Valeri Makarov: Matemáticas I (Grado en Ingeniería Química)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Valeri Makarov: Matemáticas I (Grado en Ingeniería Química)"

Transcripción

1 Matemáticas I (Grado en Ingeniería Química) Valeri Makarov 3/1/1 5/1/13 F.CC. Matemáticas, Desp. 4 vmakarov

2 Capítulo 4: Funciones de varias variables 4.1 Curvas de nivel. Representación gráfica de funciones

3 Función real de dos variables: z = f (x, y) define el lugar geométrico de los puntos (x, y, z) R 3. Es una superficie. También podemos representar una superficie en forma impĺıcita F (x, y, z) = En el caso anterior: F = z f (x, y) = 1.5 Ejemplo: (una esfera).5 1 x + y + z =

4 Curvas de nivel Qué forma tiene la superficie z = x + y? Cortamos planos horizontales: las curvas de nivel. z = 1 z = z = z = 4 z = 5 z =

5 y z Curvas de nivel: z = const x + y = h, h El lugar geométrico: circunferencias del radio h Podría ser un cono. Para ver la forma en vertical podemos ver los cortes con los planos x = const o y = const Con x = h: z = h + y son parábolas x 5 5 y

6 Problema 1a: z = const, y = C/x 1.5 y = const, z = cos(cx) z = cos(xy) Curvas de nivel cos(xy) = h 1 x = const, z = cos(cy) z = cos(xy) h [ 1, 1] xy = arc cos(h) y = C x

7 Problema 1c:

8 4. Derivadas parciales

9 Sea z = f (x, y). Si mantenemos y = const la derivada de z sobre x se llama la derivada parcial de f sobre x y se denota f Problema a: Hallar las derivadas parciales z = x cos(x 4y) = x cos(x 4y) x sin(x 4y) De la misma manera = 4x sin(x 4y)

10 Definiciones: Derivadas de primer orden Dada f (x, y): f (x, y) f (x, y) = ĺım h f (x + h, y) f (x, y) h = ĺım h f (x, y + h) f (x, y) h Problema e: z = e (x+y ) = e (x+y ), = ye (x+y )

11 Definiciones: Derivadas de segundo orden Dada f (x, y): Derivadas cruzadas: f (x, y) f (x, y) f (x, y) f (x, y) = = = = ( ) f (x, y) ( ) f (x, y) ( ) f (x, y) ( ) f (x, y) Nota: Casi siempre f (x,y) = f (x,y), pero en general NO.

12 Problema b: z = sin(x + y )e y Las derivadas: = cos(x+y )e y, = [ y cos(x + y ) + sin(x + y ) ] e y z = 4 sin(x + y )e y z = [ cos(x + y ) y sin(x + y ) ] e y z = (1 + y) [ cos(x + y ) + (1 y) sin(x + y ) ] e y

13 Regla de la cadena Problema 3a: Sea z = x + y, donde x = e t sin(t), y = e t cos(t). Calcular z t. Solución: dz dt = dx dt + dy dt = x, = y, t = et (sin(t)+cos(t)), t = et (cos(t) sin(t)) z t = xe t [sin(t) + cos(t)] + ye t [cos(t) sin(t)] = = e t {sin(t)[sin(t) + cos(t)] + cos(t)[cos(t) sin(t)]} = e t

14 Problema 4: z = arctan ( ) u v, donde u = x sin(y), v = y cos(x). Calcular. Solución: = u u + v u = 1 v[( u v ) + 1] = v u + v, v = u v [( u v ) + 1] = u u + v, = v sin(y) uy sin(x) u + + v u + v = v u = sin(y) v = y sin(x) v sin(y) + uy sin(x) = u + v y cos(x) sin(y) + x sin(y)y sin(x) x sin (y) + y cos (x)

15 Problema 5: Sea f (t) una función. Definimos g(x, y) = f (t), donde de t = x + y. Calcular g(x,y) y g(x,y). Solución: g(x, y) = g(x, y) df (t) dt t ( = f ) x + y x x + y [ = ( ] ) f x + y x = x + y ( ) = f x + y xy (x + y ) 3/ x x + y = xy x + y [f ( )] x + y = ( ) f x + y ( ) f x + y x + y

16 Problema 6: La ecuación fundamental de la termodinámica: du = TdS pdv donde U(S, V ) es la energía interna y S es la entropía. i) Cuáles son las derivadas parciales de U? En general el diferencial se define como: du(s, V ) = U U ds + S V dv ii) Sean H = U + pv la entalpía del sistema, G = H TS la energía libre de Gibbs. Calcular dh y dg

17 Problema 7: Calcular el diferencial de z = a 3x 4y en (a/4, a/4) Resolución: = 3x a 3x 4y = = dz = dx + dy 3a/4 a 3a /16 4a /16 = sign(a) 4y a 3x 4y = 4a = 4 9a 3 sign(a) dz = sign(a) (dx + 43 ) dy

18 Derivadas parciales para la función impĺıcita En general, dada F (x, y, z) =. Supongamos que z = z(x, y) y derivamos: df dx = F + F = de donde despejamos = F / F Problema 8: Sea xy + z + 3xz 5 = 4. Evaluar y en el punto (, 1). Resolución: 1. Derivamos sobre x (suponiendo z = z(x, y)): y + + 3z5 + 15xz 4 = = y + 3z xz 4 En el (, 1): z = 4 y = ( ) = 373

19 . Derivamos sobre y: x + En el (, 1): z = 4 y = + 15xz4 = = x xz 4

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y),

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y), Problema. Calcula las derivadas parciales de las siguientes funciones: (a) f(x, y) = x + y cos(xy), (b) f(x, y) = x x + y, (c) f(x, y) = log x + y x y, (d) f(x, y) = arctan x + y x y, (e) f(x, y) = cos(3x)

Más detalles

Termodinámica. 1. Introducción. Transformaciones de Legendre Potenciales Termodinámicos

Termodinámica. 1. Introducción. Transformaciones de Legendre Potenciales Termodinámicos Termodinámica 2 o curso de la Licenciatura de Físicas Lección 3 Introducción Transformaciones de Legendre Potenciales Termodinámicos 1. Introducción El estado de equilibrio está caracterizado las variables

Más detalles

Teorema de la Función Implícita

Teorema de la Función Implícita Teorema de la Función Implícita El círculo de radio 1 con centro en el origen, puede representarse implícitamente mediante la ecuación x 2 + y 2 1 ó explícitamente por las ecuaciones y 1 x 2 y y 1 x 2

Más detalles

3. Funciones de varias variables

3. Funciones de varias variables Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 17 3. Funciones de varias variables Función real de varias variables reales Sea f una función cuyo dominio es un subconjunto D de R n

Más detalles

Lección 11: Derivadas parciales y direccionales. Gradiente. Introducción al Cálculo Infinitesimal I.T.I. Gestión

Lección 11: Derivadas parciales y direccionales. Gradiente. Introducción al Cálculo Infinitesimal I.T.I. Gestión Lección 11: Derivadas parciales y direccionales. Gradiente Introducción al Cálculo Infinitesimal I.T.I. Gestión Recordar: - Cálculo de ĺımites - Reglas de derivación Derivadas parciales f : R 2 R función

Más detalles

ANÁLISIS II Computación. Práctica 4. x 3. x 2 + y 2 si (x, y) (0, 0)

ANÁLISIS II Computación. Práctica 4. x 3. x 2 + y 2 si (x, y) (0, 0) facultad de ciencias exactas y naturales uba primer cuatrimestre 2007 ANÁLISIS II Computación Práctica 4 Derivadas parciales 1. Calcular a) f y (2, 1) para f(x, y) = xy + x y b) f z (1, 1, 1) para f(x,

Más detalles

Teorema de la Función Implícita

Teorema de la Función Implícita Teorema de la Función Implícita Sea F : U R p+1 R U abierto F (x 1, x 2,..., x q, y) y un punto a (a 1, a 2,..., a q, b) en U tal que i)f (a 1, a 2,..., a q, b) 0 ii) 0 y continua, existe entonces una

Más detalles

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009

ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 5 - Verano 2009 ANÁLISIS I MATEMÁTICA ANÁLISIS II (Computación) Práctica 5 - Verano 2009 Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Derivadas de orden superior. Calcular las derivadas

Más detalles

Prueba de Funciones de varias variables. 5 de noviembre de 2012 GRUPO A

Prueba de Funciones de varias variables. 5 de noviembre de 2012 GRUPO A 5 de noviembre de 1 GRUPO A xy5 si y x x y 1.- Consideremos f(xy)=. Se pide: 1 si y=x a) Existe el límite: lím f(xy)? xy 1 b) Es continua la función en (1)? c) Es diferenciable la función en (1)? ( puntos).-

Más detalles

1. DIFERENCIABILIDAD EN VARIAS VARIABLES

1. DIFERENCIABILIDAD EN VARIAS VARIABLES . DIFERENCIABILIDAD EN VARIAS VARIABLES. Calcular las derivadas direccionales de las siguientes funciones en el punto ā y la dirección definida por v... f(x, y = x + 2xy 3y 2, ā = (, 2, v = ( 3 5, 4 5.

Más detalles

Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos

Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Análisis I Matemática I Análisis II (C) Cuat II - 2009 Práctica 5: Derivadas parciales de orden superior - Polinomio de Taylor - Convexidad y Extremos Derivadas de orden superior 1. Calcular las derivadas

Más detalles

CRITERIOS DE ESPONTANEIDAD

CRITERIOS DE ESPONTANEIDAD CRITERIOS DE ESPONTANEIDAD Con ayuda de la Primera Ley de la Termodinámica podemos considerar el equilibrio de la energía y con La Segunda Ley podemos decidir que procesos pueden ocurrir de manera espontanea,

Más detalles

Tarea 1 - Vectorial

Tarea 1 - Vectorial Tarea - Vectorial 2050. Part :. - 3.2.. Un cerro se queda en las montañas en la altura de 6 mil metros. El cerro tiene la forma del gráfico de la función z = f(x, y) = x 2 y 2. Observamos que plaquitas

Más detalles

Índice general. Referencias 50

Índice general. Referencias 50 Índice general 1. UNIDAD I: Derivadas parciales 2 1.1. Funciones de varias variables.............................. 2 1.1.1. Funciones de dos o más variables....................... 6 1.1.2. Derivadas parciales

Más detalles

Diferenciación SEGUNDA PARTE

Diferenciación SEGUNDA PARTE ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 4 - Primer Cuatrimestre 009 Diferenciación SEGUNDA PARTE Regla de la Cadena 1 Sean f(u, v, w) = u + v 3 + wu y g(x, y) = x sen(y) Además, tenemos

Más detalles

ANALISIS II Computación. Práctica 4. x 3. x 2 + y 2. x 2 + y 2 si (x, y) (0, 0) 0 si (x, y) = (0, 0)

ANALISIS II Computación. Práctica 4. x 3. x 2 + y 2. x 2 + y 2 si (x, y) (0, 0) 0 si (x, y) = (0, 0) facultad de ciencias exactas y naturales uba curso de verano 2006 ANALISIS II Computación Práctica 4 Derivadas parciales 1. Calcular (a) f xy y (2, 1) para f(x, y) = + x y (b) f z (1, 1, 1) para f(x, y,

Más detalles

Práctica 3: Diferenciación I

Práctica 3: Diferenciación I Análisis I Matemática I Análisis II (C) Cuat II - 009 Práctica 3: Diferenciación I Derivadas parciales y direccionales. Sea f una función continua en x = a. Probar que f es derivable en x = a si y solo

Más detalles

Integral Doble e Integral Triple

Integral Doble e Integral Triple www.cidse.itcr.ac.cr/revistamate Práctica 6 Integral Doble e Integral Triple Cambio de variable con coordenadas polares y coordenadas ciĺındricas. Cálculo Superior Instituto Tecnológico de Costa ica Escuela

Más detalles

Integración doble Integrales dobles sobre regiones no rectangulares

Integración doble Integrales dobles sobre regiones no rectangulares Nuestra intención es extender la definición de integral doble, de funciones continuas, sobre regiones más generales que el rectángulo. Para ello definiremos dos tipos de regiones en el plano, que llamaremos

Más detalles

9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES

9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES 9.1. Diferenciación 9.1.1. DERIVADAS PARCIALES Derivadas parciales de una función de dos variables Se llaman primeras derivadas parciales de una función f(x, y) respecto de x e y a las funciones: f x (x,

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación Conocimientos previos Para poder seguir adecuadamente este tema, se requiere que el alumno repase ponga al día sus conocimientos en los siguientes contenidos: Cálculo de derivadas Propiedades de las funciones

Más detalles

Problemas de Análisis Vectorial y Estadístico

Problemas de Análisis Vectorial y Estadístico Relación 1. Funciones Γ y β 1. Función Gamma Definimos la función gamma Γ(p) como: Demostrar que: Γ(p) = t (p 1) e t dt para p> a) Γ(1) = 1 b) Integrando por partes, ver que Γ(p) = (p 1)Γ(p 1) para p>1

Más detalles

Tema 3: Diferenciabilidad de funciones de varias variables

Tema 3: Diferenciabilidad de funciones de varias variables Departamento de Matemáticas. Universidad de Jaén. Análisis Matemático II. Curso 2009-2010. Tema 3: Diferenciabilidad de funciones de varias variables 1. Calcular las dos derivadas parciales de primer orden:

Más detalles

Lista de ejercicios # 1. Ecuaciones diferenciales ordinarias de orden 1

Lista de ejercicios # 1. Ecuaciones diferenciales ordinarias de orden 1 UNIVERSIDAD DE COSTA RICA FCULTAD DE CIENCIAS MA-1005 Ecuaciones Diferenciales ESCUELA DE MATEMÁTICA II Ciclo del 2017 Lista de ejercicios # 1 Ecuaciones diferenciales ordinarias de orden 1 Soluciones

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES ) 3-1. Calcular, para las siguientes funciones. a) fx, y) x cos x sen y b) fx, y) e xy c) fx, y) x + y ) lnx + y )

Más detalles

Sistemas no lineales

Sistemas no lineales Tema 4 Sistemas no lineales Dpto. Matemática Aplicada I E.T.S. de Arquitectura Universidad de Sevilla Curso 2005 2006 Tema 4. Sistemas no lineales 1. Sistemas no lineales de ecuaciones diferenciales. Integrales

Más detalles

1 Funciones de Varias Variables

1 Funciones de Varias Variables EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,

Más detalles

Funciones reales de varias variables.

Funciones reales de varias variables. Tema 4 Funciones reales de varias variables. 4.1. El espacio euclídeo R n. Definición 4.1.1. Se define el producto escalar entre vectores de R n como la aplicación: ( ) : R n R n R : x y = (x 1, x 2,...,

Más detalles

Cálculo diferencial en varias variables (Curso ) a) Estudiar la continuidad en el origen de las funciones dadas.

Cálculo diferencial en varias variables (Curso ) a) Estudiar la continuidad en el origen de las funciones dadas. CÁLCULO Práctica 4.2 Cálculo diferencial en varias variables (Curso 2016-2017) 1. Sean f, h: IR 2 IR funciones definidas del siguiente modo: x 3 f(x, y) = x 2, (x, y) (0, 0) + y2 a) Estudiar la continuidad

Más detalles

Práctica 7. sen 2 x cos x dx. c) 3x 2 x 2 dx. f) 3. Hallar el área encerrada por las curvas:

Práctica 7. sen 2 x cos x dx. c) 3x 2 x 2 dx. f) 3. Hallar el área encerrada por las curvas: ANÁLISIS I MATEMÁTICA ANÁLISIS (Computación) Práctica 7 I. epaso: integración en una variable. Calcular: sen x. b) π sen x. c) El área entre las curvas y = sen x, y =, x =, x = π.. Calcular: x sen x. b)

Más detalles

Integración en una variable (repaso)

Integración en una variable (repaso) Análisis I Matemática I Análisis II (C) Primer Cuatrimestre - 2 Práctica 8: Integración Integración en una variable (repaso). Calcular: sen x. 2π sen x. El área entre las curvas y = sen x, y =, x =, x

Más detalles

Temas 1 y 2: Cálculo Diferencial y Optimización ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO

Temas 1 y 2: Cálculo Diferencial y Optimización ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO CÁLCULO II. Ejercicio de Examen Final Temas 1 y : Cálculo Diferencial y Optimización FECHA: 1/07/1 TIEMPO RECOMENDADO: 40 m Puntuación/TOTAL:,5/10 ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO w w 1. Dada

Más detalles

Tema 4A: Integración Doble ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO

Tema 4A: Integración Doble ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO Ejercicio de Seguimiento de Aprendizaje Tema 4A: Integración Doble FECHA: 8/05/1 TIEMPO RECOMENDADO: 1/ Hora Puntuación/TOTAL:,5/10 Halle el área total encerrada por la curva: Y RESPUESTA AL EJERCICIO:

Más detalles

Semana 3 [1/28] Derivadas. 2 de agosto de Derivadas

Semana 3 [1/28] Derivadas. 2 de agosto de Derivadas Semana 3 [1/28] 2 de agosto de 2007 Funciones derivables Semana 3 [2/28] Derivabilidad en un punto Función derivable en un punto Diremos que f : (a, b) Ê es derivable en el punto x (a, b), si existe el

Más detalles

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) 1er. Cuatrimestre 2017 Práctica 3: Diferenciación Aplicación de algunos resultados de diferenciación en una variable 1. Vericar que se

Más detalles

Ecuaciones Diferenciales Ordinarias.

Ecuaciones Diferenciales Ordinarias. Wilson Herrera 1 Ecuaciones Diferenciales Ordinarias. 1. Comprobar si las relaciones dadas son integrales de las ecuaciones diferenciales indicadas o no lo son (C=const): 1.2) y 3 = 1 x + C x 3, xy2 dy

Más detalles

Tema 3. FUNCIONES. CÁLCULO DIFERENCIAL. Funciones. 1. Estudiar la acotación de las siguientes funciones:

Tema 3. FUNCIONES. CÁLCULO DIFERENCIAL. Funciones. 1. Estudiar la acotación de las siguientes funciones: Fundamentos Matemáticos para la Ingeniería. Curso 2015-2016. Tema 3. Hoja 1 Tema 3. FUNCIONES. CÁLCULO DIFERENCIAL. Funciones 1. Estudiar la acotación de las siguientes funciones: (a) y = 2x 1; (b) y =

Más detalles

1.6 Ejercicios resueltos

1.6 Ejercicios resueltos Apuntes de Ampliación de Matemáticas 1.6 Ejercicios resueltos Ejercicio 1.1 En cada uno de los siguientes casos a A {(x,y R : 1 < x < 1, 1 < y < 1}. b A {(x,y R : 1 < x + y < 4}. c A {(x,y R : y > 0}.

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Ecuaciones Diferenciales Ordinarias (Métodos de Solución) Julio López jclopez@dim.uchile.cl Depto Ingeniería Matemática, Universidad de Chile Primavera 2008, Clase 3 Julio López EDO 1/18 1) Ecuaciones

Más detalles

Funciones de varias variables: continuidad derivadas parciales y optimización

Funciones de varias variables: continuidad derivadas parciales y optimización Titulación: Ingeniero en Telecomunicación. Asignatura: Cálculo. Relación de problemas número 4. Funciones de varias variables: continuidad derivadas parciales y optimización Problema 1. Determinar el dominio

Más detalles

Integración múltiple: integrales triples

Integración múltiple: integrales triples Problemas propuestos con solución Integración múltiple: integrales triples ISABEL MARRERO epartamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Integrales iteradas 1. Teorema

Más detalles

Cálculo diferencial en varias variables (Curso ) a) Estudiar la continuidad en el origen de las funciones dadas.

Cálculo diferencial en varias variables (Curso ) a) Estudiar la continuidad en el origen de las funciones dadas. CÁLCULO Práctica 4.2 Cálculo diferencial en varias variables (Curso 2017-2018) 1. Sean f, h: IR 2 IR funciones definidas del siguiente modo: x 3 f(x, y) = x 2, (x, y) (0, 0) + y2 a) Estudiar la continuidad

Más detalles

CLASE INAUGURAL DE QUIMICA FISICA BIOLOGICA QUIMICA FISICA I AÑO 2017

CLASE INAUGURAL DE QUIMICA FISICA BIOLOGICA QUIMICA FISICA I AÑO 2017 CLASE INAUGURAL DE QUIMICA FISICA BIOLOGICA QUIMICA FISICA I AÑO 2017 PROFESORES DE LA ASIGNATURA Dra. Nelly Lidia Jorge Dr. Jorge Marcelo Romero Bqca. Mariela Inés Profeta Lic. Andrea Natalia Pila Lic.

Más detalles

ETSII Febrero Análisis Matemático.

ETSII Febrero Análisis Matemático. Departamento de Análisis Matemático ETSII Febrero 2000. Análisis Matemático. Problema 1. (1 punto) Calcular los siguientes ites: e x e senx x 0 x senx x π/4 (tgx)tg2x Problema 2. (2 puntos) Considérese

Más detalles

Integración en una variable

Integración en una variable Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) er. Cuatrimestre - 7 Práctica 8: Integración Integración en una variable. Calcular: xsen x. sen x cos x. xe x. e x sen x. (f) 3x x + x.

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Ejercicio 2 3 4 5 6 7 8 total Puntos Universidad Carlos III de Madrid Departamento de Economía Examen final de Matemáticas I 9 de septiembre de 2005 APELLIDOS: NOMBRE: DNI: Titulación: Grupo: MODELO :.

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Departamento de Economía Examen final de Matemáticas I 3 de febrero de 2005 APELLIDOS: NOMBRE: DNI: Titulación: Grupo: MODELO :. Considera la función f!x"! ln! x ""!. Se

Más detalles

1. Hallar la ecuación paramétrica y las ecuaciones simétricas de la recta en los siguientes casos:

1. Hallar la ecuación paramétrica y las ecuaciones simétricas de la recta en los siguientes casos: A. Vectores ANALISIS MATEMATICO II Grupo Ciencias 05 Práctica : Geometría Analítica: Vectores, Rectas y Planos, Superficies en el espacio Para terminar el 3 de septiembre.. Sean v = (0,, ) y w = (,, 4)

Más detalles

Fundamentos matemáticos. Tema 5 Derivación de funciones de una y varias variables

Fundamentos matemáticos. Tema 5 Derivación de funciones de una y varias variables Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 5 Derivación de funciones de una y varias variables José Barrios García Departamento de Análisis Matemático Universidad de La

Más detalles

COLECCIÓN DE PROBLEMAS MATEMÁTICAS EMPRESARIALES. Curso

COLECCIÓN DE PROBLEMAS MATEMÁTICAS EMPRESARIALES. Curso COLECCIÓN DE PROBLEMAS MATEMÁTICAS EMPRESARIALES Curso 2009-10 1 Tema 1 El espacio vectorial R n 1. Encuentra un conjunto de vectores linealmente independientes con el mayor número posible de vectores

Más detalles

1. INTEGRALES MÚLTIPLES

1. INTEGRALES MÚLTIPLES 1. INTEGALES MÚLTIPLES 1. Calcular las siguientes integrales iteradas: 1. x x 7 y dy dx dx 1. x x y y dx dy 1 1 7. (1 + xy) dx dy 1 1 π/. x sen y dy dx 5. (x + y) dx dy 6/ 1 6. (x + y) 8 dx dy 616 5 1

Más detalles

8 x2 y 3 x 4 ( ) define a y como función

8 x2 y 3 x 4 ( ) define a y como función Universidad de Santiago de Chile Facultad de Ciencia, Depto. de Matemática y C.C. Departamento de Matemática y C.C. Asignatura: Cálculo Anual Ingeniería Civil PEP, Año 0 Problema. 0 pts.) Considere la

Más detalles

1. Introducción a las funciones de varias variables 1. Diferenciación

1. Introducción a las funciones de varias variables 1. Diferenciación Problemas de DFVV, Curso 2017/18 1 1. Introducción a las funciones de varias variables 1. Diferenciación en R n 1.1. Espacios métricos, normados y euclídeos Problema 1.1 Prueba la desigualdad de Young:

Más detalles

DERIVADAS Definición y Propiedades

DERIVADAS Definición y Propiedades Asignatura : Cálculo Diferencial, PMM 1137 Profesor : Emilio Cariaga López. Ayudante : Sergio Seguel Jara. Periodo : 2 do Semestre 2012. DERIVADAS Definición y Propiedades 1. a) Investigue cuál es la definición

Más detalles

CALCULO DIFERENCIAL. GRUPO D

CALCULO DIFERENCIAL. GRUPO D CALCULO DIFERENCIAL. GRUPO D HOJA DE PROBLEMAS 1 1. En este ejercicio se trata de dibujar el siguiente subconjunto de R 3 llamado hiperboloide de una hoja (a, b, c > 0): } V = (x, y, z) R 3 : x a + y b

Más detalles

Universidad Nacional Mayor de San Marcos Facultad de Ingeniería Industrial Curso: Matemática II Guía 3 - Solucionario

Universidad Nacional Mayor de San Marcos Facultad de Ingeniería Industrial Curso: Matemática II Guía 3 - Solucionario Ciclo:01- Tema: Integrales Indefinidas (Ejercicios Adicionales) En los siguientes ejercicios calcule la integral indefinida por cualquier método de los vistos en clase: 1. xe x Haciendo [u x, dv e x ]

Más detalles

Integración en una variable (repaso)

Integración en una variable (repaso) Análisis I Matemática I Análisis II (C) Primer Cuatrimestre - 28 Práctica 8: Integración Integración en una variable (repaso). Calcular: xsen x. sen 2 x cos x. xe x2. e x sen x. 3x 2 x 2 + x 2. ln x. 2.

Más detalles

SEGUNDO PARCIAL (3/6/2015)

SEGUNDO PARCIAL (3/6/2015) NOMBE Y nº de MATÍCULA: SEGUNDO PACIAL (3/6/15) 1.. (.5 ptos.) Calcular la integral doble: y sin(x ) dxdy, siendo el recinto acotado del primer cuadrante limitado por las curvas de ecuaciones respectivas

Más detalles

Análisis Matemático I

Análisis Matemático I Universidad Nacional de La Plata Facultad de Ciencias Exactas Departamento de Matemática Análisis Matemático I Evaluación Final - Agosto de 26. Nombre: Dirección correo electrónico: Ejercicio. Sea f una

Más detalles

Análisis Matemático I (Ing. de Telecomunicación), Examen final, 26 de enero de 2010 RESPUESTAS A AMBOS MODELOS

Análisis Matemático I (Ing. de Telecomunicación), Examen final, 26 de enero de 2010 RESPUESTAS A AMBOS MODELOS Análisis Matemático I (Ing. de Telecomunicación), 29-1 Examen final, 26 de enero de 21 RESPUESTAS A AMBOS MODELOS Primera Parte Las preguntas 1 14 son de tipo test. Se pide elegir una única respuesta en

Más detalles

Capítulo 5. Integrales sobre curvas y superficies

Capítulo 5. Integrales sobre curvas y superficies Capítulo 5. Integrales sobre curvas y superficies 5.1. Integrales de funciones escalares sobre curvas 5.2. Integrales de campos vectoriales sobre curvas 5.3. Teorema de Green 5.4. Integrales sobre superficies

Más detalles

c) Calcular las asíntotas horizontales y verticales de f y representar de forma aproximada

c) Calcular las asíntotas horizontales y verticales de f y representar de forma aproximada Universidade de Vigo Departamento de Matemática Aplicada II ETSI Minas Cálculo I Curso 2011/2012 2 de julio de 2012 (75 p) 1) Se considera la función f : R R definida por f(x) = ex 2 e x + 1 a) Determinar

Más detalles

Tema 5. Introducción a las ecuaciones diferenciales ordinarias. senx + C 2. x es solución de la ecuación diferencial

Tema 5. Introducción a las ecuaciones diferenciales ordinarias. senx + C 2. x es solución de la ecuación diferencial 1 Tema 5. Introducción a las ecuaciones diferenciales ordinarias 1.- Comprobar que la función y = C 1 senx + C 2 x es solución de la ecuación diferencial (1 - x cotgx) d2 y dx 2 - x dy dx + y = 0. 2.-

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) Primer Cuatrimestre - 03 Práctica 3: Diferenciación Aplicación de algunos resultados de diferenciación en una variable. Vericar que se

Más detalles

Introducción a las ecuaciones diferenciales ordinarias. senx + C 2. e x + C 2

Introducción a las ecuaciones diferenciales ordinarias. senx + C 2. e x + C 2 - Comprobar que la función y = C senx + C 2 x es solución de la ecuación diferencial ( - x cotgx) d2 y dx 2 - x dy dx + y = 0 2- a) Comprobar que la función y = 2x + C e x es solución de la ecuación diferencial

Más detalles

Contenido 1. Integrales Dobles 2. Integrales Triples

Contenido 1. Integrales Dobles 2. Integrales Triples Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................

Más detalles

si existen las derivadas parciales en r 0 lim = 0

si existen las derivadas parciales en r 0 lim = 0 Universidad Diego Portales Facultad de Ingeniería. Instituto de Ciencias Básicas Asignatura: Cálculo III Laboratorio N 6, nciones de varias variables, Derivadas. Introducción. En este laboratorio vamos

Más detalles

(3 p.) 3) Se considera la superficie z = z(x, y) definida implícitamente por la ecuación. 3x 2 z x 2 y 2 + 2z 3 3yz = 15.

(3 p.) 3) Se considera la superficie z = z(x, y) definida implícitamente por la ecuación. 3x 2 z x 2 y 2 + 2z 3 3yz = 15. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Curso 2012/2013 21 de junio de 2013 4 p.) 1) Se considera la función fx) = x 4 e 1 x 2. a) Calcular los intervalos de

Más detalles

Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 11 - Problemas 1, 3

Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 11 - Problemas 1, 3 página 1/7 Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 11 - Problemas 1, 3 Hoja 11. Problema 1 Resuelto por José Antonio Álvarez Ocete (septiembre 2014) 1. Sea la circunferencia

Más detalles

Boletín III. Integración de funciones de una variable. Ejercicios básicos

Boletín III. Integración de funciones de una variable. Ejercicios básicos CÁLCULO Boletín III. Integración de funciones de una variable Ejercicios básicos. Demuestra que 8 4 4x es una primitiva de afirmativo justifica por qué; en caso negativo encuentra otra. x. Es su única

Más detalles

ANALISIS II 12/2/08 COLOQUIO TEMA 1

ANALISIS II 12/2/08 COLOQUIO TEMA 1 ANALISIS II //08 COLOQUIO TEMA Sea f : R R un campo vectorial C y C la curva parametrizada por: γ(t) = (cost, 0, sent) con t ɛ [0, π] Sabiendo que C f ds = 6 y que rot( f( ) = (z, ), calcular la integral

Más detalles

mecánica estadística Conjuntos Canónicos Generalizados Capítulo 3

mecánica estadística Conjuntos Canónicos Generalizados Capítulo 3 mecánica estadística Conuntos Canónicos Generalizados Capítulo 3 Potenciales termodinámicos La energía interna U de un sistema cerrado se refiere a la energía de movimiento de las partículas que lo componen

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M _SC

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M _SC UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-114-1-M-1-00-2018_SC CURSO: SEMESTRE: Primero CÓDIGO DEL CURSO: 114 TIPO DE EXAMEN: Primer Parcial FECHA DE

Más detalles

CÁLCULO II Funciones de varias variables

CÁLCULO II Funciones de varias variables CÁLCULO II Funciones de varias variables Facultad de Informática (UPM) Facultad de Informática (UPM) () CÁLCULO II Funciones de varias variables 1 / 36 Funciones de varias variables Función vectorial de

Más detalles

Universidad Icesi Departamento de Matemáticas y Estadística

Universidad Icesi Departamento de Matemáticas y Estadística Universidad Icesi Departamento de Matemáticas y Estadística Solución del segundo examen parcial del curso Cálculo de una variable Grupo: Once Período: Inicial del año 000 Prof: Rubén D. Nieto C. PUNTO.

Más detalles

PRÁCTICAS DE CÁLCULO PARA I. QUÍMICA

PRÁCTICAS DE CÁLCULO PARA I. QUÍMICA PRÁCTICS DE CÁLCULO PR I. QUÍMIC Departamento de nálisis Matemático Curso 2005/2006 Práctica 1 Cálculo Diferencial............................... 1 Práctica 2 Cálculo Integral.................................

Más detalles

Guía de Estudio para la Sección de Matemáticas del Examen de Admisión

Guía de Estudio para la Sección de Matemáticas del Examen de Admisión 1 Guía de Estudio para la Sección de Matemáticas del Examen de Admisión 215-1 El material relativo al temario puede ser consultado en la amplia bibliografía que allí se menciona o en alguno de los muchísimos

Más detalles

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra. Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =

Más detalles

3 Cálculo diferencial en varias variables

3 Cálculo diferencial en varias variables Introducción Derivadas parciales. Derivadas parciales de orden superior Función diferenciable. Diferencial total. Regla de la cadena. Derivadas de una función definida de manera implícita. (*) Derivación

Más detalles

MÉTODOS MATEMÁTICOS II

MÉTODOS MATEMÁTICOS II MÉTODOS MATEMÁTICOS II (Licenciatura de Física. Curso 2007-2008) Boletín de problemas a evaluar correspondientes a los Temas I y II Fecha de entrega: Viernes, 23 de Noviembre de 2007 1. Calcula los siguientes

Más detalles

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013 Análisis II - Análisis matemático II - Matemática 3 do. cuatrimestre de 3 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones.. Verificar el teorema de Stokes para el hemisferio

Más detalles

a n en las que n=1 s n = n + 1 Solución: a) Utilizando el criterios de D Alembert se obtiene que a n+1 n a n 3 > 1 n=1

a n en las que n=1 s n = n + 1 Solución: a) Utilizando el criterios de D Alembert se obtiene que a n+1 n a n 3 > 1 n=1 EJERCICIO DE FUNDAMENTO MATEMÁTICO eries. Estudia el carácter de las series (a El término general es a n en las que (b la suma parcial n-sima es a n n n+ 3 n, n,, 3,... s n n, n,, 3,... n + olución: a

Más detalles

Problema 1 (i) Probar que el sistema. y 2 + z 2 x 2 + 2 = 0 yz + xz xy 1 = 0,

Problema 1 (i) Probar que el sistema. y 2 + z 2 x 2 + 2 = 0 yz + xz xy 1 = 0, Capítulo 1 Función implícita Problema 1 (i Probar que el sistema y + z x + 0 yz + xz xy 1 0 dene dos funciones implícitas y y(x z z(x en un entorno del punto (x y z ( 1 1. (ii Sea α la curva parametrizada

Más detalles

FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA Ingeniería Técnica Industrial. Especialidades Electricidad, Electrónica y Mecánica. EUP Sevilla Curso

FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA Ingeniería Técnica Industrial. Especialidades Electricidad, Electrónica y Mecánica. EUP Sevilla Curso FUNDAMENTOS MATEMÁTIOS DE LA INGENIERÍA Ingeniería Técnica Industrial. Esecialidades Electricidad, Electrónica y Mecánica. EUP Sevilla urso 8-9 Bloque III: álculo diferencial e integral de funciones de

Más detalles

Funciones Reales de Varias Variables

Funciones Reales de Varias Variables Funciones Reales de Varias Variables Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 54 CONTENIDO Funciones

Más detalles

TEMA 3: CÁLCULO DE FUNCIONES DE VARIAS VARIABLES

TEMA 3: CÁLCULO DE FUNCIONES DE VARIAS VARIABLES TEMA : CÁLCULO DE FUNCIONES DE AIAS AIABLES. Hallar f,. f, f,. 4 4. Hallar el valor de la función f, en los puntos de la circunferencia.. Calcular los guientes límites: cos lim,, sen lim,, c, lim con,

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Primer Cuatrimestre - 010 Práctica 3: Diferenciación Derivadas parciales y direccionales 1. Sea f una función continua en x = a. Probar que f es derivable en x =

Más detalles

5 Continuidad y derivabilidad de funciones reales de varias variables reales.

5 Continuidad y derivabilidad de funciones reales de varias variables reales. 5 Continuidad y derivabilidad de funciones reales de varias variables reales. 5.1 Funciones reales de varias variables reales. Curvas de nivel. Continuidad. 5.1.1 Introducción al Análisis Matemático. El

Más detalles

INGENIERÍA VESPERTINA EN AUTOMATIZACIÓN INDUSTRIAL. APUNTE N o 1 CÁLCULO EN VARIAS VARIABLES PROFESOR RICARDO SANTANDER BAEZA

INGENIERÍA VESPERTINA EN AUTOMATIZACIÓN INDUSTRIAL. APUNTE N o 1 CÁLCULO EN VARIAS VARIABLES PROFESOR RICARDO SANTANDER BAEZA INGENIERÍA VESPERTINA EN AUTOMATIZACIÓN INDUSTRIAL APUNTE N o 1 CÁLCULO EN VARIAS VARIABLES MATEMÁTICA II PROFESOR RICARDO SANTANDER BAEZA 2004 Ricardo Santander Baeza Universidad de Santiago de Chile

Más detalles

Matemáticas III Andalucía-Tech

Matemáticas III Andalucía-Tech Matemáticas III Andalucía-Tech Tema Optimización en campos escalares Índice 1. Formas cuadráticas y matrices simétricas reales 1. Extremos relativos de un campo escalar 3.1. Polinomio de Taylor de un campo

Más detalles

Curso 2010/ de julio de (2.75 p.) 1) Se considera la función f : (0, ) (0, ) definida por

Curso 2010/ de julio de (2.75 p.) 1) Se considera la función f : (0, ) (0, ) definida por Cálculo I Curso 2010/2011 Universidade de Vigo Departamento de Matemática Aplicada II ETSI Minas 5 de julio de 2011 (275 p) 1) Se considera la función f : (0, ) (0, ) definida por f(x) = 1 + ex x e x a)

Más detalles

Coordenadas Generalizadas en el Espacio

Coordenadas Generalizadas en el Espacio Capítulo 3 Coordenadas Generalizadas en el Espacio Las coordenadas cartesianas usuales en R 3 pueden verse también como un sistema de tres familias de superficies en el espacio, de modo que cada punto

Más detalles

Lista de Ejercicios Complementarios

Lista de Ejercicios Complementarios Lista de Ejercicios omplementarios Matemáticas VI (MA-3) Verano. ean α >, β > y a, b R constantes. ea la superficie que es la porción del cono de ecuación z = α x + y que resulta de su intersección con

Más detalles

Cálculo Integral Agosto 2015

Cálculo Integral Agosto 2015 Cálculo Integral Agosto 5 Laboratorio # Antiderivadas I.- Halle las siguientes integrales indefinidas. ) (x 5 8x + 3x 3 ) ) (y 3 6y 6 5 + 8) dy 3) (y 3 + 5)(y + 3) dy 4) (t 3 + 3t + ) (t 3 + 5) dt 5) (3y

Más detalles

Soluciones de los ejercicios del segundo examen parcial

Soluciones de los ejercicios del segundo examen parcial Matemáticas III GIC, curso 5 6 Soluciones de los ejercicios del segundo examen parcial EJERCICIO. Considera la integral doble π π ibuja la región del plano XY en la que se está integrando. Usa el teorema

Más detalles