LÍMITES Y CONTINUIDAD

Tamaño: px
Comenzar la demostración a partir de la página:

Download "LÍMITES Y CONTINUIDAD"

Transcripción

1 CONCEPTOS BÁSICOS ÍMITES Y CONTINUIDAD a deinición de ite para unciones de varias variables es siilar a aquélla para unciones de una variable, pero con la salvedad de que los entornos toados alrededor del punto donde quereos encontrar el ite serán ahora discos o bolas, de acuerdo a la diensión del espacio de las variables. Mientras que en unciones de una variable ha sólo dos aneras de acercarnos a un punto del doinio por derecha por izquierda, en unciones de varias variables ha ininitos cainos para acercarse a un punto del plano de las variables. Para que eista un ite, el iso debe ser igual para todos los posibles acercaientos. Igual que en unciones de una variable, para que una unción de varias variables sea continua en un punto debe estar deinida en el iso, debe tener ite en él el valor de la unción debe ser igual al del ite. una unción es cobinación de otras continuas, será tabién continua ecepto en aquellos puntos donde no esté deinida. PROBEMAS. Conjuntos abiertos. Mostrar que el siguiente conjunto del plano es abierto: {, } A En el plano, un conjunto es abierto cuando dado un eleento perteneciente al conjunto es posible trazar un disco alrededor de dicho punto tal que todos los eleentos del disco pertenecen al conjunto. En el caso de nuestro problea, teneos que cualquier - punto perteneciente al conjunto estará a una cierta distancia de cada uno de los cuatro bordes, no pudiendo estar eactaente sobre los isos dado que las desigualdades son estrictas. - En esas condiciones, para seleccionar un tal que todos los puntos en un disco de radio pertenezcan al conjunto, basta toar: ín{, -,, - } Esto es, debe ser enor que la enor distancia del punto a los bordes. De esa anera, tendreos que para cualquier punto del disco se veriicará:

2 Esto es, cualquier punto dentro del disco cuplirán las cuatro condiciones requeridas para que pertenezca al conjunto A. Por ende, el conjunto es abierto.

3 . Cálculo de ites. Calcular los ites siguientes: a e b sen a e. Se trata en este caso de unciones continuas abas, su producto está deinido en el punto indicado, por lo tanto el producto es continuo allí. Entonces el ite de la unción es igual al valor de la unción, o sea. sen sen sen b sen sen. Usaos la propiedad de que el ite de un producto es igual al producto de los ites.

4 . Eistencia e ineistencia de ites. sen a Usar la regla de l Hôpital para calcular. sen b Eiste? a sen cos 4sen 6 8cos 6 4 Usaos la regla de l Hôpital tres veces sucesivas, dado que se trataba de casos de cero sobre cero. a cuarta vez a era un ite que se podía calcular, así lo hicios. b Eainareos este ite doble acercándonos al origen a través de dos cainos: por el eje por el eje. Por el eje : sen sen 4 aprovechaos el resultado anterior. Por el eje : sen os ites a través de acercaientos dierentes son distintos, por ende no eiste el ite, de la isa anera que no eistía en cálculo de unciones de una variable cuando el ite por izquierda daba distinto del ite por derecha.

5 4. Más cálculos de ites. Resolver los siguientes ites: a b a Éste es un cociente de unciones continuas adeás deinido en el origen, por lo cual la unción es continua su ite es el valor de la unción en el origen, vale decir. b En este caso, si bien las unciones del nuerador el denoinador son abas continuas, el cociente entre abas no está deinido en el origen. Para tratar de ver si eiste un ite, analizareos priero los acercaientos por los ejes. Por el eje : Por el eje : Esto es alentador parecería que deberíaos probar ahora que el ite es. n ebargo, conviene analizar otros acercaientos al origen. Debeos recordar que una sola coincidencia entre ites por distintos acercaientos no garantiza nada por el contrario, un solo caso de ite distinto prueba que no eiste el ite. Noralente, se suelen calcular a ese eecto los ites radiales, en los cuales se deterina el ite por líneas rectas oblicuas que convergen al punto en análisis. En nuestro caso, las líneas rectas que convergen al origen son de la ora: Deterineos, pues, los ites acercándonos por estos cainos: [ ] Este últio valor depende de por lo tanto variará de acuerdo al caino de acercaiento al origen. Coo los ites no son todos iguales para todos los acercaientos, se conclue que no eiste el ite.

6 5. Cálculo de un ite por ε -. Calcular: Priero calculeos los ites radiales. Dan todos lo iso. Se sugiere al lector calcular otros ites por otros cainos coprobar que tabién dan. De esa anera, se puede conjeturar que el ite es. Para coprobarlo, debeos ver que el valor satisace alguna de las deiniciones de ite aplicada a este caso particular. o intentareos con la deinición según ε -, que establece: ε ε / En térinos intuitivos, esto quiere decir que siepre habrá un disco alrededor de para el cual los valores de la unción estarán tan cerca del ite coo queraos. El radio del disco será unción de la cercanía al ite ±ε que ipongaos. En nuestro caso, postulaos. Por ende: Por otro lado,, con lo cual el disco que buscaos satisará: Reeplazando esto arriba será: Por lo tanto, para que - sea enor que ε, basta con que ε. Por ende, dado ε, eiste ε/ que satisace la condición de ite. Por lo cual el valor de postulado, que es, es realente el ite de la unción en el origen.

1. Calificación máxima: 2 puntos Calcular los siguientes límites (donde Ln significa Logaritmo Neperiano).

1. Calificación máxima: 2 puntos Calcular los siguientes límites (donde Ln significa Logaritmo Neperiano). JUNIO INSTRUCCIONES: El eaen presenta dos opciones B; el aluno deberá elegir una de ellas contestar raonadaente a los cuatro ejercicios de que consta dicha opción en h. in. OPCIÓN. Calificación áia: puntos

Más detalles

Ejemplos resueltos: CIRCUNFERENCIA Y ELIPSE

Ejemplos resueltos: CIRCUNFERENCIA Y ELIPSE Ejeplo : Deterina la ecuación de la circunferencia con centro en (,) y que pasa por el punto (,5) Respuesta: ( x + ) + ( y ) 0 Ejeplo : Deterina centro, radio y grafica de x 6x + y + y (x- )² + (y + /)²

Más detalles

UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA

UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA Objetivos Geoetría analítica Introducción U 3.1. Definición de recta 91 Dos puntos sólo pueden ser unidos por una sola recta la relación ateática que satisface

Más detalles

CARACTERÍSTICAS DE UNA FUNCIÓN

CARACTERÍSTICAS DE UNA FUNCIÓN . DOMINIO CARACTERÍSTICAS DE UNA FUNCIÓN inio de o campo de eistencia de es el conjunto de valores para los que está deinida la unción, es decir, el conjunto de valores que toma la variable independiente.

Más detalles

Límites y Derivadas 2d. Matemáticas para Ingeniería I Otono 2016 Lilia Meza Montes IFUAP

Límites y Derivadas 2d. Matemáticas para Ingeniería I Otono 2016 Lilia Meza Montes IFUAP Límites y Derivadas d Matemáticas para Ingeniería I Otono 016 Lilia Meza Montes IFUAP Función de una variable Función : regla que asocia un único valor a cada elemento de un conjunto. R y() R 0 Dominio:

Más detalles

4.1 MONOTONÍA 4.2 MÁXIMOS Y MÍNIMOS 4.3 CONCAVIDAD 4.4 ELABORACIÓN DE GRÁFICAS SOFISTICADAS 4.5 TEOREMA DEL VALOR MEDIO PARA

4.1 MONOTONÍA 4.2 MÁXIMOS Y MÍNIMOS 4.3 CONCAVIDAD 4.4 ELABORACIÓN DE GRÁFICAS SOFISTICADAS 4.5 TEOREMA DEL VALOR MEDIO PARA Cáp. Temas Adicionales de la derivada. MONOTONÍA. MÁXIMOS Y MÍNIMOS. CONCAVIDAD. ELABORACIÓN DE GRÁFICAS SOFISTICADAS.5 TEOREMA DEL VALOR MEDIO PARA DERIVADAS.6 TEOREMA DE ROLLE.7 TEOREMA DE CAUCHY.8 TEOREMA

Más detalles

Límite de una Función

Límite de una Función Cálculo _Comisión Año 06 Límite de una Función I) Límite Finito Muchas veces interesa analizar el comportamiento de los valores de una función, para valores de la variable independiente cercanos a uno

Más detalles

ENSEÑANZA DE LA FUNCIÓN CUADRÁTICA INTERPRETANDO SU COMPORTAMIENTO AL VARIAR SUS PARAMETROS

ENSEÑANZA DE LA FUNCIÓN CUADRÁTICA INTERPRETANDO SU COMPORTAMIENTO AL VARIAR SUS PARAMETROS ENSEÑANZA DE LA FUNCIÓN CUADRÁTICA INTERPRETANDO SU COMPORTAMIENTO AL VARIAR SUS PARAMETROS JUAN ALFONSO OAXACA LUNA, MARÍA DEL CARMEN VALDERRAMA BRAVO Introducción Uno de los conceptos centrales en el

Más detalles

Límites y continuidad

Límites y continuidad Estudio de la continuidad de la función en el punto = : Comprobemos, como primera medida, que la función está definida en =. Para =, tenemos que determinar f() = + = 6 + = 8, luego eiste. Calculamos, entonces

Más detalles

Tema 1: Combinatoria

Tema 1: Combinatoria Tea : Cobinatoria C. Ortiz, A. Méndez, E. Martín y J. Sendra Febrero de Índice Guía del tea. Introducción. Principios básicos del conteo 3. Variaciones 4. Perutaciones 4 5. Perutaciones circulares. 5 6.

Más detalles

De Metro a... APRENDO JUGANDO. Para medir longitudes, la unidad de medida es el metro. Y por qué el metro?, a quién se le ocurrió?

De Metro a... APRENDO JUGANDO. Para medir longitudes, la unidad de medida es el metro. Y por qué el metro?, a quién se le ocurrió? 07 Lección Refuerzo Mateáticas De Metro a... APRENDO JUGANDO Copetencia Resuelve probleas de conversiones de superficie de anera autónoa y ediante el odelo realiza tareas de conversión. Diseño instruccional

Más detalles

Unidad 5. La derivada. 5.2 La derivada de una función

Unidad 5. La derivada. 5.2 La derivada de una función Unidad 5 La derivada 5. La derivada de una función A continuación trataremos uno de los conceptos fundamentales del Cálculo, que es el de la derivada. Este concepto es un ite que está estrecamente ligado

Más detalles

Funciones de varias variables

Funciones de varias variables Capítulo Funciones de varias variables Problema Sea f : IR 2 IR definida por: 2 y 2 f, y) = e +y 2 > y, y. i) Estudiar la continuidad de f en IR 2. ii) Definimos g : IR IR como g) = f, ). Analizar la derivabilidad

Más detalles

1.5 Límites infinitos

1.5 Límites infinitos SECCIÓN.5 Límites infinitos 8.5 Límites infinitos Determinar ites infinitos por la izquierda por la derecha. Encontrar dibujar las asíntotas verticales de la gráfica de una función., cuando Límites infinitos

Más detalles

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

Prueba Matemática. Resolución. Proceso de admisión Documento Oficial. Universidad de Chile

Prueba Matemática. Resolución. Proceso de admisión Documento Oficial. Universidad de Chile Proceso de adisión 0 6 de agosto de 00 Docuento Oficial Universidad de Chile VicerrectorÍa de asuntos acadéicos DEMRE Consejo de rectores UNIVERSIDADES CHILENAS Resolución Prueba Mateática Parte II En

Más detalles

Gráfica de Sistemas de desigualdades lineales en dos variables

Gráfica de Sistemas de desigualdades lineales en dos variables Gráfica de Sistemas de desigualdades lineales en dos variables Una ecuación lineal con dos variables x y y, es de la forma: ax+by+c=0, a,b ambos no iguales a cero Donde tiene un conjunto solución que se

Más detalles

Vamos a ver algunos conceptos básicos de solfeo. La progresión de la escala de las notas musicales va de la siguiente manera:

Vamos a ver algunos conceptos básicos de solfeo. La progresión de la escala de las notas musicales va de la siguiente manera: Conceptos Básicos aos a ver algunos conceptos básicos de solfeo. La progresión de la escala de las notas usicales va de la siguiente anera: # Re# Fa# # La# Re i Fa La Si / / Qué quiere decir esto? Figura

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas Función Derivada Función compuesta Derivada y f x y f x y f g x

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas Función Derivada Función compuesta Derivada y f x y f x y f g x Tabla de derivadas Función Derivada Función compuesta Derivada k ' 0 ' ' n ' ' ' e ' n n n n ' n ' e a ' ln ln log a a a ' ' e a ln ln a Reglas de derivación log a ' ' ' ' ' ' ' ' ' ln ' ' ' ' e a a '

Más detalles

UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD.

UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD. IES Padre Poveda (Guadi) UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD.. Límite de una función en un punto... Límites laterales... Límite de una función en un punto.. Límites en el infinito... Comportamiento

Más detalles

Asíntotas en una función.

Asíntotas en una función. Asíntotas en una unción. Las asíntotas son rectas a las cuales la unción se va aproimando indeinidamente, cuando por lo menos una de las variables ( o y) tienden al ininito. Deinición: Si un punto, y )

Más detalles

Tema 7. Límites y continuidad de funciones

Tema 7. Límites y continuidad de funciones Matemáticas II (Bachillerato de Ciencias) Análisis: Límites y continuidad de funciones 55 Límite de una función en un punto Tema 7 Límites y continuidad de funciones Idea inicial Si una función f está

Más detalles

FUNCIONES REALES DE VARIABLE REAL.

FUNCIONES REALES DE VARIABLE REAL. FUNCIONES REALES DE VARIABLE REAL. CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se denota por : A B A

Más detalles

Capítulo VII CENTRO DE GRAVEDAD, CENTRO DE MASA Y CENTROIDE

Capítulo VII CENTRO DE GRAVEDAD, CENTRO DE MASA Y CENTROIDE Capítulo II CENTRO DE GREDD, CENTRO DE MS Y CENTROIDE 7. INTRODUCCIÓN Todo cuerpo que se halla en las inediaciones de la tierra interactúa con ella coo resultado de esta interacción actúa sore el cuerpo

Más detalles

Una Forma Distinta para Hallar la Distancia de un Punto a una Recta

Una Forma Distinta para Hallar la Distancia de un Punto a una Recta Una Fora Distinta para Hallar la Distancia de un Punto a una Recta Lic. Enrique Vílchez Quesada Universidad Nacional Escuela de Mateática Abstract La siguiente propuesta nace de la iniciativa de copartir

Más detalles

DETERMINACIÓN DE LA RESISTENCIA A COMPRESIÓN Y DEL MÓDULO DE ELASTICIDAD DE PILAS DE MAMPOSTERÍA DE BARRO Y DE CONCRETO

DETERMINACIÓN DE LA RESISTENCIA A COMPRESIÓN Y DEL MÓDULO DE ELASTICIDAD DE PILAS DE MAMPOSTERÍA DE BARRO Y DE CONCRETO DETERMINACIÓN DE LA RESISTENCIA A COMPRESIÓN Y DEL MÓDULO DE ELASTICIDAD DE PILAS DE MAMPOSTERÍA DE BARRO Y DE CONCRETO 1. OBJETIVO Y CAMPO DE APLICACIÓN Esta Nora Mexicana establece los étodos de prueba

Más detalles

Límites y Continuidad de funciones de varias variables

Límites y Continuidad de funciones de varias variables 1- Se construe un depósito de propano adosando dos hemisferios a los etremos de un cilindro circular recto Epresar el volumen V de ese depósito en función del radio r del cilindro de su altura h - Determinar

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Física General 1 Proyecto PE - Curso 008 Instituto de Física Facultad de Ingeniería UdelaR TITULO D I N Á I C A D E P A R T Í C U L A AUTORES Santiago Góez, Anthony éndez, Eduardo Lapaz INTRODUCCIÓN Analizaos

Más detalles

ced Au Au Au f Cu Cu Cu f

ced Au Au Au f Cu Cu Cu f Probleas calorietria Ejeplo 1.- 100 g de una aleación de oro y cobre, a la teperatura de 75.5ºC se introducen en un caloríetro con 502 g de agua a 25ºC, la teperatura del equilibrio es de 25.5ºC. Calcular

Más detalles

PRACTICA 4: CÁLCULOS DE ACTUADORES NEUMÁTICOS

PRACTICA 4: CÁLCULOS DE ACTUADORES NEUMÁTICOS PRACTCA : CÁLCULOS DE ACTUADORES NEUMÁTCOS Se trata de seleccionar los actuadores adecuados para un anipulador de un proceso de epaquetado de latas de atún. Coo se puede apreciar en el dibujo, en prier

Más detalles

Diseño de Reactores Heterogéneos Catalíticos Reactores de Lecho Fijo

Diseño de Reactores Heterogéneos Catalíticos Reactores de Lecho Fijo Diseño de Reactores Heterogéneos Catalíticos Reactores de Lecho Fio En un reactor catalítico de lecho fio para llevar a cabo una reacción fluido-sólido, el catalizador se presenta coo un lecho de partículas

Más detalles

, 0 ; Decrece: 0 2, 0 ; 0, 2. d f x x x x. a f x. b f x. Solucionario tema 9: Estudio de Funciones. Ejercicio 1. Ejercicio 2

, 0 ; Decrece: 0 2, 0 ; 0, 2. d f x x x x. a f x. b f x. Solucionario tema 9: Estudio de Funciones. Ejercicio 1. Ejercicio 2 Solucionario tema 9: Estudio de Funciones Ejercicio Estudia la gráica siguiente: Dominio Recorrido 0, 4 Puntos de corte con los Ejes Con el Eje Y: 0, 4 Puntos máimos y mínimos: Máimo absoluto: 0, No hay

Más detalles

I. Determinar los siguientes límites, aplicando las propiedades. lim =

I. Determinar los siguientes límites, aplicando las propiedades. lim = Ejercicios resueltos I. Determinar los siguientes límites, aplicando las propiedades ) 3 + 2 4 3 + 2 4 = (2) 3 + 2 (2) 2 - (2) - 4 Sustituir la por el 2 = 8 + 8-2 - 4 = 0 Aplicar límite a cada término

Más detalles

2. Amplía: factoriales y números combinatorios

2. Amplía: factoriales y números combinatorios UNIDAD Cobinatoria 2. Aplía: factoriales y núeros cobinatorios Pág. 1 de FACTORIALES El núero de perutaciones de n eleentos es: P n n n 1) n 2) 2 1 A este producto de n factores decrecientes a partir de

Más detalles

Capítulo 5. Sistemas de modulación Banda lateral única con portadora suprimida

Capítulo 5. Sistemas de modulación Banda lateral única con portadora suprimida Capítulo 5 Sisteas de odulación Banda lateral única con portadora supriida Introducción Cuando analizaos el tea del sistea de AM con portadora de potencia, la expresión que obtuvios fue la sig.: v( t)

Más detalles

1.6 TEORÍA DE IMÁGENES, APLICADA A LOS RADIADORES ELECTROMAGNÉTICOS: MONOPOLOS Y

1.6 TEORÍA DE IMÁGENES, APLICADA A LOS RADIADORES ELECTROMAGNÉTICOS: MONOPOLOS Y 1.6 TEORÍA DE IMÁGENES, APLICADA A LOS RADIADORES ELECTROMAGNÉTICOS: MONOPOLOS Y Un dipolo es una antena con alientación central epleada para transitir o recibir ondas de radiofrecuencia, es decir, es

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.3. CONCEPTO DE DERIVADA. CÁLCULO DE DERIVADAS

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.3. CONCEPTO DE DERIVADA. CÁLCULO DE DERIVADAS TEMA. FUNCIONES REALES DE VARIABLE REAL.. CONCEPTO DE DERIVADA. CÁLCULO DE DERIVADAS . FUNCIONES REALES DE VARIABLE REAL.. CONCEPTO DE DERIVAD. CÁLCULO DE DERIVADAS... Derivada de una unción en un punto...

Más detalles

http://www.matematicaaplicada.info 1 de 17 [email protected] SOLUCIÓN NUMÉRICA

http://www.matematicaaplicada.info 1 de 17 jezasoft@gmail.com SOLUCIÓN NUMÉRICA http://www.ateaticaaplicada.info 1 de 17 La Dorada, 07 de Octubre de 011 SOLUCIÓN NUMÉRICA 7. La copañía de udanzas Raírez cobra $70 por transportar cierta áquina 15 illas y $100 por transportar la isa

Más detalles

Tema 3. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 3. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) 4 en el punto Para ello, damos a valores próimos

Más detalles

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11 1. y = x + 11 x + 5 a) ESTUDIO DE f: 1) Dominio: Como es un cociente del dominio habrá que excluir los valores que anulen el denominador. Por tanto: x + 5 = 0 x = 5 ) Simetría: A simple vista, como el

Más detalles

Unidad didáctica: Electricidad, electromagnetismo y medidas

Unidad didáctica: Electricidad, electromagnetismo y medidas Unidad didáctica: Electricidad, electroagnetiso y edidas CURSO 3º ESO versión 1.0 1 Unidad didáctica: Electricidad, electroagnetiso y edidas ÍNDICE 1.- Introducción..- Corriente eléctrica..1.- Corriente

Más detalles

Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS

Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS XII APLICACIÓN: CÁLCULO DE ÁREAS El estudiante, hasta este momento de sus estudios, está familiarizado con el cálculo de áreas de figuras geométricas regulares a través del uso de fórmulas, como el cuadrado,

Más detalles

Tema 5. Límites y continuidad de funciones

Tema 5. Límites y continuidad de funciones Matemáticas Aplicadas a las Ciencias Sociales II Análisis: Límites y continuidad 97 Tema 5 Límites y continuidad de funciones Límite de una función en un punto Idea inicial Si una función f está definida

Más detalles

Tema 3. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 3. LÍMITES Y CONTINUIDAD DE FUNCIONES 1 Tema LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g( ) ENT[ ] h ( ) i ( ) 4 en el punto = Para ello, damos a valores

Más detalles

Límites y continuidad de funciones reales de variable real

Límites y continuidad de funciones reales de variable real Límites y continuidad de funciones reales de variable real Álvarez S., Caballero M.V. y Sánchez M. a M. [email protected], [email protected], [email protected] Índice 1. Definiciones 3 2. Herramientas 10 2.1. Funciones

Más detalles

TEMA 11 REPRESENTACIÓN DE FUNCIONES

TEMA 11 REPRESENTACIÓN DE FUNCIONES Tema Representación de unciones Matemáticas II º Bachillerato TEMA REPRESENTACIÓN DE FUNCIONES EJERCICIO : Representa gráicamente la unción: Dominio R 8 respecto al origen. 8 Simetrías:. No es par ni impar:

Más detalles

CANARIAS / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO

CANARIAS / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO De las dos opciones propuestas, sólo hay que desarrollar una opción copleta. Cada problea correcto vale por tres puntos. Cada cuestión correcta vale por un punto. Probleas OPCIÓN A.- Un cuerpo A de asa

Más detalles

REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS

REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS DOMINIO - Polinomio : D = R - Cocientes : D = R {puntos que anulan el denominador} - Raíces de índice par : D = {Lo

Más detalles

TRABAJO PRÁCTICO Nº 3 - RESOLUCIÓN ESTÁTICA DE LOSAS. Efectuar la resolución estática de las losas de la planta tipo (s/pb y s/1º).

TRABAJO PRÁCTICO Nº 3 - RESOLUCIÓN ESTÁTICA DE LOSAS. Efectuar la resolución estática de las losas de la planta tipo (s/pb y s/1º). TRABAJO PRÁCTICO Nº 3 - RESOLUCIÓN ESTÁTICA DE LOSAS Efectuar la resolución estática de las losas de la planta tipo (s/pb y s/1º). Coo ejeplo se realizará el análisis de cargas de la planta s/2º (de azotea)

Más detalles

denota el intervalo cerrado por izquierda y no acotado por derecha, corresponde al conjunto de todos los números reales mayores o iguales que a.

denota el intervalo cerrado por izquierda y no acotado por derecha, corresponde al conjunto de todos los números reales mayores o iguales que a. Intervalos no acotados. Las definiciones anteriores se pueden generalizar, para ello usareos los síbolos (se lee ás infinito) y (se lee enos infinito). Con debeos entender supera cualquier núero por grande

Más detalles

Límites de funciones de varias variables.

Límites de funciones de varias variables. Límites continuidad de funciones de varias variables Límites de funciones de varias variables. En este apartado se estudia el concepto de límite de una función de varias variables algunas de las técnicas

Más detalles

5. DIFERENCIACION DE FUNCIONES DE VARIAS VARIABLES

5. DIFERENCIACION DE FUNCIONES DE VARIAS VARIABLES 8 Obseraciones: Si alguno de los límites anteriores es distinto de los otros o no eiste, podemos airmar que no eiste (, (, ( a, a ) La eistencia e igualdad de todos los límites anteriores no nos permite

Más detalles

2-2 (x) (x) (x) 3. Para hallar la ecuación canónica de la parábola, gráfico de la función f(x) = ax 2 + bx + c, se procede de la siguiente manera:

2-2 (x) (x) (x) 3. Para hallar la ecuación canónica de la parábola, gráfico de la función f(x) = ax 2 + bx + c, se procede de la siguiente manera: Funciones cuadráticas Función cuadrática Deinición: Una unción cuadrática es una unción : R R deinida por la ormula = a + b + c Donde a, b y c son números reales y a 0. Esta epresión de la unción cuadrática

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Física General Proyecto PMME - Curso 8 Instituto de Física Facultad de Ineniería UdelaR DINÁMICA DE LA PARTÍCULA José Pedro Collazzi, Mauricio Galperin, Federico Lurner y Marcelo Sadres INTRODUCCIÓN Realizaos

Más detalles

EL MUELLE. LAS FUERZAS ELÁSTICAS

EL MUELLE. LAS FUERZAS ELÁSTICAS EL MUELLE. LAS FUERZAS ELÁSTICAS En una pista horizontal copletaente lisa, se encuentra un uelle de 30 c de longitud y de constante elástica 100 N/. Se coprie 0 c y se sitúa una asa de 500 g frente a él.

Más detalles

Límites y continuidad

Límites y continuidad Límites y continuidad.. Límites El ite por la izquierda de una función f en un punto 0, denotado como 0 f() es el valor al que se aproima f() cuando se acerca hacia 0 por la izquierda. De igual forma,

Más detalles

GUÍA DE PROBLEMAS F 10º

GUÍA DE PROBLEMAS F 10º Unidad 3: Dináica de la partícula GUÍ DE PROBLEMS 1)-Una partícula de asa igual a kg esta tirada hacia arriba por una plano inclinado liso ediante una fuerza de 14,7 N. Deterinar la fuerza de reacción

Más detalles

1. Dominio, simetría, puntos de corte y periodicidad

1. Dominio, simetría, puntos de corte y periodicidad Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE 4 MOVIMIENO ARMÓNICO SIMPLE 4.. MOVIMIENOS PERIÓDICOS. Conocido el período de rotación de la Luna alrededor de la ierra, y sabiendo que la Luna no eite luz propia, sino que refleja la que recibe del Sol,

Más detalles

Ley de composición interna u operación en un conjunto

Ley de composición interna u operación en un conjunto ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Resuen teoría Prof. Alcón Ley de coposición interna u operación en un conjunto Sea A un conjunto no vacío. Una ley de coposición interna u operación en A es una

Más detalles

ELEMENTOS DEL MOVIMIENTO.

ELEMENTOS DEL MOVIMIENTO. 1 Poición y deplazaiento. ELEMENTOS DEL MOVIMIENTO. Ejercicio de la unidad 11 1.- Ecribe el vector de poición y calcula u ódulo correpondiente para lo iguiente punto: P 1 (4,, 1), P ( 3,1,0) y P 3 (1,0,

Más detalles

lím lím Veamos como ejemplo el límite de la función polinómica f(x)=3x 2-8 en 1: x 1 (3x2 )-lím 8 x 1 =2 x 1 x)2 -lím x 1 8 =

lím lím Veamos como ejemplo el límite de la función polinómica f(x)=3x 2-8 en 1: x 1 (3x2 )-lím 8 x 1 =2 x 1 x)2 -lím x 1 8 = LÍMITES LECCIÓN 7 Índice: Cálculo de ites en un punto. Epresión indeterminada L/0. Epresión indeterminada 0/0. Algunos ites de funciones irracionales. Otras técnicas básicas para el cálculo de ites. Problemas..-

Más detalles

SUBSECRETARÍA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN GENERAL DEL BACHILLERATO CENTRO DE ESTUDIOS DE BACHILLERATO 4/2 LIC: JESÚS REYES HEROLES

SUBSECRETARÍA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN GENERAL DEL BACHILLERATO CENTRO DE ESTUDIOS DE BACHILLERATO 4/2 LIC: JESÚS REYES HEROLES SUBSECRETARÍA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN GENERAL DEL BACHILLERATO CENTRO DE ESTUDIOS DE BACHILLERATO / LIC: JESÚS REYES HEROLES GUÍA PARA EL EXAMEN EXTRAORDINARIO DE CÁLCULO DIFERENCIAL JULIO

Más detalles

FUNCIÓN RACIONAL. 1 es racional x. es racional. es racional. es racional. es racional. El dominio de toda función racional es igual al conjunto ( ) 0

FUNCIÓN RACIONAL. 1 es racional x. es racional. es racional. es racional. es racional. El dominio de toda función racional es igual al conjunto ( ) 0 FUNCIÓN RACIONAL Función Racional. Dados polinomios p( ) q( ) tales que no tienen actores comunes, se deine la unción racional como la unción ormada por el cociente de los polinomios Ejemplos de unciones

Más detalles

Teoría y ejercicios de Matemáticas II. Análisis

Teoría y ejercicios de Matemáticas II. Análisis 9.DERIVADAS 9.. VARIACIÓN DE UNA VARIABLE Las propiedades estudiadas en los temas anteriores, límites, continuidad, etc., nos aportan inormación puntual sobre las unciones; pero no nos dicen nada sobre

Más detalles

5.7.- ESTUDIO GRANULOMETRICO DE LOS ARIDOS. 5.7.1.- Análisis granulométrico

5.7.- ESTUDIO GRANULOMETRICO DE LOS ARIDOS. 5.7.1.- Análisis granulométrico 5.7.- ESTUDIO GRANULOMETRICO DE LOS ARIDOS 5.7.1.- Análisis granuloétrico La granuloetría de los áridos es uno de los paráetros ás iportantes epleados para la dosificación del horigón (La ayoría de los

Más detalles

2. Amplía: factoriales y números combinatorios Soluciones

2. Amplía: factoriales y números combinatorios Soluciones UNIDAD Cobinatoria 2. Aplía: factoriales y núeros cobinatorios Pág. 1 de FACTORIALES El núero de perutaciones de n eleentos es: P n n n 1) n 2) 2 1 A este producto de n factores decrecientes a partir de

Más detalles

Función es una relación entre dos variables a las que, en general, se les llama x e y. Viene representado por: y f (x)

Función es una relación entre dos variables a las que, en general, se les llama x e y. Viene representado por: y f (x) TEMA 9: :.- CONCEPTO DE FUNCIÓN: Función es una relación entre dos variables a las que, en general, se les llama e y. Viene representado por: y (, donde es la variable independiente e y es la variable

Más detalles

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. Concepto de función. Definición Se llama función (real de variable real) a toda aplicación f : R R f() que a cada número le

Más detalles

Solución de un sistema de desigualdades

Solución de un sistema de desigualdades Solución de un sistema de desigualdades En la sección anterior tuvimos oportunidad de resolver desigualdades de dos variables. En el último ejemplo vimos nuestro primer sistema de desigualdades, que aunque

Más detalles

ƒ : {(1, 4), (2, 5), (3, 6), (4, 7)}.

ƒ : {(1, 4), (2, 5), (3, 6), (4, 7)}. SECCIÓN 5. Funciones inversas 5. Funciones inversas Verificar que una función es la inversa de otra. Determinar si una función tiene una función inversa. Encontrar la derivada de una función inversa. f

Más detalles

CÁLCULO DE PENDIENTE EN CAÑERIA DE DESAGÜE CLOACAL

CÁLCULO DE PENDIENTE EN CAÑERIA DE DESAGÜE CLOACAL CÁLCULO DE PENDIENTE EN CAÑERIA DE DESAGÜE CLOACAL FUNDAMENTOS PROCEDIMIENTOS CRITERIOS DE PROYECTO PROFESOR: M.M.O. MARTÍN RODRIGO PIRAGINI ESPECIALIDAD: CONSTRUCCIONES CIVILES 1 Pasos para el diseño

Más detalles

ASIGNATURA GAIA MECÁNICA DE FLUIDOS NOMBRE IZENA FECHA DATA 18/1/ mm L = 0,5 m 1V1. 10 mm L = 0,5 m. 8 mm

ASIGNATURA GAIA MECÁNICA DE FLUIDOS NOMBRE IZENA FECHA DATA 18/1/ mm L = 0,5 m 1V1. 10 mm L = 0,5 m. 8 mm SIGNUR GI MECÁNIC DE FLUIDOS CURSO KURSO NOMBRE IZEN FECH D 8//00 0 L 0, V B 8 L 0V 0V 0 L 0, ubería de retorno al tanque 0 L 0Z B 0Z M 0 8 L Esquea de fijación del cilindro y vástago S El circuito hidráulico

Más detalles

Límites. 1. Calcula los límites de las siguientes funciones en los puntos que se indican: 2 2 2 a) lim b) lim c) lim d) lim

Límites. 1. Calcula los límites de las siguientes funciones en los puntos que se indican: 2 2 2 a) lim b) lim c) lim d) lim Límites CIT_H. Calcula los límites de las siguientes funciones en los puntos que se indican: ( ) + + + a) lim b) lim c) lim d) lim + + + + + e) lim f) lim g) lim h) lim + 0 + + 9 + j) lim k) lim l) lim

Más detalles

4.2. Continuidad de una función en un punto. (A) Una función f es continua en un punto x=a, cuando se cumplen las siguientes condiciones:

4.2. Continuidad de una función en un punto. (A) Una función f es continua en un punto x=a, cuando se cumplen las siguientes condiciones: 4. CONTINUIDAD DE UNA FUNCIÓN. 4.. Noción intuitiva de continuidad de una unción en un punto. La mayor parte de las unciones que manejamos a nivel elemental, presentan en sus gráicas una propiedad característica

Más detalles

CURSO 2013/2014 RESUMEN LÍMITES Y CONTINUIDAD 2, ,61 2,01 4,0401 1,99 3,9601 2,001 4, ,999 3,

CURSO 2013/2014 RESUMEN LÍMITES Y CONTINUIDAD 2, ,61 2,01 4,0401 1,99 3,9601 2,001 4, ,999 3, RESUMEN LÍMITES Y CONTINUIDAD Límite de una función en un punto El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan

Más detalles

TEMA 2: CONTINUIDAD DE FUNCIONES

TEMA 2: CONTINUIDAD DE FUNCIONES TEMA : CONTINUIDAD DE FUNCIONES 1. Continuidad de una función en un punto Entre las primeras propiedades de las funciones aparece el concepto de continuidad. Durante mucho tiempo fue asumida como una idea

Más detalles

CAPÍTULO. 1 Conceptos básicos

CAPÍTULO. 1 Conceptos básicos CAPÍTULO 1 Conceptos básicos 1.4.2 Curva solución de un PVI Como comentamos al hablar sobre las soluciones generales particulares de una ED, ocurre que las soluciones generales contienen una o más constantes

Más detalles

CORPORACIÓN UNIVERSITARIA MINUTO DE DIOS UNIMINUTO Bucaramanga Profesor: Lic. Eduardo Duarte Suescún OPERACIONES CON RADICALES Y RACIONALIZACIÓN

CORPORACIÓN UNIVERSITARIA MINUTO DE DIOS UNIMINUTO Bucaramanga Profesor: Lic. Eduardo Duarte Suescún OPERACIONES CON RADICALES Y RACIONALIZACIÓN CORPORACIÓN UNIVERSITARIA MINUTO DE DIOS UNIMINUTO Bucaraanga Profesor: Lic. Eduardo Duarte Suescún OPERACIONES CON RADICALES Y RACIONALIZACIÓN MARCO TEÓRICO - CONCEPTUAL En el taller anterior heos desarrollado

Más detalles

UNIVERSIDAD AUTONOMA DE GUADALAJARA

UNIVERSIDAD AUTONOMA DE GUADALAJARA UNIVERSIDAD AUTONOMA DE GUADALAJARA MAESTRIA EN ADMINISTRACION Y NEGOCIOS MAESTRO: ALFREDO CASTRO MATERIA: ADMINISTRACION DE LAS TECNOLOGIAS Y OPERACIONES TEMA: C R M ALUMNO: L.C.P. ROGELIO GERMAN RODRIGUEZ

Más detalles

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales Problemas de limites, continuidad y derivabilidad Calcula los siguientes límites de funciones racionales, irracionales y eponenciales - ) = [ = = = = = = = . ) = [0. ] = = = = = = = = = 0 = [ = p=

Más detalles

Límites y continuidad

Límites y continuidad 9 Matemáticas I : Cálculo diferencial en IR Tema 9 Límites y continuidad 9. Límite y continuidad de una función en un punto Definición 9.- Un punto IR se dice punto de acumulación de un conjunto A si,

Más detalles

Tema 2. FUNCIONES REALES DE VARIABLE REAL

Tema 2. FUNCIONES REALES DE VARIABLE REAL UAH Funciones reales de variable real 1 Tema FUNCIONES REALES DE VARIABLE REAL Concepto de función Dados dos conjuntos A y B, una función de A en B es una relación (una ley) que asigna a cada elemento

Más detalles

TEMA 5.6 PROGRAMACIÓN NO LINEAL

TEMA 5.6 PROGRAMACIÓN NO LINEAL TEMA 5.6 PROGRAMACIÓN NO LINEAL 5.6.. INTRODUCCIÓN 5.6.. CONCEPTOS BÁSICOS 5.6.. MÉTODO O DE NEWTON ONSN SIN RESTRICCIONES S 5.6.4. MÉTODO DE NEWTON CON RESTRICCIONES. FUNCIONES DE PENALIZACIÓN. INTRODUCCIÓN

Más detalles

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x = Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.

Más detalles

8 Representación de funciones

8 Representación de funciones 8 Representación de unciones ACTIVIDADES INICIALES 8I Escribe los siguientes cocientes menor que el grado de Q(): a) + + a) + + P() ( + ) P( ) Por tanto: + Q( ) + P ( ) Q ( ) como R ( ) C ( ) + con C()

Más detalles

SISTEMAS DE UNIDADES Y ECUACIONES DE DIMENSIÓN APLICACIÓN A LAS PROPIEDADES FÍSICAS DE UTILIZACIÓN EN LA HIDRÁULICA

SISTEMAS DE UNIDADES Y ECUACIONES DE DIMENSIÓN APLICACIÓN A LAS PROPIEDADES FÍSICAS DE UTILIZACIÓN EN LA HIDRÁULICA HIDRÁUICA APICADA A AS CONDUCCIONES CAPÍUO 1 SISEAS DE UNIDADES Y ECUACIONES DE DIENSIÓN APICACIÓN A AS PROPIEDADES ÍSICAS DE UIIZACIÓN EN A HIDRÁUICA 1- CONCEPOS GENERAES o itea de unidade utilizado on

Más detalles

Física y Mecánica de las Construcciones ETS Arquitectura/ Curso 2008-09

Física y Mecánica de las Construcciones ETS Arquitectura/ Curso 2008-09 Física y Mecánica de las Construcciones ETS Arquitectura/ Curso 8-9 C) VIBRACIONES Y ONDAS 1. VIBRACIONES MECÁNICAS 1. 1. INTRODUCCIÓN Una vibración ecánica es la oscilación repetida de un punto aterial

Más detalles