teorema de transformación de variables aleatorias: ( ( f X (x; t) = f A (x t) da dx = 0 < x t < = t < x < t + 0 resto 0 resto Con lo que = Z t+ x=t E [X (t)] = Z + x= xf X (x; t) dx x dx = x t+ = t t + + t t = + t. Calcular la media del proceso estocástico X (t) = At con A U (0; ).Utilizar dos métodos distintos: propiedades de la esperanza y la función de densidad de primer orden del proceso estocástico. Qué método es más fácil? El más fácil es mediante las propiedades de la esperanza: E [X (t)] = E [At] = te [A] = t : El segundo método, más difícil, se basa en la función de densidad de primer orden. Intuitivamente si se tiene una v.a. U (0; ) y se multiplica ésta por t, se tiene una U (0 t; t) : Esto

2 se puede demostrar de forma análitica mediante el teorema de transformación de variables aleatorias: x ( ( f X (x; t) = f A da t dx = t 0 < x t < = t 0 < x < t 0 resto 0 resto Con lo que E [X (t)] = Z + x= xf X (x; t) dx = Z t x=0 x t dx = x t t 0 = t t = t 3. Calcular la media del proceso estocástico X (t) = cos (At) con A U (0; ). E [X (t)] = R + cos (at) f A (a) da = R 0 cos (at) da = t [sen (at)] 0 = tsen (t). 4. Calcular la media del proceso estocástico X (t) = ABt con A y B variables aleatorias independientes. E [X (t)] = te [A] E [B]. 5. A partir de las siguientes identidades trigonométricas: sen ( ) = sencos cossen cos ( ) = coscos sensen y utilizando que cos + sen =, probar que sen = sencos cos = cos sen = r sen cos cos = r + cos sen ( + ) + sen ( ) = sencos sen ( + ) sen ( ) = cossen cos ( + ) + cos ( ) = coscos cos ( + ) cos ( ) = sensen Se deja para el alumno.

3 . Nivel. Ejercicio (pág. 7 PP) Sea el proceso estocástico X (t) = Acos(ft + ) con f constante y A; v.a.i., siendo A exp () y U ( ; ). Calcular la función de autocorrelación de X (t). Se deja para el alumno.. Sea el proceso estocástico X (t) = a cos (f 0 t + ) con a y f 0 constantes y U (0; ) : Es estacionario en sentido débil? Se deja para el alumno. 3. Sea el proceso estocástico X (t) = a cos () + Y (t) con a constante, U ( ; ) e Y (t) un proceso estocástico ergódico independiente de. a) Calcular la media y la autocorrelación de X (t) en términos de la media y la autocorrelación de Y (t). b) Es X (t) estacionario en sentido débil? c) Calcular la media temporal y la autocorrelación temporal de X (t) en términos de la media temporal y la autocorrelación temporal de Y (t). d) Es X (t) ergódico con respecto a la media? Es ergódico con respecto a la autocorrelación? Se deja para el alumno. 4. Sea X (t) un proceso estocástico estacionario en sentido débil e Y (t) = X (t)cos(wt + ) con w constante, U ( ; ) independiente de X (t) : Demostrar que Y (t) un proceso estocástico estacionario en sentido débil (' Feb 007 Ing. el. P; ' Jun 004 eoría de la Comunicación). Al ser X (t) un proceso estocástico estacionario en sentido débil, se tiene que E [X (t)] = X independiente del tiempo y que R X (t ; t ) = R X () sólo depende del tiempo a través de = t t. Para ver si Y (t) es un proceso estocástico estacionario en sentido débil, se comprueba, en primer lugar la primera condición de estacionariedad débil que a rma que E [Y (t)] es independiente del tiempo, E [Y (t)] = E [X (t) cos (wt + )] ind: = E [X (t)] E [cos (wt + )] Z = X cos (wt + ) d = X [sen (wt + )] = X [sen (wt + ) sen (wt )] = X [sen (wt) cos () + cos (wt) sen () sen (wt) cos ( ) cos (wt) sen ( )] 3

4 = X [sen (wt) cos () + 0 sen (wt) cos () 0] = X 0 = 0 E [Y (t)] = 0 es independiente del tiempo. En segundo lugar se comprueba la segunda condición de estacionariedad débil que a rma que R Y (t ; t ) = R Y () sólo depende del tiempo a través de = t t, R Y (t ; t ) = E [Y (t ) Y (t )] = E [X (t ) cos (wt + ) X (t ) cos (wt + )] ind: = E [X (t ) X (t )] E [cos (wt + ) cos (wt + )] = R X () E cos (wt + + wt + ) + cos (wt wt ) Z = R X () cos (wt + wt + ) d + cos (wt wt ) = R X () 4 [sen (wt + wt + )] + cos ( w) R X () = R X () [sen (wt + wt ) cos () + cos (wt + wt ) sen ()] 8 R X () [sen (wt + wt ) cos ( ) + cos (wt + wt ) sen ( )] 8 + R X () = 0 + R X () y, por tanto, R Y (t ; t ) = R Y () = cos(w) R X () sólo depende del tiempo a través de = t t. Como se cumplen las dos condicones para estacionariedad débil (E [Y (t)] es independiente del tiempo y R Y (t ; t ) sólo depende del tiempo a través de = t t ), se tiene que Y (t) es un proceso estocástico estacionario débil. 5. Sea X (t) un proceso estocástico estacionario en sentido débil e Y (t) = X (t)cos(wt + ) con w constante, U ( ; ) independiente de X (t) : Si se supone que X (t) = A para todo t con A v.a. de media A y varianza A : a) Es Y (t) ergódico respecto a la media? b) Es Y (t) ergódico respecto a la autocorrelación? a) Para ver si Y (t) es ergódico respecto a la media, hay que estudiar si M Y = Y : Por una parte Y = E [Y (t)] = E [X (t) cos (wt + )] ind: = E [X (t)] Z cos (wt + ) d = X 0 = 0 Se observa que Y no depende del tiempo (cumple la primera condición de estacionariedad débil) 4

5 Por otra parte M Y = lm! = Z Y (t) dt = Z Acos (wt + ) dt = A w [sen (wt + )] = A [sen (w + ) sen ( w + )] w = A [sen (w ) cos () + cos (w ) sen () w sen ( w ) cos () cos ( w ) sen ()] = 0 M Y = lm! = lm! 0 = 0 y por tanto M Y = Y, por lo que Y (t) es ergódico respecto a la media. b) Para ver si X (t) es ergódico respecto a la autocorrelación, hay que estudiar si A X () = R X () : Por una parte, por un ejercicio anterior, se tiene que R Y () = R X () = E [X (t) X (t + )] = E A = A + A Por otra parte A 8 w A Y () = lm = " Z = A = A Z Z Y (t) Y (t + ) dt A cos (wt + ) cos (wt + w + ) dt cos (wt + w + ) dt + Z # cos ( w) dt w [sen (wt + w + )] + A = A [sen (w ) cos (w + ) + cos (w ) sen (w + )] 8 w A [sen ( w ) cos (w + ) + cos ( w ) sen (w + )] +! = A 4 w A 4 w A [sen (w ) cos (w + )] + [sen (w ) cos (w + )] + A A = 0 + y por tanto A Y () 6= R Y (), por lo que Y (t) no es ergódico respecto a la autocorrelación. 6. Ejercicio (pág. 4 PP) Sea el proceso estocástico X (t) = Acos(wt) + Bsen (wt) con A; B v.a.i.i.d U ( ; ) 5

6 a) Es ergódico respecto a la media? b) Es ergódico respecto a la autocorrelación? a) Para ver si X (t) es ergódico respecto a la media, hay que estudiar si M X = X : Por una parte ya que X = E [X (t)] = E [Acos (wt) + Bsen (wt)] = cos (wt) E [A] + sen (wt) E [B] = cos (wt) 0 + sen (wt) 0 = 0 E [A] = Z af A (a) da = Z a da = 3 a3 = 0 = E [B] que corresponde al punto medio de los extremos donde la función de densidad uniforme toma valores no nulos, en este caso ( )+. Se observa que X no depende del tiempo (cumple la primera condición de estacionariedad débil) Por otra parte = = M X = lm! = Z X (t) dt = = A sen (wt) w B Z Acos (wt) + Bsen (wt) dt w cos (wt) A w sen (w ) B w cos (w ) A w sen ( w ) + B w cos ( w ) A w sen (w ) B w cos (w ) + A w sen (w ) + B w cos (w ) = A w sen (w ) sen (w ) = A w M X = lm (w ) = lm Asen = 0!! w por estar acotado sen (w ) y por tanto M X = X, por lo que X (t) es ergódico respecto a la media. b) Para ver si X (t) es ergódico respecto a la autocorrelación, hay que estudiar si A X () = R X () : Por una parte X (t) X (t + ) = [Acos (wt) + Bsen (wt)] [Acos (wt + w) + Bsen (wt + w)] = Acos (wt) Acos (wt + w) +Acos (wt) Bsen (wt + w) +Bsen (wt) Acos (wt + w) +Bsen (wt) Bsen (wt + w) 6

7 = A cos (wt + w) + cos ( w) +AB sen ( w) sen (wt + w) +BA sen (wt + w) + sen ( w) +B cos (wt + w) + cos ( w) = A A cos (wt + w)+ +ABsen (wt + w) B cos (wt + w)+ B = ya que 3 Por otra parte = A B cos (wt + w) + A + B + ABsen (wt + w) cos (wt + w) + 3 E A = = Z = A B 8 w Z R X () = E [X (t) X (t + )] a f A (a) da = Z + 0 0sen (wt + w) = 3 a da = 3 a3 = 3 = E B Z X (t) X (t + ) dt + ABsen (wt + w) dt = 4 A B Z cos (wt + w) dt A B cos (wt + w) + A + B + + AB A + B Z Z dt sen (wt + w) dt = 4 A B w [sen (wt + w)] + A + B AB w [cos (wt + w)] = 4 A B [sen (w + w) sen (w ( ) + w)] w AB + A + B [cos (w + w) cos (w ( ) + w)] w [sen (w ) + cos (w ) sen (w) sen ( w ) cos ( w ) sen (w)] 7

8 AB + A + B [cos (w ) sen (w ) sen (w) cos ( w ) + sen ( w ) sen (w)] w + AB = sen (w ) w A A X () = lm = 4 A B [sen (w ) ] w + A + B! Z [sen (w ) sen (w)] w B + ABsen (w) + A + B X (t) X (t + ) dt = 0 + A + B y por tanto A X () 6= R X (), por lo que X (t) no es ergódico respecto a la autocorrelación. 7. Decir si son verdaderas o falsas las siguientes a rmaciones. En caso de que sean verdaderas demostrarlo y en caso de que sean falsas dar un contraejemplo: a) La media de un proceso estocástico es siempre un parámetro (constante aunque desconcocida). b) Sea X (t) = Acos 4 t + un proceso estocástico con A exp(), U ( ; ) y A y independientes. Se pide si el siguiente razonamiento para determinar R X (t ; t ) es correcto: R X (t ; t ) = E A cos 4 t + = E cos 4 t + E cos cos 4 t + 4 t + c) Sea X (t) un proceso estocástico débilmente estacionario, entonces la potencia del proceso no depende del tiempo. a) Es falsa. En un proceso estocástico la media es en general una función que depende del tiempo. b) El razonamiento es incorrecto. Por una parte: Debería ser: R X (t ; t ) = V [A] = E A E [A] E A = V [A] + E [A] = + = E cos 4 t + cos 4 t + y partiendo de dicha expresión, descomponer el producto de cosenos como suma de cosenos para utilizar la linealidad de la esperanza. c) Es verdadera. h Se tiene que la potencia del proceso es E X (t) i = R X (0) que no depende del tiempo por la segunda condición de estacionariedad débil. 8

9 3. Nivel 3. Decir si es verdadera o falsa la siguiente a rmación. En caso de que sea verdadera demostrarlo y en caso de que sea falsa dar un contraejemplo: Si X (t) e Y (t) son procesos estocásticos estacionarios en sentido débil y se de ne Z (t) = X (t)+y (t), entonces se veri ca que R Z () = R X () + R Y (), por lo que también Z (t) es estacionario en sentido débil. Es falsa. Se veri ca que la función de autocorrelación de Z (t) es R Z () = E [Z (t) Z (t + )] = E [(X (t) + Y (t)) (X (t + ) + Y (t + ))] = E [X (t) X (t + )] + E [X (t) Y (t + )] + E [Y (t) X (t + )] + E [Y (t) Y (t + )] = R X () + E [X (t) Y (t + )] + E [Y (t) X (t + )] + R Y () Por tanto, aunque Z (t) no depende de t, ya que Z (t) = E [Z (t)] = E [X (t) + Y (t)] = E [X (t)] + E [Y (t)] = X + Y, no está asegurado que R Z () dependa sólo de, con lo que no se puede asegurar que Z (t) sea estacionario en sentido débil.observar que en el caso de que los procesos estocásticos X (t) e Y (t) sean conjuntamente estacionarios, se tiene que E [X (t) Y (t + )] = R XY () y que E [Y (t) X (t + )] = R Y X (). Si además son X (t) e Y (t) ortogonales, se tiene que R XY () = R Y X () = 0, en ese caso sí se veri caría que R Z () = R X () + R Y () y Z (t) sería estacionario en sentido débil. Sea (X; Y ) un vector aleatorio con función de densidad conjunta: ( x 0; y 0; x + y f (x; y) = 0 resto Sea X (t) = t X + Y a) Calcula la media de X (t), qué información te da este resultado sobre el proceso? b) Calcula la función de densidad de X () : 3. Sea un proceso estocástico X (t) de nido por X (t) = N cos ($t + ), t 0 ; ) respecti- donde N y son dos v.a. independientes con ditribuciones Poisson () y U ( vamente, y $ es una constante conocida. a) Determina la media y la autocorrelación de X (t) : b) Estudia la estacionariedad de X (t) en sentido débil. c) Si N es una constante, cómo cambian tus respuestas a las preguntas anteriores? d) Si N =, cuál es P X (0) > y P X $ >? ener en cuenta que: sen ( ) = sencos cossen cos ( ) = coscos sensen 9

Unidad Temática 3: Probabilidad y Variables Aleatorias

Unidad Temática 3: Probabilidad y Variables Aleatorias Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento

Más detalles

El Producto escalar para las comunicaciones (parte 1) Luca Mar9no Apuntes no revisados Cuidado!

El Producto escalar para las comunicaciones (parte 1) Luca Mar9no Apuntes no revisados Cuidado! El Producto escalar para las comunicaciones (parte ) Luca Mar9no Apuntes no revisados Cuidado! Producto Escalar El producto escalar, también conocido como producto interno o producto punto, es una operación

Más detalles

Ejercicios de Variables Aleatorias

Ejercicios de Variables Aleatorias Ejercicios de Variables Aleatorias Elisa M. Molanes-López, Depto. Estadística, UC3M Transformaciones de variables aleatorias Ejercicio. Sea X una v.a. continua con función de densidad dada por: /, si

Más detalles

RESOLUCIÓN DE TRIÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS RESOLUCIÓN DE TRIÁNGULOS Resolver un triángulo consiste en determinar la longitud de sus tres lados y la amplitud de sus tres ángulos. Vamos a recordar primero la resolución para triángulos rectángulos

Más detalles

Econometría II Grado en finanzas y contabilidad

Econometría II Grado en finanzas y contabilidad Econometría II Grado en finanzas y contabilidad Variables aleatorias y procesos estocásticos. La FAC y el correlograma Profesora: Dolores García Martos E-mail:mdgmarto@est-econ.uc3m.es Este documento es

Más detalles

Límites de funciones de varias variables.

Límites de funciones de varias variables. Límites continuidad de funciones de varias variables Límites de funciones de varias variables. En este apartado se estudia el concepto de límite de una función de varias variables algunas de las técnicas

Más detalles

CÁLCULO DE PROBABILIDADES

CÁLCULO DE PROBABILIDADES CÁLCULO DE PROBABILIDADES Tipo de asignatura: Troncal Anual. Créditos ECTS: 15 I.- INTRODUCCIÓN AL CÁLCULO DE PROBABILIDADES. (16 horas presenciales) Tema 1.- La naturaleza del cálculo de probabilidades.

Más detalles

Ejercicios (Números reales)

Ejercicios (Números reales) Ejercicios (Números reales).. Decir si cada una de las siguientes expresiones es cierta o falsa: a) d) 30ÿ ÿ00 k j 4 k 30ÿ 00 ÿ k j 4, b) k ÿ00 00, c).. Expresar con notación de sumatorio: 0ÿ a) ` 3 `

Más detalles

Por el teorema de Green, si llamamos D al interior del cuadrado, entonces. dxdy. y. x P. 1 dx. 1 (4x 3 2y) dy =

Por el teorema de Green, si llamamos D al interior del cuadrado, entonces. dxdy. y. x P. 1 dx. 1 (4x 3 2y) dy = TEOREMA E GREEN. 1. Calcular y dx x dy, donde es la frontera del cuadrado [ 1, 1] [ 1, 1] orientada en sentido contrario al de las agujas del reloj. Por el teorema de Green, si llamamos al interior del

Más detalles

Funciones Hiperbólicas. Who? Verónica Briceño V. When? noviembre 2013

Funciones Hiperbólicas. Who? Verónica Briceño V. When? noviembre 2013 Funciones Hiperbólicas Funciones Hiperbólicas Who? Verónica Briceño V. When? noviembre 2013 En esta Presentación... En esta Presentación veremos: Definición de Funciones Hiperbólicas En esta Presentación...

Más detalles

Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica

Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica 1. a) Marcar en un eje los puntos a(1);b( 2) y c(4). b) Hallar los puntos simétricos respecto al origen

Más detalles

Cálculo Integral Enero 2015

Cálculo Integral Enero 2015 Cálculo Integral Enero 015 Laboratorio # 1 Antiderivadas I.- Halle las siguientes integrales indefinidas. 10) ) 6) 1 1 1 1 16) 1 8) 9) 18) II.- Calcule 1.. 1 Cálculo Integral Enero 015 Laboratorio # Aplicaciones

Más detalles

TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO

TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO 1. División de polinomios Dados dos polinomios P (el dividendo) y D (el divisor), dividir P entre D es encontrar dos polinomios Q (el cociente)

Más detalles

3a b 6a + 2b = 5. Calcula el valor de 3c d 6c + 2d. a + 2b a a + b a + b a + 2b a a a + b a + 2b. = 9b 2 (a + b)

3a b 6a + 2b = 5. Calcula el valor de 3c d 6c + 2d. a + 2b a a + b a + b a + 2b a a a + b a + 2b. = 9b 2 (a + b) PROBLEMAS RESUELTOS DE DETERMINANTES Determinantes de la selectividad de Andalucía. Determinantes de órdenes, y. Determinantes de orden n. ENUNCIADOS Determinantes de selectividad Antes del.. Se sabe que

Más detalles

Matrices 1 (Problemas). c

Matrices 1 (Problemas). c º Bachillerato Matrices 1 (Problemas) 1.- Efectúa las siguientes operaciones con matrices: a) 1 4 5 6 + b) 5 7 9 11 1 1 1 1 1 1 c). 4 d) 6. 1 6 1 18 1 g) 0 0 0 0 a 0 b 0. 0 b 0 0 0 c c 0 0.- Siendo A =

Más detalles

Unidad 1: Espacio de Probabilidad

Unidad 1: Espacio de Probabilidad Unidad 1: Espacio de Probabilidad 1.1 Espacios de Probabilidad. (1) Breve introducción histórica de las probabilidades (2) Diferencial entre modelos matemáticos deterministicos y probabilísticos (3) Identificar

Más detalles

Práctico 9 (resultados) Reportar al foro cualquier error que crea que exista en éstos resultados.

Práctico 9 (resultados) Reportar al foro cualquier error que crea que exista en éstos resultados. Práctico 9 (resultados) Reportar al foro cualquier error que crea que exista en éstos resultados. Ejercicio 1 Ver ejemplo 7.1 del capítulo 7 de las notas del curso (página 158). El resultado final de dicha

Más detalles

Un subconjunto no vacío H de un espacio vectorial V es un subespacio de V si se cumplen las dos reglas de cerradura:

Un subconjunto no vacío H de un espacio vectorial V es un subespacio de V si se cumplen las dos reglas de cerradura: 4 Subespacios 29 b) x 5 [25;5], 5 [;24], z 5 [4;4] Use a 5 2, a 5 / a 5 2 / 2 c) Su propia elección de x,, z /o a 2 a) Elija algunos valores para n m genere tres matrices aleatorias de n m, llamadas X,

Más detalles

Ejercicios del Tema 2: Estructuras algebraicas básicas

Ejercicios del Tema 2: Estructuras algebraicas básicas Ejercicios del Tema 2: Estructuras algebraicas básicas En los ejercicios 1, 2, 8 y 9 se utilizará que si G = {g 1,...,g n } es un conjunto finito y * una operación interna definida en G, podemos utilizar

Más detalles

( ), está dada por: g ( x) = log 2 ( x),x > 0. # % 3x log 2 ( 5), x 1 & + -, . log 2. log 2 ( x 3

( ), está dada por: g ( x) = log 2 ( x),x > 0. # % 3x log 2 ( 5), x 1 & + -, . log 2. log 2 ( x 3 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS CURSO DE NIVELACIÓN 05 S SEGUNDA EVALUACIÓN DE MATEMÁTICAS PARA INGENIERÍAS Y EDUCACIÓN

Más detalles

MATEMÁTICAS 2º BACH CC y TECN INTEGRAL DEFINIDA

MATEMÁTICAS 2º BACH CC y TECN INTEGRAL DEFINIDA 1. APROXIMACIÓN DE ÁREAS BAJO UNA CURVA Hay infinidad de funciones extraídas del mundo real (científico, económico, física )para las cuales tiene especial relevancia calcular el área bajo su gráfica. Vamos

Más detalles

Procesos estocásticos

Procesos estocásticos Procesos estocásticos Las cadenas de Markov estudian procesos estocásticos Los procesos estocásticos son modelos matemáticos que describen sistemas dinámicos sometidos a procesos aleatorios Parámetros:

Más detalles

PIE - Probabilidad y Estadística

PIE - Probabilidad y Estadística Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2016 300 - EETAC - Escuela de Ingeniería de Telecomunicación y Aeroespacial de Castelldefels 749 - MAT - Departamento de Matemáticas

Más detalles

1.1. Distribución exponencial. Definición y propiedades

1.1. Distribución exponencial. Definición y propiedades CONTENIDOS 1.1. Distribución exponencial. Definición y propiedades 1.2. Procesos de conteo 1.3. Procesos de Poisson - Tiempos de espera y entre llegadas - Partición y mezcla de un proceso de Poisson -

Más detalles

Álgebra Lineal, Ejercicios

Álgebra Lineal, Ejercicios Álgebra Lineal, Ejercicios MATRICES 1 Se llama traza de una matriz cuadrada a la suma de los elementos de su diagonal principal Sea G el conjunto de todas las matrices cuadradas de orden n con traza nula

Más detalles

1. Usando la definición correspondiente demostrar que la función. z = f(x, y) = 3x xy 2

1. Usando la definición correspondiente demostrar que la función. z = f(x, y) = 3x xy 2 1. Usando la definición correspondiente demostrar que la función es diferenciable en todo R 2. z = f(x, y = 3x xy 2 Se debe verificar que para todo (a, b en R 2, existen funciones, de = x y k = y, ɛ 1

Más detalles

Trigonometría. Guía de Ejercicios

Trigonometría. Guía de Ejercicios . Módulo 6 Trigonometría Guía de Ejercicios Índice Unidad I. Razones trigonométricas en el triángulo rectángulo. Ejercicios Resueltos... pág. 0 Ejercicios Propuestos... pág. 07 Unidad II. Identidades trigonométricas

Más detalles

Tarea 1 - Vectorial 201420

Tarea 1 - Vectorial 201420 Tarea - Vectorial 040. Part :. - 3... Hacer parametrización de la curva de intersección del cilindro x + y = 6 y el plano x + z = 5. Encontrar las coordenadas de los puntos de la curva donde la curvatura

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

Introducción al Tema 9

Introducción al Tema 9 Tema 2. Análisis de datos univariantes. Tema 3. Análisis de datos bivariantes. Tema 4. Correlación y regresión. Tema 5. Series temporales y números índice. Introducción al Tema 9 Descripción de variables

Más detalles

Departamento de Matemática Aplicada a la I.T. de Telecomunicación

Departamento de Matemática Aplicada a la I.T. de Telecomunicación Departamento de Matemática Aplicada a la I.T. de Telecomunicación EXAMEN RESUELTO DE ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS CONVOCATORIA: ENERO / FECHA: de Enero de Duración del examen: 3 horas Fecha publicación

Más detalles

EJERCICIOS DE PRÁCTICA

EJERCICIOS DE PRÁCTICA EJERCICIOS DE PRÁCTICA PPAA 0 Grado MATEMÁTICAS Nombre del estudiante: Todos los derechos de reproducción y divulgación están reservados por el Departamento de Educación de Puerto Rico, 0. HOJA DE MATEMÁTICAS

Más detalles

Contrastes de Hipótesis paramétricos y no-paramétricos.

Contrastes de Hipótesis paramétricos y no-paramétricos. Capítulo 1 Contrastes de Hiptesis paramétricos y no-paramétricos. Estadística Inductiva o Inferencia Estadística: Conjunto de métodos que se fundamentan en la Teoría de la Probabilidad y que tienen por

Más detalles

Determinar si las siguientes relaciones satisfacen cada una de las siguientes propiedades: completa, transitiva y re exiva

Determinar si las siguientes relaciones satisfacen cada una de las siguientes propiedades: completa, transitiva y re exiva Ejercicios 1) Determinar si las siguientes relaciones satisfacen cada una de las siguientes propiedades: completa, transitiva y re exiva Sea X = f1; 2; 3g y %= f(1; 1) ; (1; 2) ; (1; 3) ; (2; 3) ; (3;

Más detalles

Generación de variables aleatorias continuas Método de la transformada inversa

Generación de variables aleatorias continuas Método de la transformada inversa Generación de variables aleatorias continuas Método de la transformada inversa Georgina Flesia FaMAF 16 de abril, 2013 Generación de v.a. discretas Existen diversos métodos para generar v.a. discretas:

Más detalles

Matemáticas TRABAJO. Funciones Trigonométricas

Matemáticas TRABAJO. Funciones Trigonométricas Matemáticas TRABAJO Funciones Trigonométricas 2 En este trabajo trataremos de mostrar de una forma práctica las funciones trigonométricas, con sus formas de presentación, origen y manejos. También se incluirán

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

TEMAS 4 Y 5 TRIGONOMETRÍA

TEMAS 4 Y 5 TRIGONOMETRÍA Temas 4 y 5 Trigonometría Matemáticas I º Bachillerato TEMAS 4 Y 5 TRIGONOMETRÍA UNIDADES DE MEDIDAS DE ÁNGULOS EJERCICIO a Pasa a radianes los siguientes ángulos: y 7 b) Pasa a grados los ángulos: 7 rad

Más detalles

Prof. Eliana Guzmán U. Semestre A-2015

Prof. Eliana Guzmán U. Semestre A-2015 Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos

Más detalles

FEM para Mecánica 3D. Miguel Ángel Otaduy. Animación Avanzada 7 de Marzo de 2014

FEM para Mecánica 3D. Miguel Ángel Otaduy. Animación Avanzada 7 de Marzo de 2014 FEM para Mecánica 3D Miguel Ángel Otaduy Animación Avanzada 7 de Marzo de 2014 Índice Repaso Hoy Funciones de forma Formulación fuerte formulación débil Matriz de rigidez Ec. de elasticidad en 3D Deformación

Más detalles

sea paralela al plano

sea paralela al plano x = 1+2t 1. [ANDA] [EXT-A] Considera los puntos A(1,1,2) y B(1,-1,-2) y la recta dada por y = t. z = 1 a) Halla la ecuación general del plano que que contiene a r y es paralelo a la recta que pasa por

Más detalles

b) dado que es en valor absoluto será el área entre -1,071 y 1,071 luego el resultado será F(1,071)-(1-F(1,071)=0,85-(1-0,85)=0,7

b) dado que es en valor absoluto será el área entre -1,071 y 1,071 luego el resultado será F(1,071)-(1-F(1,071)=0,85-(1-0,85)=0,7 EJERCICIOS T12-MODELOS MULTIVARIANTES ESPECÍFICOS 1. Un determinado estadístico J se distribuye según un modelo jhi-dos de parámetro (grados de libertad) 14. Deseamos saber la probabilidad con la que dicho

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y),

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y), Problema. Calcula las derivadas parciales de las siguientes funciones: (a) f(x, y) = x + y cos(xy), (b) f(x, y) = x x + y, (c) f(x, y) = log x + y x y, (d) f(x, y) = arctan x + y x y, (e) f(x, y) = cos(3x)

Más detalles

Tema 06: Derivación implícita, vector gradiente y derivadas direccionales

Tema 06: Derivación implícita, vector gradiente y derivadas direccionales Tema 06: Derivación implícita, vector gradiente y derivadas direccionales Juan Ignacio Del Valle Gamboa Sede de Guanacaste Universidad de Costa Rica Ciclo I - 2014 MA-1003 Cálculo III (UCR) Derivadas implícitas

Más detalles

Estadística. Soluciones ejercicios: Probabilidad. Versión 8. Emilio Letón

Estadística. Soluciones ejercicios: Probabilidad. Versión 8. Emilio Letón Estadística Soluciones ejercicios: Probabilidad Versión 8 Emilio Letón 1. Nivel 1 1. Demostrar las propiedades siguientes relativas a las operaciones con sucesos Unión Intersección Conmutativa A [ B =

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

Probabilidad, Variables aleatorias y Distribuciones

Probabilidad, Variables aleatorias y Distribuciones Prueba de evaluación continua Grupo D 7-XII-.- Se sabe que el 90% de los fumadores llegaron a padecer cáncer de pulmón, mientras que entre los no fumadores la proporción de los que sufrieron de cáncer

Más detalles

Variables aleatorias

Variables aleatorias Distribuciones continuas Se dice que una variable aleatoria X tiene una distribución continua, o que X es una variable continua, si existe una función no negativa f, definida sobre los números reales,

Más detalles

EL4005 Principios de Comunicaciones Clase No.22: Señalización Ortogonal

EL4005 Principios de Comunicaciones Clase No.22: Señalización Ortogonal EL4005 Principios de Comunicaciones Clase No.22: Señalización Ortogonal Patricio Parada Departamento de Ingeniería Eléctrica Universidad de Chile 29 de Octubre de 2010 1 of 34 Contenidos de la Clase (1)

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

Resumen sobre mecánica analítica

Resumen sobre mecánica analítica Resumen sobre mecánica analítica Ecuaciones de Lagrange. Supongamos una partícula, cuyo movimiento se puede describir mediante una sóla coordenada x, de modo que en el instante t la posición de la partícula

Más detalles

Cálculo III (0253) TEMA 1 FUNCIONES VECTORIALES DE UNA VARIABLE REAL. Semestre 3-2009

Cálculo III (0253) TEMA 1 FUNCIONES VECTORIALES DE UNA VARIABLE REAL. Semestre 3-2009 Cálculo III (05) Semestre -009 TEMA FUNCIONES VECTORIALES DE UNA VARIABLE REAL Semestre -009 Octubre 009 UCV FIUCV CÁLCULO III (05) - TEMA Las notas presentadas a continuación tienen como único fin, el

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Programa de la Asignatura: Código: 23 Probabilidad y Estadística Carrera: Ingeniería en Computación Plan: 2013 Carácter: Obligatoria Unidad Académica: Secretaría Académica Curso: Tercer año Primer cuatrimestre

Más detalles

TEMA 8. GEOMETRÍA ANALÍTICA.

TEMA 8. GEOMETRÍA ANALÍTICA. TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos

Más detalles

PE - Probabilidad y Estadística

PE - Probabilidad y Estadística Unidad responsable: 230 - ETSETB - Escuela Técnica Superior de Ingeniería de Telecomunicación de Barcelona Unidad que imparte: 749 - MAT - Departamento de Matemáticas Curso: Titulación: 2016 GRADO EN INGENIERÍA

Más detalles

Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución:

Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución: 3 Determinantes. Determinantes de orden y 3 por Sarrus Piensa y calcula 3 6 Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4 8 3 8 6 4 = 4 4 = 0 Aplica la teoría. Calcula

Más detalles

Tema 4: Variables aleatorias multidimensionales

Tema 4: Variables aleatorias multidimensionales Tema 4: Variables aleatorias multidimensionales Los contenidos a desarrollar en este tema son los siguientes: Distribución conjunta de probabilidad Probabilidad/densidad marginales y condicionadas Independencia

Más detalles

2. Cuál es el valor del cociente de la suma entre la diferencia de los senos de dos ángulos?

2. Cuál es el valor del cociente de la suma entre la diferencia de los senos de dos ángulos? 1. Qué relaciones ligan las razones trigonométricas de (45º-a) y (45º+a) 2. Cuál es el valor del cociente de la suma entre la diferencia de los senos de dos ángulos? 3. Demostrar la fórmula: 4. Expresar

Más detalles

DERIV. DE UNA FUNC. EN UN PUNTO

DERIV. DE UNA FUNC. EN UN PUNTO DERIVADA DE UNA FUNCIÓN Se abre aquí el estudio de uno de los conceptos fundamentales del cálculo diferencial: la derivada de una función. En este tema, además de definir tal concepto, se mostrará su significado

Más detalles

Prueba Integral Lapso /6

Prueba Integral Lapso /6 Prueba Integral Lapso 2 009-2 76 - /6 Universidad Nacional Abierta Probabilidad y Estadística I (76) Vicerrectorado Académico Cód. Carrera: 06-20 - 508 Fecha: 2-2 - 2 009 MODELO DE RESPUESTAS Objetivos,

Más detalles

Procesos estocásticos. Definición

Procesos estocásticos. Definición Procesos estocásticos Definición http://humberto-r-alvarez-a.webs.com Definición de proceso estocástico Estudio del comportamiento de una variable aleatoria a lo largo del tiempo El ajuste de cualquier

Más detalles

DERIVABILIDAD. 1+x 2. para x [1, 3]

DERIVABILIDAD. 1+x 2. para x [1, 3] 1 DERIVABILIDAD 1. Definir derivada y derivadas laterales de una función en un punto. Probar que la función f es derivable en =1 y que la derivada lateral por la derecha en =0 es infinito. para [0, 1)

Más detalles

Tema 4: Variables aleatorias multidimensionales

Tema 4: Variables aleatorias multidimensionales 1 Tema 4: Variables aleatorias multidimensionales En este tema: Distribución conjunta de probabilidad Probabilidad/densidad marginal Probabilidad/densidad condicionada Esperanza, varianza, desviación típica

Más detalles

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ...

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ... TEMA : MATRICES Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas a a a... a n a a a... an A... am am am... amn A los números reales a ij se les llama elementos

Más detalles

Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I?

Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I? MATRICES Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I? La multiplicación de matrices cuadradas, tiene la propiedad conmutativa?

Más detalles

Problemas de Espacios Vectoriales

Problemas de Espacios Vectoriales Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial

Más detalles

TEMAS 5 FUNCIONES Y FÓRMULAS TRIGONOMETRÍAS

TEMAS 5 FUNCIONES Y FÓRMULAS TRIGONOMETRÍAS TEMA 5 FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS MATE I 1º Bach 1 TEMAS 5 FUNCIONES Y FÓRMULAS TRIGONOMETRÍAS 5.1 UNIDAD PARA MEDIR ÁNGULOS: EL RADIÁN DEFINICIÓN DE RADIAN Se llama radian a un ángulo tal que

Más detalles

UD Trigonometría Ejercicios Resueltos y Propuestos Col La Presentación

UD Trigonometría Ejercicios Resueltos y Propuestos Col La Presentación En este documento se da una relación de los tipos de ejercicios que nos podemos encontrar en el tema de Trigonometría de º de Bachillerato. En todo el documento se sigue el mismo esquema: Enunciado tipo

Más detalles

NÚMEROS COMPLEJOS. Capítulo Operaciones con números complejos

NÚMEROS COMPLEJOS. Capítulo Operaciones con números complejos Capítulo 1 NÚMEROS COMPLEJOS Observe que la ecuación x 2 + 1 0 no tiene solución en los números reales porque tendríamos que encontrar un número cuyo cuadrado fuera 1, es decir x 2 1 o, lo que viene a

Más detalles

1. [2014] [EXT-A] a) La derivada de la función f(x) es: (x-1) 3 (x-3). Determine la función f(x) sabiendo que f(0) = 1. +2x+2. x 3

1. [2014] [EXT-A] a) La derivada de la función f(x) es: (x-1) 3 (x-3). Determine la función f(x) sabiendo que f(0) = 1. +2x+2. x 3 [4] [EXT-A] a) La derivada de la función f() es: (-) (-) Determine la función f() sabiendo que f() = b) Determine el límite: lim + ++ ++ + [4] [EXT-B] a) Dadas las funciones f() = y g() = - +, determine

Más detalles

1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3.

1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3. . Producto escalar. Propiedades... Norma de un vector. Espacio normado...ortogonalidad. Ángulos..3.Producto escalar en V..4.Producto escalar en V 3.. Producto vectorial de dos vectores de V 3...Expresión

Más detalles

Complementos de Análisis. Año 2016

Complementos de Análisis. Año 2016 Complementos de Análisis. Año 2016 Práctica 8. Ecuaciones diferenciales ordinarias. 1 Modelando con ecuaciones diferenciales Modelar con ecuaciones diferenciales las siguientes situaciones. Intentar resolver

Más detalles

Definición de la matriz inversa

Definición de la matriz inversa Definición de la matriz inversa Objetivos Aprender la definición de la matriz inversa Requisitos Multiplicación de matrices, habilidades básicas de resolver sistemas de ecuaciones Ejemplo El número real

Más detalles

ECUACIÓN DEL M.A.S. v( t) = dx. a( t) = dv. x( 0) = 0.26 m v( 0) = 0.3 m / s

ECUACIÓN DEL M.A.S. v( t) = dx. a( t) = dv. x( 0) = 0.26 m v( 0) = 0.3 m / s ECUACIÓN DEL M.A.S. Una partícula tiene un desplazamiento x dado por: x ( t ) = 0.3cos t + π 6 en donde x se mide en metros y t en segundos. a) Cuáles son la frecuencia, el periodo, la amplitud, la frecuencia

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

MODELO DE RESPUESTAS Objetivos del 1 al 9

MODELO DE RESPUESTAS Objetivos del 1 al 9 PRUEBA INTEGRAL LAPSO 05-764 - /9 Universidad Nacional Abierta Probabilidad y Estadística I (Cód. 764) Vicerrectorado Académico Cód. Carrera: 6 Fecha: 0-04-06 MODELO DE RESPUESTAS Objetivos del al 9 OBJ

Más detalles

26 Apuntes de Matemáticas II para preparar el examen de la PAU

26 Apuntes de Matemáticas II para preparar el examen de la PAU 6 Apuntes de Matemáticas II para preparar el examen de la PAU Unidad. Funciones.Continuidad TEMA FUNCIONES. CONTINUIDAD. 1. Definición de Continuidad. Tipos de discontinuidades 3. Continuidad de las funciones

Más detalles

Se calcula cada término de la igualdad por separado y a continuación se iguala. Lím f. x 1

Se calcula cada término de la igualdad por separado y a continuación se iguala. Lím f. x 1 Modelo. Ejercicio A. Caliicación máima: puntos. Dada la unción < a ; e > se pide: a) ( punto) Determinar el valor de a para que sea continua en. b) ( punto) Para ese valor de a, estudiar la derivabilidad

Más detalles

TEMARIO: CONTENIDOS, OBJETIVOS MÍNIMOS Y TIEMPO.

TEMARIO: CONTENIDOS, OBJETIVOS MÍNIMOS Y TIEMPO. TEMARIO: CONTENIDOS, OBJETIVOS MÍNIMOS Y TIEMPO. Los contenidos seleccionados tienen la intención de aportar una formación matemática suficiente para abordar problemas del mundo social y del entorno, así

Más detalles

CONTENIDOS. 1. Procesos Estocásticos y de Markov. 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD

CONTENIDOS. 1. Procesos Estocásticos y de Markov. 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD CONTENIDOS 1. Procesos Estocásticos y de Markov 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD 4. Comportamiento Estacionario de las CMTD 1. Procesos Estocásticos

Más detalles

x-z = 0 x+y+2 = [2012] [EXT-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por

x-z = 0 x+y+2 = [2012] [EXT-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por x = 1+t 1. [014] [EXT-A] Considera los puntos A(1,1,) y B(1,-1,-) y la recta dada por y = t. z = 1 a) Halla la ecuación general del plano que que contiene a r y es paralelo a la recta que pasa por A y

Más detalles

Modelos Estocásticos I Tercer Examen Parcial Respuestas

Modelos Estocásticos I Tercer Examen Parcial Respuestas Modelos Estocásticos I Tercer Examen Parcial Respuestas. a Cuál es la diferencia entre un estado recurrente positivo y uno recurrente nulo? Cómo se define el período de un estado? Demuestre que si el estado

Más detalles

1. Teoría: a) Forma polar; b) Producto de números complejos; c) Ley de Moivre.

1. Teoría: a) Forma polar; b) Producto de números complejos; c) Ley de Moivre. 1. Teoría: a) Forma polar; b) Producto de números complejos; c) Ley de Moivre. 2. Si el senx=0,6 y ð/2

Más detalles

Generación de variables aleatorias continuas Método de rechazo

Generación de variables aleatorias continuas Método de rechazo Generación de variables aleatorias continuas Método de rechazo Georgina Flesia FaMAF 18 de abril, 2013 Método de Aceptación y Rechazo Repaso Se desea simular una v. a. X discreta, con probabilidad de masa

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES SISTEMS E ECUCIONES Ejemplos 1 Resuelva por el método de sustitución el sistema x 8 16 8x Solución Se despeja de la segunda ecuación 8x 8x Se sustitue la expresión 8x en la x 8 16 primera ecuación x 8

Más detalles

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

IES Fco Ayala de Granada Sobrantes del 2010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Sobrantes del 2010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A Opción A Ejercicio 1 opción A, modelo 6 del 010 [ 5 puntos] Dada la función f : R R definida como f(x)= a.sen(x)+ bx + cx + d, determina los valores de las constantes a, b, c y d sabiendo que la gráfica

Más detalles

Identidades Trigonométricas

Identidades Trigonométricas Identidades Trigonométricas Unidad TR.4: Identidades trigonométricas Las identidades trigonométricas son útiles en la transformación de expresiones. Repaso Hemos estudiado la unidad del circulo ya que

Más detalles

Tema 6. Variables aleatorias continuas

Tema 6. Variables aleatorias continuas Tema 6. Variables aleatorias continuas Resumen del tema 6.1. Definición de variable aleatoria continua Identificación de una variable aleatoria continua X: es preciso conocer su función de densidad, f(x),

Más detalles

Econometría de series de tiempo aplicada a macroeconomía y finanzas

Econometría de series de tiempo aplicada a macroeconomía y finanzas Econometría de series de tiempo aplicada a macroeconomía y finanzas Series de Tiempo no Estacionarias Carlos Capistrán Carmona ITAM Tendencias Una tendencia es un movimiento persistente de largo plazo

Más detalles

1. Teorema Fundamental del Cálculo

1. Teorema Fundamental del Cálculo 1. Teorema Fundamental del Cálculo Vamos a considerar dos clases de funciones, definidas como es de otras funciones Funciones es. F (t) = t a f(x)dx donde f : R R, y F (t) = f(x, t)dx A donde f : R n R

Más detalles

Cálculo de Probabilidades II Preguntas Tema 1

Cálculo de Probabilidades II Preguntas Tema 1 Cálculo de Probabilidades II Preguntas Tema 1 1. Suponga que un experimento consiste en lanzar un par de dados, Sea X El número máximo de los puntos obtenidos y Y Suma de los puntos obtenidos. Obtenga

Más detalles

x+2y = 6 z = [C-LE] [JUN-A] Calcúlese la distancia del origen al plano que pasa por A(1,2,0) y contiene a la recta r x+2 2 = y-1

x+2y = 6 z = [C-LE] [JUN-A] Calcúlese la distancia del origen al plano que pasa por A(1,2,0) y contiene a la recta r x+2 2 = y-1 1. [ANDA] [JUN-A] Considera el punto P(2,0,1) y la recta r a) Halla la ecuación del plano que contiene a P y a r. b) Calcula el punto simétrico de P respecto de la recta r. x+2y = 6 z = 2. 2. [ANDA] [SEP-A]

Más detalles

DERIVADA DE LA FUNCIONES BÁSICAS TANGENTE, COTANGENTE, SECANTE Y COSECANTE

DERIVADA DE LA FUNCIONES BÁSICAS TANGENTE, COTANGENTE, SECANTE Y COSECANTE DERIVADA DE LA FUNCIONES BÁSICAS TANGENTE, COTANGENTE, SECANTE Y COSECANTE Sugerencias para quien imparte el curso: En esta sección de la propuesta didáctica se parte de plantear un problema de optimización

Más detalles

Matemáticas II CURVAS

Matemáticas II CURVAS CURVAS En este tema introduciremos nuevos conceptos relacionados con la curva y sus parametrizaciones. Definiciones.- Sea γ : I = [a,b] R n. Se dice que la curva es cerrada si γ(a) = γ(b). Se dice que

Más detalles

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0.

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0. . Encuentre el área de la región limitada por las curvas indicadas:.. y = x, y = x +... x = y, x = y +... y = x +, y = x +, y = x....5..6..7..8..9..0....... y = x + 8x 7, y = x. y = x, y = x +, x =, x

Más detalles

Universidad de Antioquia

Universidad de Antioquia Facultad de Ciencias Exactas y Naturales Departamento de Matemáticas Grupo de Semilleros de Matemáticas Semática Funciones Trigonométricas inversas Matemáticas Operativas Taller 4 0 La trigonometría es

Más detalles